JP2003137627A - Highly thermally conductive inorganic powder, resin composition and surface treatment agent composition - Google Patents

Highly thermally conductive inorganic powder, resin composition and surface treatment agent composition

Info

Publication number
JP2003137627A
JP2003137627A JP2001339067A JP2001339067A JP2003137627A JP 2003137627 A JP2003137627 A JP 2003137627A JP 2001339067 A JP2001339067 A JP 2001339067A JP 2001339067 A JP2001339067 A JP 2001339067A JP 2003137627 A JP2003137627 A JP 2003137627A
Authority
JP
Japan
Prior art keywords
inorganic powder
surface treatment
powder
high thermal
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001339067A
Other languages
Japanese (ja)
Other versions
JP4004270B2 (en
Inventor
Osamu Kunitomo
修 國友
Toshiaki Ishimaru
登志昭 石丸
Susumu Mizutani
晋 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2001339067A priority Critical patent/JP4004270B2/en
Publication of JP2003137627A publication Critical patent/JP2003137627A/en
Application granted granted Critical
Publication of JP4004270B2 publication Critical patent/JP4004270B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00439Physico-chemical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00465Heat conducting materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide highly thermally conductive inorganic powder which is used for preparing a resin composition having excellent heat radiation whose viscosity is not easily increased even when highly filled with the powder, and to provide the resin composition obtained by filling the powder into resin, and to provide a surface treatment agent composition used for producing the highly thermally conductive inorganic powder. SOLUTION: The highly thermally conductive inorganic powder consists of inorganic powder having the average grain diameter of 1 to 20 μm, and the maximum grain diameter of <=45 μm. The inorganic powder X being constituting grains of a grain size region of 3 to 40 μm is the spherical one having roundness of >=0.80, and also has a thermal conductivity of >=10 W/mK, and the inorganic powder Y being constituting grains of a grain size region is the spherical or aspherical one having roundness of >=0.30 to <0.80, and also has a thermal conductivity equal to or below that of the inorganic powder X, and in which the mass ratio of X/Y is 1 to 30. The highly thermally conductive inorganic powder may be tread by a surface treatment agent. The resin composition is filled with the highly thermally conductive inorganic powder. The surface treatment agent composition consists of specified two kinds of surface treatment agents.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明に属する技術分野】本発明は、高熱伝導性無機粉
末および樹脂組成物と表面処理剤組成物に関する。詳し
くは、層厚が限られたところに使用される接着剤や、ア
ンダーフィル等の半導体封止材等を製造するのに好適な
高熱伝導性無機粉末と、それを樹脂に充填した樹脂組成
物と、高熱伝導性無機粉末を製造するのに用いられる表
面処理剤組成物に関するものである。
TECHNICAL FIELD The present invention relates to a high thermal conductive inorganic powder, a resin composition and a surface treatment agent composition. Specifically, an adhesive used in a place where the layer thickness is limited, a high thermal conductive inorganic powder suitable for producing a semiconductor encapsulating material such as underfill, and a resin composition in which the resin is filled. And a surface treating agent composition used for producing a high thermal conductive inorganic powder.

【0002】[0002]

【従来の技術】電子機器の小型化、高機能化に伴い、電
子部品の各所で用いられる樹脂組成物に充填される絶縁
性無機粉末の微細化も進んでいる。例えば、半導体の実
装方法の一つであるフリップチップ実装では、チップ保
護に用いる封止材料(アンダーフィル材)を数10μm
程度の基板とチップの隙間へ浸透させる為、液状エポキ
シ樹脂に微細な無機粉末を充填したアンダーフィル材が
用いられている。
2. Description of the Related Art With the miniaturization and higher functionality of electronic devices, the insulating inorganic powders filled in resin compositions used in various parts of electronic parts are becoming finer. For example, in flip chip mounting, which is one of the semiconductor mounting methods, the sealing material (underfill material) used for chip protection is several tens of μm.
An underfill material, which is a liquid epoxy resin filled with fine inorganic powder, is used in order to penetrate into the gap between the substrate and the chip to some extent.

【0003】しかしながら、無機粉末の充填量が多くな
ると、狭ギャップへ浸透しにくく、生産性が非常に悪く
なるといった問題がある。これを解決するには樹脂組成
物の粘度を下げる必要があり、低粘度ほど浸透性が向上
する。こういった低粘度化はアンダーフィル材に限らず
他用途の樹脂においても共通した課題であり、粘度に最
も影響するのが充填される無機粉末の物性であると考え
られている。特開2001−200139号公報には、
アンダーフィル材用の無機充填材が開示され、2μm以
下の粒子径をもつ粉末が無機粉末全体の50%以上がよ
いとされている。しかし、微粉が多くなると、樹脂組成
物の粘度が容易に高粘度化するので、高充填化が困難と
なる。
However, when the filling amount of the inorganic powder is large, there is a problem that it is difficult for the inorganic powder to penetrate into the narrow gap and the productivity is extremely deteriorated. In order to solve this, it is necessary to lower the viscosity of the resin composition, and the lower the viscosity, the higher the permeability. Such lowering of viscosity is a common problem not only in underfill materials but also in resins for other uses, and it is considered that the physical properties of the inorganic powder to be filled most affect the viscosity. Japanese Patent Laid-Open No. 2001-200139 discloses that
An inorganic filler for an underfill material is disclosed, and it is said that powder having a particle size of 2 μm or less accounts for 50% or more of the whole inorganic powder. However, if the amount of fine powder is large, the viscosity of the resin composition easily becomes high, and it becomes difficult to achieve high filling.

【0004】更に最近では、絶縁性の他に放熱性が求め
られる用途が出現し、充填材および樹脂の両面からの検
討が進められている。従来、高熱伝導性無機粉末として
は、窒化アルミニウム、酸化アルミニウム、結晶シリカ
等が知られているが、その形状が破砕形状やカットエッ
ジを有さない形状(丸味状)であるのでこれもまた樹脂
組成物の粘度を容易に高め高充填させることができず、
結果として満足する放熱性が得られない。また、これら
粉末は樹脂との混合時に使用するニーダ、ロールや、成
型時に用いる金型を激しく摩耗させてしまう為、生産性
を悪化させてしまう。
Furthermore, recently, applications in which heat dissipation is required in addition to insulating properties have appeared, and investigations from both sides of fillers and resins are being promoted. Aluminum nitride, aluminum oxide, crystalline silica and the like have been conventionally known as high thermal conductive inorganic powders, but since they have a crushed shape or a shape without a cut edge (round shape), this is also a resin. The viscosity of the composition cannot be easily increased and highly filled,
As a result, satisfactory heat dissipation cannot be obtained. In addition, these powders abruptly wear the kneader and roll used when mixing with the resin, and the mold used during molding, which deteriorates productivity.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記に鑑み
てなされたものであり、その目的は樹脂に高充填しても
容易に高粘度化せず、しかも放熱性に優れた樹脂組成物
を調製することのできる、高熱伝導性無機粉末と、それ
を樹脂に充填した樹脂組成物と、高熱伝導性無機粉末を
製造するのに用いられる表面処理剤組成物を提供するこ
とである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above, and an object thereof is to provide a resin composition which does not easily increase in viscosity even when it is highly filled with a resin and has excellent heat dissipation. To provide a high thermal conductive inorganic powder, a resin composition obtained by filling the resin with the high thermal conductive inorganic powder, and a surface treatment agent composition used for producing the high thermal conductive inorganic powder.

