JP4004270B2 - High thermal conductive inorganic powder and resin composition - Google Patents

High thermal conductive inorganic powder and resin composition Download PDF

Info

Publication number
JP4004270B2
JP4004270B2 JP2001339067A JP2001339067A JP4004270B2 JP 4004270 B2 JP4004270 B2 JP 4004270B2 JP 2001339067 A JP2001339067 A JP 2001339067A JP 2001339067 A JP2001339067 A JP 2001339067A JP 4004270 B2 JP4004270 B2 JP 4004270B2
Authority
JP
Japan
Prior art keywords
inorganic powder
surface treatment
conductive inorganic
powder
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001339067A
Other languages
Japanese (ja)
Other versions
JP2003137627A (en
Inventor
修 國友
登志昭 石丸
晋 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2001339067A priority Critical patent/JP4004270B2/en
Publication of JP2003137627A publication Critical patent/JP2003137627A/en
Application granted granted Critical
Publication of JP4004270B2 publication Critical patent/JP4004270B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00439Physico-chemical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00465Heat conducting materials

Description

【0001】
【発明の属する技術分野】
本発明は、高熱伝導性無機粉末および樹脂組成物に関する。詳しくは、層厚が限られたところに使用される接着剤や、アンダーフィル等の半導体封止材等を製造するのに好適な高熱伝導性無機粉末と、それを樹脂に充填した樹脂組成物に関するものである。
【0002】
【従来の技術】
電子機器の小型化、高機能化に伴い、電子部品の各所で用いられる樹脂組成物に充填される絶縁性無機粉末の微細化も進んでいる。例えば、半導体の実装方法の一つであるフリップチップ実装では、チップ保護に用いる封止材料(アンダーフィル材)を数10μm程度の基板とチップの隙間へ浸透させる為、液状エポキシ樹脂に微細な無機粉末を充填したアンダーフィル材が用いられている。
【0003】
しかしながら、無機粉末の充填量が多くなると、狭ギャップへ浸透しにくく、生産性が非常に悪くなるといった問題がある。これを解決するには樹脂組成物の粘度を下げる必要があり、低粘度ほど浸透性が向上する。こういった低粘度化はアンダーフィル材に限らず他用途の樹脂においても共通した課題であり、粘度に最も影響するのが充填される無機粉末の物性であると考えられている。特開2001−200139号公報には、アンダーフィル材用の無機充填材が開示され、2μm以下の粒子径をもつ粉末が無機粉末全体の50%以上がよいとされている。しかし、微粉が多くなると、樹脂組成物の粘度が容易に高粘度化するので、高充填化が困難となる。
【0004】
更に最近では、絶縁性の他に放熱性が求められる用途が出現し、充填材および樹脂の両面からの検討が進められている。従来、高熱伝導性無機粉末としては、窒化アルミニウム、酸化アルミニウム、結晶シリカ等が知られているが、その形状が破砕形状やカットエッジを有さない形状(丸味状)であるのでこれもまた樹脂組成物の粘度を容易に高め高充填させることができず、結果として満足する放熱性が得られない。また、これら粉末は樹脂との混合時に使用するニーダ、ロールや、成型時に用いる金型を激しく摩耗させてしまう為、生産性を悪化させてしまう。
【0005】
【発明が解決しようとする課題】
本発明は、上記に鑑みてなされたものであり、その目的は樹脂に高充填しても容易に高粘度化せず、しかも放熱性に優れた樹脂組成物を調製することのできる、高熱伝導性無機粉末と、それを樹脂に充填した樹脂組成物を提供することである。
【0006】
【課題を解決するための手段】
すなわち、本発明は以下のとおりである。
(請求項1)平均粒子径が1〜20μm、最大粒径が45μm以下の無機粉末からなり、粒度域3〜40μmの構成粒子である無機粉末Xの真円度が0.80以上の球状でしかも熱伝導率10W/mK以上であり、粒度域0.1〜1.5μmの構成粒子である無機粉末Yの真円度が0.30以上0.80未満の球状又は非球状でしかも熱伝導率が無機粉末Xと同等以下であり、X/Yの質量比が1〜30であり、かつ無機粉末Xが酸化アルミニウム粉末であり、無機粉末Yが結晶シリカ粉末、溶融(非晶質)シリカ粉末、酸化アルミニウム粉末のいずれか一方又は組み合わせであることを特徴とする高熱伝導性無機粉末。
(請求項2)シランカップリング剤、チタネート系カップリング剤及びアルミネート系カップリング剤から選ばれた1種又は2種以上の表面処理剤Aにて表面処理が施されていることを特徴とする請求項1記載の高熱伝導性無機粉末。
(請求項3)ポリカルボン酸系界面活性剤及び/又はポリアクリル酸系界面活性剤の表面処理剤Bにて表面処理が施されてなることを特徴とする請求項1又は2記載の高熱伝導性無機粉末。
(請求項4)表面処理剤Aと表面処理剤Bの質量比(B/A)が1〜30であることを特徴とする請求項3記載の高熱伝導性無機粉末。
(請求項5)請求項1、2、3又は4記載の高熱伝導性無機粉末が充填されてなることを特徴とする樹脂組成物。
【0007】
【発明の実施の形態】
以下、更に詳しく本発明について説明する。
【0008】
本発明の高熱伝導性無機粉末は、平均粒子径が1〜20μmであり、かつ最大粒径が45μm以下であることが第1条件である。平均粒径が1μm未満であると、熱伝導率が著しく低下してしまい、20μmよりも大きいと混合機や金型等を激しく摩耗させてしまうので生産性が低下する。また、最大粒径が45μmよりも大きいと、樹脂組成物の粘度が容易に高まるだけでなく、粗大粒子が狭ギャップに詰まってしまい、樹脂組成物の浸透を妨げてしまい用途に制約を受ける。ここで、最大粒径とは、水篩法で篩上に残る残量が0.5質量%未満の粒径を意味する。
【0009】
本発明の高熱伝導性無機粉末は、粒度域によって真円度の異なる2種以上の粉末が混合されたと同じような粒度構成を有している。もっとも、そのように混合されたものであってもよい。すなわち、本発明の高熱伝導性無機粉末は、無機粉末Xと無機粉末Yとを含み、粒度域3〜40μmの構成粒子である無機粉末Xの真円度が0.80以上の球状でしかも熱伝導率10W/mK以上であり、粒度域0.1〜1.5μmの構成粒子である無機粉末Yの真円度が0.30以上0.80未満の球状又は非球状でしかも熱伝導率が無機粉末Xと同等以下であることが第2条件となる。
【0010】
本発明において、無機粉末Xを粒度域3〜40μm、無機粉末Yを粒度域0.1〜1.5μmに選定した理由は、多くの実験の結果、これらの粒度域の粉末を制御することによって樹脂組成物の粘度、熱伝導率ともに最も良好になることを見いだしたことによる。また、無機粉末Xの真円度が0.80未満であると、この無機粉末が樹脂組成物の粘性に最も大きな影響を与えていることから、樹脂組成物が容易に高粘度化されて高充填が困難となる。更に、その熱伝導率が10W/mK未満であると十分に高い放熱特性を樹脂組成物に付与することができない。一方、無機粉末Yは樹脂組成物の熱伝導率に大きく影響しないが、無機粉末X同士間に入り込んで熱パスを助長する効果がある。従って、真円度が0.30未満であると無機粉末X同士間への進入が困難となり、0.8以上では無機粉末Xとの接触点が減ってしまい、熱パス助長効果も低下してしまう。また、その熱伝導率が無機粉末Xのそれを超えても、樹脂組成物の熱伝導率は無機粉末Xに大きく影響されているので、熱伝導率はそれほど向上せず、無機粉末Yとして、無機粉末Xよりも熱伝導率の大きなものを用いてもよいが、わざわざ比較的高価な熱伝導率の大きな粉体を用いることの意義が小さい。
【0011】
ここで、真円度は、走査型電子顕微鏡(日本電子社製「JXA−8600M型」)と画像解析装置(日本アビオニクス社製)を用いて測定することができる。すなわち、粉末のSEM写真から粒子の投影面積(A)と周囲長(PM)を測定する。周囲長(PM)に対応する真円の面積を(B)とすると、その粒子の真円度はA/Bとして表される。そこで、試料粒子の周囲長(PM)と同一の周囲長を持つ真円を想定すると、PM=2πr、B=πr2であるから、B=π×(PM/2π)2となり、この粒子の真円度は、真円度=A/B=A×4π/(PM)2として算出することができる。そこで、本発明においては、任意100個の粒子について測定し、その平均値でもって粉末の真円度とする。
【0012】
無機粉末Xは、化学的安定性、熱伝導性の点から酸化アルミニウム粉末が最適である。一方、無機粉末Yは、結晶シリカ粉末、溶融(非晶質)シリカ粉末、酸化アルミニウム粉末のいずれか一方又は組み合わせであることが最適である。
【0013】
本発明の高熱伝導性無機粉末は、無機粉末Xと無機粉末Yの割合が、X/Yの質量比で1〜30であることが第3条件である。無機粉末Yは、無機粉末Xによる樹脂組成物の低粘度を助長し、樹脂への高充填を可能にする。X/Y比が1未満であると微粉域の割合が少なすぎて樹脂組成物が容易に高粘度化し、また30超となると熱伝導性付与効果が著しく低下する。本発明の高熱伝導性無機粉末は、無機粉末Xと無機粉末Yの合計が60%以上(100%を含む)で構成されていることが好ましく、その合計が100%未満である場合の残部は、真円度0.80以上でしかも1.5〜3μmの球状無機粉末で構成されていることが好ましい。
【0014】
次に、他の本発明について説明する。これらの発明は、樹脂組成物の熱伝導性を更に向上させることができる高熱伝導性無機粉末であり、上記本発明の高熱伝導性無機粉末(以下、「高熱伝導性無機粉末基材」ともいう。)の改良に関するものである。
【0015】
その1は、高熱伝導性無機粉末基材をシラン系カップリング剤、チタネート系カップリング剤及びアルミネート系カップリング剤から選ばれた一種又は二種以上の表面処理剤Aにて表面処理された高熱伝導性無機粉末(以下、「高熱伝導性無機粉末A」ともいう。)である。これを用いることによって、樹脂との密着性が更に高められ、高熱伝導性無機粉末Aと樹脂間での界面熱抵抗が低下し、更なる高熱伝導性を付与することができる。表面処理剤Aとしては、高熱伝導性無機粉末基材との反応性の点からシラン系カップリング剤が好ましい。
【0016】
シランカップリング剤としては、ビニルトリクロルシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、β(3,4エポキシシンクロヘキシル)エチルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシリメトキシプロピルメチルジエトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン、γ−メルカプトプロピルトリメトキシシラン、γ−クロロプロピルトリメトキシシラン等であり、これらを一種または二種以上が用いられる。
【0017】
表面処理剤Aによる高熱伝導性無機粉末基材の表面処理方法は、流体ノズルを用いた噴霧方式、せん断力のある攪拌、ボールミル、ミキサー等の乾式法、水系または有機溶剤系等の湿式法を採用することができる。せん断力は、高熱伝導性無機粉末基材の破壊が起こらない程度にして行うことに注意が必要である。
【0018】
乾式法における系内温度ないしは湿式法における処理後の乾燥温度は、表面処理剤Aの種類に応じ熱分解しない領域で適宜決定される。例えば、γ−アミノプロピルトリエトキシシランである場合の温度は、80〜150℃が望ましい。
【0019】
その2は、アンダーフィル材のように樹脂組成物が低粘度である場合、高熱伝導性無機粉末が沈降して樹脂組成物の熱伝導性が損なわれないようにするため、ポリカルボン酸系界面活性剤、ポリアクリル酸系界面活性剤界面活性剤から選ばれた一種または二種以上の表面処理剤Bによって、高熱伝導性無機粉末基材又は高熱伝導性無機粉末Aを表面処理した高熱伝導性無機粉末(以下、両者を総称して「高熱伝導性無機粉末B」ともいう。また、前者による処理粉を「高熱伝導性無機粉末b1」、後者による処理粉を「高熱伝導性無機粉末b2」ともいう。)である。
【0020】
表面処理剤Bによる、高熱伝導性無機粉末基材ないしは高熱伝導性無機粉末Aの表面処理は、表面処理剤Aの処理方法に準じて行われるが、表面処理剤Aの場合と同様に、表面処理剤Bの熱分解が起こらない温度で処理しなければならないことに注意が要る。
【0021】
本発明においては、表面処理剤Aと表面処理剤Bとによる処理は、どちらか一方でもよく両方であってもよい。両方の処理によって、樹脂との密着性向上と高熱伝導性無機粉末の沈降防止を同時に低減することができ、樹脂組成物の放熱性を向上させることができる。
【0022】
また、表面処理剤Aと表面処理剤Bによる両方の処理の場合、その処理は別々に行っても良く、また同時に行っても効果がある。従って、表面処理剤Aと表面処理剤Bはあらかじめ混合された表面処理剤組成物であることが取り扱いの点で望ましく、その混合割合は、表面処理剤B/表面処理剤Aの質量比で1〜30であることが好ましい。該比が、1未満であると、過剰な表面処理剤Aによって樹脂組成物の粘度上昇、表面処理剤Bの不足による十分な沈降防止効果が得られない。一方、該比が30超となると、過剰な表面処理剤Bによって、高熱伝導性無機粉末の表面処理剤A表面の吸着サイトが埋められ、表面処理剤Aの未反応が増加し、樹脂との密着性が十分に向上しない。
【0023】
本発明の樹脂組成物は、上記した本発明の高熱伝導性無機粉末、すなわち高熱伝導性無機粉末基材、高熱伝導性無機粉末A、高熱伝導性無機粉末B(すなわち高熱伝導性無機粉末b1、高伝導性無機粉末b2)のいずれか単独または二種以上が充填されてなるものである。充填量は、用途によって異なり、50〜95質量%が一般的である。
【0024】
樹脂としては、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル、フッ素樹脂、ポリイミド、ポリアミドイミド、ポリエーテルイミド等のポリアミド、ポリブチレンテレフタレート、ポリエチレンテレフタレート等のポリエステル、ポリフェニレンエーテル、ポリフェニレンスルフィド、全芳香族ポリエステル、ポリスルホン、液晶ポリマー、ポリエーテルスルホン、ポリカーボネート、マレイミド変性樹脂、ABS樹脂、AAS(アクリロニトリル−アクリルゴム・スチレン)樹脂、AES(アクリロニトリル・エチレン・プロピレン・ジエンゴム−スチレン)樹脂等が使用される。
【0025】
樹脂組成物がアンダーフィル材のように液状樹脂組成物である場合、樹脂には液状エポキシ樹脂が用いられる。液状エポキシ樹脂としては、一分子中にエポキシ基を二個以上有するエポキシ樹脂であればいかなるものでも使用可能である。その具体例をあげれば、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、フェノール類とアルデヒド類のノボラック樹脂をエポキシ化したもの、ビスフェノールA、ビスフェノールF及びビスフェノールSなどのグリシジルエーテル、フタル酸やダイマー酸などの多塩基酸とエポクロルヒドリンとの反応により得られるグリシジルエステル酸エポキシ樹脂、線状脂肪族エポキシ樹脂、脂環式エポキシ樹脂、複素環式エポキシ樹脂、アルキル変性多官能エポキシ樹脂、β−ナフトールノボラック型エオキシ樹脂、1,6−ジヒドロキシナフタレン型エポキシ樹脂、2,7−ジヒドロキシナフタレン型エポキシ樹脂、ビスヒドロキシビフェニル型エポキシ樹脂、更には難燃性を付与するために臭素などのハロゲンを導入したエポキシ樹脂等である。この中でも常温で液状のエポキシ樹脂が好適に用いられるが、特にビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等のビスフェノール型エポキシ樹脂、脂環式エポキシ樹脂などが挙げられ、これらを一種または2種類以上が使用される。
【0026】
液状エポキシ樹脂の硬化剤については、液状エポキシ樹脂と反応して硬化させるものであれば特に限定されず、例えば、フェノール、クレゾール、キシレノール、レゾルシノール、クロロフェノール、t−ブチルフェノール、ノニルフェノール、イソプロピルフェノール、オクチルフェノール等の群から選ばれた1種又は2種以上の混合物をホルムアルデヒド、パラホルムアルデヒド又はパラキシレンとともに酸化触媒下で反応させて得られるノボラック型樹脂、ポリパラヒドロキシスチレン樹脂、ビスフェノールAやビスフェノールS等のビスフェノール化合物、ピロガロールやフロログルシノール等の3官能フェノール類、無水マレイン酸、無水フタル酸や無水ピロメリット酸等の酸無水物、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホン等の芳香族アミン等を挙げることができる。
【0027】
本発明の樹脂組成物には、次の成分を必要に応じて配合することができる。すなわち、低応力化剤として、シリコーンゴム、ポリサルファイドゴム、アクリル系ゴム、ブタジエン系ゴム、スチレン系ブロックコポリマーや飽和型エラストマー等のゴム状物質、各種熱可塑性樹脂、シリコーン樹脂等の樹脂状物質、更にはエポキシ樹脂、フェノール樹脂の一部又は全部をアミノシリコーン、エポキシシリコーン、アルコキシシリコーンなどで変性した樹脂など、シランカップリング剤として、γ−グリシドキシプロピルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシシラン、アミノプロピルトリエトキシシラン、ウレイドプロピルトリエトキシシラン、N−フェニルアミノプロピルトリメトキシシラン等のアミノシラン、フェニルトリメトキシシラン、メチルトリメトキシシラン、オクタデシルトリメトキシシラン等の疎水性シラン化合物やメルカプトシランなど、表面処理剤として、Zrキレート、チタネートカップリング剤、アルミニウム系カップリング剤など、難燃助剤として、Sb23、Sb24、Sb25など、難燃剤として、ハロゲン化エポキシ樹脂やリン化合物など、着色剤として、カーボンブラック、酸化鉄、染料、顔料などである。
【0028】
本発明の樹脂組成物には、エポキシ樹脂と硬化剤との反応を促進させるために硬化促進剤を配合することができる。その硬化促進剤としては、1,8−ジアザビシクロ(5,4,0)ウンデセン−7,トリフェニルホスフィン、ベンジルジメチルアミン、2−メチルイミダゾール等がある。
【0029】
本発明の樹脂組成物は、上記各材料の所定量を撹拌、溶解、混合、分散させることにより製造することができる。これらの混合物の混合、撹拌、分散等の装置は特に限定されないが、撹拌、加熱装置を備えたライカイ機、3本ロール、ボールミル、プラネタリーミキサー等を用いることができる。またこれらの装置を適宜組み合わせて使用してもよい。
【0030】
本発明の樹脂組成物をアンダーフィル材として用いるとき、半導体チップと基板との間隙にそれを浸透させて封止する際の温度は60〜120℃とすることが好ましい。
【0031】
【実施例】
以下、実施例、比較例をあげて更に具体的に本発明を説明する。
【0032】
実施例1〜7 比較例1〜6
表1に示す無機粉末1〜13を準備し、これを表2に示すような配合で混合し、高熱伝導性無機粉末基材イ〜ホ(実施例1〜5)と、チ〜ワ(比較例1〜6)を調整した。それらの粉末特性を表4に示す。また、高熱伝導性無機粉末ヘ(実施例6)および高熱伝導性無機粉末ト(実施例7)は、高熱伝導性無機粉末基材イを以下に従って表面処理し、本発明の高熱伝導性無機粉末Aおよび高熱伝導性無機粉末b1としたものである。
【0033】
ボール径20mm、ボール充填率50体積%の10リットル容器内に、高熱伝導性無機粉末基材イを1kg、表3に示す表面処理剤A又は表面処理剤Bを投入し、常温、常圧の条件下にて1回/秒の速度で1時間運転し、120℃にて1時間乾燥させ、高熱伝導性無機粉末ヘおよびトを得た。
【0034】
表5に示される割合で各材料を混合し、これに高熱伝導性無機粉末イ〜ワを無機粉末換算で75質量%の割合で混合し、樹脂組成物を製造した。これの粘度、熱伝導率、摩耗量を以下に従って測定した。それらの結果を表6に示す。
【0035】
(1)粘度
E型粘度計型(東京計器社製「EHD粘度計」)を用い、温度40℃、10rpmの回転数による粘度測定を行った。
【0036】
(2)熱伝導率
直径28mm、厚さ3mmの円盤状サイズ穴を設けた金型に樹脂組成物を流し込み、脱気後150℃×20分で成型した。熱伝導率測定装置(アグネ社製「ARC−TC−1型」)を用い、室温において温度傾斜法で測定した。
【0037】
(3)摩耗量
厚み6mm、孔径3mmのアルミニウム製ディスクの孔に樹脂組成物を300mm3通過させた後のディスクの質量減少量を摩耗量として評価した。
【0038】
【表1】

Figure 0004004270
【0039】
【表2】
Figure 0004004270
【0040】
【表3】
Figure 0004004270
【0041】
【表4】
Figure 0004004270
【0042】
【表5】
Figure 0004004270
【0043】
【表6】
Figure 0004004270
【0044】
表1〜6から明らかなように、本発明の高熱伝導性無機粉末を用いた樹脂組成物は、粘度、熱伝導性、摩耗性の全てにおいて、比較例よりも優れていることが分かる。
【0045】
実施例8、9
表面処理剤Aおよび表面処理剤Bからなる表面処理剤組成物を用いて試験を行った。すなわち、高熱伝導性無機粉末基材イ、表面処理剤A:シランカップリング剤(商品名:信越化学工業製KBM−403)、表面処理剤B:ポリカルボン酸系界面活性剤(商品名:日本油脂株式会社製マリアニムAKM−0531)を用いて試験を行った。
【0046】
表面処理方法は、ボール径20mm、ボール充填率50体積%の10リットル容器内に高熱伝導性無機粉末基材イを1kg、表面処理剤組成物を表面処理Aの質量換算で0.36gになるよう投入し、常温、常圧の条件下にて1回/秒の速度で1時間運転した後、120℃にて1時間乾燥させ、高熱伝導性無機粉末b2とした。その結果を表7に示す。
【0047】
【表7】
Figure 0004004270
【0048】
表7からも明らかなように、表面処理剤Aと表面処理剤Bの混合物からなる表面処理剤組成物であっても十分に高く樹脂組成物の熱伝導率が向上することが分かる。
【0049】
【発明の効果】
本発明によれば、樹脂に高充填しても容易に高粘度化せず、しかも放熱性に優れた樹脂組成物を調製することのできる、高熱伝導性無機粉末と、それを樹脂に充填した樹脂組成物とが提供される。[0001]
BACKGROUND OF THE INVENTION
The present invention is related to the highly thermally conductive inorganic powder and a resin composition. For more information, and the adhesive used at the layer thickness is limited, and a suitable highly thermally conductive inorganic powder to manufacture semiconductor encapsulation such as underfill, a resin composition which was filled in a resin it is those related to.
[0002]
[Prior art]
Along with miniaturization and higher functionality of electronic devices, miniaturization of insulating inorganic powders filled in resin compositions used in various parts of electronic components is also progressing. For example, in flip chip mounting, which is one of semiconductor mounting methods, a sealing material (underfill material) used for chip protection penetrates into the gap between a substrate of about several tens of micrometers and the chip, so that a fine inorganic substance is added to the liquid epoxy resin. An underfill material filled with powder is used.
[0003]
However, when the filling amount of the inorganic powder is increased, there is a problem that it is difficult to penetrate into the narrow gap and the productivity is extremely deteriorated. In order to solve this, it is necessary to lower the viscosity of the resin composition, and the lower the viscosity, the better the permeability. Such lowering of viscosity is a problem common not only to underfill materials but also to resins for other uses, and it is considered that the physical properties of the inorganic powder to be filled have the most influence on the viscosity. Japanese Patent Laid-Open No. 2001-200199 discloses an inorganic filler for an underfill material, and it is said that a powder having a particle size of 2 μm or less should be 50% or more of the entire inorganic powder. However, when the amount of fine powder increases, the viscosity of the resin composition is easily increased, so that it is difficult to increase the filling.
[0004]
More recently, applications that require heat dissipation in addition to insulation have emerged, and studies are being made from both the filler and resin aspects. Conventionally, aluminum nitride, aluminum oxide, crystalline silica, and the like are known as high thermal conductive inorganic powders, but this is also a resin because it has a crushed shape or a shape without a cut edge (round shape). The viscosity of the composition cannot be easily increased and highly filled, and as a result, satisfactory heat dissipation cannot be obtained. In addition, these powders severely wear the kneader and roll used when mixing with the resin, and the mold used during molding, which deteriorates productivity.
[0005]
[Problems to be solved by the invention]
The present invention has been made in view of the above, and an object thereof is to provide a high thermal conductivity capable of preparing a resin composition that does not easily increase in viscosity even when highly charged into a resin and has excellent heat dissipation. and sex inorganic powder, it is to provide a resin sets Narubutsu filled in a resin.
[0006]
[Means for Solving the Problems]
That is, the present invention is as follows.
(Claim 1) The inorganic powder X, which is composed of inorganic powder having an average particle size of 1 to 20 μm and a maximum particle size of 45 μm or less, is spherical with a roundness of 0.80 or more. In addition, the inorganic powder Y, which is a constituent particle having a thermal conductivity of 10 W / mK or more and a particle size range of 0.1 to 1.5 μm, is spherical or non-spherical with a roundness of 0.30 or more and less than 0.80 and is also thermally conductive the rate is equal to or lower than the inorganic powder X, Ri weight ratio 1 to 30 der of X / Y, and the inorganic powder X is aluminum oxide powder, inorganic powder Y is crystalline silica powder, fused (amorphous) A highly thermally conductive inorganic powder characterized by being one or a combination of silica powder and aluminum oxide powder.
(Claim 2) The surface treatment is performed with one or more surface treatment agents A selected from silane coupling agents, titanate coupling agents and aluminate coupling agents. The highly heat-conductive inorganic powder according to claim 1 .
(Claim 3) The high thermal conductivity according to claim 1 or 2, wherein the surface treatment is performed with a surface treatment agent B of a polycarboxylic acid surfactant and / or a polyacrylic acid surfactant. Inorganic powder.
(Claim 4) The high thermal conductive inorganic powder according to claim 3, wherein the mass ratio (B / A ) of the surface treatment agent A and the surface treatment agent B is 1 to 30.
(Claim 5) A resin composition comprising the highly heat-conductive inorganic powder according to claim 1, 2, 3 or 4.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
[0008]
The first condition of the highly heat-conductive inorganic powder of the present invention is that the average particle size is 1 to 20 μm and the maximum particle size is 45 μm or less. When the average particle size is less than 1 μm, the thermal conductivity is remarkably lowered. When the average particle size is more than 20 μm, the mixer, the mold, and the like are severely worn, and the productivity is lowered. On the other hand, when the maximum particle size is larger than 45 μm, not only the viscosity of the resin composition is easily increased, but also the coarse particles are clogged in a narrow gap, which impedes the penetration of the resin composition and is restricted in use. Here, the maximum particle size means a particle size in which the remaining amount remaining on the sieve by the water sieving method is less than 0.5% by mass.
[0009]
The highly thermally conductive inorganic powder of the present invention has a particle size configuration similar to that obtained by mixing two or more powders having different roundness depending on the particle size range. However, it may be a mixture of such materials. That is, the highly heat-conductive inorganic powder of the present invention includes the inorganic powder X and the inorganic powder Y, and the inorganic powder X, which is a constituent particle having a particle size range of 3 to 40 μm, has a spherical shape with a roundness of 0.80 or more and heat. The inorganic powder Y, which is a constituent particle having a conductivity of 10 W / mK or more and a particle size range of 0.1 to 1.5 μm, is spherical or non-spherical with a roundness of 0.30 or more and less than 0.80, and has a thermal conductivity. The second condition is equal to or less than that of the inorganic powder X.
[0010]
In the present invention, the reason why the inorganic powder X is selected to have a particle size range of 3 to 40 μm and the inorganic powder Y is selected to have a particle size range of 0.1 to 1.5 μm is that as a result of many experiments, by controlling the powder in these particle size ranges. This is because it has been found that the viscosity and thermal conductivity of the resin composition are the best. Further, if the roundness of the inorganic powder X is less than 0.80, the inorganic powder has the greatest influence on the viscosity of the resin composition, so that the resin composition is easily increased in viscosity and increased in viscosity. Filling becomes difficult. Furthermore, if the thermal conductivity is less than 10 W / mK, sufficiently high heat dissipation characteristics cannot be imparted to the resin composition. On the other hand, the inorganic powder Y does not greatly affect the thermal conductivity of the resin composition, but has an effect of entering between the inorganic powders X and promoting the heat path. Therefore, when the roundness is less than 0.30, it becomes difficult to enter between the inorganic powders X. When the roundness is 0.8 or more, the number of contact points with the inorganic powder X decreases, and the heat path promoting effect also decreases. End up. Moreover, even if the thermal conductivity exceeds that of the inorganic powder X, the thermal conductivity of the resin composition is greatly influenced by the inorganic powder X, so the thermal conductivity does not improve so much, and as the inorganic powder Y, A material having a higher thermal conductivity than that of the inorganic powder X may be used, but the significance of using a relatively expensive powder having a higher thermal conductivity is small.
[0011]
Here, the roundness can be measured using a scanning electron microscope (“JXA-8600M type” manufactured by JEOL Ltd.) and an image analysis device (manufactured by Nippon Avionics Co., Ltd.). That is, the projected area (A) and the perimeter (PM) of the particles are measured from the SEM photograph of the powder. When the area of a perfect circle corresponding to the perimeter (PM) is (B), the roundness of the particle is expressed as A / B. Therefore, assuming a perfect circle having the same circumference as that of the sample particle (PM), PM = 2πr and B = πr 2 , so that B = π × (PM / 2π) 2 , The roundness can be calculated as roundness = A / B = A × 4π / (PM) 2 . Therefore, in the present invention, an arbitrary 100 particles are measured, and the roundness of the powder is determined by the average value.
[0012]
The inorganic powder X is optimally aluminum oxide powder from the viewpoint of chemical stability and thermal conductivity. On the other hand, inorganic powders Y is crystal silica powder, fused (amorphous) silica powder, it is optimally one or a combination of aluminum oxide powder.
[0013]
The third condition of the high thermal conductivity inorganic powder of the present invention is that the ratio of the inorganic powder X and the inorganic powder Y is 1 to 30 in terms of a mass ratio of X / Y. The inorganic powder Y promotes the low viscosity of the resin composition by the inorganic powder X and enables high filling of the resin. When the X / Y ratio is less than 1, the proportion of the fine powder region is too small, and the resin composition easily increases in viscosity, and when it exceeds 30, the effect of imparting thermal conductivity is significantly reduced. The high thermal conductivity inorganic powder of the present invention is preferably composed of 60% or more (including 100%) of the inorganic powder X and inorganic powder Y, and the balance when the total is less than 100% is Further, it is preferably composed of spherical inorganic powder having a roundness of 0.80 or more and 1.5 to 3 μm.
[0014]
Next, another embodiment of the present invention will be described. These inventions are high thermal conductive inorganic powders that can further improve the thermal conductivity of the resin composition, and are also referred to as the high thermal conductive inorganic powders of the present invention (hereinafter referred to as “high thermal conductive inorganic powder base materials”). )).
[0015]
In No. 1, a high thermal conductive inorganic powder base material was surface-treated with one or more surface treatment agents A selected from silane coupling agents, titanate coupling agents and aluminate coupling agents. It is a high thermal conductive inorganic powder (hereinafter also referred to as “high thermal conductive inorganic powder A”). By using this, the adhesiveness with the resin is further enhanced, the interfacial thermal resistance between the high thermal conductive inorganic powder A and the resin is lowered, and further high thermal conductivity can be imparted. As the surface treatment agent A, a silane coupling agent is preferable from the viewpoint of reactivity with the high thermal conductive inorganic powder base material.
[0016]
As silane coupling agents, vinyltrichlorosilane, vinyltriethoxysilane, vinyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, β (3,4 epoxy epoxy cyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyl Trimethoxysilane, γ-glycylmethoxypropylmethyldiethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane, γ-aminopropyltri Examples thereof include ethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-chloropropyltrimethoxysilane, and the like, and one or more of these are used.
[0017]
The surface treatment method of the highly heat conductive inorganic powder base material with the surface treatment agent A is a spray method using a fluid nozzle, a shearing stirring, a dry method such as a ball mill or a mixer, or a wet method such as an aqueous or organic solvent. Can be adopted. It should be noted that the shearing force is set so that the high thermal conductive inorganic powder base material is not broken.
[0018]
The system temperature in the dry method or the drying temperature after the treatment in the wet method is appropriately determined in the region where thermal decomposition does not occur depending on the type of the surface treatment agent A. For example, the temperature in the case of γ-aminopropyltriethoxysilane is desirably 80 to 150 ° C.
[0019]
The second is that when the resin composition has a low viscosity, such as an underfill material, the highly heat-conductive inorganic powder settles so that the thermal conductivity of the resin composition is not impaired. High thermal conductivity obtained by surface-treating a highly thermally conductive inorganic powder substrate or highly thermally conductive inorganic powder A with one or more surface treatment agents B selected from an surfactant and a polyacrylic acid surfactant. Inorganic powder (hereinafter, both are collectively referred to as “highly thermally conductive inorganic powder B”. The former treated powder is “highly thermally conductive inorganic powder b1”, and the latter treated powder is “highly thermally conductive inorganic powder b2”. It is also called.)
[0020]
The surface treatment of the high thermal conductivity inorganic powder base material or the high thermal conductivity inorganic powder A with the surface treatment agent B is performed in accordance with the treatment method of the surface treatment agent A. It should be noted that the treatment must be performed at a temperature at which thermal decomposition of the treatment agent B does not occur.
[0021]
In the present invention, the treatment with the surface treatment agent A and the surface treatment agent B may be either one or both. By both treatments, the adhesion with the resin and the prevention of sedimentation of the high thermal conductive inorganic powder can be reduced at the same time, and the heat dissipation of the resin composition can be improved.
[0022]
Further, in the case of both treatments with the surface treatment agent A and the surface treatment agent B, the treatments may be performed separately or at the same time. Accordingly, the surface treatment agent A and the surface treatment agent B are desirably a surface treatment agent composition mixed in advance from the viewpoint of handling, and the mixing ratio is 1 in terms of the mass ratio of the surface treatment agent B / the surface treatment agent A. It is preferably ~ 30. When the ratio is less than 1, an excessive surface treatment agent A cannot provide a sufficient sedimentation preventing effect due to an increase in the viscosity of the resin composition and a shortage of the surface treatment agent B. On the other hand, when the ratio exceeds 30, the adsorption site on the surface of the surface treatment agent A of the high thermal conductive inorganic powder is filled with the excess surface treatment agent B, and the unreacted surface treatment agent A increases, Adhesion does not improve sufficiently.
[0023]
The resin composition of the present invention comprises the above-described highly thermally conductive inorganic powder of the present invention, that is, a highly thermally conductive inorganic powder substrate, a highly thermally conductive inorganic powder A, and a highly thermally conductive inorganic powder B (that is, highly thermally conductive inorganic powder b1, Any one or two or more of highly conductive inorganic powders b2) are filled. The filling amount varies depending on the application, and is generally 50 to 95% by mass.
[0024]
Examples of the resin include epoxy resin, silicone resin, phenol resin, melamine resin, urea resin, unsaturated polyester, fluororesin, polyamide such as polyimide, polyamideimide, and polyetherimide, polyester such as polybutylene terephthalate and polyethylene terephthalate, and polyphenylene ether. , Polyphenylene sulfide, wholly aromatic polyester, polysulfone, liquid crystal polymer, polyethersulfone, polycarbonate, maleimide modified resin, ABS resin, AAS (acrylonitrile-acrylic rubber / styrene) resin, AES (acrylonitrile / ethylene / propylene / diene rubber / styrene) Resin or the like is used.
[0025]
When the resin composition is a liquid resin composition such as an underfill material, a liquid epoxy resin is used as the resin. As the liquid epoxy resin, any epoxy resin having two or more epoxy groups in one molecule can be used. Specific examples include phenol novolac type epoxy resins, orthocresol novolak type epoxy resins, epoxidized phenol and aldehyde novolak resins, glycidyl ethers such as bisphenol A, bisphenol F and bisphenol S, phthalic acid, Glycidyl ester acid epoxy resin, linear aliphatic epoxy resin, alicyclic epoxy resin, heterocyclic epoxy resin, alkyl-modified polyfunctional epoxy resin obtained by reaction of polybasic acid such as dimer acid and epochlorohydrin, β-naphthol novolak-type epoxy resin, 1,6-dihydroxynaphthalene-type epoxy resin, 2,7-dihydroxynaphthalene-type epoxy resin, bishydroxybiphenyl-type epoxy resin, and halo such as bromine to impart flame retardancy Is introduced epoxy resin or the like down. Of these, epoxy resins that are liquid at room temperature are preferably used, and in particular, bisphenol type epoxy resins such as bisphenol A type epoxy resins and bisphenol F type epoxy resins, alicyclic epoxy resins, and the like, and these are one or two types. The above is used.
[0026]
The curing agent for the liquid epoxy resin is not particularly limited as long as it is cured by reacting with the liquid epoxy resin. For example, phenol, cresol, xylenol, resorcinol, chlorophenol, t-butylphenol, nonylphenol, isopropylphenol, octylphenol Such as novolak-type resin, polyparahydroxystyrene resin, bisphenol A, bisphenol S, and the like obtained by reacting a mixture of one or two or more selected from the group such as formaldehyde, paraformaldehyde or paraxylene under an oxidation catalyst Bisphenol compounds, trifunctional phenols such as pyrogallol and phloroglucinol, acid anhydrides such as maleic anhydride, phthalic anhydride and pyromellitic anhydride, metaphenylenediamine, diaminodiphenyl Methane, and aromatic amines such as diaminodiphenyl sulfone.
[0027]
The resin composition of the present invention may contain the following components as necessary. That is, as a low stress agent, silicone rubber, polysulfide rubber, acrylic rubber, butadiene rubber, rubbery substances such as styrene block copolymers and saturated elastomers, various thermoplastic resins, resinous substances such as silicone resins, Is an epoxy resin, a resin obtained by modifying a part or all of a phenol resin with aminosilicone, epoxysilicone, alkoxysilicone, or the like. As a silane coupling agent, γ-glycidoxypropyltrimethoxysilane, β- (3,4- Epoxy cyclohexyl) Epoxy silanes such as ethyltrimethoxysilane, aminopropyltriethoxysilane, ureidopropyltriethoxysilane, aminosilanes such as N-phenylaminopropyltrimethoxysilane, phenyltrimethoxysilane, methyltri Hydrophobic silane compounds such as methoxysilane and octadecyltrimethoxysilane, mercaptosilane and the like, surface treatment agents such as Zr chelates, titanate coupling agents and aluminum coupling agents, and flame retardant aids such as Sb 2 O 3 and Sb Examples of the flame retardant include 2 O 4 and Sb 2 O 5 , halogenated epoxy resins and phosphorus compounds, and examples of the colorant include carbon black, iron oxide, dye, and pigment.
[0028]
In the resin composition of the present invention, a curing accelerator can be blended to accelerate the reaction between the epoxy resin and the curing agent. Examples of the curing accelerator include 1,8-diazabicyclo (5,4,0) undecene-7, triphenylphosphine, benzyldimethylamine, 2-methylimidazole and the like.
[0029]
The resin composition of the present invention can be produced by stirring, dissolving, mixing, and dispersing predetermined amounts of each of the above materials. A device for mixing, stirring, and dispersing these mixtures is not particularly limited, and a lykai machine equipped with a stirring and heating device, a three-roll, a ball mill, a planetary mixer, and the like can be used. Moreover, you may use combining these apparatuses suitably.
[0030]
When using the resin composition of this invention as an underfill material, it is preferable that the temperature at the time of making it infiltrate into the gap | interval of a semiconductor chip and a board | substrate and sealing is 60-120 degreeC.
[0031]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples.
[0032]
Examples 1-7 Comparative Examples 1-6
Inorganic powders 1 to 13 shown in Table 1 were prepared and mixed in a formulation as shown in Table 2. High heat conductive inorganic powder base materials A to E (Examples 1 to 5) and C to W (Comparison) Examples 1 to 6) were prepared. Their powder properties are shown in Table 4. In addition, the high heat conductive inorganic powder (Example 6) and the high heat conductive inorganic powder (Example 7) were obtained by surface-treating the high heat conductive inorganic powder substrate A according to the following, and the high heat conductive inorganic powder of the present invention. A and highly heat-conductive inorganic powder b1.
[0033]
In a 10 liter container having a ball diameter of 20 mm and a ball filling rate of 50% by volume, 1 kg of a high thermal conductive inorganic powder base material A and surface treatment agent A or surface treatment agent B shown in Table 3 are charged at room temperature and normal pressure. It was operated for 1 hour at a rate of 1 time / second under the conditions, and dried at 120 ° C. for 1 hour to obtain highly thermally conductive inorganic powders and powders.
[0034]
Each material was mixed in the ratio shown in Table 5, and high heat conductive inorganic powders I to W were mixed in this ratio at a ratio of 75% by mass in terms of inorganic powder to produce a resin composition. The viscosity, thermal conductivity, and wear amount of this were measured according to the following. The results are shown in Table 6.
[0035]
(1) Viscosity Using an E-type viscometer (“EHD Viscometer” manufactured by Tokyo Keiki Co., Ltd.), the viscosity was measured at a temperature of 40 ° C. and a rotation speed of 10 rpm.
[0036]
(2) The resin composition was poured into a mold provided with a disk-shaped hole having a thermal conductivity diameter of 28 mm and a thickness of 3 mm, and molded at 150 ° C. for 20 minutes after degassing. Using a thermal conductivity measuring device ("ARC-TC-1 type" manufactured by Agne Corporation), the temperature gradient was measured at room temperature.
[0037]
(3) Amount of wear The amount of decrease in the mass of the disc after passing 300 mm 3 of the resin composition through the hole of an aluminum disc having a thickness of 6 mm and a hole diameter of 3 mm was evaluated as the amount of wear.
[0038]
[Table 1]
Figure 0004004270
[0039]
[Table 2]
Figure 0004004270
[0040]
[Table 3]
Figure 0004004270
[0041]
[Table 4]
Figure 0004004270
[0042]
[Table 5]
Figure 0004004270
[0043]
[Table 6]
Figure 0004004270
[0044]
As is clear from Tables 1 to 6, it can be seen that the resin composition using the highly heat-conductive inorganic powder of the present invention is superior to the comparative example in all of viscosity, heat conductivity, and wear.
[0045]
Examples 8 and 9
A test was conducted using a surface treatment agent composition comprising surface treatment agent A and surface treatment agent B. That is, high thermal conductive inorganic powder substrate (i), surface treatment agent A: silane coupling agent (trade name: KBM-403 manufactured by Shin-Etsu Chemical Co., Ltd.), surface treatment agent B: polycarboxylic acid surfactant (trade name: Japan) The test was conducted using Marianim AKM-053) manufactured by Yushi Co., Ltd.
[0046]
In the surface treatment method, 1 kg of the high thermal conductive inorganic powder base material a is placed in a 10 liter container having a ball diameter of 20 mm and a ball filling rate of 50% by volume, and the surface treatment agent composition is 0.36 g in terms of mass of the surface treatment A. After being operated for 1 hour at a rate of 1 time / second under normal temperature and normal pressure conditions, it was dried at 120 ° C. for 1 hour to obtain highly heat-conductive inorganic powder b2. The results are shown in Table 7.
[0047]
[Table 7]
Figure 0004004270
[0048]
As is clear from Table 7, it can be seen that even a surface treatment agent composition comprising a mixture of surface treatment agent A and surface treatment agent B is sufficiently high to improve the thermal conductivity of the resin composition.
[0049]
【The invention's effect】
According to the present invention, a highly thermally conductive inorganic powder capable of preparing a resin composition that does not easily increase in viscosity even when highly filled into a resin and is excellent in heat dissipation, and filled with the resin are provided. A resin composition is provided.

Claims (5)

平均粒子径が1〜20μm、最大粒径が45μm以下の無機粉末からなり、粒度域3〜40μmの構成粒子である無機粉末Xの真円度が0.80以上の球状でしかも熱伝導率10W/mK以上であり、粒度域0.1〜1.5μmの構成粒子である無機粉末Yの真円度が0.30以上0.80未満の球状又は非球状でしかも熱伝導率が無機粉末Xと同等以下であり、X/Yの質量比が1〜30であり、かつ無機粉末Xが酸化アルミニウム粉末であり、無機粉末Yが結晶シリカ粉末、溶融(非晶質)シリカ粉末、酸化アルミニウム粉末のいずれか一方又は組み合わせであることを特徴とする高熱伝導性無機粉末。The inorganic powder X, which is composed of inorganic powder having an average particle size of 1 to 20 μm and a maximum particle size of 45 μm or less, is a spherical particle having a roundness of 0.80 or more and a thermal conductivity of 10 W. / MK or more, and the inorganic powder Y, which is a constituent particle having a particle size range of 0.1 to 1.5 μm, is spherical or non-spherical with a roundness of 0.30 or more and less than 0.80 and has a thermal conductivity of the inorganic powder X and it is equal to or less than the mass ratio of X / Y is Ri 30 der, and inorganic powder X is aluminum oxide powder, inorganic powder Y is crystalline silica powder, fused (amorphous) silica powder, aluminum oxide A highly heat-conductive inorganic powder characterized by being any one or a combination of powders. シランカップリング剤、チタネート系カップリング剤及びアルミネート系カップリング剤から選ばれた1種又は2種以上の表面処理剤Aにて表面処理が施されていることを特徴とする請求項1記載の高熱伝導性無機粉末。Silane coupling agent, according to claim 1, wherein the surface treatment is performed at a titanate coupling agent and one or more surface treatment agent A selected from the aluminum-based coupling agent High thermal conductive inorganic powder. ポリカルボン酸系界面活性剤及び/又はポリアクリル酸系界面活性剤の表面処理剤Bにて表面処理が施されてなることを特徴とする請求項1又は2記載の高熱伝導性無機粉末。The high thermal conductive inorganic powder according to claim 1 or 2, wherein the surface treatment is performed with a surface treatment agent B of a polycarboxylic acid surfactant and / or a polyacrylic acid surfactant. 表面処理剤Aと表面処理剤Bの質量比(B/A)が1〜30であることを特徴とする請求項3記載の高熱伝導性無機粉末。The mass ratio (B / A) of the surface treatment agent A and the surface treatment agent B is 1 to 30, and the high thermal conductive inorganic powder according to claim 3. 請求項1、2、3又は4記載の高熱伝導性無機粉末が充填されてなることを特徴とする樹脂組成物。A resin composition comprising the highly thermally conductive inorganic powder according to claim 1, 2, 3 or 4.
JP2001339067A 2001-11-05 2001-11-05 High thermal conductive inorganic powder and resin composition Expired - Fee Related JP4004270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001339067A JP4004270B2 (en) 2001-11-05 2001-11-05 High thermal conductive inorganic powder and resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001339067A JP4004270B2 (en) 2001-11-05 2001-11-05 High thermal conductive inorganic powder and resin composition

Publications (2)

Publication Number Publication Date
JP2003137627A JP2003137627A (en) 2003-05-14
JP4004270B2 true JP4004270B2 (en) 2007-11-07

Family

ID=19153473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001339067A Expired - Fee Related JP4004270B2 (en) 2001-11-05 2001-11-05 High thermal conductive inorganic powder and resin composition

Country Status (1)

Country Link
JP (1) JP4004270B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4501526B2 (en) * 2004-05-14 2010-07-14 住友化学株式会社 High thermal conductive resin composition
JP4634891B2 (en) * 2005-08-18 2011-02-16 信越化学工業株式会社 Thermally conductive silicone grease composition and cured product thereof
JP5012127B2 (en) * 2007-03-24 2012-08-29 三菱マテリアル株式会社 Manufacturing method of cement and concrete admixture
JP2009235402A (en) * 2008-03-05 2009-10-15 Hitachi Chem Co Ltd Adhesive film
JP5503915B2 (en) * 2009-07-30 2014-05-28 住友化学株式会社 Liquid crystal polyester composition and electronic circuit board using the same
TWI522423B (en) 2010-08-31 2016-02-21 道康寧東麗股份有限公司 Polysiloxane composition and cured product thereof
CN103250243B (en) * 2010-12-16 2016-04-27 三菱电机株式会社 Semiconductor device
JP5767863B2 (en) * 2011-06-01 2015-08-26 電気化学工業株式会社 Spherical alumina powder, method for producing the same, and composition using the same
JP5755977B2 (en) * 2011-09-08 2015-07-29 電気化学工業株式会社 High thermal conductive resin composition
JP5921723B2 (en) 2013-01-11 2016-05-24 三菱電機株式会社 Semiconductor device
CN105659711A (en) * 2013-10-17 2016-06-08 住友电木株式会社 Epoxy-resin composition, carrier material with resin layer, metal-based circuit board, and electronic device
US10202530B2 (en) 2014-08-27 2019-02-12 Jnc Corporation Composition for heat-dissipation members, heat-dissipation member, electronic device, and method of producing heat dissipating member
WO2017034003A1 (en) * 2015-08-26 2017-03-02 デンカ株式会社 Thermally conductive resin composition
CN108713042A (en) * 2016-03-02 2018-10-26 捷恩智株式会社 The manufacturing method of Low thermal expansion member composition, Low thermal expansion member, e-machine and Low thermal expansion member
MY189227A (en) 2016-05-16 2022-01-31 Martinswerk Gmbh Alumina products and uses thereof in polymer compositions with high thermal conductivity
JP2020122037A (en) * 2019-01-29 2020-08-13 東洋インキScホールディングス株式会社 Pigment dispersion and inkjet ink
KR20230107646A (en) * 2020-11-16 2023-07-17 스미또모 베이크라이트 가부시키가이샤 Resin composition for semiconductor encapsulation and semiconductor device
CN115838583A (en) * 2022-12-26 2023-03-24 广州市白云化工实业有限公司 Anti-settling high-fluidity flame-retardant double-component organic silicon pouring sealant and preparation method thereof

Also Published As

Publication number Publication date
JP2003137627A (en) 2003-05-14

Similar Documents

Publication Publication Date Title
JP4004270B2 (en) High thermal conductive inorganic powder and resin composition
JP4306951B2 (en) Surface-treated fine spherical silica powder and resin composition
JP5349432B2 (en) Manufacturing method of electronic component device and resin composition sheet for sealing electronic component used therefor
JP4197141B2 (en) Spherical alumina powder and use thereof
JP5354724B2 (en) Ceramic powder and its use
JP5277537B2 (en) Liquid resin composition for electronic components and electronic component device using the same
TW200814256A (en) Semiconductor package and method for manufacturing the same, sealing resin and semiconductor device
JP4112396B2 (en) Resin fillers and applications
JP4112470B2 (en) Spherical inorganic powder and liquid sealing material
JP3060530B2 (en) Surface treatment method of inorganic particles and thermosetting resin composition
JP2020125399A (en) Semiconductor sealing resin composition and semiconductor device
JP3483817B2 (en) Spherical inorganic powder and its use
JP3865641B2 (en) Spherical inorganic powder and use thereof
JP3694474B2 (en) Method for producing spherical silica powder
JP4155719B2 (en) Spherical inorganic powder and its use
JP5526027B2 (en) Amorphous siliceous powder, method for producing the same, resin composition, and semiconductor sealing material
JP2000007890A (en) Epoxy resin composition for sealing of semiconductor and production thereof, and semiconductor device
JP2013064152A (en) Liquid resin composition for electronic component, and electronic component device using the same
JP4131620B2 (en) Silica powder and its use
JP5345787B2 (en) Method for producing silica-alumina composite oxide ultrafine powder for semiconductor encapsulant
JP3835953B2 (en) Siliceous powder and resin composition
JP5526653B2 (en) Functional particles, fillers, resin compositions for electronic components, electronic components and semiconductor devices
JP3408585B2 (en) Spherical silica powder and epoxy resin composition
JP2010195659A (en) Siliceous powder, method for producing the same and use thereof
JPH0649329A (en) Liquid epoxy resin molding material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070821

R150 Certificate of patent or registration of utility model

Ref document number: 4004270

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees