JP2023150838A - Powder and method for producing the same, and method for producing resin composition - Google Patents

Powder and method for producing the same, and method for producing resin composition Download PDF

Info

Publication number
JP2023150838A
JP2023150838A JP2022060149A JP2022060149A JP2023150838A JP 2023150838 A JP2023150838 A JP 2023150838A JP 2022060149 A JP2022060149 A JP 2022060149A JP 2022060149 A JP2022060149 A JP 2022060149A JP 2023150838 A JP2023150838 A JP 2023150838A
Authority
JP
Japan
Prior art keywords
particles
powder
less
resin
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022060149A
Other languages
Japanese (ja)
Inventor
功樹 佐土原
Koki Sadowara
美紀 江上
Yoshinori Egami
宏忠 荒金
Hirotada Aragane
良 村口
Makoto Muraguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Catalysts and Chemicals Ltd filed Critical JGC Catalysts and Chemicals Ltd
Priority to JP2022060149A priority Critical patent/JP2023150838A/en
Publication of JP2023150838A publication Critical patent/JP2023150838A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

To provide powder containing hollow particles which enables reduction in both the dielectric constant and the dielectric loss tangent of an insulation material, and have strength durable for the manufacturing process.SOLUTION: There is provided powder containing hollow particles each having a cavity inside a nonporous outer shell. An average particle diameter (D50) of the powder is 10.0 μm or more and 20.0 μm or less, and 1.0 vol.% or less of coarse particles having a particle diameter larger than 45 μm are contained therein. When the powder is suspended in water, floating particles are 10.0-30.0 mass%, suspended particles are 0-4.0 mass%, and precipitated particles are 66.0-90.0 mass%.SELECTED DRAWING: None

Description

本発明は、半導体の絶縁材料のフィラーに好適な粉体に関する。特に、無孔質の外殻の内部に空洞を有する中空粒子を含む粉体に関する。 The present invention relates to a powder suitable as a filler for semiconductor insulating materials. In particular, the present invention relates to a powder containing hollow particles having a cavity inside a non-porous outer shell.

近年、情報通信において高速・大容量化が進んでいる。そのため、通信機器に使用される資材には、低い誘電率(低Dk)、及び低い誘電正接(低Df)が求められている。例えば、半導体素子が実装されるプリント配線板には、低い誘電率及び低い誘電正接を持つ絶縁材料が求められている。絶縁材料の誘電率が高いと誘電損失が生じ、また、絶縁材料の誘電正接が高いと、誘電損失だけでなく、発熱量が増大するおそれがある。 In recent years, information communication has become faster and larger in capacity. Therefore, materials used in communication equipment are required to have a low dielectric constant (low Dk) and a low dielectric loss tangent (low Df). For example, printed wiring boards on which semiconductor elements are mounted are required to have insulating materials with a low dielectric constant and a low dielectric loss tangent. If the dielectric constant of the insulating material is high, dielectric loss will occur, and if the dielectric loss tangent of the insulating material is high, not only the dielectric loss but also the amount of heat generated may increase.

絶縁材料の低誘電率化、及び低誘電正接化を実現するために、絶縁材料の主体である樹脂材料の開発が行われている。 In order to achieve lower permittivity and lower dielectric loss tangent of insulating materials, resin materials, which are the main insulating materials, are being developed.

このような樹脂材料には、耐久性(剛性)や耐熱性等を向上させるために、無機または有機質のフィラーが配合される。無機フィラーとして、シリカ、窒化ホウ素、アルミナ、チタニア等の金属酸化物を用いることが知られている。また、誘電率を低くするために、中空粒子またはシリカをフィラーとして配合することが知られている(例えば、特許文献1を参照)。 Inorganic or organic fillers are added to such resin materials in order to improve durability (rigidity), heat resistance, and the like. It is known to use metal oxides such as silica, boron nitride, alumina, and titania as inorganic fillers. Furthermore, in order to lower the dielectric constant, it is known to incorporate hollow particles or silica as a filler (see, for example, Patent Document 1).

また、誘電率及び誘電正接を低くするため、ケイ素、カルシウム、ナトリウムまたはカリウム、ホウ素、リン、亜鉛を含むガラスマイクロバブル粒子(中空粒子)をフィラーとして用いることが知られている(例えば、特許文献2を参照)。 Furthermore, in order to lower the dielectric constant and dielectric loss tangent, it is known to use glass microbubble particles (hollow particles) containing silicon, calcium, sodium or potassium, boron, phosphorus, and zinc as fillers (for example, Patent Document 2).

また、平均中空率70体積%以上、平均粒子径3~20μmの中空粒子が知られている(例えば、特許文献3を参照)。 Further, hollow particles with an average hollowness ratio of 70% by volume or more and an average particle diameter of 3 to 20 μm are known (see, for example, Patent Document 3).

特開2017-057352号公報Japanese Patent Application Publication No. 2017-057352 WO2015/009461号WO2015/009461 WO2007/125891号WO2007/125891

フィラーとして用いられる材料のうち、シリカは、低誘電率及び低誘電正接の点で優れている。しかしながら、データ通信の大容量化及び高速処理化が急速に進んでいるため、さらなる低誘電率化、及び低誘電正接化が求められている。しかしながら、特許文献1に記載のフィラーでは、粒子径が小さいため誘電率をこれ以上低くすることが困難である。仮に、大きい粒子径が実現できたとしても粒子強度が低くなってしまう。 Among materials used as fillers, silica is superior in terms of low dielectric constant and low dielectric loss tangent. However, as data communications are rapidly increasing in capacity and processing speed, there is a need for lower dielectric constants and lower dielectric loss tangents. However, since the filler described in Patent Document 1 has a small particle size, it is difficult to lower the dielectric constant any further. Even if a large particle size could be achieved, the particle strength would be low.

また、特許文献2に記載のガラスマイクロバブル粒子は多元素から成り、不純分(特にNa)を多く含むため、誘電正接を低くすることが困難であった。 Further, the glass microbubble particles described in Patent Document 2 are made of multiple elements and contain many impurities (particularly Na), so it has been difficult to lower the dielectric loss tangent.

また、特許文献3に開示された中空粒子は、外殻が薄く、空隙率が高いため、粒子強度が十分ではない。そのため、樹脂と混練する際に割れが発生しやすく、誘電率を低くすることが困難であった。 Further, the hollow particles disclosed in Patent Document 3 have a thin outer shell and a high porosity, and therefore do not have sufficient particle strength. Therefore, cracks tend to occur when kneading with resin, making it difficult to lower the dielectric constant.

このように、従来の技術では、誘電率及び誘電正接の低下と、粒子強度を高いレベルで両立することができなかった。 As described above, with the conventional techniques, it has not been possible to achieve both a reduction in dielectric constant and dielectric loss tangent and a high level of particle strength.

本発明者らは、粗大粒子を含まない所定条件を満たす中空粒子を含む粉体が、絶縁材料の低誘電率化及び低誘電正接化を実現するとともに、絶縁材料の製造プロセスに耐え得る強度を持つことを見いだした。 The present inventors have discovered that a powder containing hollow particles that does not contain coarse particles and satisfies a predetermined condition can achieve a low dielectric constant and a low dielectric loss tangent of an insulating material, as well as have strength that can withstand the manufacturing process of the insulating material. I found that I have it.

すなわち、本発明による粉体は、無孔質の外殻の内部に空洞を有する中空粒子を含んでおり、平均粒子径(D50)が10.0μm以上20.0μm以下であり、粒子径45μmより大きい径の粒子を1.0体積%以下含んでいる。この粉体を水に懸濁した際、浮遊粒子が10.0~30.0質量%、懸濁粒子が0~4.0質量%、沈降粒子が66.0~90.0質量%である。 That is, the powder according to the present invention contains hollow particles having a cavity inside a non-porous outer shell, and has an average particle diameter (D50) of 10.0 μm or more and 20.0 μm or less, and a particle diameter of 45 μm or less. Contains 1.0% by volume or less of large diameter particles. When this powder is suspended in water, suspended particles account for 10.0 to 30.0 mass%, suspended particles account for 0 to 4.0 mass%, and settled particles account for 66.0 to 90.0 mass%. .

また、本発明による粉体の製造方法は、珪酸アルカリ水溶液を熱風気流中で噴霧乾燥して粒子を調製する第一工程と、粒子に含まれるアルカリを酸で中和して除去する第二工程と、粒子を乾燥する第三工程と、粒子を焼成する第四工程と、を順に備え、第二工程と第三工程の間に、粒子径45μm以上の粗大粒子の存在が1.0体積%以下になるように湿式分級する分級工程が設けられている。 In addition, the method for producing powder according to the present invention includes a first step of preparing particles by spray-drying an aqueous alkali silicate solution in a hot air stream, and a second step of neutralizing and removing alkali contained in the particles with an acid. , a third step of drying the particles, and a fourth step of firing the particles, and between the second step and the third step, the presence of coarse particles with a particle size of 45 μm or more is 1.0% by volume. A classification step is provided in which wet classification is performed as follows.

本発明の粉体は、絶縁材料の低誘電率化及び低誘電正接化を実現するとともに、絶縁材料の製造プロセスに耐え得る強度を持つ。そのため、優れた絶縁材料を安定して製造することができる。 The powder of the present invention realizes a low dielectric constant and a low dielectric loss tangent of an insulating material, and has strength enough to withstand the manufacturing process of the insulating material. Therefore, excellent insulating materials can be stably manufactured.

本発明の粉体は、無孔質の外殻の内部に空洞を有する中空粒子を含んでおり、平均粒子径(D50)が10.0μm以上20.0μm以下、45μmより大きい径の粒子(以下、粗大粒子と称す)の含有量が1.0体積%以下である。この粉体を水に懸濁した際、浮遊粒子が10.0~30.0質量%、懸濁粒子が0~4.0質量%、沈降粒子が66.0~90.0質量%である。本発明の粉体には、中空粒子の他に少量の中実粒子も含まれている可能性がある。中空粒子の調製時に、期せずして中実粒子も作製される可能性があるためである。内部に空洞のない中実粒子は、比重が大きいので、基本的に沈降粒子の中に潜在していると考えられる。粉体に含まれる粒子の90質量%以上が中空粒子であることが好ましい。 The powder of the present invention contains hollow particles having a cavity inside a non-porous outer shell, and has an average particle diameter (D50) of 10.0 μm or more and 20.0 μm or less and larger than 45 μm (hereinafter referred to as , coarse particles) is 1.0% by volume or less. When this powder is suspended in water, suspended particles account for 10.0 to 30.0 mass%, suspended particles account for 0 to 4.0 mass%, and settled particles account for 66.0 to 90.0 mass%. . In addition to hollow particles, the powder of the present invention may also contain a small amount of solid particles. This is because solid particles may also be unexpectedly produced during the preparation of hollow particles. Since solid particles without internal cavities have a high specific gravity, they are basically considered to be latent within the sedimented particles. It is preferable that 90% by mass or more of the particles contained in the powder are hollow particles.

ここで、水に懸濁した際に水中に分散する粒子を懸濁粒子とし、上層(水面付近)に浮遊して存在する比重の軽い粒子を浮遊粒子とした。このような浮遊粒子は通常は空隙率が高い。そのため、樹脂材料に配合される浮遊粒子が増えるほど、樹脂製品(成型物)の誘電率及び誘電正接が低下する。また、一般的に、空隙率が高い粒子ほど粒子径が大きい(粒子径が小さいほど空隙率が低い)。浮遊粒子は、粒子径(d)と外殻の厚さ(t)の比(t/d)が小さいため、粒子強度が低い傾向にある。そのため、樹脂材料と粒子を混ぜる工程から樹脂製品を成型するまでの間(すなわち、製造プロセス中)に、粒子が割れるおそれがある。割れた粒子は、低誘電率化及び低誘電正接化の妨げとなると共に、樹脂組成物の流動性を悪化させて、樹脂製品の均一性を低下させたり、樹脂製品の内部にボイドを生じさせたりする要因となる。しかしながら、浮遊粒子の量を粒子全体の10.0~30.0質量%に制御することにより、粒子割れの抑制と、誘電率及び誘電正接の低下を両立することができる。 Here, particles that are dispersed in water when suspended in water are defined as suspended particles, and particles with a light specific gravity that float in the upper layer (near the water surface) are defined as suspended particles. Such suspended particles usually have high porosity. Therefore, as the number of floating particles added to the resin material increases, the dielectric constant and dielectric loss tangent of the resin product (molded product) decrease. In addition, generally, the higher the porosity of the particles, the larger the particle diameter (the smaller the particle diameter, the lower the porosity). Floating particles tend to have low particle strength because the ratio (t/d) of particle diameter (d) to outer shell thickness (t) is small. Therefore, there is a risk that the particles may break during the process of mixing the resin material and the particles until the resin product is molded (ie, during the manufacturing process). The cracked particles not only impede lower dielectric constant and lower dielectric loss tangent, but also deteriorate the fluidity of the resin composition, reduce the uniformity of the resin product, and create voids inside the resin product. This is a factor that causes However, by controlling the amount of suspended particles to 10.0 to 30.0% by mass of the entire particles, it is possible to suppress particle cracking and lower the dielectric constant and dielectric loss tangent.

すなわち、浮遊粒子の量を制御することにより、空隙率が高い粒子の持つ好ましい特性(例えば低誘電率化及び低誘電正接化)を確保しつつ、空隙率の高い粒子の持つ好ましくない特性(例えば割れの発生)が問題のない程度に抑制することができる。浮遊粒子には、小径でも空隙率の高い粒子が存在しており、このような粒子は、製造プロセスにおいて、大径粒子に比べて割れが生じにくく、全体として、粒子強度を向上させている。浮遊粒子の含有量は、12.5質量~25.0質量%が好ましく、15.0~20.0質量%がさらに好ましい。また、沈降粒子の含有量は、70.0~88.0質量%が好ましく、75.0~85.0質量%がさらに好ましい。 In other words, by controlling the amount of suspended particles, the desirable properties of particles with high porosity (e.g., low dielectric constant and low dielectric loss tangent) can be ensured, while the unfavorable properties of particles with high porosity (e.g., low dielectric loss tangent) can be ensured. (occurrence of cracks) can be suppressed to a non-problematic level. Among the suspended particles, there are particles with a high porosity even if they are small in diameter, and such particles are less likely to crack during the manufacturing process than large-diameter particles, improving the particle strength as a whole. The content of suspended particles is preferably 12.5 to 25.0% by mass, more preferably 15.0 to 20.0% by mass. Further, the content of the precipitated particles is preferably 70.0 to 88.0% by mass, more preferably 75.0 to 85.0% by mass.

また、粉体の平均粒子径(D50)は、10.0μm以上20.0μm以下である。これにより、誘電率の低減と粒子強度の向上が両立する。噴霧乾燥法により造粒した場合、一般的に、粒子径が小さいほど空隙率が低くなる傾向がある。したがって、平均粒子径10.0μm未満の粉体は、誘電率低減効果が低い。10.0μm未満の粉体で空隙率を高くする方法もあるが、粒子径が小さくなるほど、外殻が薄くなるため、粒子調製時に割れる粒子が多くなる。割れた粒子を除くことは難しく、割れた粒子を含む粉体を樹脂材料に配合すると、樹脂組成物の流動性を悪化させて、樹脂成型物の均一性を低下させたり、樹脂成型物の内部にボイドを生じさせたりする要因となる。一方、平均粒子径が20.0μmを超える場合、粉体には、大きい中空粒子が多く含まれている。通常、中空粒子は、大きいほど空隙率が高いため、粒子強度が低い。そのため、平均粒子径は、15.0μm以下が好ましい。 Moreover, the average particle diameter (D50) of the powder is 10.0 μm or more and 20.0 μm or less. This achieves both reduction in dielectric constant and improvement in particle strength. When granulated by a spray drying method, the smaller the particle size, the lower the porosity tends to be. Therefore, powder with an average particle diameter of less than 10.0 μm has a low dielectric constant reduction effect. Although there is a method of increasing the porosity by using powder with a particle size of less than 10.0 μm, the smaller the particle size, the thinner the outer shell becomes, and thus the number of particles that break during particle preparation increases. It is difficult to remove cracked particles, and if powder containing cracked particles is blended into a resin material, the fluidity of the resin composition may deteriorate, resulting in a decrease in the uniformity of the resin molded product, or the inside of the resin molded product. This can cause voids to occur. On the other hand, when the average particle diameter exceeds 20.0 μm, the powder contains many large hollow particles. Generally, the larger the hollow particle is, the higher the porosity and therefore the lower the particle strength. Therefore, the average particle diameter is preferably 15.0 μm or less.

また、粉体に含まれる粗大粒子(粒子径45μm超)は、1.0体積%以下である。粗大粒子を湿式篩分けにより1.0体積%以下にすることで、粒子割れの抑制と、低誘電率化及び低誘電正接化を両立することができる。一般的に噴霧乾燥法を用いて造粒された粒子(粉体)は広い粒度分布となることが知られている。当然、粉体には大きい粒子が相当量含まれることになる。このような粉体が樹脂材料に配合された場合、空隙率が高く強度の低い粗大粒子が多くの体積を占めるため、製造プロセス中に、混練による力を受け、割れ粒子の発生頻度が高くなる。そのため、結果的に所望の誘電特性が得られない。そのため、前述の通り、粗大粒子を湿式篩分けにより1.0体積%以下にする必要がある。粗大粒子は、0.5体積%以下が好ましく、0.3体積%以下がさらに好ましく、0体積%が特に好ましい。 Further, the amount of coarse particles (particle diameter of more than 45 μm) contained in the powder is 1.0% by volume or less. By reducing the coarse particles to 1.0% by volume or less by wet sieving, it is possible to suppress particle cracking and achieve both a low dielectric constant and a low dielectric loss tangent. It is generally known that particles (powder) granulated using a spray drying method have a wide particle size distribution. Naturally, the powder will contain a considerable amount of large particles. When such powders are mixed into resin materials, coarse particles with high porosity and low strength occupy a large volume, which increases the frequency of cracking particles due to the force of kneading during the manufacturing process. . As a result, desired dielectric properties cannot be obtained. Therefore, as described above, it is necessary to reduce the coarse particles to 1.0% by volume or less by wet sieving. The content of coarse particles is preferably 0.5% by volume or less, more preferably 0.3% by volume or less, and particularly preferably 0% by volume.

このような粉体は、平均粒子径が10.0μm以上という比較的大きな粒子を含んでいるにかかわらず、変形係数を高くすることができる。ここで、変形係数は、荷重を加えた時に粉体に生じる変位から求められる。粒子強度の大きい粒子が多く含まれる粉体ほど変形係数は大きくなる。割れが生じやすい粗大粒子を取り除きながら、浮遊粒子の量も制御することにより、変形係数を大きくすることができる。粉体の変形係数は3000kgf/mmより大きいことが好ましい。変形係数が3000kgf/mm以下の場合、製造プロセスでの混練に耐えられず、粒子割れが発生し、所望の誘電特性が得られない。 Such powder can have a high deformation coefficient even though it contains relatively large particles with an average particle diameter of 10.0 μm or more. Here, the deformation coefficient is determined from the displacement that occurs in the powder when a load is applied. The powder that contains more particles with higher particle strength has a larger deformation coefficient. The deformation coefficient can be increased by controlling the amount of suspended particles while removing coarse particles that tend to cause cracks. The deformation coefficient of the powder is preferably greater than 3000 kgf/mm. If the deformation coefficient is less than 3000 kgf/mm, it cannot withstand kneading in the manufacturing process, grain cracking occurs, and desired dielectric properties cannot be obtained.

粉体の空隙率は、30.0体積%以上70.0体積%未満が好ましい。このような空隙率により、低誘電率化及び低誘電正接化を図ることができると共に、粒子強度を所定以上に保持して粒子の割れを効果的に抑制することができる。空隙率は、40.0体積%以上がより好ましく、50.0体積%以上がさらに好ましい。一方、65.0体積%以下がより好ましく、55.0体積%以下がさらに好ましい。 The porosity of the powder is preferably 30.0% by volume or more and less than 70.0% by volume. With such a porosity, it is possible to achieve a low dielectric constant and a low dielectric loss tangent, and it is also possible to maintain particle strength above a predetermined level and effectively suppress particle cracking. The porosity is more preferably 40.0 volume % or more, and even more preferably 50.0 volume % or more. On the other hand, the content is more preferably 65.0% by volume or less, and even more preferably 55.0% by volume or less.

また、粉体の比表面積は3.0m/g以下が好ましい。比表面積が大きいほど樹脂組成物中で粒子同士が凝集しやすい。そのため、流動性が低下し、成形性に影響を与える。 Further, the specific surface area of the powder is preferably 3.0 m 2 /g or less. The larger the specific surface area, the more likely the particles will aggregate in the resin composition. Therefore, fluidity decreases and moldability is affected.

ここで、粉体を構成する粒子は、シリカを主成分とするシリカ系粒子が適している。したがって、粉体に含まれる中空粒子(外殻)は、シリカの他、アルミナ、ジルコニア、チタニア等の無機酸化物を含んでいてもよい。粒子中のシリカの含有量は、70質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上がさらに好ましく、実質的にシリカのみからなることが特に好ましい。 Here, as the particles constituting the powder, silica-based particles containing silica as a main component are suitable. Therefore, the hollow particles (shell) contained in the powder may contain inorganic oxides such as alumina, zirconia, titania, etc. in addition to silica. The content of silica in the particles is preferably 70% by mass or more, more preferably 90% by mass or more, even more preferably 95% by mass or more, and particularly preferably consists essentially of silica.

[樹脂組成物]
上述した粉体と樹脂材料を配合することにより、樹脂組成物が調製される。このような樹脂組成物は、半導体等の電子材料の絶縁材料、具体的には、プリント配線板(リジッド基板及びフレキシブル基板を含む)を形成するための銅張積層板、プリプレグ、ビルドアップフィルム等に用いることができる。また、モールド樹脂、モールドアンダーフィル、アンダーフィル等の半導体パッケージ関連材料や、フレキシブル基板用接着剤等に用いることができる。
[Resin composition]
A resin composition is prepared by blending the powder and resin material described above. Such resin compositions are used as insulating materials for electronic materials such as semiconductors, specifically copper-clad laminates, prepregs, build-up films, etc. for forming printed wiring boards (including rigid boards and flexible boards). It can be used for. Further, it can be used in semiconductor package related materials such as mold resin, mold underfill, and underfill, adhesives for flexible substrates, and the like.

樹脂として、一般に半導体等の電子材料に使用されている硬化性樹脂を使用することができる。光硬化樹脂でもよいが、熱硬化樹脂が好ましい。硬化性樹脂として、エポキシ系樹脂、ポリフェニレンエーテル系樹脂、フッ素系樹脂、ポリイミド系樹脂、ビスマレイミド系樹脂、アクリル系樹脂、メタクリル系樹脂、シリコーン系樹脂、BTレジン、シアネート系樹脂等を挙げることができる。エポキシ系樹脂として、ビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂、トリフェノールアルカン型エポキシ樹脂、ビフェニル骨格を有するエポキシ樹脂、ナフタレン骨格を有するエポキシ樹脂、ジシクロペンタジエンフェノールノボラック樹脂、フェノールアラルキル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、脂環式エポキシ樹脂、複素環型エポキシ樹脂、ハロゲン化エポキシ樹脂等を例示することができる。これらの樹脂は、単独で使用されても、2種以上混合して使用されてもよい。 As the resin, a curable resin generally used for electronic materials such as semiconductors can be used. A photocurable resin may be used, but a thermosetting resin is preferable. Examples of the curable resin include epoxy resin, polyphenylene ether resin, fluorine resin, polyimide resin, bismaleimide resin, acrylic resin, methacrylic resin, silicone resin, BT resin, cyanate resin, etc. can. Epoxy resins include bisphenol type epoxy resin, novolak type epoxy resin, triphenolalkane type epoxy resin, epoxy resin with biphenyl skeleton, epoxy resin with naphthalene skeleton, dicyclopentadienephenol novolac resin, phenol aralkyl type epoxy resin, glycidyl Examples include ester type epoxy resins, alicyclic epoxy resins, heterocyclic epoxy resins, and halogenated epoxy resins. These resins may be used alone or in combination of two or more.

樹脂組成物には、粉体Aと硬化性樹脂Bが、10/100~95/100の質量比(A/B)で含まれることが好ましい。これにより、流動性等の樹脂組成物の特性を維持しつつ、フィラーとしての機能を十分に発揮することができる。質量比(A/B)は、30/100~80/100がより好ましい。 The resin composition preferably contains powder A and curable resin B in a mass ratio (A/B) of 10/100 to 95/100. Thereby, it is possible to fully exhibit its function as a filler while maintaining the properties of the resin composition such as fluidity. The mass ratio (A/B) is more preferably 30/100 to 80/100.

さらに、樹脂組成物は、フェノール化合物、アミン化合物、酸無水物等の硬化剤を含むことが好ましい。硬化性樹脂にエポキシ樹脂を用いる場合、硬化剤として、1分子中にフェノール性水酸基を2個以上有するフェノール樹脂(ビスフェノール型樹脂、ノボラック樹脂、トリフェノールアルカン型樹脂、レゾール型フェノール樹脂、フェノールアラルキル樹脂、ビフェニル型フェノール樹脂、ナフタレン型フェノール樹脂、シクロペンタジエン型フェノール樹脂等)や、メチルヘキサヒドロフタル酸、メチルテトラヒドロフタル酸、無水メチルナジック酸等の酸無水物を挙げることができる。樹脂組成物には、必要に応じて、着色剤、応力緩和剤、消泡剤、レベリング剤、カップリング剤、難燃剤、硬化促進剤等の各種添加剤を添加してもよい。 Further, the resin composition preferably contains a curing agent such as a phenol compound, an amine compound, or an acid anhydride. When using an epoxy resin as a curable resin, use a phenol resin having two or more phenolic hydroxyl groups in one molecule (bisphenol type resin, novolac resin, triphenol alkane type resin, resol type phenol resin, phenol aralkyl resin) as a curing agent. , biphenyl type phenol resin, naphthalene type phenol resin, cyclopentadiene type phenol resin, etc.) and acid anhydrides such as methylhexahydrophthalic acid, methyltetrahydrophthalic acid, and methylnadic anhydride. Various additives such as colorants, stress relievers, antifoaming agents, leveling agents, coupling agents, flame retardants, and curing accelerators may be added to the resin composition as necessary.

樹脂組成物の製造方法は、従来公知の方法を適用できる。例えば、熱硬化性樹脂、粉体、硬化剤、添加剤等を混合し、ロールミルなどで混練する。得られた樹脂組成物を基体に塗布し、熱、紫外線等により硬化させる。 Conventionally known methods can be applied to the method of manufacturing the resin composition. For example, a thermosetting resin, powder, curing agent, additives, etc. are mixed and kneaded using a roll mill or the like. The obtained resin composition is applied to a substrate and cured by heat, ultraviolet rays, etc.

[粉体の製造方法]
本発明の粉体の製造方法は、珪酸アルカリ水溶液を熱風気流中で噴霧乾燥して粒子を調製する粒子調製工程と、調製された粒子に含まれるアルカリを酸で中和して除去するアルカリ除去工程と、アルカリ除去された粒子を乾燥する乾燥工程と、前記粒子を焼成する焼成工程とを有し、アルカリ除去工程と乾燥工程の間に、粒子径45μm以上の粗大粒子の存在が1.0体積%以下になるように湿式分級する分級工程が設けられている。
[Method for producing powder]
The method for producing powder of the present invention includes a particle preparation step in which particles are prepared by spray-drying an aqueous alkali silicate solution in a hot air stream, and an alkali removal step in which the alkali contained in the prepared particles is neutralized and removed with an acid. step, a drying step of drying the particles from which the alkali has been removed, and a firing step of baking the particles, and between the alkali removal step and the drying step, the presence of coarse particles with a particle size of 45 μm or more is 1.0 μm. A classification step is provided in which wet classification is carried out so that the concentration is less than or equal to % by volume.

このような工程により、上述の粉体を得ることができる。 Through such a process, the above-mentioned powder can be obtained.

一般的に、焼成により粒子を製造する場合には、粒子径を整えるために、焼成後の最終段階で行うことが好ましいと考えられる。しかし、ここでは、あえて焼成前に行う。分級処理を行わずに焼成工程を行う場合、取り除かれるべき粗大粒子が存在したまま焼成されてしまう。粗大粒子は空隙率が高く、割れやすい傾向がある。そのため、加熱による収縮のストレスで割れるおそれがある。割れにより生じた破片は、空隙のない緻密なシリカであるため、低誘電率化・低誘電正接化の妨げとなる。分級処理を焼成前に行うことにより、このような不都合を避けることができる。そのため、粒子の低誘電率化・低誘電正接化がより確実に実現され、データ通信の高速化に対応した粒子が得られる。以下、各工程を詳細に説明する。 Generally, when producing particles by calcination, it is considered preferable to carry out the process at the final stage after calcination in order to adjust the particle size. However, in this case, it is done before firing. If the firing process is performed without performing the classification process, the coarse particles that should be removed will remain in the firing process. Coarse particles have high porosity and tend to crack easily. Therefore, there is a risk of cracking due to the stress of shrinkage caused by heating. Since the fragments generated by the cracks are dense silica without voids, they become an obstacle to lowering the dielectric constant and lowering the dielectric loss tangent. Such inconveniences can be avoided by performing the classification process before firing. Therefore, a reduction in the dielectric constant and a reduction in the dielectric loss tangent of the particles can be more reliably achieved, and particles compatible with high-speed data communication can be obtained. Each step will be explained in detail below.

(粒子調製工程)
本工程では、珪酸アルカリ水溶液を熱風気流中で噴霧乾燥して粒子を造粒する。なお、本工程は、中空粒子を得るために行われるが、全ての粒子を中空粒子にすることは困難であり、造粒された粒子には、結果的に中実粒子も含まれている可能性がある。この場合、後述の工程を経て得られる粉体に中実粒子も含まれている。しかし、粉体が上述の特性を備えていれば、中実粒子が含まれていても、期待する効果が得られる。
(Particle preparation process)
In this step, particles are granulated by spray drying an aqueous alkali silicate solution in a hot air stream. Although this step is performed to obtain hollow particles, it is difficult to make all particles hollow, and the granulated particles may eventually include solid particles. There is sex. In this case, solid particles are also included in the powder obtained through the steps described below. However, as long as the powder has the above-mentioned characteristics, the expected effect can be obtained even if it contains solid particles.

珪酸アルカリのSiOとMO(Mはアルカリ金属)のモル比(SiO/MO)は、1~5が好ましく、2~4がより好ましい。このモル比が1未満の場合は、アルカリ量が多すぎるので、後述のアルカリ除去工程で酸洗浄を行っても十分に除去することが困難である。さらに、噴霧乾燥品の潮解性が大きくなるため、所望の中空粒子が得られ難い。このモル比が5を超えると、珪酸アルカリの可溶性が低下し、水溶液の調製が困難である。水溶液を調製できたとしても、噴霧乾燥により中空粒子を造粒することができない場合がある。 The molar ratio (SiO 2 /M 2 O) of SiO 2 and M 2 O (M is an alkali metal) of the alkali silicate is preferably 1 to 5, more preferably 2 to 4. When this molar ratio is less than 1, the amount of alkali is too large and it is difficult to sufficiently remove it even if acid washing is performed in the alkali removal step described below. Furthermore, since the spray-dried product becomes highly deliquescent, it is difficult to obtain desired hollow particles. When this molar ratio exceeds 5, the solubility of the alkali silicate decreases, making it difficult to prepare an aqueous solution. Even if an aqueous solution can be prepared, hollow particles may not be granulated by spray drying.

珪酸アルカリ水溶液のSiOとしての濃度は、1~30質量%が好ましく、5~28質量%が好ましい。1質量%未満でも製造は可能であるが、生産性が著しく低下する。30質量%を超えると、珪酸アルカリ水溶液としての安定性が著しく低下して高粘性になり、噴霧乾燥できない場合がある。噴霧乾燥できたとしても、粒子径分布、外殻の厚さ等が極めて不均一になり、得られた粒子の用途が制限されることがある。珪酸アルカリとして、水に可溶の珪酸ナトリウム、珪酸カリウムが例示できる。珪酸ナトリウムが好ましい。 The concentration of the alkali silicate aqueous solution as SiO 2 is preferably 1 to 30% by mass, and preferably 5 to 28% by mass. Although production is possible with less than 1% by mass, productivity is significantly reduced. If it exceeds 30% by mass, the stability as an aqueous alkali silicate solution decreases significantly and becomes highly viscous, making spray drying impossible in some cases. Even if spray drying is possible, the particle size distribution, shell thickness, etc. may become extremely non-uniform, which may limit the uses of the obtained particles. Examples of the alkali silicate include water-soluble sodium silicate and potassium silicate. Sodium silicate is preferred.

噴霧乾燥方法としては、例えば、回転ディスク法、加圧ノズル法、2流体ノズル法等の従来公知の方法を採用することができる。ここでは、2流体ノズル法が好適である。 As the spray drying method, conventionally known methods such as a rotating disk method, a pressurized nozzle method, a two-fluid nozzle method, etc. can be employed, for example. A two-fluid nozzle method is preferred here.

噴霧乾燥において、噴霧乾燥器における入口温度は、300~600℃が好ましく、350~550℃がより好ましい。また、出口温度は、120~300℃が好ましく、130~250℃がより好ましい。このような温度設定により、中空粒子を安定して得ることができる。 In spray drying, the inlet temperature in the spray dryer is preferably 300 to 600°C, more preferably 350 to 550°C. Further, the outlet temperature is preferably 120 to 300°C, more preferably 130 to 250°C. By setting the temperature in this manner, hollow particles can be stably obtained.

(アルカリ除去工程)
次に、粒子調製工程で造粒された粒子に含まれるアルカリを酸で中和して除去する。粒子を酸の溶液に浸漬する処理が好ましい。このとき、粒子中のMOモル数(Msp)と酸のモル数(Ma)とのモル比(Ma/Msp)は、0.6~4.7が好ましく、1~4.5が好ましい。このモル比が0.6未満の場合は、MOに対して酸の量が少なすぎる。そのため、アルカリの除去とともに起きると考えられるケイ酸のシリカ骨格化が進行せず、粒子が部分的に溶解したり、溶解した珪酸アルカリがゲル化する場合がある。モル比が4.7を超えてもさらにシリカ骨格化が進むことはなく、酸が過剰であり経済的でない。
(Alkali removal process)
Next, the alkali contained in the particles granulated in the particle preparation step is neutralized and removed with an acid. A treatment in which the particles are immersed in a solution of acid is preferred. At this time, the molar ratio (Ma/Msp) between the number of moles of M 2 O (Msp) and the number of moles of acid (Ma) in the particles is preferably 0.6 to 4.7, preferably 1 to 4.5. . If this molar ratio is less than 0.6, the amount of acid relative to M2O is too small. Therefore, the formation of a silica skeleton of silicic acid, which is thought to occur with the removal of alkali, does not proceed, and the particles may partially dissolve or the dissolved alkali silicate may gel. Even if the molar ratio exceeds 4.7, the formation of silica skeleton will not proceed further, and the acid will be in excess, which is not economical.

また、粒子の濃度が、SiOとして1~30質量%になるように酸水溶液に浸漬することが好ましい。1質量%未満の場合は、アルカリ除去や洗浄性に問題はないが、製造効率が低下する。30質量%を超えると、濃度が濃すぎてアルカリ除去、洗浄効率が低下する場合がある。5~25質量%がさらに好ましい。 Further, it is preferable to immerse the particles in an acid aqueous solution so that the concentration of the particles is 1 to 30% by mass as SiO 2 . If it is less than 1% by mass, there will be no problem with alkali removal or cleaning performance, but production efficiency will decrease. If it exceeds 30% by mass, the concentration may be too high and the alkali removal and cleaning efficiency may decrease. More preferably 5 to 25% by mass.

酸水溶液へ浸漬する条件は、アルカリを所望の量まで除去できれば特に制限はない。通常、処理温度は5~100℃であり、処理時間は0.5~24時間である。浸漬処理の後、従来公知の方法で洗浄することが好ましい。例えば、純水にて濾過洗浄する。なお、必要に応じて、上記酸処理及び洗浄を繰り返し行ってもよい。 The conditions for immersion in the acid aqueous solution are not particularly limited as long as the desired amount of alkali can be removed. Usually, the treatment temperature is 5 to 100°C and the treatment time is 0.5 to 24 hours. After the immersion treatment, it is preferable to wash by a conventionally known method. For example, it is filtered and washed with pure water. Note that the above acid treatment and washing may be repeated as necessary.

アルカリ除去後のアルカリ(M)の残存量(質量割合)は、200ppm以下が好ましく、100ppm以下がより好ましく、50ppm以下がさらに好ましい。本工程で十分にアルカリを除去することにより、後の工程で粒子が合着することが防止され、焼成工程で焼結粒子が発生することを防ぐことができる。また、アルカリの残存量(含有量)は、誘電特性に影響を及ぼすことが知られている。本工程において十分にアルカリを除去することにより、原料に珪酸アルカリ水溶液を用いた場合でも、低誘電率化及び低誘電正接化を可能とする粒子を得ることができる。 The residual amount (mass ratio) of alkali (M) after alkali removal is preferably 200 ppm or less, more preferably 100 ppm or less, and even more preferably 50 ppm or less. By sufficiently removing the alkali in this step, it is possible to prevent particles from coalescing in a later step, and to prevent the generation of sintered particles in the firing step. Furthermore, it is known that the residual amount (content) of alkali affects dielectric properties. By sufficiently removing the alkali in this step, it is possible to obtain particles with a low dielectric constant and a low dielectric loss tangent even when an aqueous alkali silicate solution is used as the raw material.

なお、最終製品(粉体を構成する粒子)のアルカリ量も上述の範囲が好ましく、通常、アルカリ除去工程後のアルカリ量と同等になる。 The amount of alkali in the final product (particles constituting the powder) is preferably within the above range, and is usually equivalent to the amount of alkali after the alkali removal step.

アルカリ残存量は、粉体を酸で溶解させたものを試料とし、原子吸光光度計を用いて測定できる。珪酸ナトリウムを用いた場合はNaを測定し、珪酸カリウムを用いた場合はKを測定する。具体的には、実施例で説明する。 The residual amount of alkali can be measured using an atomic absorption spectrophotometer using a sample obtained by dissolving powder with an acid. When sodium silicate is used, Na is measured, and when potassium silicate is used, K is measured. Specifically, this will be explained in Examples.

本工程で用いる酸として、鉱酸(塩酸、硝酸、硫酸等)、及び、有機酸(酢酸、酒石酸、リンゴ酸等)を例示できる。鉱酸が好適に用いられ、価数の大きい硫酸が特に好ましい。 Examples of acids used in this step include mineral acids (hydrochloric acid, nitric acid, sulfuric acid, etc.) and organic acids (acetic acid, tartaric acid, malic acid, etc.). Mineral acids are preferably used, with sulfuric acid having a high valence being particularly preferred.

(分級工程)
アルカリ除去工程と後述の乾燥工程の間で分級処理を行うことにより、粗大粒子を除去する。この分級工程では、粉体の粒度を揃えることを目的に、粒子径によって粉体を分ける粒度分級を行う。粒度分級の操作として、篩分けと流体分級に大別することができる。粒子の空隙率の影響を受けず、生産効率の高い篩分けを用いることが好ましい。篩分けでは、ふるい網の開口を利用して分級する。本発明では、粒子の分散性を高い状態で、粒子表面へのダメージを軽減するため、湿式篩分けを用いた。
(Classification process)
Coarse particles are removed by performing a classification process between the alkali removal process and the drying process described below. In this classification step, particle size classification is performed to divide the powder according to particle size in order to make the particle size of the powder uniform. Particle size classification operations can be broadly divided into sieving and fluid classification. It is preferable to use sieving, which is not affected by the porosity of particles and has high production efficiency. In sieving, the openings of the sieve screen are used to classify the material. In the present invention, wet sieving was used in order to maintain high particle dispersibility and reduce damage to particle surfaces.

この工程では、粒子径が大きく、製造プロセス中で割れやすい粒子を取り除けるような目開き(メッシュ数)の篩を適宜用いる。粉体に含まれる粗大粒子を1.0体積%以下にするためには、300メッシュ以上の篩を用いることが好ましい。 In this step, a sieve with a mesh size that is large enough to remove particles that are easy to break during the manufacturing process is used as appropriate. In order to reduce the coarse particles contained in the powder to 1.0% by volume or less, it is preferable to use a sieve of 300 mesh or more.

また、分級工程により、浮遊粒子の含有量を10.0~30.0質量%に、沈降粒子の含有量を66.0~90.0質量%に制御することができる。 Further, by the classification step, the content of suspended particles can be controlled to 10.0 to 30.0% by mass, and the content of settled particles can be controlled to 66.0 to 90.0% by mass.

(乾燥工程)
次に、分級された粒子に乾燥処理を行う。必要に応じて複数回行ってもよい。ただし、工程数が増加し、生産性が下がるため、製造プロセス中では1度の乾燥処理が好ましい。乾燥処理として、加熱乾燥が適している。乾燥温度は、50~400℃が好ましく、50~200℃がより好ましい。具体的には、50~200℃程度の低温で時間をかけて乾燥させる方法や、温度を徐々に上昇させて乾燥させる方法や、温度を何段階かに分けて変更して乾燥させる方法を挙げることができる。
(drying process)
Next, the classified particles are subjected to a drying process. This may be repeated multiple times if necessary. However, since the number of steps increases and productivity decreases, it is preferable to carry out the drying treatment once during the manufacturing process. Heat drying is suitable as a drying process. The drying temperature is preferably 50 to 400°C, more preferably 50 to 200°C. Specifically, there are methods of drying at a low temperature of about 50 to 200 degrees Celsius over a long period of time, methods of gradually increasing the temperature to dry, and methods of changing the temperature in several stages. be able to.

(焼成工程)
次に、乾燥処理後の粒子を焼成する。焼成温度は、600~1200℃が好ましく、900~1100℃がより好ましい。焼成温度が600℃未満の場合は、SiOH基の残存量が多く、粒子の誘電正接が高くなる。そのため、樹脂材料に配合しても、誘電正接低減効果が得られにくい。焼成温度が1200℃を超える場合は、粒子同士が焼結しやすいので、異形状の粒子や、粗大粒子が生成しやすい。
(Firing process)
Next, the particles after the drying treatment are fired. The firing temperature is preferably 600 to 1200°C, more preferably 900 to 1100°C. When the firing temperature is less than 600° C., the amount of SiOH groups remaining is large and the dielectric loss tangent of the particles becomes high. Therefore, even if it is blended into a resin material, it is difficult to obtain the effect of reducing the dielectric loss tangent. When the firing temperature exceeds 1200° C., particles tend to sinter together, so irregularly shaped particles and coarse particles are likely to be produced.

さらに、乾燥工程と焼成工程の間に解砕工程を設けることが好ましい。乾燥工程で粒子同士が凝集していても、単粒子に分離することができる。そのため、粒子同士の焼結が防止できる。 Furthermore, it is preferable to provide a crushing step between the drying step and the firing step. Even if the particles aggregate during the drying process, they can be separated into single particles. Therefore, sintering of particles can be prevented.

解砕装置として、公知のボールミル、ビーズミル、及びハンマーミル等を用いることができる。工程中で粉体に機械的な負荷によるクラックを生じさせないため、最小限の打撃力を用いて短時間で解砕可能な連続式のピンミルが適している。 As a crushing device, a known ball mill, bead mill, hammer mill, etc. can be used. In order to prevent the powder from cracking due to mechanical loads during the process, a continuous pin mill is suitable because it can crush the powder in a short time using minimal impact force.

さらに、焼成工程後に粒子塊を篩分けする工程を設けることが好ましい。なお、粒子塊とは、例えば、粒径が150μmを超えるような大きな粒子を示す。この工程では、粒子塊を取り除けるような目開き(メッシュ数)の篩を適宜用いる。例えば、目開き150μmの篩を用いる。 Furthermore, it is preferable to provide a step of sieving the particle agglomerates after the firing step. Note that the particle agglomerate refers to large particles with a particle size exceeding 150 μm, for example. In this step, a sieve with an opening (mesh number) that can remove particle agglomerates is used as appropriate. For example, a sieve with an opening of 150 μm is used.

以下、本発明の実施例を具体的に説明する。 Examples of the present invention will be specifically described below.

[実施例1]
水ガラス水溶液(SiO/NaOモル比3.2、SiO濃度24.0質量%)30000gを用い、2流体ノズルの一方に0.62kg/hrの流量で、他方のノズルに空気を15900L/hr(空/液体積比31800)の流量で、入口温度350℃の熱風に噴霧して中空粒子を造粒した。ここで、出口温度は130℃であった(粒子調製工程)。この時、少量の中実粒子も造粒される可能性があるが、中実粒子を除去して次工程に進む必要はない。
[Example 1]
Using 30,000 g of water glass aqueous solution (SiO 2 /Na 2 O molar ratio 3.2, SiO 2 concentration 24.0% by mass), air was supplied to one of the two-fluid nozzles at a flow rate of 0.62 kg/hr and to the other nozzle. Hollow particles were granulated by spraying into hot air with an inlet temperature of 350° C. at a flow rate of 15,900 L/hr (empty/liquid volume ratio: 31,800). Here, the outlet temperature was 130°C (particle preparation step). At this time, a small amount of solid particles may also be granulated, but it is not necessary to remove the solid particles and proceed to the next step.

ついで、この中空粒子(すなわち、第一工程で造粒された粒子)5000gを濃度10質量%の硫酸水溶液32000gに浸漬して、15時間撹拌した。この時、固形分(SiO)濃度は10.2質量%であり、酸のモル数(Ma)とアルカリ(NaO)のモル数(Msp)の比(Ma/Msp)は3.5となる。撹拌後の分散液の温度は35℃、pHは3.0であった。浸漬処理後、純水にて濾過洗浄を行い、ケーキ品を得た(アルカリ除去工程)。 Next, 5000 g of the hollow particles (that is, the particles granulated in the first step) were immersed in 32000 g of an aqueous sulfuric acid solution having a concentration of 10% by mass, and stirred for 15 hours. At this time, the solid content (SiO 2 ) concentration is 10.2% by mass, and the ratio of the number of moles of acid (Ma) to the number of moles of alkali (Na 2 O) (Msp) (Ma/Msp) is 3.5. becomes. The temperature of the dispersion after stirring was 35° C., and the pH was 3.0. After the immersion treatment, filtering and washing with pure water was performed to obtain a cake product (alkali removal step).

ついで、洗浄後のケーキ品の固形分量を測定し、その数値を基に、純水にて濃度10重量%になるように純水を加えて分散液とした。その後、粗大粒子を除去するために、この分散液を目開き45μmの振動篩にかけ、篩を通過した粒子を回収した(湿式分級工程)。 Next, the solid content of the cake product after washing was measured, and based on the measured value, pure water was added to the cake product so that the concentration was 10% by weight to prepare a dispersion liquid. Thereafter, in order to remove coarse particles, this dispersion was passed through a vibrating sieve with an opening of 45 μm, and the particles passing through the sieve were collected (wet classification step).

この粒子を1000℃で10時間加熱処理した(焼成工程)。これにより、中空粒子を含む粉体が得られた。 The particles were heat-treated at 1000° C. for 10 hours (calcination step). As a result, a powder containing hollow particles was obtained.

この粉体を、液状酸無水物「新日本理化社製リカシッドMH700」、イミダゾール系エポキシ樹脂硬化剤「四国化成社製2PHZ-PW」と共に、液状エポキシ樹脂「日鉄ケミカル&マテリアル社製ZX-1059」に配合した。ここで、「ZX-1059」が100質量部、「リカシッドMH700」が86質量部、「2PHZ-PW」が1質量部の割合とし、配合物(ペースト)中の粉体の割合が35体積%になるように配合した。この配合物を、遊星ミルで予備混錬後、三本ロールで混練し、ペースト(樹脂組成物)を得た。このペーストを170℃で2時間加熱して硬化させ、50mm×50mm×1mmの板状の樹脂成型物(樹脂製品)を得た。 This powder was mixed with a liquid acid anhydride "Rikacid MH700 manufactured by Shin Nippon Rika Co., Ltd." and an imidazole-based epoxy resin curing agent "2PHZ-PW manufactured by Shikoku Kasei Co., Ltd." and a liquid epoxy resin "ZX-1059 manufactured by Nippon Steel Chemical & Materials Co., Ltd." ” was added. Here, the ratio of "ZX-1059" is 100 parts by mass, "Rikacid MH700" is 86 parts by mass, and "2PHZ-PW" is 1 part by mass, and the ratio of powder in the compound (paste) is 35% by volume. It was blended so that This mixture was pre-kneaded using a planetary mill and then kneaded using three rolls to obtain a paste (resin composition). This paste was cured by heating at 170° C. for 2 hours to obtain a plate-shaped resin molding (resin product) measuring 50 mm x 50 mm x 1 mm.

上述のようにして得られた粉体及び樹脂成型物の物性を以下のように測定・評価した。その結果を調製条件とともに表1に示す。他の実施例や比較例でも同様に行った。 The physical properties of the powder and resin molded product obtained as described above were measured and evaluated as follows. The results are shown in Table 1 along with the preparation conditions. The same procedure was carried out in other Examples and Comparative Examples.

(1)平均粒子径(D50)、粗大粒子量
粉体を1.0cm程度サンプリングし、粒度分析計(セイシン企業社製レーザーマイクロンサイザーLMS-3000)を用いて、乾式で粉体の粒度分布を測定した。測定結果から、平均粒子径(D50)が得られた。さらに、この粒度分布を分析して、45μmより大きい粒子径を持つ粗大粒子の体積比率を算出し、粗大粒子量(体積%)とした。
(1) Average particle diameter (D50), amount of coarse particles Sample the powder to a size of about 1.0 cm, and use a particle size analyzer (Laser Micron Sizer LMS-3000 manufactured by Seishin Enterprise Co., Ltd.) to determine the particle size distribution of the powder using a dry method. was measured. The average particle diameter (D50) was obtained from the measurement results. Furthermore, this particle size distribution was analyzed to calculate the volume ratio of coarse particles having a particle diameter larger than 45 μm, which was defined as the amount of coarse particles (volume %).

(2)比表面積(SA)
粉体を300℃の環境下で1時間静置した後、全自動比表面積測定装置(マウンテック社製Macsorb)を用いて、BET法(1点法)により比表面積を測定した。ここでは、日本工業規格JIS Z8830に規定される測定方法に準じた。
(2) Specific surface area (SA)
After the powder was allowed to stand for 1 hour in an environment of 300° C., the specific surface area was measured by the BET method (one point method) using a fully automatic specific surface area measuring device (Macsorb manufactured by Mountec). Here, the measurement method specified in Japanese Industrial Standard JIS Z8830 was followed.

(3)Na残存量
粉体を硫酸・弗化水素酸で前処理した後、塩酸に溶解させ、原子吸光光度計(日立製Z-2310)を用いて原子吸光分析法によりNa量を測定した。
(3) Remaining amount of Na After the powder was pretreated with sulfuric acid/hydrofluoric acid, it was dissolved in hydrochloric acid, and the amount of Na was measured by atomic absorption spectrometry using an atomic absorption spectrophotometer (Hitachi Z-2310). .

(4)粒子密度、空隙率
20.0cm程度の粉体をランダムにサンプリングし、Quantachrome Instruments社製Ultrapyc5000を用いて、ガスピクノメーター法により、粉体に含まれる粒子の密度の平均(粒子密度)を測定した。ガスは窒素ガスを用いた。日本工業規格JIS Z8807に規定される測定方法により、粒子密度を測定した。
(4) Particle density, porosity: Randomly sample powders of about 20.0 cm 3 and measure the average density of particles contained in the powders (particle density ) was measured. Nitrogen gas was used as the gas. Particle density was measured by the measurement method specified in Japanese Industrial Standards JIS Z8807.

この粒子密度から、式「[2.2-(粒子密度)]/2.2×100」により空隙率(%)を算出した。粉体がシリカ粒子で構成されているものとして、この式では、シリカの密度2.2g/cmを用いた。 From this particle density, the porosity (%) was calculated using the formula “[2.2−(particle density)]/2.2×100”. Assuming that the powder is composed of silica particles, this formula uses a density of silica of 2.2 g/cm 3 .

(5)粉体の誘電率(Dk)及び誘電正接(Df)
ネットワークアナライザー(アンリツ社製、MS46122B)と空洞共振器(1GHz)を用いて、空洞共振器摂動法により誘電率(Dk)と誘電正接(Df)を測定した。ASTMD2520(JIS C2565)に準拠して測定した。
(5) Dielectric constant (Dk) and dielectric loss tangent (Df) of powder
The dielectric constant (Dk) and the dielectric loss tangent (Df) were measured by the cavity resonator perturbation method using a network analyzer (manufactured by Anritsu Corporation, MS46122B) and a cavity resonator (1 GHz). Measured in accordance with ASTM D2520 (JIS C2565).

(6)水に懸濁した際の浮遊粒子、懸濁粒子及び沈降粒子の割合
まず、5.0質量%となるように粉体と水を混合し、10分間の超音波処理を行った。得られた分散液を25℃にて24時間静置した後、浮遊粒子、懸濁粒子及び沈降粒子をそれぞれ回収した。回収した各粒子を105℃で24時間乾燥した後に計量し、その割合を算出した。
(6) Ratio of suspended particles, suspended particles, and settled particles when suspended in water First, powder and water were mixed to a concentration of 5.0% by mass, and subjected to ultrasonication for 10 minutes. After the resulting dispersion was allowed to stand at 25° C. for 24 hours, floating particles, suspended particles, and sedimented particles were collected. Each collected particle was dried at 105° C. for 24 hours, then weighed, and the proportion thereof was calculated.

(7)変形係数
粉体とグリセリンを重量比2:1で混合分散した。この混合品を規定の金型(径25mm、高さ64mm)に充填する。充填後、金型をプレス機(エヌピーエーシステム社製)に設置し、段階的に荷重をかける。その際の荷重(kgf)と垂直方向の変位(mm)をプロットした。荷重が大きくなるにつれて粉体に含まれる粒子が徐々に破砕されて体積が減少する。この時、荷重(縦軸)と変位(横軸)の関係は直線的に変化する。直線部分の変位と荷重の傾きを求め、変形係数(kgf/mm)とした。変形係数が高いほど、粉体強度が高いことを示す。特開平2-216028号公報に開示された、中空微小粒子の強度測定方法を参考にした。
(7) Deformation coefficient Powder and glycerin were mixed and dispersed at a weight ratio of 2:1. This mixture is filled into a specified mold (diameter 25 mm, height 64 mm). After filling, the mold is placed in a press machine (manufactured by NP Systems) and a load is applied in stages. The load (kgf) and vertical displacement (mm) at that time were plotted. As the load increases, the particles contained in the powder are gradually crushed and the volume decreases. At this time, the relationship between load (vertical axis) and displacement (horizontal axis) changes linearly. The displacement of the straight line portion and the slope of the load were determined and taken as the deformation coefficient (kgf/mm). The higher the deformation coefficient, the higher the powder strength. A method for measuring the strength of hollow microparticles disclosed in JP-A-2-216028 was used as reference.

(8)樹脂成型物の誘電率(Dk)及び誘電正接(Df)
50mm×50mm×1mmの板状の樹脂成型物の誘電率(Dk)及び誘電正接(Df)を、ネットワークアナライザー(アンリツ社製、MS46122B)と同軸共振器を用いて、9.4GHzで測定した。粉体(フィラー)を配合していない樹脂成型物と次式を用いて比較し、以下の基準で評価した。
(8) Dielectric constant (Dk) and dielectric loss tangent (Df) of resin molded product
The dielectric constant (Dk) and dielectric loss tangent (Df) of a 50 mm x 50 mm x 1 mm plate-shaped resin molded product were measured at 9.4 GHz using a network analyzer (manufactured by Anritsu Corporation, MS46122B) and a coaxial resonator. A comparison was made using the following formula with a resin molded product containing no powder (filler), and evaluation was made using the following criteria.

誘電率(Dk)の低減率(%)=(粉体配合なしの誘電率-粉体配合ありの誘電率)/粉体配合なしの誘電率×100 Reduction rate (%) of dielectric constant (Dk) = (permittivity without powder mixture - dielectric constant with powder mixture) / dielectric constant without powder mixture × 100

◎:低減率15%以上
〇:低減率10%以上15%未満
△:低減率0%以上10%未満
×:低減率0未満
◎: Reduction rate of 15% or more ○: Reduction rate of 10% or more and less than 15% △: Reduction rate of 0% or more and less than 10% ×: Reduction rate of less than 0

誘電正接(Df)の低減率(%)=(粉体配合なしの誘電正接-粉体配合ありの誘電正接)/粉体配合なしの誘電正接×100 Reduction rate (%) of dielectric loss tangent (Df) = (dielectric loss tangent without powder mixture - dielectric loss tangent with powder mixture) / dielectric loss tangent without powder mixture x 100

◎:低減率50%以上
〇:低減率30%以上50%未満
△:低減率20%以上30%未満
×:低減率20%未満
◎: Reduction rate of 50% or more ○: Reduction rate of 30% or more and less than 50% △: Reduction rate of 20% or more and less than 30% ×: Reduction rate of less than 20%

[実施例2]
粒子調製工程で、噴霧乾燥を入口温度400℃、出口温度150℃で行った以外は実施例1と同様にして、粉体及び樹脂成型物を得た。
[Example 2]
Powder and resin moldings were obtained in the same manner as in Example 1, except that in the particle preparation step, spray drying was performed at an inlet temperature of 400°C and an outlet temperature of 150°C.

[実施例3]
湿式分級工程で、目開きを32μmに変えたこと以外は実施例2と同様にして、粉体及び樹脂成型物を得た。
[Example 3]
Powder and resin molded products were obtained in the same manner as in Example 2 except that the opening was changed to 32 μm in the wet classification step.

[比較例1]
湿式分級工程で、目開きを32μmに変えたこと以外は実施例1と同様にして、粉体及び樹脂成型物を得た。空隙率の高い粒子を除去する量が実施例1に比べて増えるため、空隙率が低くなり、樹脂成型物では低誘電率効果が小さくなった。
[Comparative example 1]
Powder and resin moldings were obtained in the same manner as in Example 1 except that the opening was changed to 32 μm in the wet classification step. Since the amount of particles with high porosity removed was increased compared to Example 1, the porosity was lowered, and the low dielectric constant effect was reduced in the resin molded product.

[比較例2]
分級処理(湿式分級工程)を行わないこと以外は実施例2と同様にして、粉体及び樹脂成型物を得た。分級されていないため、得られた粉体は浮遊粒子が多く、外殻が薄く割れやすい粒子が多い。そのため、樹脂成型物の製造プロセスで粒子が割れ、樹脂成型物では低誘電率効果が得られなかった。また、割れによる比表面積の増加とともに表面シラノール基量が増加し、誘電正接が低下した。
[Comparative example 2]
Powder and resin moldings were obtained in the same manner as in Example 2 except that the classification treatment (wet classification step) was not performed. Since it is not classified, the resulting powder contains many suspended particles, and many of the particles have thin outer shells and are easily broken. Therefore, the particles were broken during the manufacturing process of the resin molded product, and the low dielectric constant effect could not be obtained in the resin molded product. Furthermore, as the specific surface area increased due to cracking, the amount of surface silanol groups increased, and the dielectric loss tangent decreased.

[比較例3]
分級処理(分級工程)を乾式分級に変えたこと以外は実施例2と同様にして、粉体及び樹脂成型物を得た。乾式分級では、粒子同士がぶつかり合い、静電気による擬似凝集が発生しやすい。そのため、篩効率が悪い。また、収率を確保するために、篩時間を長くすると、粒子の衝突回数(粒子同士及び装置内壁等との)が増えるため、粒子にクラックが生じ、割れやすい状態となる。樹脂成型物の製造プロセスで粒子が割れ、低誘電率効果が小さくなった。さらに、粒子表面のダメージにより、誘電正接が低下した。
[Comparative example 3]
Powder and resin molded products were obtained in the same manner as in Example 2, except that the classification treatment (classification step) was changed to dry classification. In dry classification, particles collide with each other, which tends to cause pseudo-agglomeration due to static electricity. Therefore, the sieving efficiency is poor. Furthermore, if the sieving time is increased in order to ensure the yield, the number of collisions of particles (with each other and with the inner wall of the apparatus, etc.) increases, which causes cracks in the particles and makes them more likely to break. The particles were broken during the manufacturing process of the resin molding, reducing the low dielectric constant effect. Furthermore, the dielectric loss tangent decreased due to damage to the particle surface.

[比較例4]
湿式分級工程で、目開きを75μmに変えたこと以外は実施例2と同様にして、粉体及び樹脂成型物を得た。篩の目開きが大きいため、粗大粒子が十分に取り除かれず、樹脂成型物の製造プロセスで粒子が割れ、低誘電率効果が得られなかった。
[Comparative example 4]
Powder and resin molded products were obtained in the same manner as in Example 2 except that the opening was changed to 75 μm in the wet classification step. Because the mesh opening of the sieve was large, coarse particles were not removed sufficiently, and the particles were broken during the manufacturing process of the resin molded product, making it impossible to obtain a low dielectric constant effect.

[比較例5]
粒子調製工程で、入口温度250℃の熱風に噴霧し、出口温度を80℃にしたこと以外は実施例2と同様にして、粉体及び樹脂成型物を得た。造粒された粒子は径が小さく、変形係数は高くなるが、空隙率が低い。そのため、低誘電率効果が小さくなった。
[Comparative example 5]
Powder and resin moldings were obtained in the same manner as in Example 2, except that in the particle preparation step, hot air with an inlet temperature of 250° C. was sprayed and the outlet temperature was 80° C. Granulated particles have a small diameter and a high deformation coefficient, but a low porosity. Therefore, the low dielectric constant effect became small.

[比較例6]
粒子調製工程で、入口温度500℃の熱風に噴霧し、出口温度を200℃にしたこと以外は実施例2と同様にして、粉体及び樹脂成型物を得た。造粒された粒子は径が大きく、空隙率が高いが、変形係数が低くなる。そのため、樹脂成型物の製造プロセスで割れが生じ、樹脂組成物としては低誘電率効果が得られなかった。
[Comparative example 6]
Powder and resin moldings were obtained in the same manner as in Example 2, except that in the particle preparation step, hot air with an inlet temperature of 500°C was sprayed and the outlet temperature was 200°C. Granulated particles have a large diameter and high porosity, but have a low deformation coefficient. As a result, cracks occurred during the manufacturing process of the resin molded product, and the resin composition could not achieve a low dielectric constant effect.

Figure 2023150838000001
Figure 2023150838000001

表1に示すように、実施例による粉体及びこの粉体が配合された樹脂成型物は、誘電率及び誘電正接が低い。また、実施例に係る粉体を配合した樹脂組成物は、混練プロセスに耐え、割れが生じないため、誘電率及び誘電正接が低い。 As shown in Table 1, the powder according to the example and the resin molded product containing this powder have a low dielectric constant and a low dielectric loss tangent. Furthermore, the resin composition blended with the powder according to the example can withstand the kneading process and does not crack, and therefore has a low dielectric constant and dielectric loss tangent.

Claims (9)

無孔質の外殻の内部に空洞を有する中空粒子を含む粉体であって、
前記粉体の平均粒子径(D50)が10.0μm以上20.0μm以下であり、
前記粉体には、粒子径45μmより大きい粗大粒子が、1.0体積%以下含まれ、
前記粉体を水に懸濁した際、浮遊粒子が10.0~30.0質量%、懸濁粒子が0~4.0質量%、沈降粒子が66.0~90.0質量%である粉体。
A powder containing hollow particles having a cavity inside a non-porous outer shell,
The average particle diameter (D50) of the powder is 10.0 μm or more and 20.0 μm or less,
The powder contains 1.0% by volume or less of coarse particles with a particle diameter of more than 45 μm,
When the powder is suspended in water, the suspended particles are 10.0 to 30.0% by mass, the suspended particles are 0 to 4.0% by mass, and the settled particles are 66.0 to 90.0% by mass. powder.
前記粉体の変形係数が3000kgf/mmより大きいことを特徴とする請求項1に記載の粉体。 The powder according to claim 1, wherein the powder has a deformation coefficient greater than 3000 kgf/mm. 前記粉体の空隙率が30.0体積%以上70.0体積%未満である請求項1または2に記載の粉体。 The powder according to claim 1 or 2, wherein the powder has a porosity of 30.0% by volume or more and less than 70.0% by volume. 前記粉体の比表面積が3.0m/g以下である請求項1に記載の粉体。 The powder according to claim 1, wherein the powder has a specific surface area of 3.0 m 2 /g or less. 前記粉体には、アルカリ成分量が200ppm以下含まれることを特徴とする請求項2に記載の粉体。 The powder according to claim 2, wherein the powder contains an alkali component amount of 200 ppm or less. 請求項1に記載の粉体を樹脂材料に配合することを特徴とする樹脂組成物の製造方法。 A method for producing a resin composition, comprising blending the powder according to claim 1 into a resin material. 珪酸アルカリ水溶液を熱風気流中で噴霧乾燥して粒子を調製する第一工程と、
前記粒子に含まれるアルカリを酸で中和して除去する第二工程と、
前記粒子を乾燥する第三工程と、
前記粒子を焼成する第四工程と、を順に備え
前記第二工程と前記第三工程の間に、粒子径45μm以上の粗大粒子の存在が1.0体積%以下になるように湿式分級する分級工程が設けられたことを特徴とする粉体の製造方法。
A first step of preparing particles by spray drying an aqueous alkali silicate solution in a hot air stream;
a second step of neutralizing and removing the alkali contained in the particles with an acid;
a third step of drying the particles;
a fourth step of firing the particles; between the second step and the third step, wet classification is carried out so that the presence of coarse particles with a particle size of 45 μm or more is 1.0% by volume or less; A method for producing powder, comprising a step.
前記第二工程において、前記粒子に含まれるアルカリ成分を200ppm以下に低減することを特徴とする請求項7に記載の粉体の製造方法。 8. The method for producing powder according to claim 7, wherein in the second step, an alkali component contained in the particles is reduced to 200 ppm or less. 前記分級工程において、目開き50μm以下の篩を用いて湿式ふるい分級処理を行うことを特徴とする請求項7または8に記載の粉体の製造方法。 9. The method for producing powder according to claim 7, wherein in the classification step, a wet sieve classification process is performed using a sieve with an opening of 50 μm or less.
JP2022060149A 2022-03-31 2022-03-31 Powder and method for producing the same, and method for producing resin composition Pending JP2023150838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022060149A JP2023150838A (en) 2022-03-31 2022-03-31 Powder and method for producing the same, and method for producing resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022060149A JP2023150838A (en) 2022-03-31 2022-03-31 Powder and method for producing the same, and method for producing resin composition

Publications (1)

Publication Number Publication Date
JP2023150838A true JP2023150838A (en) 2023-10-16

Family

ID=88327337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022060149A Pending JP2023150838A (en) 2022-03-31 2022-03-31 Powder and method for producing the same, and method for producing resin composition

Country Status (1)

Country Link
JP (1) JP2023150838A (en)

Similar Documents

Publication Publication Date Title
JP2996354B2 (en) Hollow borosilicate microspheres and manufacturing method
CN104558688A (en) Filler composition and application thereof
KR20220003066A (en) Spherical Crystalline Silica Particles, Spherical Silica Particle Mixtures and Composite Materials
CN110734614A (en) PTFE (Polytetrafluoroethylene) substrate material for high-frequency copper-clad plate and preparation method thereof
CN105176081A (en) Preparation method for flame-retardant heat-resistant antenna radome base material
JP7541611B2 (en) Low dielectric silica powder and resin composition containing said silica powder
CN108358505B (en) Fluororesin intermediate medium layer filled with microwave dielectric ceramic powder and preparation method thereof
JP7433022B2 (en) Hollow silica particles, their manufacturing method, resin composite compositions and resin composites using the same
KR20230113158A (en) Low Dielectric and Amorphous Silica Powder and Method for Producing the Same, and Surface-Treated Low Dielectric Silica Powder, Silica Slurry, Silica-Containing Resin Composition, Silica-Containing Prepreg and Printed Wiring Board
WO2022210920A1 (en) Powder, production method therefor, and resin composition production method
TW202302454A (en) Hollow particle, method of producing the hollow particle, resin composition, and resin molded product and laminate each using the resin composition
CN110606698A (en) Microwave composite dielectric substrate with high uniformity and low thermal expansion coefficient and preparation process thereof
JP2023150838A (en) Powder and method for producing the same, and method for producing resin composition
JP2013103850A (en) Silica-based particle with moisture resistance, method for producing the same, semiconductor sealing resin composition containing the particle, and substrate with coating film formed using the resin composition
WO2022210919A1 (en) Powder, production method therefor, and resin composition production method
WO2023008290A1 (en) Spherical silica powder and method for producing spherical silica powder
WO2022145350A1 (en) Hollow particle and method for producing same, and resin composition
CN114479191B (en) Inorganic filler for PTFE-based copper-clad plate and preparation method thereof
JP2022186597A (en) Low dielectric loss resin composition, method for producing the same, molded body for high frequency devices, and high frequency device
JP2023151180A (en) Silica-based hollow particle and method for manufacturing the same
CN108623288B (en) Beryllium oxide ceramic tape-casting slurry and production method thereof
WO2016056263A1 (en) Electric insulation resin
EP2213633B1 (en) Process for producing flaky-glass granule, flaky-glass granule, and resin composition containing the same
US12098290B2 (en) Low dielectric silica powder, resin composition containing the silica powder, and method for manufacturing low dielectric silica powder
TW202229197A (en) Low dielectric substrate for high-speed millimeter-wave communication