【0006】[0006]

【課題を解決するための手段】すなわち、本発明は以下
のとおりである。 (請求項1)平均粒子径が1〜20μm、最大粒径が4
5μm以下の無機粉末からなり、粒度域3〜40μmの
構成粒子である無機粉末Xの真円度が0.80以上の球
状でしかも熱伝導率10W/mK以上であり、粒度域
0.1〜1.5μmの構成粒子である無機粉末Yの真円
度が0.30以上0.80未満の球状又は非球状でしか
も熱伝導率が無機粉末Xと同等以下であり、X/Yの質
量比が1〜30であることを特徴とする高熱伝導性無機
粉末。 (請求項2)無機粉末Xが酸化アルミニウム粉末であ
り、無機粉末Yが酸化アルミニウム粉末及び/又はシリ
カ粉末であることを特徴とする請求項1記載の高熱伝導
性無機粉末。 (請求項3)シランカップリング剤、チタネート系カッ
プリング剤及びアルミネート系カップリング剤から選ば
れた1種又は2種以上の表面処理剤Aにて表面処理が施
されていることを特徴とする請求項1又は2記載の高熱
伝導性無機粉末。 (請求項4)ポリカルボン酸系界面活性剤及び/又はポ
リアクリル酸系界面活性剤の表面処理剤Bにて表面処理
が施されてなることを特徴とする請求項1、2又は3記
載の高熱伝導性無機粉末。 (請求項5)請求項1、2、3又は4記載の高熱伝導性
粉末が充填されてなることを特徴とする樹脂組成物。 (請求項6)シランカップリング剤、チタネート系カッ
プリング剤、アルミネート系カップリング剤から選ばれ
た1種又は2種以上の表面処理剤Aと、ポリカルボン酸
系界面活性剤及び/又はポリアクリル酸系界面活性剤の
表面処理剤Bを、B/Aの質量比が1〜30の割合で含
有してなることを特徴とする高熱伝導性無機質粉末の表
面処理剤組成物。
That is, the present invention is as follows. (Claim 1) The average particle diameter is 1 to 20 μm, and the maximum particle diameter is 4.
The inorganic powder X, which is composed of an inorganic powder of 5 μm or less and has a particle size range of 3 to 40 μm, has a spherical shape with a roundness of 0.80 or more and a thermal conductivity of 10 W / mK or more, and has a particle size range of 0.1 The roundness of the inorganic powder Y that is a constituent particle of 1.5 μm is 0.30 or more and less than 0.80, and the thermal conductivity is equal to or less than that of the inorganic powder X. The mass ratio of X / Y is Is 1 to 30. Highly thermally conductive inorganic powder. (Claim 2) The inorganic powder X is an aluminum oxide powder, and the inorganic powder Y is an aluminum oxide powder and / or a silica powder. (Claim 3) A surface treatment is applied with one or more surface treatment agents A selected from silane coupling agents, titanate coupling agents and aluminate coupling agents. The high thermal conductivity inorganic powder according to claim 1 or 2. (Claim 4) A surface treatment agent B of a polycarboxylic acid type surfactant and / or a polyacrylic acid type surfactant has been subjected to a surface treatment. High thermal conductivity inorganic powder. (Claim 5) A resin composition comprising the high thermal conductive powder according to claim 1, 2, 3 or 4. (Claim 6) One or more surface treatment agents A selected from a silane coupling agent, a titanate coupling agent and an aluminate coupling agent, and a polycarboxylic acid type surfactant and / or poly A surface-treating agent composition of high thermal conductive inorganic powder, characterized in that the surface-treating agent B of an acrylic acid type surfactant is contained in a mass ratio of B / A of 1 to 30.

【0007】[0007]

【発明の実施の形態】以下、更に詳しく本発明について
説明する。
The present invention will be described in more detail below.

【0008】本発明の高熱伝導性無機粉末は、平均粒子
径が1〜20μmであり、かつ最大粒径が45μm以下で
あることが第1条件である。平均粒径が1μm未満であ
ると、熱伝導率が著しく低下してしまい、20μmより
も大きいと混合機や金型等を激しく摩耗させてしまうの
で生産性が低下する。また、最大粒径が45μmよりも
大きいと、樹脂組成物の粘度が容易に高まるだけでな
く、粗大粒子が狭ギャップに詰まってしまい、樹脂組成
物の浸透を妨げてしまい用途に制約を受ける。ここで、
最大粒径とは、水篩法で篩上に残る残量が0.5質量%
未満の粒径を意味する。
The first condition is that the high thermal conductivity inorganic powder of the present invention has an average particle size of 1 to 20 μm and a maximum particle size of 45 μm or less. If the average particle size is less than 1 μm, the thermal conductivity will be remarkably reduced, and if it is more than 20 μm, the mixer, the mold and the like will be abraded, resulting in a decrease in productivity. When the maximum particle size is larger than 45 μm, not only the viscosity of the resin composition is easily increased, but also coarse particles are clogged in the narrow gap, which impedes the penetration of the resin composition and limits the use. here,
The maximum particle size is 0.5 mass% of the residual amount remaining on the screen by the water sieving method.
Means a particle size of less than.

【0009】本発明の高熱伝導性無機粉末は、粒度域に
よって真円度の異なる2種以上の粉末が混合されたと同
じような粒度構成を有している。もっとも、そのように
混合されたものであってもよい。すなわち、本発明の高
熱伝導性無機粉末は、無機粉末Xと無機粉末Yとを含
み、粒度域3〜40μmの構成粒子である無機粉末Xの
真円度が0.80以上の球状でしかも熱伝導率10W/
mK以上であり、粒度域0.1〜1.5μmの構成粒子
である無機粉末Yの真円度が0.30以上0.80未満
の球状又は非球状でしかも熱伝導率が無機粉末Xと同等
以下であることが第2条件となる。
The high thermal conductivity inorganic powder of the present invention has a particle size structure similar to that of a mixture of two or more kinds of powders having different roundness depending on the particle size range. However, it may be a mixture thereof. That is, the high thermal conductive inorganic powder of the present invention contains the inorganic powder X and the inorganic powder Y, and the roundness of the inorganic powder X, which is a constituent particle in the particle size range of 3 to 40 μm, is spherical and has a heat of 0.80 or more. Conductivity 10W /
Inorganic powder Y, which is a constituent particle having a particle size range of 0.1 to 1.5 μm, having a circularity of 0.30 or more and less than 0.80, is spherical or non-spherical, and has the same thermal conductivity as inorganic powder X. The second condition is that they are equal or less.

【0010】本発明において、無機粉末Xを粒度域3〜
40μm、無機粉末Yを粒度域0.1〜1.5μmに選
定した理由は、多くの実験の結果、これらの粒度域の粉
末を制御することによって樹脂組成物の粘度、熱伝導率
ともに最も良好になることを見いだしたことによる。ま
た、無機粉末Xの真円度が0.80未満であると、この
無機粉末が樹脂組成物の粘性に最も大きな影響を与えて
いることから、樹脂組成物が容易に高粘度化されて高充
填が困難となる。更に、その熱伝導率が10W/mK未
満であると十分に高い放熱特性を樹脂組成物に付与する
ことができない。一方、無機粉末Yは樹脂組成物の熱伝
導率に大きく影響しないが、無機粉末X同士間に入り込
んで熱パスを助長する効果がある。従って、真円度が
0.30未満であると無機粉末X同士間への進入が困難
となり、0.8以上では無機粉末Xとの接触点が減って
しまい、熱パス助長効果も低下してしまう。また、その
熱伝導率が無機粉末Xのそれを超えても、樹脂組成物の
熱伝導率は無機粉末Xに大きく影響されているので、熱
伝導率はそれほど向上せず、無機粉末Yとして、無機粉
末Xよりも熱伝導率の大きなものを用いてもよいが、わ
ざわざ比較的高価な熱伝導率の大きな粉体を用いること
の意義が小さい。
In the present invention, the inorganic powder X is added in the particle size range of 3 to 3.
The reason why 40 μm and the inorganic powder Y are selected in the particle size range of 0.1 to 1.5 μm is that, as a result of many experiments, the viscosity and the thermal conductivity of the resin composition are the best by controlling the powder in these particle size ranges. It depends on having discovered that. In addition, when the roundness of the inorganic powder X is less than 0.80, this inorganic powder has the greatest effect on the viscosity of the resin composition. Filling becomes difficult. Further, if the thermal conductivity is less than 10 W / mK, it is not possible to impart sufficiently high heat dissipation characteristics to the resin composition. On the other hand, the inorganic powder Y does not significantly affect the thermal conductivity of the resin composition, but has the effect of entering between the inorganic powders X to promote the heat path. Therefore, if the roundness is less than 0.30, it becomes difficult to enter between the inorganic powders X, and if it is 0.8 or more, the number of contact points with the inorganic powders X decreases, and the heat path promoting effect also decreases. I will end up. Further, even if the thermal conductivity of the inorganic powder X exceeds that of the inorganic powder X, the thermal conductivity of the resin composition is greatly affected by the inorganic powder X, so the thermal conductivity does not improve so much. It is possible to use a powder having a higher thermal conductivity than that of the inorganic powder X, but it is meaningless to use a relatively expensive powder having a high thermal conductivity.

【0011】ここで、真円度は、走査型電子顕微鏡(日
本電子社製「JXA−8600M型」)と画像解析装置
(日本アビオニクス社製)を用いて測定することができ
る。すなわち、粉末のSEM写真から粒子の投影面積
(A)と周囲長(PM)を測定する。周囲長(PM)に
対応する真円の面積を(B)とすると、その粒子の真円
度はA/Bとして表される。そこで、試料粒子の周囲長
(PM)と同一の周囲長を持つ真円を想定すると、PM
=2πr、B=πr2であるから、B=π×(PM/2
π)2となり、この粒子の真円度は、真円度=A/B=
A×4π/(PM)2として算出することができる。そ
こで、本発明においては、任意100個の粒子について
測定し、その平均値でもって粉末の真円度とする。
Here, the roundness can be measured using a scanning electron microscope ("JXA-8600M" manufactured by JEOL Ltd.) and an image analyzer (manufactured by Japan Avionics). That is, the projected area (A) and the perimeter (PM) of the particles are measured from the SEM photograph of the powder. When the area of a perfect circle corresponding to the perimeter (PM) is (B), the roundness of the particle is expressed as A / B. Therefore, assuming a perfect circle with the same perimeter as the perimeter (PM) of the sample particles, PM
= 2πr and B = πr 2 , B = π × (PM / 2
π) 2 and the roundness of this particle is roundness = A / B =
It can be calculated as A × 4π / (PM) 2 . Therefore, in the present invention, an arbitrary 100 particles are measured, and the average value thereof is used as the roundness of the powder.

【0012】無機粉末Xの具体例は、酸化アルミニウ
ム、酸化亜鉛、窒化アルミニウム、窒化珪素、窒化硼素
などの粉末であるが、化学的安定性、熱伝導性の点から
酸化アルミニウム粉末が最適である。一方、無機粉末Y
の具体例は、結晶シリカ、溶融(非晶質)シリカ、炭酸
カルシウム、酸化アルミニウム、水酸化アルミニウム、
窒化アルミニウム、窒化硼素、窒化珪素等の粉末である
が、無機粉末Xが酸化アルミニウム粉末である場合、結
晶シリカ粉末、溶融(非晶質)シリカ粉末、酸化アルミ
ニウム粉末のいずれか一方又は組み合わせであることが
最適である。
Specific examples of the inorganic powder X are powders of aluminum oxide, zinc oxide, aluminum nitride, silicon nitride, boron nitride and the like, but aluminum oxide powder is most suitable from the viewpoint of chemical stability and thermal conductivity. . On the other hand, inorganic powder Y
Specific examples of crystalline silica, fused (amorphous) silica, calcium carbonate, aluminum oxide, aluminum hydroxide,
The powder is aluminum nitride, boron nitride, silicon nitride, or the like, and when the inorganic powder X is an aluminum oxide powder, it is one or a combination of crystalline silica powder, fused (amorphous) silica powder, and aluminum oxide powder. Is best.

【0013】本発明の高熱伝導性無機粉末は、無機粉末
Xと無機粉末Yの割合が、X/Yの質量比で1〜30で
あることが第3条件である。無機粉末Yは、無機粉末X
による樹脂組成物の低粘度を助長し、樹脂への高充填を
可能にする。X/Y比が1未満であると微粉域の割合が
少なすぎて樹脂組成物が容易に高粘度化し、また30超
となると熱伝導性付与効果が著しく低下する。本発明の
高熱伝導性無機粉末は、無機粉末Xと無機粉末Yの合計
が60%以上(100%を含む)で構成されていること
が好ましく、その合計が100%未満である場合の残部
は、真円度0.80以上でしかも1.5〜3μmの球状
無機粉末で構成されていることが好ましい。
The third condition of the high thermal conductive inorganic powder of the present invention is that the ratio of the inorganic powder X and the inorganic powder Y is 1 to 30 in terms of mass ratio X / Y. Inorganic powder Y is inorganic powder X
It promotes the low viscosity of the resin composition and enables the resin to be highly filled. If the X / Y ratio is less than 1, the proportion of the fine powder region is too small, and the resin composition easily becomes highly viscous, and if it exceeds 30, the effect of imparting thermal conductivity remarkably deteriorates. The high thermal conductivity inorganic powder of the present invention is preferably configured such that the total of the inorganic powder X and the inorganic powder Y is 60% or more (including 100%), and when the total is less than 100%, the balance is It is preferable that the spherical inorganic powder has a roundness of 0.80 or more and a diameter of 1.5 to 3 μm.

【0014】次に、他の本発明について説明する。これ
らの発明は、樹脂組成物の熱伝導性を更に向上させるこ
とができる高熱伝導性無機粉末であり、上記本発明の高
熱伝導性無機粉末(以下、「高熱伝導性無機粉末基材」
ともいう。)の改良に関するものである。
Next, another invention will be described. These inventions are high thermal conductivity inorganic powders capable of further improving the thermal conductivity of the resin composition, and the high thermal conductivity inorganic powders of the present invention (hereinafter, "high thermal conductivity inorganic powder base material").
Also called. ) Is related to the improvement.

【0015】その1は、高熱伝導性無機粉末基材をシラ
ン系カップリング剤、チタネート系カップリング剤及び
アルミネート系カップリング剤から選ばれた一種又は二
種以上の表面処理剤Aにて表面処理された高熱伝導性無
機粉末(以下、「高熱伝導性無機粉末A」ともいう。)
である。これを用いることによって、樹脂との密着性が
更に高められ、高熱伝導性無機粉末Aと樹脂間での界面
熱抵抗が低下し、更なる高熱伝導性を付与することがで
きる。表面処理剤Aとしては、高熱伝導性無機粉末基材
との反応性の点からシラン系カップリング剤が好まし
い。
The first is to surface a high thermal conductive inorganic powder base material with one or more surface treatment agents A selected from silane coupling agents, titanate coupling agents and aluminate coupling agents. The treated high thermal conductive inorganic powder (hereinafter, also referred to as “high thermal conductive inorganic powder A”).
Is. By using this, the adhesiveness with the resin is further enhanced, the interfacial thermal resistance between the high thermal conductive inorganic powder A and the resin is lowered, and further high thermal conductivity can be imparted. As the surface treatment agent A, a silane coupling agent is preferable from the viewpoint of reactivity with the high thermal conductivity inorganic powder base material.

【0016】シランカップリング剤としては、ビニルト
リクロルシラン、ビニルトリエトキシシラン、ビニルト
リメトキシシラン、γ−メタクリロキシプロピルトリメ
トキシシラン、β(3,4エポキシシンクロヘキシル)
エチルトリメトキシシラン、γ−グリシドキシプロピル
トリメトキシシラン、γ−グリシリメトキシプロピルメ
チルジエトキシシラン、N−β(アミノエチル)γ−ア
ミノプロピルトリメトキシシラン、N−β(アミノエチ
ル)γ−アミノプロピルメチルジメトキシシラン、γ−
アミノプロピルトリエトキシシラン、N−フェニル−γ
−アミノプロピルトリメトキシシラン、γ−メルカプト
プロピルトリメトキシシラン、γ−クロロプロピルトリ
メトキシシラン等であり、これらを一種または二種以上
が用いられる。
Examples of silane coupling agents include vinyltrichlorosilane, vinyltriethoxysilane, vinyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane and β (3,4 epoxy synchrohexyl).
Ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycyrimethoxypropylmethyldiethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N-β (aminoethyl) γ- Aminopropylmethyldimethoxysilane, γ-
Aminopropyltriethoxysilane, N-phenyl-γ
-Aminopropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-chloropropyltrimethoxysilane and the like, and one or more of these may be used.

【0017】表面処理剤Aによる高熱伝導性無機粉末基
材の表面処理方法は、流体ノズルを用いた噴霧方式、せ
ん断力のある攪拌、ボールミル、ミキサー等の乾式法、
水系または有機溶剤系等の湿式法を採用することができ
る。せん断力は、高熱伝導性無機粉末基材の破壊が起こ
らない程度にして行うことに注意が必要である。
The surface treatment of the highly heat-conductive inorganic powder base material with the surface treatment agent A is carried out by a spray method using a fluid nozzle, agitating with shearing force, a dry method such as a ball mill or a mixer,
A wet method such as an aqueous method or an organic solvent method can be adopted. It should be noted that the shearing force is set so that the high thermal conductivity inorganic powder base material is not broken.

【0018】乾式法における系内温度ないしは湿式法に
おける処理後の乾燥温度は、表面処理剤Aの種類に応じ
熱分解しない領域で適宜決定される。例えば、γ−アミ
ノプロピルトリエトキシシランである場合の温度は、8
0〜150℃が望ましい。
The in-system temperature in the dry method or the drying temperature after the treatment in the wet method is appropriately determined depending on the kind of the surface treating agent A in a region where it is not thermally decomposed. For example, the temperature in the case of γ-aminopropyltriethoxysilane is 8
0-150 degreeC is desirable.

【0019】その2は、アンダーフィル材のように樹脂
組成物が低粘度である場合、高熱伝導性無機粉末が沈降
して樹脂組成物の熱伝導性が損なわれないようにするた
め、ポリカルボン酸系界面活性剤、ポリアクリル酸系界
面活性剤界面活性剤から選ばれた一種または二種以上の
表面処理剤Bによって、高熱伝導性無機粉末基材又は高
熱伝導性無機粉末Aを表面処理した高熱伝導性無機粉末
(以下、両者を総称して「高熱伝導性無機粉末B」とも
いう。また、前者による処理粉を「高熱伝導性無機粉末
b1」、後者による処理粉を「高熱伝導性無機粉末b
2」ともいう。)である。
The second reason is that when the resin composition has a low viscosity like an underfill material, the high thermal conductivity inorganic powder does not settle and the thermal conductivity of the resin composition is not impaired. The high thermal conductivity inorganic powder base material or the high thermal conductivity inorganic powder A is surface-treated with one or more surface treatment agents B selected from acid-based surfactants and polyacrylic acid-based surfactants. High thermal conductivity inorganic powder (hereinafter, both are collectively referred to as "high thermal conductivity inorganic powder B". Further, the treated powder by the former is "high thermal conductive inorganic powder b1", and the treated powder by the latter is "high thermal conductive inorganic powder B1". Powder b
Also called 2 ". ).

【0020】表面処理剤Bによる、高熱伝導性無機粉末
基材ないしは高熱伝導性無機粉末Aの表面処理は、表面
処理剤Aの処理方法に準じて行われるが、表面処理剤A
の場合と同様に、表面処理剤Bの熱分解が起こらない温
度で処理しなければならないことに注意が要る。
The surface treatment of the high thermal conductivity inorganic powder base material or the high thermal conductivity inorganic powder A with the surface treatment agent B is carried out according to the treatment method of the surface treatment agent A.
It should be noted that the treatment must be performed at a temperature at which thermal decomposition of the surface treatment agent B does not occur, as in the case of.

【0021】本発明においては、表面処理剤Aと表面処
理剤Bとによる処理は、どちらか一方でもよく両方であ
ってもよい。両方の処理によって、樹脂との密着性向上
と高熱伝導性無機粉末の沈降防止を同時に低減すること
ができ、樹脂組成物の放熱性を向上させることができ
る。
In the present invention, the treatment with the surface-treating agent A and the treatment with the surface-treating agent B may be either one or both. By both treatments, it is possible to simultaneously improve the adhesion to the resin and prevent the high heat conductive inorganic powder from settling, and improve the heat dissipation of the resin composition.

【0022】また、表面処理剤Aと表面処理剤Bによる
両方の処理の場合、その処理は別々に行っても良く、ま
た同時に行っても効果がある。従って、表面処理剤Aと
表面処理剤Bはあらかじめ混合された表面処理剤組成物
であることが取り扱いの点で望ましく、その混合割合
は、表面処理剤B/表面処理剤Aの質量比で1〜30で
あることが好ましい。該比が、1未満であると、過剰な
表面処理剤Aによって樹脂組成物の粘度上昇、表面処理
剤Bの不足による十分な沈降防止効果が得られない。一
方、該比が30超となると、過剰な表面処理剤Bによっ
て、高熱伝導性無機粉末の表面処理剤A表面の吸着サイ
トが埋められ、表面処理剤Aの未反応が増加し、樹脂と
の密着性が十分に向上しない。
Further, in the case of both the treatments with the surface treatment agent A and the surface treatment agent B, the treatments may be carried out separately or simultaneously. Therefore, it is desirable in terms of handling that the surface treatment agent A and the surface treatment agent B are premixed surface treatment agent compositions, and the mixing ratio thereof is 1 in terms of the surface treatment agent B / surface treatment agent A mass ratio. It is preferably -30. If the ratio is less than 1, the viscosity of the resin composition is increased by an excessive amount of the surface treatment agent A, and a sufficient sedimentation preventing effect due to the lack of the surface treatment agent B cannot be obtained. On the other hand, when the ratio exceeds 30, the excessive surface treatment agent B fills the adsorption site on the surface of the surface treatment agent A of the high thermal conductive inorganic powder, and the unreacted amount of the surface treatment agent A increases, and Adhesion is not sufficiently improved.

【0023】本発明の樹脂組成物は、上記した本発明の
高熱伝導性無機粉末、すなわち高熱伝導性無機粉末基
材、高熱伝導性無機粉末A、高熱伝導性無機粉末B(す
なわち高熱伝導性無機粉末b1、高伝導性無機粉末b
2)のいずれか単独または二種以上が充填されてなるも
のである。充填量は、用途によって異なり、50〜95
質量%が一般的である。
The resin composition of the present invention comprises the above-mentioned high thermal conductive inorganic powder of the present invention, that is, a high thermal conductive inorganic powder base material, a high thermal conductive inorganic powder A, a high thermal conductive inorganic powder B (that is, a high thermal conductive inorganic powder). Powder b1, highly conductive inorganic powder b
Any one of 2) or a mixture of two or more thereof is prepared. The filling amount is 50 to 95 depending on the use.
Mass% is common.

【0024】樹脂としては、エポキシ樹脂、シリコーン
樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、不
飽和ポリエステル、フッ素樹脂、ポリイミド、ポリアミ
ドイミド、ポリエーテルイミド等のポリアミド、ポリブ
チレンテレフタレート、ポリエチレンテレフタレート等
のポリエステル、ポリフェニレンエーテル、ポリフェニ
レンスルフィド、全芳香族ポリエステル、ポリスルホ
ン、液晶ポリマー、ポリエーテルスルホン、ポリカーボ
ネート、マレイミド変性樹脂、ABS樹脂、AAS(ア
クリロニトリル−アクリルゴム・スチレン)樹脂、AE
S(アクリロニトリル・エチレン・プロピレン・ジエン
ゴム−スチレン)樹脂等が使用される。
Examples of resins include epoxy resins, silicone resins, phenol resins, melamine resins, urea resins, unsaturated polyesters, fluororesins, polyimides, polyamides such as polyamideimide and polyetherimide, and polyesters such as polybutylene terephthalate and polyethylene terephthalate. , Polyphenylene ether, polyphenylene sulfide, wholly aromatic polyester, polysulfone, liquid crystal polymer, polyether sulfone, polycarbonate, maleimide modified resin, ABS resin, AAS (acrylonitrile-acrylic rubber / styrene) resin, AE
S (acrylonitrile / ethylene / propylene / diene rubber-styrene) resin or the like is used.

【0025】樹脂組成物がアンダーフィル材のように液
状樹脂組成物である場合、樹脂には液状エポキシ樹脂が
用いられる。液状エポキシ樹脂としては、一分子中にエ
ポキシ基を二個以上有するエポキシ樹脂であればいかな
るものでも使用可能である。その具体例をあげれば、フ
ェノールノボラック型エポキシ樹脂、オルソクレゾール
ノボラック型エポキシ樹脂、フェノール類とアルデヒド
類のノボラック樹脂をエポキシ化したもの、ビスフェノ
ールA、ビスフェノールF及びビスフェノールSなどの
グリシジルエーテル、フタル酸やダイマー酸などの多塩
基酸とエポクロルヒドリンとの反応により得られるグリ
シジルエステル酸エポキシ樹脂、線状脂肪族エポキシ樹
脂、脂環式エポキシ樹脂、複素環式エポキシ樹脂、アル
キル変性多官能エポキシ樹脂、β−ナフトールノボラッ
ク型エオキシ樹脂、1,6−ジヒドロキシナフタレン型
エポキシ樹脂、2,7−ジヒドロキシナフタレン型エポ
キシ樹脂、ビスヒドロキシビフェニル型エポキシ樹脂、
更には難燃性を付与するために臭素などのハロゲンを導
入したエポキシ樹脂等である。この中でも常温で液状の
エポキシ樹脂が好適に用いられるが、特にビスフェノー
ルA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂
等のビスフェノール型エポキシ樹脂、脂環式エポキシ樹
脂などが挙げられ、これらを一種または2種類以上が使
用される。
When the resin composition is a liquid resin composition such as an underfill material, a liquid epoxy resin is used as the resin. As the liquid epoxy resin, any epoxy resin having two or more epoxy groups in one molecule can be used. Specific examples thereof include phenol novolac type epoxy resins, orthocresol novolac type epoxy resins, epoxidized novolac resins of phenols and aldehydes, glycidyl ethers such as bisphenol A, bisphenol F and bisphenol S, phthalic acid and Glycidyl ester acid epoxy resin obtained by reaction of polybasic acid such as dimer acid and epochlorohydrin, linear aliphatic epoxy resin, alicyclic epoxy resin, heterocyclic epoxy resin, alkyl-modified polyfunctional epoxy resin, β-naphthol novolac type Eoxy resin, 1,6-dihydroxynaphthalene type epoxy resin, 2,7-dihydroxynaphthalene type epoxy resin, bishydroxybiphenyl type epoxy resin,
Further, it is an epoxy resin or the like into which halogen such as bromine is introduced in order to impart flame retardancy. Of these, epoxy resins that are liquid at room temperature are preferably used, and bisphenol-type epoxy resins such as bisphenol A-type epoxy resins and bisphenol F-type epoxy resins, alicyclic epoxy resins, and the like can be mentioned. The above is used.

【0026】液状エポキシ樹脂の硬化剤については、液
状エポキシ樹脂と反応して硬化させるものであれば特に
限定されず、例えば、フェノール、クレゾール、キシレ
ノール、レゾルシノール、クロロフェノール、t−ブチ
ルフェノール、ノニルフェノール、イソプロピルフェノ
ール、オクチルフェノール等の群から選ばれた1種又は
2種以上の混合物をホルムアルデヒド、パラホルムアル
デヒド又はパラキシレンとともに酸化触媒下で反応させ
て得られるノボラック型樹脂、ポリパラヒドロキシスチ
レン樹脂、ビスフェノールAやビスフェノールS等のビ
スフェノール化合物、ピロガロールやフロログルシノー
ル等の3官能フェノール類、無水マレイン酸、無水フタ
ル酸や無水ピロメリット酸等の酸無水物、メタフェニレ
ンジアミン、ジアミノジフェニルメタン、ジアミノジフ
ェニルスルホン等の芳香族アミン等を挙げることができ
る。
The curing agent for the liquid epoxy resin is not particularly limited as long as it cures by reacting with the liquid epoxy resin, and examples thereof include phenol, cresol, xylenol, resorcinol, chlorophenol, t-butylphenol, nonylphenol and isopropyl. Novolak type resins, polyparahydroxystyrene resins, bisphenol A and bisphenol obtained by reacting one or a mixture of two or more selected from the group consisting of phenol and octylphenol with formaldehyde, paraformaldehyde or paraxylene under an oxidation catalyst. Bisphenol compounds such as S, trifunctional phenols such as pyrogallol and phloroglucinol, maleic anhydride, acid anhydrides such as phthalic anhydride and pyromellitic anhydride, metaphenylenediamine, dia Bruno diphenylmethane, aromatic amines such as diaminodiphenyl sulfone, and the like.

【0027】本発明の樹脂組成物には、次の成分を必要
に応じて配合することができる。すなわち、低応力化剤
として、シリコーンゴム、ポリサルファイドゴム、アク
リル系ゴム、ブタジエン系ゴム、スチレン系ブロックコ
ポリマーや飽和型エラストマー等のゴム状物質、各種熱
可塑性樹脂、シリコーン樹脂等の樹脂状物質、更にはエ
ポキシ樹脂、フェノール樹脂の一部又は全部をアミノシ
リコーン、エポキシシリコーン、アルコキシシリコーン
などで変性した樹脂など、シランカップリング剤とし
て、γ−グリシドキシプロピルトリメトキシシラン、β
−(3,4−エポキシシクロヘキシル)エチルトリメト
キシシラン等のエポキシシラン、アミノプロピルトリエ
トキシシラン、ウレイドプロピルトリエトキシシラン、
N−フェニルアミノプロピルトリメトキシシラン等のア
ミノシラン、フェニルトリメトキシシラン、メチルトリ
メトキシシラン、オクタデシルトリメトキシシラン等の
疎水性シラン化合物やメルカプトシランなど、表面処理
剤として、Zrキレート、チタネートカップリング剤、
アルミニウム系カップリング剤など、難燃助剤として、
Sb23、Sb24、Sb25など、難燃剤として、ハ
ロゲン化エポキシ樹脂やリン化合物など、着色剤とし
て、カーボンブラック、酸化鉄、染料、顔料などであ
る。
The resin composition of the present invention may contain the following components if necessary. That is, as a stress reducing agent, a rubber-like substance such as silicone rubber, polysulfide rubber, acrylic rubber, butadiene rubber, styrene block copolymer or saturated elastomer, various thermoplastic resins, resinous substances such as silicone resin, Is a resin obtained by modifying a part or all of an epoxy resin, a phenolic resin with an aminosilicone, an epoxysilicone, an alkoxysilicone, etc., as a silane coupling agent, γ-glycidoxypropyltrimethoxysilane, β
-Epoxysilanes such as (3,4-epoxycyclohexyl) ethyltrimethoxysilane, aminopropyltriethoxysilane, ureidopropyltriethoxysilane,
Aminosilane such as N-phenylaminopropyltrimethoxysilane, phenyltrimethoxysilane, methyltrimethoxysilane, hydrophobic silane compound such as octadecyltrimethoxysilane, mercaptosilane, and the like, Zr chelate, titanate coupling agent as a surface treatment agent,
As flame retardant aids such as aluminum-based coupling agents,
Flame retardants such as Sb 2 O 3 , Sb 2 O 4 , and Sb 2 O 5 are halogenated epoxy resins and phosphorus compounds, and colorants are carbon black, iron oxide, dyes, pigments, and the like.

【0028】本発明の樹脂組成物には、エポキシ樹脂と
硬化剤との反応を促進させるために硬化促進剤を配合す
ることができる。その硬化促進剤としては、1,8−ジ
アザビシクロ(5,4,0)ウンデセン−7,トリフェ
ニルホスフィン、ベンジルジメチルアミン、2−メチル
イミダゾール等がある。
A curing accelerator can be added to the resin composition of the present invention in order to accelerate the reaction between the epoxy resin and the curing agent. Examples of the curing accelerator include 1,8-diazabicyclo (5,4,0) undecene-7, triphenylphosphine, benzyldimethylamine, 2-methylimidazole and the like.

【0029】本発明の樹脂組成物は、上記各材料の所定
量を撹拌、溶解、混合、分散させることにより製造する
ことができる。これらの混合物の混合、撹拌、分散等の
装置は特に限定されないが、撹拌、加熱装置を備えたラ
イカイ機、3本ロール、ボールミル、プラネタリーミキ
サー等を用いることができる。またこれらの装置を適宜
組み合わせて使用してもよい。
The resin composition of the present invention can be produced by stirring, dissolving, mixing and dispersing predetermined amounts of the above materials. The apparatus for mixing, stirring, dispersing, etc. of these mixtures is not particularly limited, but a Leiki machine equipped with a stirring and heating device, three rolls, a ball mill, a planetary mixer and the like can be used. Also, these devices may be used in an appropriate combination.

【0030】本発明の樹脂組成物をアンダーフィル材と
して用いるとき、半導体チップと基板との間隙にそれを
浸透させて封止する際の温度は60〜120℃とするこ
とが好ましい。
When the resin composition of the present invention is used as an underfill material, the temperature at which it is permeated into the gap between the semiconductor chip and the substrate for sealing is preferably 60 to 120 ° C.

【0031】[0031]

【実施例】以下、実施例、比較例をあげて更に具体的に
本発明を説明する。
EXAMPLES The present invention will be described more specifically with reference to Examples and Comparative Examples.

【0032】実施例1〜7 比較例1〜6 表1に示す無機粉末1〜13を準備し、これを表2に示
すような配合で混合し、高熱伝導性無機粉末基材イ〜ホ
(実施例1〜5)と、チ〜ワ(比較例1〜6)を調整し
た。それらの粉末特性を表4に示す。また、高熱伝導性
無機粉末ヘ(実施例6)および高熱伝導性無機粉末ト
(実施例7)は、高熱伝導性無機粉末基材イを以下に従
って表面処理し、本発明の高熱伝導性無機粉末Aおよび
高熱伝導性無機粉末b1としたものである。
Examples 1 to 7 Comparative Examples 1 to 6 Inorganic powders 1 to 13 shown in Table 1 were prepared and mixed in a composition as shown in Table 2 to obtain a high thermal conductivity inorganic powder base material a to e ( Examples 1 to 5) and Chi-wa (Comparative Examples 1 to 6) were adjusted. Their powder properties are shown in Table 4. Further, the high thermal conductive inorganic powder F (Example 6) and the high thermal conductive inorganic powder G (Example 7) were prepared by subjecting the high thermal conductive inorganic powder base material (i) to a surface treatment according to the following. A and high thermal conductivity inorganic powder b1.

【0033】ボール径20mm、ボール充填率50体積
%の10リットル容器内に、高熱伝導性無機粉末基材イ
を1kg、表3に示す表面処理剤A又は表面処理剤Bを
投入し、常温、常圧の条件下にて1回/秒の速度で1時
間運転し、120℃にて1時間乾燥させ、高熱伝導性無
機粉末ヘおよびトを得た。
In a 10 liter container having a ball diameter of 20 mm and a ball filling rate of 50% by volume, 1 kg of a highly heat-conductive inorganic powder base material (i) and the surface treatment agent A or the surface treatment agent B shown in Table 3 were charged at room temperature, It was operated at a speed of once / second for 1 hour under normal pressure conditions, and dried at 120 ° C. for 1 hour to obtain high heat conductive inorganic powder F and F.

【0034】表5に示される割合で各材料を混合し、こ
れに高熱伝導性無機粉末イ〜ワを無機粉末換算で75質
量%の割合で混合し、樹脂組成物を製造した。これの粘
度、熱伝導率、摩耗量を以下に従って測定した。それら
の結果を表6に示す。
The respective materials were mixed in the proportions shown in Table 5, and the high thermal conductive inorganic powders (i) to (i) were mixed in the proportion of 75% by mass in terms of the inorganic powder to prepare a resin composition. The viscosity, the thermal conductivity, and the amount of wear of this were measured according to the following. The results are shown in Table 6.

【0035】(1)粘度 E型粘度計型(東京計器社製「EHD粘度計」)を用
い、温度40℃、10rpmの回転数による粘度測定を
行った。
(1) Viscosity An E-type viscometer type (“EHD viscometer” manufactured by Tokyo Keiki Co., Ltd.) was used to measure viscosity at a temperature of 40 ° C. and a rotation speed of 10 rpm.

【0036】(2)熱伝導率 直径28mm、厚さ3mmの円盤状サイズ穴を設けた金
型に樹脂組成物を流し込み、脱気後150℃×20分で
成型した。熱伝導率測定装置(アグネ社製「ARC−T
C−1型」)を用い、室温において温度傾斜法で測定し
た。
(2) Thermal conductivity The resin composition was poured into a mold provided with a disk-shaped hole having a diameter of 28 mm and a thickness of 3 mm, degassed and molded at 150 ° C. for 20 minutes. Thermal conductivity measuring device ("ARC-T" manufactured by Agne Co.
C-1 type ") and was measured by a temperature gradient method at room temperature.

【0037】(3)摩耗量 厚み6mm、孔径3mmのアルミニウム製ディスクの孔
に樹脂組成物を300mm3通過させた後のディスクの
質量減少量を摩耗量として評価した。
[0037] (3) wear amount thickness 6 mm, the weight loss of the disc after the resin composition was 300 mm 3 to pass through the pores of an aluminum disc having a pore diameter of 3mm was evaluated as the wear amount.

【0038】[0038]

【表1】 [Table 1]

【0039】[0039]

【表2】 [Table 2]

【0040】[0040]

【表3】 [Table 3]

【0041】[0041]

【表4】 [Table 4]

【0042】[0042]

【表5】 [Table 5]

【0043】[0043]

【表6】 [Table 6]

【0044】表1〜6から明らかなように、本発明の高
熱伝導性無機粉末を用いた樹脂組成物は、粘度、熱伝導
性、摩耗性の全てにおいて、比較例よりも優れているこ
とが分かる。
As is clear from Tables 1 to 6, the resin composition using the high thermal conductive inorganic powder of the present invention is superior to the comparative example in all of viscosity, thermal conductivity and wear resistance. I understand.

【0045】実施例8、9 表面処理剤Aおよび表面処理剤Bからなる表面処理剤組
成物を用いて試験を行った。すなわち、高熱伝導性無機
粉末基材イ、表面処理剤A:シランカップリング剤(商
品名:信越化学工業製KBM−403)、表面処理剤
B:ポリカルボン酸系界面活性剤(商品名:日本油脂株
式会社製マリアニムAKM−0531)を用いて試験を
行った。
Examples 8 and 9 Tests were carried out using a surface treatment agent composition comprising surface treatment agent A and surface treatment agent B. That is, high thermal conductivity inorganic powder base material a, surface treatment agent A: silane coupling agent (trade name: KBM-403 manufactured by Shin-Etsu Chemical Co., Ltd.), surface treatment agent B: polycarboxylic acid type surfactant (trade name: Japan The test was carried out using Marinim AKM-0531 manufactured by Yushi Co., Ltd.

【0046】表面処理方法は、ボール径20mm、ボー
ル充填率50体積%の10リットル容器内に高熱伝導性
無機粉末基材イを1kg、表面処理剤組成物を表面処理
Aの質量換算で0.36gになるよう投入し、常温、常
圧の条件下にて1回/秒の速度で1時間運転した後、1
20℃にて1時間乾燥させ、高熱伝導性無機粉末b2と
した。その結果を表7に示す。
The surface treatment method was as follows: 1 kg of the highly heat-conductive inorganic powder base material (1 kg) in a 10 liter container having a ball diameter of 20 mm and a ball filling rate of 50% by volume, and the surface treatment agent composition in terms of mass of the surface treatment A of 0. After charging at 36 g and operating at room temperature and atmospheric pressure at a speed of once per second for 1 hour,
It was dried at 20 ° C. for 1 hour to obtain a high thermal conductive inorganic powder b2. The results are shown in Table 7.

【0047】[0047]

【表7】 [Table 7]

【0048】表7からも明らかなように、表面処理剤A
と表面処理剤Bの混合物からなる表面処理剤組成物であ
っても十分に高く樹脂組成物の熱伝導率が向上すること
が分かる。
As is clear from Table 7, the surface treatment agent A
It can be seen that even the surface treatment agent composition comprising a mixture of the resin and the surface treatment agent B has a sufficiently high thermal conductivity of the resin composition.

【0049】[0049]

【発明の効果】本発明によれば、樹脂に高充填しても容
易に高粘度化せず、しかも放熱性に優れた樹脂組成物を
調製することのできる、高熱伝導性無機粉末と、それを
樹脂に充填した樹脂組成物と、高熱伝導性無機粉末を製
造するのに用いられる表面処理剤組成物とが提供され
る。
EFFECTS OF THE INVENTION According to the present invention, a highly heat-conductive inorganic powder capable of preparing a resin composition which does not easily become highly viscous even when highly filled with a resin and has excellent heat dissipation, and There is provided a resin composition in which a resin is filled with a resin, and a surface treatment agent composition used for producing a high thermal conductive inorganic powder.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C08K 3/22 C08K 3/22 3/36 3/36 7/16 7/16 9/04 9/04 C08L 101/00 C08L 101/00 C09C 1/28 C09C 1/28 1/40 1/40 3/06 3/06 3/10 3/10 3/12 3/12 Fターム(参考) 4G012 LA01 LA14 4J002 AA001 BD121 BG041 BN061 BN071 BN151 CC041 CC161 CC181 CD001 CD011 CD021 CD031 CD051 CD061 CD121 CF001 CF061 CF071 CF161 CF211 CG001 CH071 CL001 CM041 CN011 CN031 CP031 DE146 DJ016 FB086 FB096 FB106 FB116 FB136 FB146 FB156 FB166 FD090 FD130 FD140 FD150 FD200 4J037 AA18 AA25 CB05 CB09 CB23 CC17 DD05 DD11 DD24 EE02 FF11 FF13 Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C08K 3/22 C08K 3/22 3/36 3/36 7/16 7/16 9/04 9/04 C08L 101/00 C08L 101/00 C09C 1/28 C09C 1/28 1/40 1/40 3/06 3/06 3/10 3/10 3/12 3/12 F term (reference) 4G012 LA01 LA14 4J002 AA001 BD121 BG041 BN061 BN071 BN151 CC041 CC161 CC181 CD001 CD011 CD021 CD031 CD051 CD061 CD121 CF001 CF061 CF071 CF161 CF211 CG001 CH071 CL001 CM041 CN011 CN031 CP031 DE146 DJ016 FB086 FB096 CB11 CB37 FD37 FB16 FD200 FB16 FD16A FD166 FB16 FD16A FD166 FD166 FD166 FD166 AFD FF13

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 平均粒子径が1〜20μm、最大粒径が
45μm以下の無機粉末からなり、粒度域3〜40μm
の構成粒子である無機粉末Xの真円度が0.80以上の
球状でしかも熱伝導率10W/mK以上であり、粒度域
0.1〜1.5μmの構成粒子である無機粉末Yの真円
度が0.30以上0.80未満の球状又は非球状でしか
も熱伝導率が無機粉末Xと同等以下であり、X/Yの質
量比が1〜30であることを特徴とする高熱伝導性無機
粉末。
1. An inorganic powder having an average particle size of 1 to 20 μm and a maximum particle size of 45 μm or less, and having a particle size range of 3 to 40 μm.
The roundness of the inorganic powder X, which is the constituent particle, is 0.80 or more, and the thermal conductivity is 10 W / mK or more, and the trueness of the inorganic powder Y, which is the constituent particle in the particle size range of 0.1 to 1.5 μm. High thermal conductivity, which is spherical or non-spherical with a circularity of 0.30 or more and less than 0.80, has a thermal conductivity equal to or less than that of the inorganic powder X, and has an X / Y mass ratio of 1 to 30. Inorganic powder.
【請求項2】 無機粉末Xが酸化アルミニウム粉末であ
り、無機粉末Yが酸化アルミニウム粉末及び/又はシリ
カ粉末であることを特徴とする請求項1記載の高熱伝導
性無機粉末。
2. The high thermal conductive inorganic powder according to claim 1, wherein the inorganic powder X is an aluminum oxide powder and the inorganic powder Y is an aluminum oxide powder and / or a silica powder.
【請求項3】 シランカップリング剤、チタネート系カ
ップリング剤及びアルミネート系カップリング剤から選
ばれた1種又は2種以上の表面処理剤Aにて表面処理が
施されていることを特徴とする請求項1又は2記載の高
熱伝導性無機粉末。
3. A surface treatment with one or more surface treatment agents A selected from a silane coupling agent, a titanate coupling agent and an aluminate coupling agent. The high thermal conductivity inorganic powder according to claim 1 or 2.
【請求項4】 ポリカルボン酸系界面活性剤及び/又は
ポリアクリル酸系界面活性剤の表面処理剤Bにて表面処
理が施されてなることを特徴とする請求項1、2又は3
記載の高熱伝導性無機粉末。
4. The surface treatment is applied with a surface treatment agent B of a polycarboxylic acid type surfactant and / or a polyacrylic acid type surfactant, and the surface treatment is performed.
The high thermal conductive inorganic powder described.
【請求項5】 請求項1、2、3又は4記載の高熱伝導
性粉末が充填されてなることを特徴とする樹脂組成物。
5. A resin composition comprising the high thermal conductive powder according to claim 1, 2, 3 or 4 filled therein.
【請求項6】 シランカップリング剤、チタネート系カ
ップリング剤、アルミネート系カップリング剤から選ば
れた1種又は2種以上の表面処理剤Aと、ポリカルボン
酸系界面活性剤及び/又はポリアクリル酸系界面活性剤
の表面処理剤Bを、B/Aの質量比が1〜30の割合で
含有してなることを特徴とする高熱伝導性無機質粉末の
表面処理剤組成物。
6. One or more surface treatment agents A selected from a silane coupling agent, a titanate coupling agent, and an aluminate coupling agent, and a polycarboxylic acid type surfactant and / or poly A surface-treating agent composition for a high thermal conductive inorganic powder, characterized by comprising a surface-treating agent B of an acrylic acid-based surfactant in a mass ratio of B / A of 1 to 30.
JP2001339067A 2001-11-05 2001-11-05 High thermal conductive inorganic powder and resin composition Expired - Fee Related JP4004270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001339067A JP4004270B2 (en) 2001-11-05 2001-11-05 High thermal conductive inorganic powder and resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001339067A JP4004270B2 (en) 2001-11-05 2001-11-05 High thermal conductive inorganic powder and resin composition

Publications (2)

Publication Number Publication Date
JP2003137627A true JP2003137627A (en) 2003-05-14
JP4004270B2 JP4004270B2 (en) 2007-11-07

Family

ID=19153473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001339067A Expired - Fee Related JP4004270B2 (en) 2001-11-05 2001-11-05 High thermal conductive inorganic powder and resin composition

Country Status (1)

Country Link
JP (1) JP4004270B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005325231A (en) * 2004-05-14 2005-11-24 Sumitomo Chemical Co Ltd High heat conductivity resin composition
EP1754772A1 (en) * 2005-08-18 2007-02-21 Shin-Etsu Chemical Co., Ltd. Heat conductive silicone grease composition and cured product thereof
JP2008239355A (en) * 2007-03-24 2008-10-09 Mitsubishi Materials Corp Manufacturing method of admixture for cement-concrete and admixture for cement-concrete
JP2009235402A (en) * 2008-03-05 2009-10-15 Hitachi Chem Co Ltd Adhesive film
WO2011013831A1 (en) * 2009-07-30 2011-02-03 住友化学株式会社 Liquid crystalline polyester composition and electronic circuit board comprising same
WO2012029538A1 (en) 2010-08-31 2012-03-08 東レ・ダウコーニング株式会社 Polysiloxane composition, and cured product thereof
JP2012250869A (en) * 2011-06-01 2012-12-20 Denki Kagaku Kogyo Kk Spherical alumina powder, manufacturing method therefor and composition using this powder
JP2013056996A (en) * 2011-09-08 2013-03-28 Denki Kagaku Kogyo Kk High-heat conductive resin composition
CN103250243A (en) * 2010-12-16 2013-08-14 三菱电机株式会社 Semiconductor device
WO2016031888A1 (en) * 2014-08-27 2016-03-03 Jnc株式会社 Composition for heat-dissipation members, heat-dissipation member, electronic device, and heat-dissipation-member production method
US9293390B2 (en) 2013-01-11 2016-03-22 Mitsubishi Electric Corporation Heat radiation structure for semiconductor device
CN105659711A (en) * 2013-10-17 2016-06-08 住友电木株式会社 Epoxy-resin composition, carrier material with resin layer, metal-based circuit board, and electronic device
WO2017034003A1 (en) * 2015-08-26 2017-03-02 デンカ株式会社 Thermally conductive resin composition
JPWO2017150587A1 (en) * 2016-03-02 2018-12-27 Jnc株式会社 Composition for low thermal expansion member, low thermal expansion member, electronic device, and method for producing low thermal expansion member
JP2020122037A (en) * 2019-01-29 2020-08-13 東洋インキScホールディングス株式会社 Pigment dispersion and inkjet ink
US10968111B2 (en) 2016-05-16 2021-04-06 Martinswerk Gmbh Alumina products and uses thereof in polymer compositions with high thermal conductivity
JPWO2022102697A1 (en) * 2020-11-16 2022-05-19
CN115838583A (en) * 2022-12-26 2023-03-24 广州市白云化工实业有限公司 Anti-settling high-fluidity flame-retardant double-component organic silicon pouring sealant and preparation method thereof

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005325231A (en) * 2004-05-14 2005-11-24 Sumitomo Chemical Co Ltd High heat conductivity resin composition
JP4501526B2 (en) * 2004-05-14 2010-07-14 住友化学株式会社 High thermal conductive resin composition
CN1923944B (en) * 2005-08-18 2012-06-06 信越化学工业株式会社 Heat conductive silicone grease composition and cured product thereof
EP1754772A1 (en) * 2005-08-18 2007-02-21 Shin-Etsu Chemical Co., Ltd. Heat conductive silicone grease composition and cured product thereof
JP2008239355A (en) * 2007-03-24 2008-10-09 Mitsubishi Materials Corp Manufacturing method of admixture for cement-concrete and admixture for cement-concrete
JP2009235402A (en) * 2008-03-05 2009-10-15 Hitachi Chem Co Ltd Adhesive film
KR20120055569A (en) * 2009-07-30 2012-05-31 스미또모 가가꾸 가부시키가이샤 Liquid crystalline polyester composition and electronic circuit board comprising same
WO2011013831A1 (en) * 2009-07-30 2011-02-03 住友化学株式会社 Liquid crystalline polyester composition and electronic circuit board comprising same
KR101652147B1 (en) 2009-07-30 2016-08-29 스미또모 가가꾸 가부시키가이샤 Liquid crystalline polyester composition and electronic circuit board comprising same
WO2012029538A1 (en) 2010-08-31 2012-03-08 東レ・ダウコーニング株式会社 Polysiloxane composition, and cured product thereof
US9328242B2 (en) 2010-08-31 2016-05-03 Dow Corning Toray Co., Ltd. Polysiloxane composition and cured product thereof
US9287201B2 (en) 2010-12-16 2016-03-15 Mitsubishi Electric Corporation Semiconductor device
CN103250243A (en) * 2010-12-16 2013-08-14 三菱电机株式会社 Semiconductor device
DE112011104406T5 (en) 2010-12-16 2013-09-19 Mitsubishi Electric Corporation Semiconductor device
JP2012250869A (en) * 2011-06-01 2012-12-20 Denki Kagaku Kogyo Kk Spherical alumina powder, manufacturing method therefor and composition using this powder
JP2013056996A (en) * 2011-09-08 2013-03-28 Denki Kagaku Kogyo Kk High-heat conductive resin composition
US9293390B2 (en) 2013-01-11 2016-03-22 Mitsubishi Electric Corporation Heat radiation structure for semiconductor device
DE112013006402B4 (en) 2013-01-11 2024-07-04 Mitsubishi Electric Corporation semiconductor device
CN105659711A (en) * 2013-10-17 2016-06-08 住友电木株式会社 Epoxy-resin composition, carrier material with resin layer, metal-based circuit board, and electronic device
JPWO2016031888A1 (en) * 2014-08-27 2017-08-17 Jnc株式会社 Composition for heat radiating member, heat radiating member, electronic device, method for producing heat radiating member
CN106661191A (en) * 2014-08-27 2017-05-10 捷恩智株式会社 Composition for heat-dissipation members, heat-dissipation member, electronic device, and heat-dissipation-member production method
US10202530B2 (en) 2014-08-27 2019-02-12 Jnc Corporation Composition for heat-dissipation members, heat-dissipation member, electronic device, and method of producing heat dissipating member
CN106661191B (en) * 2014-08-27 2019-06-18 捷恩智株式会社 The manufacturing method of heat release component composition, heat release component, electronic device, heat release component
WO2016031888A1 (en) * 2014-08-27 2016-03-03 Jnc株式会社 Composition for heat-dissipation members, heat-dissipation member, electronic device, and heat-dissipation-member production method
KR102560615B1 (en) 2015-08-26 2023-07-27 덴카 주식회사 Thermally conductive resin composition
CN107922743A (en) * 2015-08-26 2018-04-17 电化株式会社 Heat conductive resin composition
KR20180048612A (en) * 2015-08-26 2018-05-10 덴카 주식회사 Thermoconductive resin composition
JPWO2017034003A1 (en) * 2015-08-26 2018-06-14 デンカ株式会社 Thermally conductive resin composition
WO2017034003A1 (en) * 2015-08-26 2017-03-02 デンカ株式会社 Thermally conductive resin composition
CN107922743B (en) * 2015-08-26 2019-03-08 电化株式会社 Heat conductive resin composition
JPWO2017150587A1 (en) * 2016-03-02 2018-12-27 Jnc株式会社 Composition for low thermal expansion member, low thermal expansion member, electronic device, and method for producing low thermal expansion member
US10968111B2 (en) 2016-05-16 2021-04-06 Martinswerk Gmbh Alumina products and uses thereof in polymer compositions with high thermal conductivity
US11912584B2 (en) 2016-05-16 2024-02-27 Martinswerk Gmbh Alumina products and uses thereof in polymer compositions with high thermal conductivity
JP2020122037A (en) * 2019-01-29 2020-08-13 東洋インキScホールディングス株式会社 Pigment dispersion and inkjet ink
JPWO2022102697A1 (en) * 2020-11-16 2022-05-19
JP7355241B2 (en) 2020-11-16 2023-10-03 住友ベークライト株式会社 Resin composition for semiconductor encapsulation and semiconductor device
CN115838583A (en) * 2022-12-26 2023-03-24 广州市白云化工实业有限公司 Anti-settling high-fluidity flame-retardant double-component organic silicon pouring sealant and preparation method thereof

Also Published As

Publication number Publication date
JP4004270B2 (en) 2007-11-07

Similar Documents

Publication Publication Date Title
JP4306951B2 (en) Surface-treated fine spherical silica powder and resin composition
JP4004270B2 (en) High thermal conductive inorganic powder and resin composition
JP4112396B2 (en) Resin fillers and applications
JP4197141B2 (en) Spherical alumina powder and use thereof
JP5354724B2 (en) Ceramic powder and its use
JP4112540B2 (en) Manufacturing method of spherical inorganic hollow powder.
KR20100065271A (en) Silica powder, method for production of the same, and composition using the same
JP3060530B2 (en) Surface treatment method of inorganic particles and thermosetting resin composition
JP2002327044A (en) Method for producing epoxy resin composition for sealing semiconductor, epoxy resin composition for sealing semiconductor and semiconductor device
JP3483817B2 (en) Spherical inorganic powder and its use
TWI457282B (en) Amorphous siliceous powder, method for production thereof, resin composition, and semiconductor sealing material
JP4155719B2 (en) Spherical inorganic powder and its use
JP3694474B2 (en) Method for producing spherical silica powder
JP2006052279A (en) Carbon black colorant for semiconductor sealing material and method for producing the same
JP3865641B2 (en) Spherical inorganic powder and use thereof
JP2003137529A (en) Spherical inorganic powder and its application
JP4459845B2 (en) Silica slurry, production method and use thereof
JP3868272B2 (en) Spherical inorganic powder and resin composition filled therewith
JP3721285B2 (en) Spherical inorganic powder and its use
JP4131620B2 (en) Silica powder and its use
JP5345787B2 (en) Method for producing silica-alumina composite oxide ultrafine powder for semiconductor encapsulant
JP5526653B2 (en) Functional particles, fillers, resin compositions for electronic components, electronic components and semiconductor devices
JP3835953B2 (en) Siliceous powder and resin composition
JP3408585B2 (en) Spherical silica powder and epoxy resin composition
JP3833031B2 (en) Non-spherical fused siliceous powder and uses thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070821

R150 Certificate of patent or registration of utility model

Ref document number: 4004270

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees