WO2023008290A1 - Spherical silica powder and method for producing spherical silica powder - Google Patents

Spherical silica powder and method for producing spherical silica powder Download PDF

Info

Publication number
WO2023008290A1
WO2023008290A1 PCT/JP2022/028277 JP2022028277W WO2023008290A1 WO 2023008290 A1 WO2023008290 A1 WO 2023008290A1 JP 2022028277 W JP2022028277 W JP 2022028277W WO 2023008290 A1 WO2023008290 A1 WO 2023008290A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica powder
spherical silica
mass
less
spherical
Prior art date
Application number
PCT/JP2022/028277
Other languages
French (fr)
Japanese (ja)
Inventor
博道 加茂
肇 片山
浩大 福本
Original Assignee
Agc株式会社
Agcエスアイテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社, Agcエスアイテック株式会社 filed Critical Agc株式会社
Priority to JP2023538470A priority Critical patent/JPWO2023008290A1/ja
Priority to KR1020247002993A priority patent/KR20240037979A/en
Priority to CN202280052479.6A priority patent/CN117730054A/en
Publication of WO2023008290A1 publication Critical patent/WO2023008290A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/22Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability

Definitions

  • the present invention relates to spherical silica powder and a method for producing spherical silica powder.
  • the dielectric properties of ceramic materials are known, for example, from Non-Patent Document 1, etc., but all of them are properties of a sintered substrate.
  • Silica (SiO 2 ) has a small dielectric constant (3.9) and a small thermal expansion coefficient (3 to 7.9 ppm/° C.), and is promising as a filler material having a low dielectric constant and a low thermal expansion coefficient. Used in many applications. Therefore, it is expected to be widely used in high-frequency dielectric devices and the like.
  • Patent Document 1 discusses reducing the dielectric loss tangent by heat-treating the fused spherical silica powder. Further, in Patent Document 2, crystalline silica is used as a raw material, and by molding it into a hollow shape, a low dielectric constant and a low dielectric loss tangent are studied.
  • a conventional spherical silica powder consists of base particles and minute adhering particles adhering thereto, and the specific surface area is particularly large due to the adhering particles. This limited the region where the dielectric loss tangent derived from surface residues could be reduced.
  • a spherical silica powder derived from silica stone is used to produce spherical silica powder. There is a problem that the surface area cannot be reduced and there is a limit to the reduction of the dielectric loss tangent.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a new spherical silica powder having a sufficiently small dielectric loss tangent and excellent miscibility with a resin composition.
  • the present invention relates to the following (1) to (10).
  • the median diameter d50 is 0.5 to 20 ⁇ m, and the product A ⁇ d50 of the specific surface area A (m 2 /g) and the median diameter d50 ( ⁇ m) is 2.7 to 5.0 ⁇ m ⁇ m 2 /g.
  • spherical silica powder (2) The spherical silica powder according to (1), wherein the dielectric loss tangent of the spherical silica powder is 0.0020 or less at a frequency of 1 GHz.
  • Spherical silica powder as described. (5) The spherical silica powder according to any one of (1) to (4) above, which contains 30 to 1500 ppm of Ti. (6) A method for producing a spherical silica powder according to any one of (1) to (5) above, which comprises forming a spherical silica precursor by a wet process. . (7) In accordance with JIS K0067:1992, when 1 g of the silica precursor is heat-dried at 850° C. for 0.5 hours, the weight loss of the silica precursor is 5.0 to 15.0% by mass. The method for producing a spherical silica powder according to (6) above.
  • spherical silica powder having a small specific surface area and a sufficiently small dielectric loss tangent can be provided. Since the spherical silica powder of the present invention has a low dielectric loss tangent, it can exhibit an excellent low dielectric loss tangent even in a resin composition. In addition, since the specific surface area is sufficiently small relative to the particle size, it has excellent dispersibility in resins.
  • FIG. 1 shows a scanning electron microscope image (SEM image) of the spherical silica powder obtained in Example 1.
  • SEM image scanning electron microscope image
  • the spherical silica powder of the present invention is solid silica, and has a median diameter d50 of 0.5 to 20 ⁇ m, which is the particle diameter at a cumulative volume of 50% in a volume-based particle size distribution curve, and a specific surface area A (m 2 /g) and the median diameter d50 ( ⁇ m) product A ⁇ d50 is 2.7 to 5.0 ⁇ m ⁇ m 2 /g (2.7 ⁇ A ⁇ d50 ( ⁇ m ⁇ m 2 /g) ⁇ 5. 0).
  • the median diameter d50 of the spherical silica powder is 0.5 ⁇ m or more, the dielectric loss tangent can be significantly reduced.
  • the median diameter d50 of the spherical silica powder is set within the range of 0.5 to 20 ⁇ m.
  • the median diameter d50 is preferably 0.5-10 ⁇ m, more preferably 1-5 ⁇ m.
  • the 10% particle size d10 which is the particle size at which the cumulative volume is 10% in the volume-based particle size distribution curve of the spherical silica powder, improves the uniform dispersibility in the resin composition, while improving the interaction between the spherical silica powder and the resin.
  • the ratio of the median diameter d50 to the 10% particle diameter d10 is more than 1.0 and 5.0 from the viewpoint of enhancing the interaction between the spherical silica powder and the resin while improving the uniform dispersibility in the resin composition.
  • the following are preferred, 1.3 to 4.0 are more preferred, and 1.5 to 3.0 are even more preferred.
  • the particle size distribution of the silica particles contained in the resin composition is preferably unimodal.
  • the unimodal particle size distribution of the silica particles can be confirmed from the fact that the particle size distribution obtained by the laser diffraction/scattering method has one peak.
  • the maximum particle diameter (Dmax) of the spherical silica powder is preferably 150 times or less the median diameter d50, more preferably 100 times or less, still more preferably 50 times or less, and particularly preferably 10 times or less.
  • the maximum particle diameter (Dmax) is 150 times or less the median diameter d50, defects are less likely to occur when the sheet is processed.
  • the maximum particle diameter (Dmax) is preferably 1.2 times or more, more preferably 1.5 times or more, and even more preferably 2 times or more the median diameter d50.
  • the median diameter d50 is a volume-based cumulative 50% diameter determined by a laser diffraction particle size distribution analyzer (eg, “MT3300EXII” manufactured by Microtrack Bell Co., Ltd.). That is, the particle size distribution is measured by a laser diffraction/scattering method, the cumulative curve is obtained with the total volume of the spherical silica powder as 100%, and the particle diameter at the point where the cumulative volume is 50% on the cumulative curve.
  • the 10% particle diameter d10 is a volume-based cumulative 10% diameter determined by a laser diffraction particle size distribution analyzer (for example, “MT3300EXII” manufactured by Microtrac Bell Co., Ltd.).
  • the particle size distribution is measured by a laser diffraction/scattering method, a cumulative curve is obtained with the total volume of the spherical silica powder as 100%, and the particle size is the point on the cumulative curve where the cumulative volume is 10%.
  • the maximum particle diameter is also obtained by the same measurement as the median diameter d50 and the 10% particle diameter d10.
  • the specific surface area A of the spherical silica powder of the present invention is preferably in the range of 0.2-2.0 m 2 /g. If the specific surface area is 0.2 m 2 /g or more, when the spherical silica powder is contained in the resin composition, there is sufficient contact with the resin, so that compatibility with the resin is improved. When it is 0 m 2 /g or less, the dielectric loss tangent can be reduced, so that an excellent low dielectric loss tangent can be exhibited even in the resin composition, and the dispersibility in the resin composition is improved.
  • the specific surface area A is preferably 0.2 to 2.0 m 2 /g, more preferably 0.5 to 2.0 m 2 /g, still more preferably 0.5 to 1.5 m 2 /g, and 0.8 to 1.5 m 2 /g is particularly preferred.
  • the specific surface area A is preferably 2.0 m 2 /g or less, more preferably 1.5 m 2 /g or less, and preferably 0.2 m 2 /g or more, preferably 0.5 m 2 /g or less. 2 /g or more is more preferable, and 0.8 m 2 /g or more is particularly preferable.
  • the specific surface area is determined by the BET method based on the nitrogen adsorption method using a specific surface area/pore distribution measuring device (e.g., "BELSORP-miniII” manufactured by Microtrac Bell, “Tristar II” manufactured by Micromeritic, etc.). demand.
  • a specific surface area/pore distribution measuring device e.g., "BELSORP-miniII” manufactured by Microtrac Bell, “Tristar II” manufactured by Micromeritic, etc.
  • the product A ⁇ d50 of the specific surface area A (m 2 /g) of the spherical silica powder and the median diameter d50 ( ⁇ m) is 2.7 to 5.0 ⁇ m ⁇ m 2 /g, preferably 2.7 to 4. 0.5 ⁇ m ⁇ m 2 /g, more preferably 2.7 to 4.0 ⁇ m ⁇ m 2 /g.
  • the spherical silica powder preferably has a sphericity of 0.75 to 1.0. Since the specific surface area increases as the sphericity decreases, the dielectric loss tangent tends to increase, so the sphericity is preferably 0.75 or more.
  • the sphericity is preferably 0.75 or more, more preferably 0.90 or more, even more preferably 0.93 or more, and the closer to 1.0 the better.
  • the sphericity is the maximum diameter (DL) and the short diameter (DS) perpendicular to each of arbitrary 100 particles in a photographic projection obtained by photographing with a scanning electron microscope (SEM). is measured, and the ratio of the minimum diameter (DS) to the maximum diameter (DL) (DS/DL) is calculated and can be expressed as an average value.
  • the spherical silica powder of the present invention preferably has a dielectric loss tangent of 0.0020 or less, more preferably 0.0010 or less, and even more preferably 0.0008 or less at a frequency of 1 GHz.
  • a sample space becomes small at a frequency of 10 GHz or higher, resulting in poor measurement accuracy.
  • the dielectric loss tangent of the spherical silica powder at a frequency of 1 GHz is 0.0020 or less, an excellent effect of suppressing dielectric loss can be obtained, so that substrates and sheets with improved high frequency characteristics can be obtained.
  • the dielectric constant of the spherical silica powder is preferably 5.0 or less, more preferably 4.5 or less, and even more preferably 4.1 or less at a frequency of 1 GHz.
  • the dielectric loss tangent and dielectric constant can be measured by the perturbation resonator method using a dedicated device (eg, "Vector Network Analyzer E5063A” manufactured by Keycom Co., Ltd.).
  • a dedicated device eg, "Vector Network Analyzer E5063A” manufactured by Keycom Co., Ltd.
  • the spherical silica powder of the present invention preferably has a kneaded product containing the spherical silica powder with a viscosity of 5000 mPa ⁇ s or less as measured by the following measuring method.
  • Measurement method 6 parts by mass of boiled linseed oil specified in JIS K 5421 :2000 and 8 parts by mass of spherical silica powder were mixed and kneaded at 2000 rpm for 3 minutes. for 30 seconds, and determine the viscosity at 30 seconds.
  • the kneaded product has a viscosity of 5000 mPa s or less at a shear rate of 1 s ⁇ 1 determined by the above measurement method, the amount of solvent added during molding and film formation of the resin composition containing spherical silica powder can be reduced, and the drying speed can be increased. You can do it faster and improve your productivity.
  • the specific surface area of the silica powder increases according to the particle size, the viscosity tends to increase when added to the resin composition. It can suppress the rise.
  • the viscosity of the kneaded product is more preferably 4000 mPa ⁇ s or less, and even more preferably 3500 mPa ⁇ s or less. The lower the viscosity of the kneaded product at a shear rate of 1 s ⁇ 1 , the better the coating properties of the resin composition and the higher the productivity, so the lower limit is not particularly limited.
  • the IR peak intensity near 3746 cm ⁇ 1 derived from isolated silanol groups on the surface of the spherical silica powder of the present invention is preferably 0.1 or less, more preferably 0.08 or less, and even more preferably 0.06 or less.
  • An isolated silanol group is a silanol (Si—OH) group that is not bound to water or the like adsorbed to silica particles.
  • the amount of isolated silanol (Si—OH) groups on the silica particle surface is obtained by IR measurement. Specifically, after normalizing the IR spectrum at 800 cm ⁇ 1 and adjusting the baseline at 3800 cm ⁇ 1 , the relative value of the Si—OH peak intensity near 3746 cm ⁇ 1 is obtained.
  • the dielectric loss tends to increase when the member mixed with the resin is used for electronic applications, but the IR peak intensity around 3746 cm -1 derived from the isolated silanol groups on the particle surface is 0.1 or less, the dielectric loss can be reduced.
  • the maximum IR peak intensity at 3300 to 3700 cm ⁇ 1 derived from the bonded silanol groups on the surface of the spherical silica powder of the present invention is preferably 0.2 or less, more preferably 0.17 or less, and 0.5. 15 or less is more preferable.
  • the bonded silanol group is a silanol (Si—OH) group bonded to water adsorbed to silica particles, silanol on the silica surface, or the like.
  • the amount of bonded silanol (Si—OH) groups on the silica particle surface is obtained by IR measurement.
  • the relative value of the bonded Si—OH peak intensity is determined from the maximum peak among those at 3300 to 3700 cm ⁇ 1 . . If there are many bonded silanol groups on the particle surface, dielectric loss tends to increase when the member mixed with the resin is used for electronic applications. A dielectric loss can be reduced as the maximum IR peak intensity is 0.2 or less.
  • the spherical silica powder of the present invention is preferably non-porous particles. With porous particles, the oil absorption increases, the viscosity in the resin increases, the surface area increases, the amount of silanol (Si—OH) groups on the surface of the silica particles increases, and the dielectric loss tangent increases. tend to get worse.
  • the oil absorption is preferably 100 ml/100 g or less, more preferably 70 ml/100 g or less, and most preferably 50 ml/100 g or less. Although the lower limit is not particularly limited, it is practically difficult to reduce the oil absorption to 20 ml/100 g or less.
  • the spherical silica powder of the present invention preferably contains titanium (Ti) in the range of 30 to 1500 ppm, more preferably 100 to 1000 ppm, even more preferably 100 to 500 ppm.
  • Ti titanium
  • the concentration of titanium can be measured by inductively coupled plasma (ICP) emission spectroscopy after adding perchloric acid and hydrofluoric acid to silica powder and heating the mixture to remove silicon as the main component.
  • Ti is a component that is optionally included in the production of spherical silica powder.
  • spherical silica powder if fine powder is generated due to cracking of silica particles, the fine powder adheres to the surface of the base particles, increasing the specific surface area of the particles.
  • Ti By including Ti in the production of the spherical silica powder, it becomes easier to thermally compact during firing. This makes it difficult to crack during the post-treatment after calcination, so that the generation of fine powder can be suppressed, the amount of adhering particles adhering to the surface of the silica base particles can be reduced, and an increase in the specific surface area can be suppressed.
  • containing 30 ppm or more of Ti it is easy to thermally compact during firing, so it is possible to suppress the generation of fine powder due to cracking. can suppress the deterioration of
  • the spherical silica powder of the present invention may contain impurity elements other than titanium (Ti) as long as the effects of the present invention are not impaired.
  • impurity elements other than Ti include Na, K, Mg, Ca, Al, and Fe.
  • the total content of alkali metals and alkaline earth metals is preferably 2000 ppm or less, more preferably 1000 ppm or less, and even more preferably 200 ppm or less.
  • the spherical silica powder of the present invention may be treated with a silane coupling agent.
  • a silane coupling agent By treating the surface of the spherical silica powder with a silane coupling agent, the amount of residual silanol groups on the surface is reduced, the surface is made hydrophobic, moisture adsorption can be suppressed, dielectric loss can be improved, and the resin composition can be improved. In this case, the affinity with the resin is improved, and the dispersibility and the strength after resin film formation are improved.
  • silane coupling agents include aminosilane coupling agents, epoxysilane coupling agents, mercaptosilane coupling agents, silane coupling agents, and organosilazane compounds.
  • One type of silane coupling agent may be used, or two or more types may be used in combination.
  • the amount of the silane coupling agent attached is preferably 0.01 to 5 parts by mass, more preferably 0.02 to 5 parts by mass, and 0.1 to 2 parts by mass with respect to 100 parts by mass of the spherical silica powder. Part is more preferred.
  • the amount of the silane coupling agent attached is preferably 0.01 parts by mass or more, more preferably 0.02 parts by mass or more, and 0.1 parts by mass or more with respect to 100 parts by mass of the spherical silica powder. is more preferable, 5 parts by mass or less is more preferable, and 2 parts by mass or less is even more preferable.
  • the surface of the spherical silica powder is treated with a silane coupling agent can be confirmed by detecting peaks due to the substituents of the silane coupling agent by IR.
  • the adhesion amount of the silane coupling agent can be measured by the amount of carbon.
  • the method for producing spherical silica powder of the present invention includes forming a spherical silica precursor by a wet method.
  • the wet method refers to a method including a step of using a liquid silica source and gelling it to obtain a raw material for spherical silica powder. Since spherical silica particles can be formed by using a wet method, there is no need to adjust the shape of the particles by pulverization or the like, and as a result, particles with a small specific surface area can be obtained. In addition, the wet method is less likely to produce particles significantly smaller than the average particle size, and the specific surface area tends to decrease after firing. In the wet method, the amount of impurity elements such as titanium can be adjusted by adjusting the impurities in the silica source, and the impurity elements can be uniformly dispersed in the particles.
  • Wet methods include, for example, a spraying method, an emulsion/gelation method, and the like.
  • a dispersed phase and a continuous phase containing a silica precursor are emulsified, and the obtained emulsion is gelled to obtain a spherical silica precursor.
  • a method of supplying a dispersed phase containing a silica precursor to a continuous phase through a micropore or a porous membrane to prepare an emulsion is preferred. This produces an emulsion with a uniform droplet size, resulting in spherical silica with a uniform particle size.
  • a micromixer method or a membrane emulsification method can be used.
  • the micromixer method is disclosed in WO2013/062105.
  • the pore volume of the spherical silica precursor obtained by the wet method is desirably 0.05 to 2.2 ml/g.
  • the pore volume of the silica precursor is 0.05 ml/g or more, the silica particles sufficiently shrink during firing, and the specific surface area can be reduced.
  • the pore volume of the silica precursor is 2.2 ml/g or less, it is possible to prevent the bulk density of the pre-calcined material from becoming too large, thereby improving the productivity.
  • the pore volume of the silica precursor is preferably 0.05-2.2 ml/g, more preferably 0.1-2.2 ml/g, more preferably 0.3-2.2 ml/g, 0.3-1.8 ml/g is more preferred, 0.6-1.8 ml/g is particularly preferred, and 0.7-1.5 ml/g is most preferred.
  • the pore volume of the silica precursor is preferably 0.05 ml/g or more, more preferably 0.1 ml/g or more, still more preferably 0.3 ml/g or more, and 0.6 ml/g or more. is particularly preferred, 0.7 ml/g or more is most preferred, 2.2 ml/g or less is preferred, 1.8 ml/g or less is more preferred, and 1.5 ml/g or less is most preferred.
  • the pore volume is determined by the BJH method based on the nitrogen adsorption method using a specific surface area/pore distribution measuring device (e.g., "BELSORP-miniII” manufactured by Microtrac Bell, “Tristar II” manufactured by Micromeritic, etc.). Calculated by
  • the ignition loss of the silica precursor obtained by the wet method is desirably 5.0 to 15.0% by mass, more preferably 6.0 to 13.0% by mass, and 7.0 to 12.0% by mass. % by mass is more preferred.
  • the ignition loss is the sum of the mass of water adhering to the silica precursor and the mass of water generated by condensation of silanol groups contained in the silica precursor. Having a group promotes condensation during firing, making it easier to reduce silanol groups. If the ignition loss is too large, the yield at the time of firing decreases and the productivity deteriorates. Therefore, the ignition loss of the silica precursor is preferably 15.0% by mass or less, and 13.0% by mass or less. More preferably, 12.0% by mass or less is most preferable.
  • the ignition loss of the silica precursor is preferably 5.0% by mass or more, more preferably 6.0% by mass or more, and 7.0% by mass. % or more is most preferable.
  • the ignition loss is determined as the mass loss when 1 g of the silica precursor is dried by heating at 850°C for 0.5 hours in accordance with JIS K0067:1992.
  • the silica precursor preferably has an average pore diameter of 1.0 to 50.0 nm.
  • the average pore diameter is 1.0 nm or more, the inside of the particles can be uniformly made non-porous, and the dielectric loss tangent can be lowered without leaving air bubbles inside.
  • the average pore diameter is 50.0 nm or less, the silica particles can be densified (reduced specific surface area) without leaving pores by firing, so that the dielectric loss tangent can be lowered.
  • the average pore diameter is preferably 1.0 to 50.0 nm, more preferably 2.0 to 40.0 nm, still more preferably 3.0 to 30.0 nm, particularly preferably 4.0 to 20.0 nm. .
  • the average pore diameter is preferably 1.0 nm or more, more preferably 2.0 nm or more, still more preferably 3.0 nm or more, particularly preferably 4.0 nm or more, and 50.0 nm or less. is preferably 40.0 nm or less, more preferably 30.0 nm or less, and particularly preferably 20.0 nm or less.
  • the average pore diameter is determined by the BET method based on the nitrogen adsorption method using a specific surface area/pore distribution measuring device (e.g., "BELSORP-miniII” manufactured by Microtrac Bell, “Tristar II” manufactured by Micromeritic, etc.). required by a specific surface area/pore distribution measuring device (e.g., "BELSORP-miniII” manufactured by Microtrac Bell, “Tristar II” manufactured by Micromeritic, etc.). required by a specific surface area/pore distribution measuring device.
  • the silica precursor preferably has a weight reduction rate of 10% or less when dried at 230° C. for 12 hours.
  • the weight reduction rate is 10% or less, when the silica precursor is fired while the particles are in contact with each other, the particles are less likely to be sintered, and spherical silica powder is more likely to be obtained.
  • the weight reduction rate is more preferably 9% or less, more preferably 8% or less, and particularly preferably 6% or less.
  • the lower limit is not particularly limited.
  • Drying means include, for example, a spray dryer, stationary drying in a dryer, ventilation treatment with dry air, and the like.
  • the spherical silica powder is obtained by heat-treating the spherical silica precursor. In the heat treatment, the spherical silica powder is baked and densified, and the amount of silanol groups on the surface is reduced to lower the dielectric loss tangent.
  • the heat treatment temperature is preferably 700 to 1600°C, more preferably 800 to 1500°C, even more preferably 900 to 1400°C.
  • the heat treatment temperature is preferably 700° C. or higher, more preferably 800° C. or higher, and most preferably 900° C. or higher. is preferably 1600° C. or lower, more preferably 1500° C. or lower, and most preferably 1400° C. or lower.
  • the heat treatment time may be appropriately adjusted according to the equipment to be used.
  • the heat treatment time is preferably 0.5 to 50 hours, more preferably 1 to 10 hours.
  • the atmosphere during the heat treatment may be an oxygen-containing atmosphere or an oxygen-free atmosphere.
  • an organic substance such as an emulsifier is often used, and therefore the organic substance often remains in the silica precursor.
  • the silica precursor When firing a silica precursor containing a small amount of organic matter, the organic matter is carbonized under conditions with little oxygen, which causes an increase in dielectric loss tangent and coloration. Therefore, when the silica precursor contains an organic substance, it is preferably fired in an oxygen-containing atmosphere, more preferably in an air atmosphere.
  • the method of the heat treatment is not particularly limited, but examples thereof include heat treatment by a stationary method, heat treatment by a rotary kiln method, heat treatment by spray combustion, and the like.
  • the heat treatment method it is preferable that the spherical and porous silica precursor is fired while the particles are in contact with each other.
  • the silica precursor is fired while the particles are in contact with each other, it is possible to fire in a small volume. The unevenness is reduced, so that a spherical silica powder of uniform quality can be obtained.
  • the firing conditions for each silica precursor are made uniform, and a constant quality can be maintained.
  • the particles of the spherical silica powder may be weakly sintered after firing, in such a case, crushing may be performed. Crushing is preferably carried out so that the average circularity of the particles does not fall below 0.90 in order to maintain the sphericity and surface area so as not to impair the effects of the present invention. Moreover, it is preferable that the surface area does not increase due to the crushing treatment. A large increase in the surface area due to the pulverization treatment means that some of the spherical particles are pulverized or fine particles are generated due to fine damage on the surface. An increase in surface area is not preferable because it leads to an increase in viscosity when dispersed in a resin and a deterioration in dielectric loss tangent. Crushing can be performed using a crushing device such as a cyclone mill or a jet mill, and crushing can also be performed using a vibrating sieve.
  • a crushing device such as a cyclone mill or a jet mill
  • the fired spherical silica powder may be surface-treated with a silane coupling agent. This step causes the silanol groups present on the surface of the spherical silica powder to react with the silane coupling agent, reduces the silanol groups on the surface, and improves the dielectric loss tangent. In addition, since the surface is made hydrophobic and the affinity for the resin is improved, the dispersibility in the resin is improved.
  • surface treatment conditions there are no particular restrictions on the surface treatment conditions, general surface treatment conditions may be used, and a wet treatment method or a dry treatment method can be used. A wet processing method is preferable from the viewpoint of uniform processing.
  • Silane coupling agents used for surface treatment include aminosilane coupling agents, epoxysilane coupling agents, mercaptosilane coupling agents, silane coupling agents, and organosilazane compounds. These may be used singly or in combination of two or more.
  • surface treatment agents include aminosilanes such as aminopropylmethoxysilane, aminopropyltriethoxysilane, ureidopropyltriethoxysilane, N-phenylaminopropyltrimethoxysilane, and N-2(aminoethyl)aminopropyltrimethoxysilane.
  • Epoxysilane coupling agents such as mercaptopropyltrimethoxysilane, mercaptopropyltriethoxysilane, methyltrimethoxysilane, vinyltrimethoxysilane, octadecyltrimethoxysilane, phenyltrimethoxysilane, methacroxypropyl Silane - based coupling agents such as trimethoxysilane, imidazolesilane, and triazinesilane, CF3 ( CF2 ) 7CH2CH2Si ( OCH3 ) 3 , CF3 ( CF2 ) 7CH2CH2SiCl3 , CF 3 ( CF2) 7CH2CH2Si ( CH3 ) ( OCH3 ) 2 , CF3 ( CF2) 7CH2CH2Si ( CH3 ) C12 , CF3 ( CF2 ) 5CH2CH 2Si
  • the treatment amount of the silane coupling agent is preferably 0.01 parts by mass or more, more preferably 0.02 parts by mass or more, and further preferably 0.10 parts by mass or more with respect to 100 parts by mass of the spherical silica powder. It is preferably 5 parts by mass or less, more preferably 2 parts by mass or less.
  • Methods for treating with a silane coupling agent include, for example, a dry method in which a silane coupling agent is sprayed onto spherical silica powder, a wet method in which spherical silica powder is dispersed in a solvent, and then a silane coupling agent is added for reaction. are mentioned.
  • the resin composition according to this embodiment contains the spherical silica powder of the present invention and a resin.
  • the content of spherical silica powder in the resin composition is preferably 5 to 90% by mass, more preferably 10 to 85% by mass, still more preferably 10 to 80% by mass, particularly preferably 10 to 75% by mass, and 10% by mass. ⁇ 70% by weight is particularly preferred, and 15 to 70% by weight is most preferred.
  • the content of the spherical silica powder in the resin composition is preferably 5% by mass or more, more preferably 10% by mass or more, still more preferably 15% by mass or more, and 90% by mass or less. , more preferably 85% by mass or less, even more preferably 80% by mass or less, particularly preferably 75% by mass or less, and most preferably 70% by mass or less.
  • Resins include epoxy resins, silicone resins, phenol resins, melamine resins, urea resins, unsaturated polyester resins, fluorine resins, polyimide resins, polyamideimide resins, polyamide resins such as polyetherimide; Polyester resin; polyphenylene ether resin, polyphenylene sulfide resin, phenolic resin, orthodivinylbenzene resin, aromatic polyester resin, polysulfone, liquid crystal polymer, polyethersulfone, polycarbonate, maleimide modified resin, ABS (acrylonitrile-butadiene-styrene) resin, AAS (acrylonitrile-acrylic rubber/styrene) resin, AES (acrylonitrile/ethylene/propylene/diene rubber-styrene) resin, polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene One or more of he
  • the resin preferably contains a thermosetting resin.
  • One type of thermosetting resin may be used, or two or more types may be used.
  • Thermosetting resins include epoxy resins, polyphenylene ether resins, polyimide resins, phenol resins, orthodivinylbenzene resins, and the like. From the viewpoint of adhesion, heat resistance, etc., the thermosetting resin is preferably an epoxy resin, a polyphenylene ether resin, or an orthodivinylbenzene resin.
  • the weight average molecular weight of the thermosetting resin is preferably 1,000 to 7,000, more preferably 1,000 to 5,000, and still more preferably 1,000 to 3,000 from the viewpoint of adhesion, dielectric properties, and the like.
  • a weight average molecular weight is calculated
  • the content of spherical silica powder with respect to 100 parts by mass of thermosetting resin is preferably 10 to 400 parts by mass, and 50 to 300 parts by mass. parts is more preferred, and 70 to 250 parts by mass is even more preferred.
  • the content of the silica particles is preferably 80 parts by mass or more, more preferably 90 parts by mass or more. Due to the action mechanism described above, the spherical silica powder is sufficiently wet and uniformly dispersed, and is highly likely to interact with the thermosetting resin.
  • thermosetting resin is filled with a large amount of spherical silica powder, both components are easily stabilized, and adhesion to the metal substrate layer is excellent. moldings can be formed.
  • the spherical silica powder of the present invention can be used as a filler for slurry compositions.
  • the slurry composition refers to a muddy composition in which the spherical silica powder of the present invention is dispersed in an aqueous or oil medium.
  • the slurry composition preferably contains 1 to 50% by mass, more preferably 5 to 40% by mass, of spherical silica powder.
  • Oil-based media include acetone, methanol, ethanol, butanol, 2-propanol, 1-propanol, isobutyl alcohol, 1-butanol, 2-butanol, 2-methoxyethanol, 2-ethoxyethanol, 1-methoxy-2- propanol, 2-acetoxy-1-methoxypropane, propyl acetate, isobutyl acetate, butyl acetate, toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, N,N-dimethylformamide, methyl isobutyl ketone, N-methylpyrrolidone, n-hexane, Examples include n-heptane, cyclohexane, methylcyclohexane, cyclohexanone and naphtha which is a mixture thereof. These may be used alone or as a mixture of two or more.
  • the resin composition and slurry composition may contain optional components in addition to the above resin and medium.
  • optional components include dispersing aids, surfactants, fillers other than silica, and the like.
  • Dispersion equipment used for pigment dispersion can be used to disperse the mixed liquid containing the solvent and spherical silica powder.
  • mixers such as disper, homomixer, and planetary mixer, homogenizers (e.g., M Technic "Clairmix”, PRIMIX “Filmix”, Silverson “Abramix”, etc.), paints Conditioner (manufactured by Red Devil), colloid mill (e.g. PUC "PUC Colloid Mill", IKA “Colloid Mill MK”), cone mills (e.g.
  • the temperature during the dispersion treatment is preferably 0 to 100°C.
  • the treatment temperature is preferably 0 to 100°C, more preferably 5 to 90°C, even more preferably 10 to 80°C.
  • the treatment temperature is more preferably 5° C. or higher, more preferably 10° C. or higher, and more preferably 90° C. or lower, further preferably 80° C. or lower.
  • the time for the dispersion treatment may be appropriately set according to the dispersing device to be used so that the particle destruction does not proceed, but it is preferably 0.5 to 60 minutes, more preferably 0.5 to 10 minutes, and 0.5 to 10 minutes. 0.5 to 5 minutes is more preferred.
  • wet classification include classification using a sieve and centrifugal force.
  • a sieve it is preferable to classify with a sieve having an opening of 100 ⁇ m or less.
  • the sieve for example, it is preferable to use a metal having a dense lattice structure such as an electroformed sieve.
  • the mesh size of the sieve is preferably 0.2-100 ⁇ m, more preferably 0.5-75 ⁇ m, even more preferably 0.5-50 ⁇ m, and particularly preferably 1-35 ⁇ m.
  • the sieve opening is preferably 100 ⁇ m or less, more preferably 75 ⁇ m or less, even more preferably 50 ⁇ m or less, particularly preferably 35 ⁇ m or less, and preferably 0.2 ⁇ m or more, and 0.5 ⁇ m or more. is more preferable, and 1 ⁇ m or more is even more preferable.
  • Concentration methods include vaporization concentration, solid-liquid separation, and the like.
  • a silane coupling agent may be added to the mixed liquid of the solvent and the spherical silica powder.
  • the silane coupling agent include the silane coupling agents described above.
  • the dielectric loss tangent thereof at a frequency of 10 GHz is preferably 0.012 or less, more preferably 0.010 or less, and 0.009. More preferred are:
  • the resin film has a dielectric loss tangent of 0.012 or less at a frequency of 10 GHz, the resin film has excellent electrical properties and can be expected to be used in electronic devices, communication devices, and the like. Since the transmission loss of the circuit is suppressed as the dielectric loss tangent becomes smaller, the lower limit value is not particularly limited.
  • the dielectric constant thereof at a frequency of 10 GHz is preferably 2.0 to 3.5, and the lower limit is 2.0.
  • the upper limit is more preferably 2 or more, more preferably 2.3 or more, and the upper limit is more preferably 3.2 or less, further preferably 3.0 or less.
  • the dielectric constant can be measured by a perturbation-type resonator method using a dedicated device (for example, "Vector Network Analyzer E5063A” manufactured by Keycom Co., Ltd.).
  • the dielectric loss tangent of the resin film can be measured using a split-post dielectric resonator (SPDR) (manufactured by Agilent Technologies, for example).
  • SPDR split-post dielectric resonator
  • the resin film preferably has an average coefficient of linear expansion of 10 to 50 ppm/°C.
  • the average coefficient of linear expansion is within the above range, the range is close to the coefficient of thermal expansion of copper foil, which is widely used as a base material, and thus the electrical properties are excellent.
  • the average coefficient of linear expansion is more preferably 12 ppm/°C or higher, more preferably 15 ppm/°C or higher, and more preferably 40 ppm/°C or lower, further preferably 30 ppm/°C or lower.
  • the average coefficient of linear expansion is determined by using a thermomechanical analyzer (for example, "TMA-60” manufactured by Shimadzu Corporation), heating the resin film at a load of 5 N and a temperature increase rate of 2 ° C./min, and increasing from 30 ° C. It is obtained by measuring the dimensional change of the sample up to 150° C. and calculating the average.
  • a thermomechanical analyzer for example, "TMA-60” manufactured by Shimadzu Corporation
  • the spherical silica powder of the present invention can be used as various fillers, and is particularly used in the production of electronic substrates used in electronic devices such as personal computers, notebook computers and digital cameras, and communication devices such as smartphones and game machines. It can be suitably used as a filler for resin compositions.
  • the silica powder of the present invention is used in resin compositions, prepregs, metal foil-clad laminates, printed wiring boards, and resins for low dielectric loss tangent, low transmission loss, low moisture absorption, and improved peel strength. It is also expected to be applied to sheets, adhesive layers, adhesive films, solder resists, bump reflow, rewiring insulating layers, die bonding materials, sealing materials, underfills, mold underfills, laminated inductors, and the like.
  • the entire amount of the spherical silica precursor obtained was filled in an alumina crucible and heat-treated at an electric furnace temperature of 1300° C. for 1 hour. After the heat treatment, the mixture was cooled to room temperature and ground in an agate mortar to obtain a spherical silica powder.
  • Example 11 10 g of the silica powder obtained in Example 1, 10 mg of 3-(methacryloyloxy)propyltrimethoxysilane, and 5 g of decane were mixed, and the solvent was distilled off by vacuum drying at 150° C. to obtain the surface-treated spherical silica powder. Obtained.
  • Ti titanium
  • the titanium (Ti) content of silica powder 1 was 300 ppm.
  • 15 g of silica powder 1 was filled in an alumina crucible and heat-treated at an electric furnace temperature of 1050° C. for 6 hours. After the heat treatment, the mixture was cooled to room temperature and ground in an agate mortar to obtain a spherical silica powder.
  • Spherical silica powder 8 (manufactured by Denka: FB-5D) produced from raw material silica produced by a dry method was used. When the Ti content of the spherical silica powder 8 was measured, it was 22 ppm. 15 g of spherical silica powder 8 was filled in an alumina crucible and heat-treated at an electric furnace temperature of 1300° C. for 1 hour. After the heat treatment, the mixture was cooled to room temperature and ground in an agate mortar to obtain a spherical silica powder.
  • Spherical silica powder 9 (manufactured by Admatechs: SC-04) produced from raw material silica produced by the VMC method was used as it was.
  • Ti content of the spherical silica powder 9 was measured, it was 28 ppm.
  • the spherical silica powders of Examples 1 to 14 were evaluated as follows. Table 1 shows the results. Further, a scanning electron microscope observation image (SEM image) of the spherical silica powder of Example 1 is shown in FIG.
  • Specific Surface Area Spherical silica powder was dried under reduced pressure at 230° C. to completely remove moisture, and used as a sample.
  • the specific surface area of this sample was determined by the multi-point BET method using nitrogen gas using an automatic specific surface area/pore size distribution measuring device "Tristar II" manufactured by Micromeritic.
  • Pore Volume Silica powder used as a precursor was dried under reduced pressure at 230° C. to completely remove moisture, and used as a sample.
  • the pore volume of this sample was determined by the BJH method using nitrogen gas using an automatic specific surface area/pore size distribution analyzer "Tristar II" manufactured by Micromeritic.
  • Ti concentration After adding perchloric acid and hydrofluoric acid to the silica powder used as a precursor and heating to remove silicon as the main component, the Ti concentration was measured by inductively coupled plasma (ICP) emission spectrometry.
  • ICP inductively coupled plasma
  • Dielectric loss tangent is measured three times at a test frequency of 1 GHz, a test temperature of about 24°C, a humidity of about 45%, and a perturbation resonator method using a dedicated device (vector network analyzer E5063A, manufactured by Keycom). Measurements were made. Specifically, after vacuum-drying the spherical silica powder at 150°C, the powder was filled into a polytetrafluoroethylene (PTFE) cylinder while fully tapping, and the dielectric constant was measured together with the container. The dielectric loss tangent was converted using the body filling factor.
  • PTFE polytetrafluoroethylene
  • the spherical silica powder used was vacuum-dried at 180° C. for 1 hour. After normalizing the IR spectrum at 800 cm ⁇ 1 and adjusting the baseline at 3800 cm ⁇ 1 , from the relative value of the Si—OH peak intensity near 3746 cm ⁇ 1 and the maximum peak among those at 3300 to 3700 cm ⁇ 1 , the binding A relative value of the Si—OH peak intensity was obtained.
  • Viscosity and Particle Gauge In order to examine the resin dispersibility of the spherical silica powder, the following test was carried out. 6 parts of boiled linseed oil (manufactured by Sankei Sangyo Co., Ltd.) and 8 parts of spherical silica powder are mixed, and kneaded at 2000 rpm for 3 minutes with an Awatori Mixer (manufactured by Thinky Corporation), which is a rotation-revolution type agitator, to obtain a kneaded product. made. The resulting kneaded product was measured at a shear rate of 1 s ⁇ 1 for 30 seconds using a rotary rheometer to obtain the viscosity at 30 seconds. The viscosity measured only with boiled linseed oil was 46 mPa ⁇ s. Moreover, the obtained kneaded material was measured by the JIS K5400:1990 grain gauge method.
  • the spherical silica powders of Examples 1 to 12 have low dielectric loss tangents, viscosities, grain gauges, and moisture absorption amounts. 13 and 14, it was found that the dielectric loss tangent deteriorates when the product of the specific surface area and the median diameter becomes too large. The fact that the specific surface area is large relative to the median diameter suggests the presence of fine particles and surface roughness, which is thought to increase the abundance of surface residues and increase the dielectric loss tangent. .
  • the median diameter is preferably 0.5 to 20 ⁇ m. This is because if the median diameter is small, the viscosity increases, and if the median diameter is large, the grain gauge increases.
  • the dielectric loss tangent decreased when the ignition loss of the silica precursor was large. This is probably because if the ignition loss of the silica precursor is less than 1.0%, silanol groups tend to remain during firing, which increases the dielectric loss tangent. If the ignition loss of the silica precursor exceeds 15.0%, it is predicted that the loss during firing will increase and the yield will deteriorate. From Examples 1 to 14, it was found that the pore volume of the silica precursor is also related to the dielectric loss tangent. If the pore volume is too small, the silica will not shrink when the silica precursor is fired, and the specific surface area will not easily decrease, so it is assumed that the dielectric loss tangent will increase.
  • the mixture was kneaded at 2000 rpm for 5 minutes with a Thinky Mixer. Subsequently, 0.3 parts of 4-dimethylaminopyridine (DMAP) and 1.8 parts of 2-ethyl-4-methylimidazole (manufactured by Shikoku Kasei Kogyo Co., Ltd. "2E4MZ”) were mixed as a curing accelerator and kneaded. The mixture was kneaded with Taro at 2000 rpm for 5 minutes. 65.2 parts of spherical silica powder was mixed therein, and the mixture was mixed at 2000 rpm for 5 minutes with a Mixer.
  • DMAP 4-dimethylaminopyridine
  • 2-ethyl-4-methylimidazole manufactured by Shikoku Kasei Kogyo Co., Ltd. "2E4MZ
  • PET5011 550 manufactured by Lintec, thickness 50 ⁇ m
  • a release-treated transparent polyethylene terephthalate (PET) film (“PET5011 550" manufactured by Lintec, thickness 50 ⁇ m) was prepared.
  • the resulting varnish was applied to the release-treated surface of the PET film so that the thickness after drying was 40 ⁇ m, dried in a gear oven at 190° C. for 90 minutes, and cured. Then, it was cut to prepare a cured resin film (evaluation sample) of 200 mm long ⁇ 200 mm wide ⁇ 40 ⁇ m thick.
  • the obtained evaluation sample was measured for dielectric loss tangent (measurement frequency: 10 GHz) with a split-post dielectric resonator (manufactured by Agilent Technologies). Further, the obtained evaluation sample was stored in a constant temperature and humidity chamber at 85° C. and 85% RH for 24 hours, and the dielectric loss tangent was similarly measured for the evaluation sample after moisture absorption.
  • the dielectric loss tangent of the spherical silica powders of Examples 1, 3 and 11 was small, so the dielectric loss tangent of the resin composition was significantly improved.
  • the resin composition is less hygroscopic and exhibits good electrical properties even after storage under humidified conditions.

Abstract

The present invention provides a new spherical silica powder having a sufficiently low loss tangent and exceptional miscibility with resin compositions. This spherical silica powder has a median diameter d50 of 0.5-20 μm, the product A×d50 of the specific surface area A (m2/g) and the median diameter d50 (μm) being 2.7-5.0 μm∙m2/g.

Description

球状シリカ粉末及び球状シリカ粉末の製造方法Spherical silica powder and method for producing spherical silica powder
 本発明は、球状シリカ粉末及び球状シリカ粉末の製造方法に関する。 The present invention relates to spherical silica powder and a method for producing spherical silica powder.
 近年、電子機器の小型化、信号の高速化および配線の高密度化が求められている。この要求を満たすために、接着フィルム、プリプレグ等の絶縁樹脂シート、並びにプリント配線板に形成される絶縁層に用いられる樹脂組成物を、低誘電率化、低誘電正接化、低熱膨張化することが求められている。 In recent years, there has been a demand for smaller electronic devices, higher signal speeds, and higher wiring density. In order to meet this demand, adhesive films, insulating resin sheets such as prepreg, and resin compositions used for insulating layers formed on printed wiring boards must be made to have a low dielectric constant, a low dielectric loss tangent, and a low thermal expansion. is required.
 セラミックス材料の誘電特性は、例えば、非特許文献1等により知られているが、いずれも焼結された基板としての特性である。シリカ(SiO)は、誘電率が小さく(3.9)、熱膨張率が小さく(3~7.9ppm/℃)、低誘電率かつ低熱膨張率を有するフィラーの材料として有望であり、既に多くの用途で使用されている。そのため、高周波帯の誘電体デバイス等においても広く用いられることが期待される。 The dielectric properties of ceramic materials are known, for example, from Non-Patent Document 1, etc., but all of them are properties of a sintered substrate. Silica (SiO 2 ) has a small dielectric constant (3.9) and a small thermal expansion coefficient (3 to 7.9 ppm/° C.), and is promising as a filler material having a low dielectric constant and a low thermal expansion coefficient. Used in many applications. Therefore, it is expected to be widely used in high-frequency dielectric devices and the like.
 これらの要求を満たすために、特許文献1では、溶融球状シリカ粉末に対し加熱処理を実施することで低誘電正接化を検討している。また、特許文献2では、結晶性シリカを原料とし、それを中空状に成型することで、低誘電率化、低誘電正接化を検討している。 In order to meet these demands, Patent Document 1 discusses reducing the dielectric loss tangent by heat-treating the fused spherical silica powder. Further, in Patent Document 2, crystalline silica is used as a raw material, and by molding it into a hollow shape, a low dielectric constant and a low dielectric loss tangent are studied.
日本国特許第6793282号公報Japanese Patent No. 6793282 日本国特開2021-075438号公報Japanese Patent Application Laid-Open No. 2021-075438
 従来の球状シリカ粉末は、母粒子とそれに付着した微小の付着粒子からなっており、特に付着粒子によって比表面積が大きくなっていた。これにより、表面残基に由来する誘電正接が低減できる領域が限定されていた。
 特許文献1記載の技術では、珪石由来の球状シリカ原料を使用して球状シリカ粉末を作製しているが、珪石を粉砕する工程で微粉末が発生し、これが付着して含まれることで、比表面積が小さくならず、誘電正接の低減に限界があるという問題があった。また、特許文献2記載の技術では、結晶性シリカを造粒し、高温で溶融させる必要があり、生産性に課題があった。
A conventional spherical silica powder consists of base particles and minute adhering particles adhering thereto, and the specific surface area is particularly large due to the adhering particles. This limited the region where the dielectric loss tangent derived from surface residues could be reduced.
In the technique described in Patent Document 1, a spherical silica powder derived from silica stone is used to produce spherical silica powder. There is a problem that the surface area cannot be reduced and there is a limit to the reduction of the dielectric loss tangent. Moreover, in the technique described in Patent Document 2, it is necessary to granulate crystalline silica and melt it at a high temperature, so there is a problem in productivity.
 本発明は上記課題に鑑みてなされたものであり、誘電正接が十分に小さく、樹脂組成物との混合性に優れた、新たな球状シリカ粉末を提供することを課題とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a new spherical silica powder having a sufficiently small dielectric loss tangent and excellent miscibility with a resin composition.
 本発明者らは鋭意検討した結果、粒径に応じた比表面積を小さくして、比表面積とメジアン径の積が特定の範囲となるような球状シリカ粉末とすることにより上記課題を解決できることを見出し、本発明を完成させるに至った。 As a result of intensive studies by the present inventors, it was found that the above problems can be solved by reducing the specific surface area according to the particle size to obtain a spherical silica powder in which the product of the specific surface area and the median diameter falls within a specific range. This led to the completion of the present invention.
 本発明は、下記(1)~(10)に関するものである。
(1)メジアン径d50が0.5~20μmであり、比表面積A(m/g)と前記メジアン径d50(μm)の積A×d50が2.7~5.0μm・m/gである球状シリカ粉末。
(2)前記球状シリカ粉末の誘電正接が、周波数1GHzにおいて0.0020以下である、前記(1)に記載の球状シリカ粉末。
(3)前記球状シリカ粉末を含む混練物の、下記測定方法により測定される粘度が5000mPa・s以下である、前記(1)又は(2)に記載の球状シリカ粉末。
(測定方法)
 煮アマニ油6質量部と前記球状シリカ粉末8質量部を混合し、2000rpmで3分間混練して得た混練物を、回転式レオメータを用いてせん断速度1s-1で30秒測定し、30秒時点での粘度を求める。
(4)前記球状シリカ粉末の表面の結合シラノール基に由来する3300~3700cm-1にある最大IRピーク強度が、0.2以下である、前記(1)~(3)のいずれか1つに記載の球状シリカ粉末。
(5)前記球状シリカ粉末が、Tiを30~1500ppm含む、前記(1)~(4)のいずれか1つに記載の球状シリカ粉末。
(6)前記(1)~(5)のいずれか1つに記載の球状シリカ粉末の製造方法であって、湿式法によって球状のシリカ前駆体を形成することを含む、球状シリカ粉末の製造方法。
(7)JIS K0067:1992に準拠して、前記シリカ前駆体1gを850℃で0.5時間、加熱乾燥としたときの、前記シリカ前駆体の質量減量が5.0~15.0質量%である、前記(6)に記載の球状シリカ粉末の製造方法。
(8)前記シリカ前駆体の細孔容積が、0.3~2.2ml/gである、前記(6)又は(7)に記載の球状シリカ粉末の製造方法。
(9)前記(1)~(5)のいずれか1つに記載の球状シリカ粉末を5~90質量%含む樹脂組成物。
(10)前記(1)~(5)のいずれか1つに記載の球状シリカ粉末を1~50質量%含むスラリー組成物。
The present invention relates to the following (1) to (10).
(1) The median diameter d50 is 0.5 to 20 μm, and the product A×d50 of the specific surface area A (m 2 /g) and the median diameter d50 (μm) is 2.7 to 5.0 μm·m 2 /g. spherical silica powder.
(2) The spherical silica powder according to (1), wherein the dielectric loss tangent of the spherical silica powder is 0.0020 or less at a frequency of 1 GHz.
(3) The spherical silica powder according to (1) or (2) above, wherein the kneaded product containing the spherical silica powder has a viscosity of 5000 mPa·s or less as measured by the following measuring method.
(Measuring method)
6 parts by mass of boiled linseed oil and 8 parts by mass of the spherical silica powder were mixed and kneaded at 2000 rpm for 3 minutes. Determine the viscosity at that point.
(4) Any one of (1) to (3) above, wherein the maximum IR peak intensity at 3300 to 3700 cm −1 derived from bound silanol groups on the surface of the spherical silica powder is 0.2 or less. Spherical silica powder as described.
(5) The spherical silica powder according to any one of (1) to (4) above, which contains 30 to 1500 ppm of Ti.
(6) A method for producing a spherical silica powder according to any one of (1) to (5) above, which comprises forming a spherical silica precursor by a wet process. .
(7) In accordance with JIS K0067:1992, when 1 g of the silica precursor is heat-dried at 850° C. for 0.5 hours, the weight loss of the silica precursor is 5.0 to 15.0% by mass. The method for producing a spherical silica powder according to (6) above.
(8) The method for producing spherical silica powder according to (6) or (7) above, wherein the silica precursor has a pore volume of 0.3 to 2.2 ml/g.
(9) A resin composition containing 5 to 90% by mass of the spherical silica powder according to any one of (1) to (5).
(10) A slurry composition containing 1 to 50% by mass of the spherical silica powder according to any one of (1) to (5).
 本発明によれば、比表面積が小さく、かつ誘電正接が十分に小さい、球状シリカ粉末を提供できる。本発明の球状シリカ粉末は誘電正接が低いため、樹脂組成物中でも優れた低誘電正接を発揮できる。また粒径に対する比表面積が十分小さいため、樹脂への分散能に優れている。 According to the present invention, spherical silica powder having a small specific surface area and a sufficiently small dielectric loss tangent can be provided. Since the spherical silica powder of the present invention has a low dielectric loss tangent, it can exhibit an excellent low dielectric loss tangent even in a resin composition. In addition, since the specific surface area is sufficiently small relative to the particle size, it has excellent dispersibility in resins.
図1は、例1で得られた球状シリカ粉末の走査型電子顕微鏡像(SEM像)を示す。1 shows a scanning electron microscope image (SEM image) of the spherical silica powder obtained in Example 1. FIG.
 以下、本発明について説明するが、以下の説明における例示によって本発明は限定されない。なお、本明細書において、数値範囲を示す「~」は、その前後に記載された数値を下限値及び上限値として含むことを意味する。
 尚、本明細書において、「質量」は「重量」と同義である。
The present invention will be described below, but the present invention is not limited by the exemplifications in the following description. In this specification, "-" indicating a numerical range means that the numerical values described before and after it are included as the lower limit and the upper limit.
In this specification, "mass" is synonymous with "weight".
 本発明の球状シリカ粉末は、中実シリカであって、体積基準の粒度分布曲線において累積体積が50%となる点の粒子径であるメジアン径d50が0.5~20μmであり、比表面積A(m/g)とメジアン径d50(μm)の積A×d50が2.7~5.0μm・m/g(2.7≦A×d50(μm・m/g)≦5.0)の範囲にあるものである。 The spherical silica powder of the present invention is solid silica, and has a median diameter d50 of 0.5 to 20 μm, which is the particle diameter at a cumulative volume of 50% in a volume-based particle size distribution curve, and a specific surface area A (m 2 /g) and the median diameter d50 (μm) product A×d50 is 2.7 to 5.0 μm·m 2 /g (2.7≦A×d50 (μm·m 2 /g)≦5. 0).
 球状シリカ粉末のメジアン径d50が0.5μm以上であると誘電正接を有意に低減できる。また、メジアン径が大きくなり過ぎると粒ゲージの値が大きくなるので、球状シリカ粉末を含有させた樹脂組成物を、例えば、シートに製膜する際には、シートの最小厚みが厚くなってしまう。よって、本発明では、球状シリカ粉末のメジアン径d50は、0.5~20μmの範囲とする。メジアン径d50は、好ましくは0.5~10μm、さらに好ましくは1~5μmである。 When the median diameter d50 of the spherical silica powder is 0.5 μm or more, the dielectric loss tangent can be significantly reduced. In addition, if the median diameter becomes too large, the value of the grain gauge becomes large, so when the resin composition containing the spherical silica powder is formed into a sheet, for example, the minimum thickness of the sheet becomes large. . Therefore, in the present invention, the median diameter d50 of the spherical silica powder is set within the range of 0.5 to 20 μm. The median diameter d50 is preferably 0.5-10 μm, more preferably 1-5 μm.
 球状シリカ粉末の体積基準の粒度分布曲線において累積体積が10%となる粒子径である10%粒径d10は、樹脂組成物における均一分散性を向上させつつ、球状シリカ粉末と樹脂との相互作用を高める観点から、0.5μm~5.0μmが好ましく、1.0μm~3.0μmがより好ましい。 The 10% particle size d10, which is the particle size at which the cumulative volume is 10% in the volume-based particle size distribution curve of the spherical silica powder, improves the uniform dispersibility in the resin composition, while improving the interaction between the spherical silica powder and the resin. 0.5 μm to 5.0 μm, more preferably 1.0 μm to 3.0 μm, from the viewpoint of increasing the
 10%粒径d10に対するメジアン径d50の比(d50/d10)は、樹脂組成物における均一分散性を向上させつつ、球状シリカ粉末と樹脂の相互作用を高める観点から、1.0超5.0以下が好ましく、1.3~4.0がより好ましく、1.5~3.0が更に好ましい。 The ratio of the median diameter d50 to the 10% particle diameter d10 (d50/d10) is more than 1.0 and 5.0 from the viewpoint of enhancing the interaction between the spherical silica powder and the resin while improving the uniform dispersibility in the resin composition. The following are preferred, 1.3 to 4.0 are more preferred, and 1.5 to 3.0 are even more preferred.
 樹脂組成物に含まれるシリカ粒子の粒度分布は単峰性であることが好ましい。シリカ粒子の粒度分布が単峰性であることは、レーザー回折・散乱法による粒度分布でピークが1つであることから確認できる。 The particle size distribution of the silica particles contained in the resin composition is preferably unimodal. The unimodal particle size distribution of the silica particles can be confirmed from the fact that the particle size distribution obtained by the laser diffraction/scattering method has one peak.
 球状シリカ粉末の最大粒子径(Dmax)は、メジアン径d50の150倍以下であるのが好ましく、100倍以下がより好ましく、さらに好ましくは50倍以下、特に好ましくは10倍以下である。最大粒子径(Dmax)がメジアン径d50の150倍以下であるとシートを加工したときの欠陥になりにくい。また、最大粒子径(Dmax)は、メジアン径d50の1.2倍以上であるのが好ましく、1.5倍以上がより好ましく、2倍以上がさらに好ましい。 The maximum particle diameter (Dmax) of the spherical silica powder is preferably 150 times or less the median diameter d50, more preferably 100 times or less, still more preferably 50 times or less, and particularly preferably 10 times or less. When the maximum particle diameter (Dmax) is 150 times or less the median diameter d50, defects are less likely to occur when the sheet is processed. Also, the maximum particle diameter (Dmax) is preferably 1.2 times or more, more preferably 1.5 times or more, and even more preferably 2 times or more the median diameter d50.
 メジアン径d50は、レーザー回折式の粒度分布測定装置(例えば、マイクロトラック・ベル株式会社製「MT3300EXII」)により求められる体積基準累積50%径である。すなわち、レーザー回折・散乱法によって粒度分布を測定し、球状シリカ粉末の全体積を100%として累積カーブを求め、その累積カーブ上で累積体積が50%となる点の粒子径である。
 10%粒径d10は、レーザー回折式の粒度分布測定装置(例えば、マイクロトラック・ベル株式会社製「MT3300EXII」)により求められる体積基準累積10%径である。すなわち、レーザー回折・散乱法によって粒度分布を測定し、球状シリカ粉末の全体積を100%として累積カーブを求め、その累積カーブ上で累積体積が10%となる点の粒子径である。
 最大粒子径もメジアン径d50、10%粒径d10と同じ測定で得られる。
The median diameter d50 is a volume-based cumulative 50% diameter determined by a laser diffraction particle size distribution analyzer (eg, “MT3300EXII” manufactured by Microtrack Bell Co., Ltd.). That is, the particle size distribution is measured by a laser diffraction/scattering method, the cumulative curve is obtained with the total volume of the spherical silica powder as 100%, and the particle diameter at the point where the cumulative volume is 50% on the cumulative curve.
The 10% particle diameter d10 is a volume-based cumulative 10% diameter determined by a laser diffraction particle size distribution analyzer (for example, “MT3300EXII” manufactured by Microtrac Bell Co., Ltd.). That is, the particle size distribution is measured by a laser diffraction/scattering method, a cumulative curve is obtained with the total volume of the spherical silica powder as 100%, and the particle size is the point on the cumulative curve where the cumulative volume is 10%.
The maximum particle diameter is also obtained by the same measurement as the median diameter d50 and the 10% particle diameter d10.
 本発明の球状シリカ粉末の比表面積Aは、0.2~2.0m/gの範囲であるのが好ましい。比表面積が0.2m/g以上であると、球状シリカ粉末を樹脂組成物に含有させた際に、樹脂との接点が十分にあるので、樹脂とのなじみがよくなり、また、2.0m/g以下であると誘電正接を小さくできるので、樹脂組成物中でも優れた低誘電正接を発揮でき、また、樹脂組成物への分散性が向上する。比表面積Aは、0.2~2.0m/gが好ましく、0.5~2.0m/gがより好ましく、0.5~1.5m/gがさらに好ましく、0.8~1.5m/gが特に好ましい。ここで、比表面積Aは、2.0m/g以下であるのが好ましく、1.5m/g以下がより好ましく、また、0.2m/g以上であるのが好ましく、0.5m/g以上がより好ましく、0.8m/g以上が特に好ましい。なお、比表面積Aが0.2m/g未満のものは、実質的に得ることが困難である。 The specific surface area A of the spherical silica powder of the present invention is preferably in the range of 0.2-2.0 m 2 /g. If the specific surface area is 0.2 m 2 /g or more, when the spherical silica powder is contained in the resin composition, there is sufficient contact with the resin, so that compatibility with the resin is improved. When it is 0 m 2 /g or less, the dielectric loss tangent can be reduced, so that an excellent low dielectric loss tangent can be exhibited even in the resin composition, and the dispersibility in the resin composition is improved. The specific surface area A is preferably 0.2 to 2.0 m 2 /g, more preferably 0.5 to 2.0 m 2 /g, still more preferably 0.5 to 1.5 m 2 /g, and 0.8 to 1.5 m 2 /g is particularly preferred. Here, the specific surface area A is preferably 2.0 m 2 /g or less, more preferably 1.5 m 2 /g or less, and preferably 0.2 m 2 /g or more, preferably 0.5 m 2 /g or less. 2 /g or more is more preferable, and 0.8 m 2 /g or more is particularly preferable. In addition, it is substantially difficult to obtain one having a specific surface area A of less than 0.2 m 2 /g.
 比表面積は、比表面積・細孔分布測定装置(例えば、マイクロトラック・ベル社製「BELSORP-miniII」、マイクロメリティック社製「トライスターII」等)を用いた窒素吸着法に基づくBET法により求める。 The specific surface area is determined by the BET method based on the nitrogen adsorption method using a specific surface area/pore distribution measuring device (e.g., "BELSORP-miniII" manufactured by Microtrac Bell, "Tristar II" manufactured by Micromeritic, etc.). demand.
 そして、球状シリカ粉末の比表面積A(m/g)とメジアン径d50(μm)の積A×d50は2.7~5.0μm・m/gであり、好ましくは2.7~4.5μm・m/gであり、より好ましくは2.7~4.0μm・m/gである。A×d50は理論値が2.7[比表面積=6/(シリカの真密度2.2(g/cm)×メジアン径d50(μm))より導出]であり、これ以下の値は現実的に達成不可である。A×d50の値が大きいほど、粒径当たりの比表面積が大きくなり、誘電正接が大きくなってしまうので、誘電正接を周波数1GHzにおいて0.0020以下程度に低減させるために、A×d50は5.0μm・m/g以下とする。 The product A×d50 of the specific surface area A (m 2 /g) of the spherical silica powder and the median diameter d50 (μm) is 2.7 to 5.0 μm·m 2 /g, preferably 2.7 to 4. 0.5 μm·m 2 /g, more preferably 2.7 to 4.0 μm·m 2 /g. A×d50 has a theoretical value of 2.7 [specific surface area = 6/(true density of silica 2.2 (g/cm 3 ) × median diameter d50 (μm))], and values below this are realistic. practically unattainable. The larger the value of A×d50, the larger the specific surface area per particle size and the larger the dielectric loss tangent. 0 μm·m 2 /g or less.
 球状シリカ粉末の真球度は、0.75~1.0であるのが好ましい。真球度が低くなると比表面積が大きくなるので、誘電正接が上昇しやすくなるため、真球度は0.75以上であるのが好ましい。真球度は、0.75以上であるのが好ましく、0.90以上がより好ましく、0.93以上がさらに好ましく、1.0に近いほど好ましい。 The spherical silica powder preferably has a sphericity of 0.75 to 1.0. Since the specific surface area increases as the sphericity decreases, the dielectric loss tangent tends to increase, so the sphericity is preferably 0.75 or more. The sphericity is preferably 0.75 or more, more preferably 0.90 or more, even more preferably 0.93 or more, and the closer to 1.0 the better.
 真球度は、走査型電子顕微鏡(SEM)により写真撮影して得られる写真投影図における任意の100個の粒子について、それぞれの最大径(DL)と、これと直交する短径(DS)とを測定し、最大径(DL)に対する最小径(DS)の比(DS/DL)を算出した平均値で表すことができる。 The sphericity is the maximum diameter (DL) and the short diameter (DS) perpendicular to each of arbitrary 100 particles in a photographic projection obtained by photographing with a scanning electron microscope (SEM). is measured, and the ratio of the minimum diameter (DS) to the maximum diameter (DL) (DS/DL) is calculated and can be expressed as an average value.
 本発明の球状シリカ粉末は、粉末での誘電正接が、周波数1GHzにおいて0.0020以下であるのが好ましく、0.0010以下がより好ましく、0.0008以下がさらに好ましい。特に粉体の誘電正接や誘電率の測定において、周波数10GHz以上ではサンプルスペースが小さくなり測定精度が悪化するので、本発明では周波数1GHzでの測定値を採用する。球状シリカ粉末の周波数1GHzでの誘電正接が0.0020以下であると、優れた誘電損失抑制効果が得られるので、高周波特性が向上した基板やシートが得られる。誘電正接が小さいほど、回路の伝送損失が抑えられるため、下限値は特に限定されない。
 同様の観点から、球状シリカ粉末の誘電率は、周波数1GHzにおいて5.0以下が好ましく、4.5以下がより好ましく、4.1以下がさらに好ましい。
The spherical silica powder of the present invention preferably has a dielectric loss tangent of 0.0020 or less, more preferably 0.0010 or less, and even more preferably 0.0008 or less at a frequency of 1 GHz. In particular, in the measurement of dielectric loss tangent and dielectric constant of powder, a sample space becomes small at a frequency of 10 GHz or higher, resulting in poor measurement accuracy. When the dielectric loss tangent of the spherical silica powder at a frequency of 1 GHz is 0.0020 or less, an excellent effect of suppressing dielectric loss can be obtained, so that substrates and sheets with improved high frequency characteristics can be obtained. Since the transmission loss of the circuit is suppressed as the dielectric loss tangent becomes smaller, the lower limit value is not particularly limited.
From the same point of view, the dielectric constant of the spherical silica powder is preferably 5.0 or less, more preferably 4.5 or less, and even more preferably 4.1 or less at a frequency of 1 GHz.
 誘電正接および誘電率は、専用の装置(例えば、キーコム株式会社製「ベクトルネットワークアナライザ E5063A」)を用い、摂動方式共振器法にて測定できる。 The dielectric loss tangent and dielectric constant can be measured by the perturbation resonator method using a dedicated device (eg, "Vector Network Analyzer E5063A" manufactured by Keycom Co., Ltd.).
 本発明の球状シリカ粉末は、下記測定方法により測定した球状シリカ粉末を含む混練物の粘度が5000mPa・s以下となるものであるのが好ましい。
(測定方法)
 JIS K 5421:2000で規定された煮アマニ油6質量部と球状シリカ粉末8質量部を混合し、2000rpmで3分間混練して得た混練物を、回転式レオメータを用いてせん断速度1s-1で30秒測定し、30秒時点での粘度を求める。
The spherical silica powder of the present invention preferably has a kneaded product containing the spherical silica powder with a viscosity of 5000 mPa·s or less as measured by the following measuring method.
(Measuring method)
6 parts by mass of boiled linseed oil specified in JIS K 5421 :2000 and 8 parts by mass of spherical silica powder were mixed and kneaded at 2000 rpm for 3 minutes. for 30 seconds, and determine the viscosity at 30 seconds.
 上記測定方法により求めた混練物のせん断速度1s-1での粘度が5000mPa・s以下であると、球状シリカ粉末を含む樹脂組成物の成形・成膜時に添加する溶剤量を減らせ、乾燥速度を早くでき、生産性を向上できる。また、シリカ粉末の粒径に応じた比表面積が大きくなると、樹脂組成物に添加した際に粘度が上昇しやすくなるが、本発明の球状シリカ粉末は、比表面積が小さいので樹脂組成物の粘度上昇を抑制できる。混練物の粘度は、4000mPa・s以下であるのがより好ましく、3500mPa・s以下がさらに好ましい。
 前記混練物のせん断速度1s-1での粘度は、低いほど樹脂組成物の塗工性が向上し、生産性が向上するため下限値は特に限定されない。
If the kneaded product has a viscosity of 5000 mPa s or less at a shear rate of 1 s −1 determined by the above measurement method, the amount of solvent added during molding and film formation of the resin composition containing spherical silica powder can be reduced, and the drying speed can be increased. You can do it faster and improve your productivity. In addition, when the specific surface area of the silica powder increases according to the particle size, the viscosity tends to increase when added to the resin composition. It can suppress the rise. The viscosity of the kneaded product is more preferably 4000 mPa·s or less, and even more preferably 3500 mPa·s or less.
The lower the viscosity of the kneaded product at a shear rate of 1 s −1 , the better the coating properties of the resin composition and the higher the productivity, so the lower limit is not particularly limited.
 本発明の球状シリカ粉末の表面の孤立シラノール基に由来する3746cm-1付近のIRピーク強度は、0.1以下であるのが好ましく、0.08以下がより好ましく、0.06以下がさらに好ましい。孤立シラノール基とは、シリカ粒子に吸着された水等と結合していないシラノール(Si-OH)基である。シリカ粒子表面の孤立シラノール(Si-OH)基量はIR測定によって得られる。具体的には、IRスペクトルを800cm-1で規格化し、3800cm-1でベースラインを合わせたあと、3746cm-1付近のSi-OHピーク強度の相対値を求める。粒子表面の孤立シラノール基が多いと、樹脂に混合した部材を電子用途に使用する場合、誘電損失が大きくなる傾向があるが、粒子表面の孤立シラノール基に由来する3746cm-1付近のIRピーク強度が0.1以下であると、誘電損失を低減できる。 The IR peak intensity near 3746 cm −1 derived from isolated silanol groups on the surface of the spherical silica powder of the present invention is preferably 0.1 or less, more preferably 0.08 or less, and even more preferably 0.06 or less. . An isolated silanol group is a silanol (Si—OH) group that is not bound to water or the like adsorbed to silica particles. The amount of isolated silanol (Si—OH) groups on the silica particle surface is obtained by IR measurement. Specifically, after normalizing the IR spectrum at 800 cm −1 and adjusting the baseline at 3800 cm −1 , the relative value of the Si—OH peak intensity near 3746 cm −1 is obtained. If there are many isolated silanol groups on the particle surface, the dielectric loss tends to increase when the member mixed with the resin is used for electronic applications, but the IR peak intensity around 3746 cm -1 derived from the isolated silanol groups on the particle surface is 0.1 or less, the dielectric loss can be reduced.
 また、本発明の球状シリカ粉末の表面の結合シラノール基に由来する3300~3700cm-1にある最大IRピーク強度は、0.2以下であるのが好ましく、0.17以下がより好ましく、0.15以下がさらに好ましい。結合シラノール基とは、シリカ粒子に吸着された水や、シリカ表面のシラノール等と結合しているシラノール(Si-OH)基である。シリカ粒子表面の結合シラノール(Si-OH)基量はIR測定によって得られる。具体的には、IRスペクトルを800cm-1で規格化し、3800cm-1でベースラインを合わせたあと、3300~3700cm-1にあるうちの最大ピークから、結合Si-OHピーク強度の相対値を求める。粒子表面の結合シラノール基が多いと、樹脂に混合した部材を電子用途に使用する場合、誘電損失が大きくなる傾向があるが、粒子表面の結合シラノール基に由来する、3300~3700cm-1にある最大IRピーク強度が0.2以下であると、誘電損失を低減できる。 In addition, the maximum IR peak intensity at 3300 to 3700 cm −1 derived from the bonded silanol groups on the surface of the spherical silica powder of the present invention is preferably 0.2 or less, more preferably 0.17 or less, and 0.5. 15 or less is more preferable. The bonded silanol group is a silanol (Si—OH) group bonded to water adsorbed to silica particles, silanol on the silica surface, or the like. The amount of bonded silanol (Si—OH) groups on the silica particle surface is obtained by IR measurement. Specifically, after normalizing the IR spectrum at 800 cm −1 and matching the baseline at 3800 cm −1 , the relative value of the bonded Si—OH peak intensity is determined from the maximum peak among those at 3300 to 3700 cm −1 . . If there are many bonded silanol groups on the particle surface, dielectric loss tends to increase when the member mixed with the resin is used for electronic applications. A dielectric loss can be reduced as the maximum IR peak intensity is 0.2 or less.
 本発明の球状シリカ粉末は、無孔質粒子であることが好ましい。多孔質粒子であると、吸油量が大きくなり、樹脂中での粘度が上昇してしまうとともに、表面積が増加し、シリカ粒子表面のシラノール(Si-OH)基量が増加して、誘電正接が悪化する傾向にある。具体的には、吸油量が100ml/100g以下であることが好ましく、70ml/100g以下であることがより好ましく、50ml/100g以下であることが最も好ましい。下限値は特に限定されないが、吸油量を20ml/100g以下とすることは実質的に困難である。
 吸油量の測定は、JIS K5101-13-2:2004に従い煮アマニ油を用いることが好ましい。
The spherical silica powder of the present invention is preferably non-porous particles. With porous particles, the oil absorption increases, the viscosity in the resin increases, the surface area increases, the amount of silanol (Si—OH) groups on the surface of the silica particles increases, and the dielectric loss tangent increases. tend to get worse. Specifically, the oil absorption is preferably 100 ml/100 g or less, more preferably 70 ml/100 g or less, and most preferably 50 ml/100 g or less. Although the lower limit is not particularly limited, it is practically difficult to reduce the oil absorption to 20 ml/100 g or less.
For measurement of oil absorption, it is preferable to use boiled linseed oil according to JIS K5101-13-2:2004.
 本発明の球状シリカ粉末は、チタン(Ti)を30~1500ppmの範囲で含むのが好ましく、100~1000ppmがより好ましく、100~500ppmがさらに好ましい。チタンの濃度は、シリカ粉末に過塩素酸とフッ酸を加えて強熱し主成分のケイ素を除去したのちに誘導結合プラズマ(ICP)発光分析で測定できる。 The spherical silica powder of the present invention preferably contains titanium (Ti) in the range of 30 to 1500 ppm, more preferably 100 to 1000 ppm, even more preferably 100 to 500 ppm. The concentration of titanium can be measured by inductively coupled plasma (ICP) emission spectroscopy after adding perchloric acid and hydrofluoric acid to silica powder and heating the mixture to remove silicon as the main component.
 Tiは、球状シリカ粉末の製造において任意に含有させる成分である。球状シリカ粉末の製造時において、シリカ粒子の割れにより微粉が発生してしまうと、微粉が母粒子表面に付着してしまい、粒子の比表面積が増大してしまう。球状シリカ粉末の製造時にTiを含ませることにより、焼成時に熱締まりしやすくなる。これにより焼成後の後処理時において割れにくくなるため、微粉の発生を抑制でき、シリカの母粒子表面に付着する付着粒子を少なくでき、よって比表面積の増大を抑制できる。Tiを30ppm以上含むことで焼成時に熱締まりしやすいため割れによる微粉の発生を抑制でき、Ti含有量が1500ppm以下であると、前記効果が得られるとともにシラノール基量の増加を抑制し、誘電正接の悪化を抑制できる。  Ti is a component that is optionally included in the production of spherical silica powder. During the production of spherical silica powder, if fine powder is generated due to cracking of silica particles, the fine powder adheres to the surface of the base particles, increasing the specific surface area of the particles. By including Ti in the production of the spherical silica powder, it becomes easier to thermally compact during firing. This makes it difficult to crack during the post-treatment after calcination, so that the generation of fine powder can be suppressed, the amount of adhering particles adhering to the surface of the silica base particles can be reduced, and an increase in the specific surface area can be suppressed. By containing 30 ppm or more of Ti, it is easy to thermally compact during firing, so it is possible to suppress the generation of fine powder due to cracking. can suppress the deterioration of
 本発明の球状シリカ粉末は、本発明の効果を妨げない範囲において、チタン(Ti)以外の不純物元素を含んでいてもよい。不純物元素としては、Tiの他に、例えば、Na、K、Mg、Ca、Al、Fe等が挙げられる。
 不純物元素のうちアルカリ金属とアルカリ土類金属の含有量は、総和が2000ppm以下であるのが好ましく、1000ppm以下がより好ましく、200ppm以下がさらに好ましい。
The spherical silica powder of the present invention may contain impurity elements other than titanium (Ti) as long as the effects of the present invention are not impaired. Examples of impurity elements other than Ti include Na, K, Mg, Ca, Al, and Fe.
Among impurity elements, the total content of alkali metals and alkaline earth metals is preferably 2000 ppm or less, more preferably 1000 ppm or less, and even more preferably 200 ppm or less.
 本発明の球状シリカ粉末はシランカップリング剤によって処理されていてもよい。
 球状シリカ粉末の表面がシランカップリング剤によって処理されていることで、表面のシラノール基の残存量が少なくなり、表面が疎水化され、水分吸着を抑えて誘電損失を向上できるとともに、樹脂組成物とする際に、樹脂との親和性が向上し、分散性や、樹脂製膜後の強度が向上する。
The spherical silica powder of the present invention may be treated with a silane coupling agent.
By treating the surface of the spherical silica powder with a silane coupling agent, the amount of residual silanol groups on the surface is reduced, the surface is made hydrophobic, moisture adsorption can be suppressed, dielectric loss can be improved, and the resin composition can be improved. In this case, the affinity with the resin is improved, and the dispersibility and the strength after resin film formation are improved.
 シランカップリング剤の種類としては、アミノシラン系カップリング剤、エポキシシラン系カップリング剤、メルカプトシラン系カップリング剤、シラン系カップリング剤、オルガノシラザン化合物等が挙げられる。シランカップリング剤は1種類を用いてもよいし2種類以上を組み合わせて用いてもよい。 Types of silane coupling agents include aminosilane coupling agents, epoxysilane coupling agents, mercaptosilane coupling agents, silane coupling agents, and organosilazane compounds. One type of silane coupling agent may be used, or two or more types may be used in combination.
 シランカップリング剤の付着量としては、球状シリカ粉末100質量部に対して、0.01~5質量部であるのが好ましく、0.02~5質量部がより好ましく、0.1~2質量部がさらに好ましい。ここで、シランカップリング剤の付着量は、球状シリカ粉末100質量部に対して、0.01質量部以上であることが好ましく、0.02質量部以上がより好ましく、0.1質量部以上がさらに好ましく、また、5質量部以下がより好ましく、2質量部以下がさらに好ましい。 The amount of the silane coupling agent attached is preferably 0.01 to 5 parts by mass, more preferably 0.02 to 5 parts by mass, and 0.1 to 2 parts by mass with respect to 100 parts by mass of the spherical silica powder. Part is more preferred. Here, the amount of the silane coupling agent attached is preferably 0.01 parts by mass or more, more preferably 0.02 parts by mass or more, and 0.1 parts by mass or more with respect to 100 parts by mass of the spherical silica powder. is more preferable, 5 parts by mass or less is more preferable, and 2 parts by mass or less is even more preferable.
 球状シリカ粉末の表面がシランカップリング剤で処理されていることはIRによるシランカップリング剤の置換基によるピークの検出により確認できる。また、シランカップリング剤の付着量は、炭素量により測定できる。 The fact that the surface of the spherical silica powder is treated with a silane coupling agent can be confirmed by detecting peaks due to the substituents of the silane coupling agent by IR. Moreover, the adhesion amount of the silane coupling agent can be measured by the amount of carbon.
(球状シリカ粉末の製造方法)
 本発明の球状シリカ粉末の製造方法は、湿式法によって球状のシリカ前駆体を形成することを含む。湿式法とは、シリカ源として液体のものを用い、これをゲル化させることで球状シリカ粉末の原料を得る工程を含む方式を指す。湿式法を用いることで、球状のシリカ粒子を形成できるので、粉砕等により粒子の形状を整える必要が無く、結果、比表面積の小さい粒子が得られる。また、湿式法は、平均粒径に対して大幅に小さい粒子が生成しにくく、焼成後に比表面積が小さくなりやすい傾向がある。また、湿式法では、シリカ源の不純物を調整することで、チタンなどの不純物元素の量を調整でき、さらに前述の不純物元素を、粒子中に均一に分散させた状態とすることが出来る。
(Method for producing spherical silica powder)
The method for producing spherical silica powder of the present invention includes forming a spherical silica precursor by a wet method. The wet method refers to a method including a step of using a liquid silica source and gelling it to obtain a raw material for spherical silica powder. Since spherical silica particles can be formed by using a wet method, there is no need to adjust the shape of the particles by pulverization or the like, and as a result, particles with a small specific surface area can be obtained. In addition, the wet method is less likely to produce particles significantly smaller than the average particle size, and the specific surface area tends to decrease after firing. In the wet method, the amount of impurity elements such as titanium can be adjusted by adjusting the impurities in the silica source, and the impurity elements can be uniformly dispersed in the particles.
 湿式法としては、例えば、噴霧法、エマルション・ゲル化法等が挙げられる。エマルション・ゲル化法としては、例えば、シリカ前駆体を含む分散相と連続相とを乳化し、得られたエマルションをゲル化して球状のシリカ前駆体を得る。乳化方法としては、シリカ前駆体を含む分散相を連続相に微小孔部または多孔質膜を介して供給しエマルションを作製する方法が好ましい。これによって、均一な液滴径のエマルションを作製して、結果として均一な粒子径の球状シリカが得られる。このような乳化方法としては、マイクロミキサー法や膜乳化法を用いることができる。例えば、マイクロミキサー法は国際公開第2013/062105号に開示されている。 Wet methods include, for example, a spraying method, an emulsion/gelation method, and the like. As the emulsion gelling method, for example, a dispersed phase and a continuous phase containing a silica precursor are emulsified, and the obtained emulsion is gelled to obtain a spherical silica precursor. As an emulsification method, a method of supplying a dispersed phase containing a silica precursor to a continuous phase through a micropore or a porous membrane to prepare an emulsion is preferred. This produces an emulsion with a uniform droplet size, resulting in spherical silica with a uniform particle size. As such an emulsification method, a micromixer method or a membrane emulsification method can be used. For example, the micromixer method is disclosed in WO2013/062105.
 湿式法で得られた球状のシリカ前駆体の細孔容積は、0.05~2.2ml/gであるのが望ましい。シリカ前駆体の細孔容積が0.05ml/g以上であると、焼成時にシリカ粒子が十分に収縮し、比表面積を小さくできる。また、シリカ前駆体の細孔容積が2.2ml/g以下であると、焼成前の仕込みかさ密度が大きくなり過ぎるのを抑制し、生産性を向上できる。シリカ前駆体の細孔容積は、0.05~2.2ml/gであるのが好ましく、0.1~2.2ml/gがより好ましく、0.3~2.2ml/gがより好ましく、0.3~1.8ml/gがさらに好ましく、0.6~1.8ml/gが特に好ましく、0.7~1.5ml/gが最も好ましい。ここで、シリカ前駆体の細孔容積は、0.05ml/g以上であるのが好ましく、0.1ml/g以上がより好ましく、0.3ml/g以上がさらに好ましく、0.6ml/g以上が特に好ましく、0.7ml/g以上が最も好ましく、また、2.2ml/g以下が好ましく、1.8ml/g以下がより好ましく、1.5ml/g以下が最も好ましい。 The pore volume of the spherical silica precursor obtained by the wet method is desirably 0.05 to 2.2 ml/g. When the pore volume of the silica precursor is 0.05 ml/g or more, the silica particles sufficiently shrink during firing, and the specific surface area can be reduced. Further, when the pore volume of the silica precursor is 2.2 ml/g or less, it is possible to prevent the bulk density of the pre-calcined material from becoming too large, thereby improving the productivity. The pore volume of the silica precursor is preferably 0.05-2.2 ml/g, more preferably 0.1-2.2 ml/g, more preferably 0.3-2.2 ml/g, 0.3-1.8 ml/g is more preferred, 0.6-1.8 ml/g is particularly preferred, and 0.7-1.5 ml/g is most preferred. Here, the pore volume of the silica precursor is preferably 0.05 ml/g or more, more preferably 0.1 ml/g or more, still more preferably 0.3 ml/g or more, and 0.6 ml/g or more. is particularly preferred, 0.7 ml/g or more is most preferred, 2.2 ml/g or less is preferred, 1.8 ml/g or less is more preferred, and 1.5 ml/g or less is most preferred.
 細孔容積は、比表面積・細孔分布測定装置(例えば、マイクロトラック・ベル社製「BELSORP-miniII」、マイクロメリティック社製「トライスターII」等)を用いた窒素吸着法に基づくBJH法により求める。 The pore volume is determined by the BJH method based on the nitrogen adsorption method using a specific surface area/pore distribution measuring device (e.g., "BELSORP-miniII" manufactured by Microtrac Bell, "Tristar II" manufactured by Micromeritic, etc.). Calculated by
 湿式法で得られたシリカ前駆体の強熱減量は、5.0~15.0質量%であるのが望ましく、6.0~13.0質量%がより好ましく、7.0~12.0質量%がさらに好ましい。強熱減量は、シリカ前駆体に付着している付着水の質量と、シリカ前駆体に含まれるシラノール基の縮合により発生する水の質量との総和となっており、シリカ前駆体が適度なシラノール基を持つことで、焼成時に縮合が進み、シラノール基が減りやすくなる。強熱減量が多過ぎると、焼成時の収率が低下し、生産性が悪化することから、シリカ前駆体の強熱減量は、15.0質量%以下が好ましく、13.0質量%以下がより好ましく、12.0質量%以下が最も好ましい。強熱減量が少な過ぎると、焼成時にシラノール基が残りやすくなるため、シリカ前駆体の強熱減量は、5.0質量%以上が好ましく、6.0質量%以上がより好ましく、7.0質量%以上が最も好ましい。 The ignition loss of the silica precursor obtained by the wet method is desirably 5.0 to 15.0% by mass, more preferably 6.0 to 13.0% by mass, and 7.0 to 12.0% by mass. % by mass is more preferred. The ignition loss is the sum of the mass of water adhering to the silica precursor and the mass of water generated by condensation of silanol groups contained in the silica precursor. Having a group promotes condensation during firing, making it easier to reduce silanol groups. If the ignition loss is too large, the yield at the time of firing decreases and the productivity deteriorates. Therefore, the ignition loss of the silica precursor is preferably 15.0% by mass or less, and 13.0% by mass or less. More preferably, 12.0% by mass or less is most preferable. If the ignition loss is too small, silanol groups tend to remain during firing, so the ignition loss of the silica precursor is preferably 5.0% by mass or more, more preferably 6.0% by mass or more, and 7.0% by mass. % or more is most preferable.
 ここで、強熱減量は、JIS K0067:1992に準拠して、シリカ前駆体1gを、850℃で0.5時間加熱乾燥したときの質量減量として求める。 Here, the ignition loss is determined as the mass loss when 1 g of the silica precursor is dried by heating at 850°C for 0.5 hours in accordance with JIS K0067:1992.
 シリカ前駆体の平均細孔径は、1.0~50.0nmであるのが好ましい。平均細孔径が1.0nm以上であると粒子内部まで均質に無孔質化でき、内部に気泡が残らず誘電正接を下げられる。平均細孔径が50.0nm以下であると焼成により細孔を残さずにシリカ粒子を緻密化(低比表面積化)できるので誘電正接を下げられる。平均細孔径は、1.0~50.0nmであるのが好ましく、2.0~40.0nmがより好ましく、3.0~30.0nmがさらに好ましく、4.0~20.0nmが特に好ましい。ここで、平均細孔径は、1.0nm以上であるのが好ましく、2.0nm以上がより好ましく、3.0nm以上がさらに好ましく、4.0nm以上が特に好ましく、また、50.0nm以下であるのが好ましく、40.0nm以下であるのがより好ましく、30.0nm以下がさらに好ましく、20.0nm以下が特に好ましい。 The silica precursor preferably has an average pore diameter of 1.0 to 50.0 nm. When the average pore diameter is 1.0 nm or more, the inside of the particles can be uniformly made non-porous, and the dielectric loss tangent can be lowered without leaving air bubbles inside. When the average pore diameter is 50.0 nm or less, the silica particles can be densified (reduced specific surface area) without leaving pores by firing, so that the dielectric loss tangent can be lowered. The average pore diameter is preferably 1.0 to 50.0 nm, more preferably 2.0 to 40.0 nm, still more preferably 3.0 to 30.0 nm, particularly preferably 4.0 to 20.0 nm. . Here, the average pore diameter is preferably 1.0 nm or more, more preferably 2.0 nm or more, still more preferably 3.0 nm or more, particularly preferably 4.0 nm or more, and 50.0 nm or less. is preferably 40.0 nm or less, more preferably 30.0 nm or less, and particularly preferably 20.0 nm or less.
 平均細孔径は、比表面積・細孔分布測定装置(例えば、マイクロトラック・ベル社製「BELSORP-miniII」、マイクロメリティック社製「トライスターII」等)を用いた窒素吸着法に基づくBET法により求められる。 The average pore diameter is determined by the BET method based on the nitrogen adsorption method using a specific surface area/pore distribution measuring device (e.g., "BELSORP-miniII" manufactured by Microtrac Bell, "Tristar II" manufactured by Micromeritic, etc.). required by
 またシリカ前駆体は、230℃で12時間乾燥したときの重量の減少率が10%以下であるのが好ましい。重量の減少率が10%以下であると、シリカ前駆体をその粒子同士が接した状態で焼成したときに粒子同士の焼結が起こり難く、球状のシリカ粉末が得られやすい。
 重量の減少率は、9%以下であるのがより好ましく、8%以下がさらに好ましく、6%以下が特に好ましく、また、230℃で12時間乾燥しても重量変化がないものが望ましいため、下限は特に限定されない。
The silica precursor preferably has a weight reduction rate of 10% or less when dried at 230° C. for 12 hours. When the weight reduction rate is 10% or less, when the silica precursor is fired while the particles are in contact with each other, the particles are less likely to be sintered, and spherical silica powder is more likely to be obtained.
The weight reduction rate is more preferably 9% or less, more preferably 8% or less, and particularly preferably 6% or less. The lower limit is not particularly limited.
 得られたシリカ前駆体の含水量が多く、230℃で12時間乾燥したときの重量の減少率が10%を超えるときは10%以下になるまで乾燥させるのが好ましい。乾燥手段としては、例えば、スプレードライヤー、乾燥機での静置乾燥、乾燥空気の通風処理等が挙げられる。 When the water content of the obtained silica precursor is high and the weight reduction rate after drying at 230°C for 12 hours exceeds 10%, it is preferable to dry the silica precursor until it reaches 10% or less. Drying means include, for example, a spray dryer, stationary drying in a dryer, ventilation treatment with dry air, and the like.
 球状シリカ粉末は、前記球状シリカ前駆体を熱処理することにより得られる。熱処理では、球状シリカ粉末を焼き締め、緻密化を行うとともに、表面のシラノール基量を減らし、誘電正接を低下させる。熱処理の温度は、700~1600℃であるのが好ましく、800~1500℃がより好ましく、900~1400℃がさらに好ましい。ここで、熱処理の温度は、700℃以上が好ましく、800℃以上がより好ましく、900℃以上が最も好ましく、温度が高くなり過ぎると、粒子が凝集しやすくなり、樹脂組成物中での粒ゲージが大きくなるため、1600℃以下が好ましく、1500℃以下がより好ましく、1400℃以下が最も好ましい。 The spherical silica powder is obtained by heat-treating the spherical silica precursor. In the heat treatment, the spherical silica powder is baked and densified, and the amount of silanol groups on the surface is reduced to lower the dielectric loss tangent. The heat treatment temperature is preferably 700 to 1600°C, more preferably 800 to 1500°C, even more preferably 900 to 1400°C. Here, the heat treatment temperature is preferably 700° C. or higher, more preferably 800° C. or higher, and most preferably 900° C. or higher. is preferably 1600° C. or lower, more preferably 1500° C. or lower, and most preferably 1400° C. or lower.
 熱処理時間は、使用する装置に応じて適宜調整すればよいが、例えば、0.5~50時間で行うのが好ましく、1~10時間がより好ましい。 The heat treatment time may be appropriately adjusted according to the equipment to be used. For example, the heat treatment time is preferably 0.5 to 50 hours, more preferably 1 to 10 hours.
 熱処理時の雰囲気は、酸素を含む雰囲気であっても、酸素を含まない雰囲気であってもよい。湿式法で球形化する場合には、乳化剤等の有機物を利用することが多く、したがってシリカ前駆体中に有機物が残存する場合が多い。有機物をわずかに含むシリカ前駆体を焼成する場合に、酸素が少ない条件では有機物が炭化してしまうため、誘電正接の上昇や着色の原因になる。よって、シリカ前駆体が有機物を含む場合は、好ましくは、酸素を含む雰囲気、より好ましくは大気雰囲気下で焼成を行う。 The atmosphere during the heat treatment may be an oxygen-containing atmosphere or an oxygen-free atmosphere. In the case of spheronization by a wet method, an organic substance such as an emulsifier is often used, and therefore the organic substance often remains in the silica precursor. When firing a silica precursor containing a small amount of organic matter, the organic matter is carbonized under conditions with little oxygen, which causes an increase in dielectric loss tangent and coloration. Therefore, when the silica precursor contains an organic substance, it is preferably fired in an oxygen-containing atmosphere, more preferably in an air atmosphere.
 前記熱処理の方式は、特に限定されないが、静置方式による熱処理、ロータリーキルン方式による熱処理、噴霧燃焼による熱処理等の方式が挙げられる。
 熱処理方法は、球状で多孔質のシリカ前駆体を、粒子同士が接する状態で焼成することが好ましい。シリカ前駆体をその粒子同士が接する状態で焼成すると、小さな容積で焼成することが可能となるので、例えばシリカ前駆体を気体中に分散させて焼成する場合と比べて焼成時の温度ムラや時間ムラが小さくなり、よって、品質の一定な球状シリカ粉末が得られる。シリカ前駆体をその粒子同士が接する状態で焼成することで各シリカ前駆体における焼成条件を均一にし、一定の品質を保てる。
The method of the heat treatment is not particularly limited, but examples thereof include heat treatment by a stationary method, heat treatment by a rotary kiln method, heat treatment by spray combustion, and the like.
As for the heat treatment method, it is preferable that the spherical and porous silica precursor is fired while the particles are in contact with each other. When the silica precursor is fired while the particles are in contact with each other, it is possible to fire in a small volume. The unevenness is reduced, so that a spherical silica powder of uniform quality can be obtained. By firing the silica precursor in a state where the particles are in contact with each other, the firing conditions for each silica precursor are made uniform, and a constant quality can be maintained.
 球状シリカ粉末は、焼成後に粒子同士が弱く焼結している場合があるので、その場合は解砕を行ってもよい。解砕は本発明の効果を損なわないよう、球形度や表面積を保つために粒子の平均円形度が0.90を下回らないように行うのが好ましい。また、解砕処理により表面積が上昇しないのが好ましい。解砕処理で表面積が大きく増大することは、一部の球状粒子が粉砕されていることや、表面に微細な損壊が生じて微粉が発生していることを意味する。表面積の上昇は、樹脂へ分散したときの粘度上昇や、誘電正接の悪化につながるため好ましくない。
 解砕は、例えば、サイクロンミル、ジェットミル等の解砕装置を用いて行うことができ、また、振動篩を用いても解砕が可能である。
Since the particles of the spherical silica powder may be weakly sintered after firing, in such a case, crushing may be performed. Crushing is preferably carried out so that the average circularity of the particles does not fall below 0.90 in order to maintain the sphericity and surface area so as not to impair the effects of the present invention. Moreover, it is preferable that the surface area does not increase due to the crushing treatment. A large increase in the surface area due to the pulverization treatment means that some of the spherical particles are pulverized or fine particles are generated due to fine damage on the surface. An increase in surface area is not preferable because it leads to an increase in viscosity when dispersed in a resin and a deterioration in dielectric loss tangent.
Crushing can be performed using a crushing device such as a cyclone mill or a jet mill, and crushing can also be performed using a vibrating sieve.
 焼成後の球状シリカ粉末は、シランカップリング剤で表面処理してもよい。この工程により、球状シリカ粉末の表面に存在するシラノール基とシランカップリング剤とが反応し、表面のシラノール基が減少して、誘電正接が向上する。また、表面が疎水化して樹脂に対する親和性が改善するため、樹脂に対する分散性が向上する。 The fired spherical silica powder may be surface-treated with a silane coupling agent. This step causes the silanol groups present on the surface of the spherical silica powder to react with the silane coupling agent, reduces the silanol groups on the surface, and improves the dielectric loss tangent. In addition, since the surface is made hydrophobic and the affinity for the resin is improved, the dispersibility in the resin is improved.
 表面処理の条件には特に制限はなく、一般的な表面処理条件でよく、湿式処理法や乾式処理法を用いることができる。均一な処理を行う観点から、湿式処理法が好ましい。 There are no particular restrictions on the surface treatment conditions, general surface treatment conditions may be used, and a wet treatment method or a dry treatment method can be used. A wet processing method is preferable from the viewpoint of uniform processing.
 表面処理に用いるシランカップリング剤としては、アミノシラン系カップリング剤、エポキシシラン系カップリング剤、メルカプトシラン系カップリング剤、シラン系カップリング剤、オルガノシラザン化合物等が挙げられる。これらは1種または2種以上を組み合わせて使用してもよい。 Silane coupling agents used for surface treatment include aminosilane coupling agents, epoxysilane coupling agents, mercaptosilane coupling agents, silane coupling agents, and organosilazane compounds. These may be used singly or in combination of two or more.
 具体的に表面処理剤としては、アミノプロピルメトキシシラン、アミノプロピルトリエトキシシラン、ウレイドプロピルトリエトキシシラン、N-フェニルアミノプロピルトリメトキシシラン、N-2(アミノエチル)アミノプロピルトリメトキシシラン等のアミノシラン系カップリング剤、グリシドキシプロピルトリメトキシシラン、グリシドキシプロピルトリエトキシシラン、グリシドキシプロピルメチルジエトキシシラン、グリシジルブチルトリメトキシシラン、(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシシラン系カップリング剤、メルカプトプロピルトリメトキシシラン、メルカプトプロピルトリエトキシシラン等のメルカプトシラン系カップリング剤、メチルトリメトキシシラン、ビニルトリメトキシシラン、オクタデシルトリメトキシシラン、フェニルトリメトキシシラン、メタクロキシプロピルトリメトキシシラン、イミダゾールシラン、トリアジンシラン等のシラン系カップリング剤、CF(CFCHCHSi(OCH、CF(CFCHCHSiCl、CF(CFCHCHSi(CH)(OCH、CF(CFCHCHSi(CH)C1、CF(CFCHCHSiCl、CF(CFCHCHSi(OCH、CFCHCHSiCl、CFCHCHSi(OCH、C17SON(C)CHCHCHSi(OCH、C15CONHCHCHCHSi(OCH、C17COCHCHCHSi(OCH、C17-O-CF(CF)CF-O-CSiCl、C-O-(CF(CF)CF-O)-CF(CF)CONH-(CHSi(OCH等のフッ素含有シランカップリング剤、ヘキサメチルジシラザン、ヘキサフェニルジシラザン、トリシラザン、シクロトリシラザン、1,1,3,3,5,5-ヘキサメチルシクロトリシラザン等のオルガノシラザン化合物等が挙げられる。 Specific examples of surface treatment agents include aminosilanes such as aminopropylmethoxysilane, aminopropyltriethoxysilane, ureidopropyltriethoxysilane, N-phenylaminopropyltrimethoxysilane, and N-2(aminoethyl)aminopropyltrimethoxysilane. system coupling agents, glycidoxypropyltrimethoxysilane, glycidoxypropyltriethoxysilane, glycidoxypropylmethyldiethoxysilane, glycidylbutyltrimethoxysilane, (3,4-epoxycyclohexyl)ethyltrimethoxysilane, etc. Epoxysilane coupling agents, mercaptosilane coupling agents such as mercaptopropyltrimethoxysilane, mercaptopropyltriethoxysilane, methyltrimethoxysilane, vinyltrimethoxysilane, octadecyltrimethoxysilane, phenyltrimethoxysilane, methacroxypropyl Silane - based coupling agents such as trimethoxysilane, imidazolesilane, and triazinesilane, CF3 ( CF2 ) 7CH2CH2Si ( OCH3 ) 3 , CF3 ( CF2 ) 7CH2CH2SiCl3 , CF 3 ( CF2) 7CH2CH2Si ( CH3 ) ( OCH3 ) 2 , CF3 ( CF2) 7CH2CH2Si ( CH3 ) C12 , CF3 ( CF2 ) 5CH2CH 2SiCl3 , CF3 ( CF2 ) 5CH2CH2Si ( OCH3 ) 3 , CF3CH2CH2SiCl3 , CF3CH2CH2Si ( OCH3 ) 3 , C8F17SO2 N ( C3H7 ) CH2CH2CH2Si ( OCH3 ) 3 , C7F15CONHCH2CH2CH2Si ( OCH3 ) 3 , C8F17CO2CH2CH2CH2Si _ _ _ (OCH 3 ) 3 , C 8 F 17 —O—CF(CF 3 )CF 2 —O—C 3 H 6 SiCl 3 , C 3 F 7 —O—(CF(CF 3 )CF 2 —O) 2 — fluorine-containing silane coupling agents such as CF(CF 3 )CONH—(CH 2 ) 3 Si(OCH 3 ) 3 , hexamethyldisilazane, hexaphenyldisilazane, organosilazane compounds such as trisilazane, cyclotrisilazane, 1,1,3,3,5,5-hexamethylcyclotrisilazane;
 シランカップリング剤の処理量としては、球状シリカ粉末100質量部に対して、0.01質量部以上であることが好ましく、0.02質量部以上がより好ましく、0.10質量部以上がさらに好ましく、また5質量部以下であることが好ましく、2質量部以下がより好ましい。 The treatment amount of the silane coupling agent is preferably 0.01 parts by mass or more, more preferably 0.02 parts by mass or more, and further preferably 0.10 parts by mass or more with respect to 100 parts by mass of the spherical silica powder. It is preferably 5 parts by mass or less, more preferably 2 parts by mass or less.
 シランカップリング剤で処理する方法としては、例えば、球状シリカ粉末にシランカップリング剤をスプレーする乾式法や、球状シリカ粉末を溶剤に分散させてからシランカップリング剤を加えて反応させる湿式法等が挙げられる。 Methods for treating with a silane coupling agent include, for example, a dry method in which a silane coupling agent is sprayed onto spherical silica powder, a wet method in which spherical silica powder is dispersed in a solvent, and then a silane coupling agent is added for reaction. are mentioned.
(樹脂組成物及びスラリー組成物)
 本発明の球状シリカ粉末は比表面積が小さいので、各種溶媒における分散性が良好であり、樹脂組成物への混合性に優れている。
 本実施形態に係る樹脂組成物は、本発明の球状シリカ粉末と樹脂とを含む。樹脂組成物中の球状シリカ粉末の含有量は5~90質量%であることが好ましく、10~85質量%がより好ましく、10~80質量%がさらに好ましく、10~75質量%特に好ましく、10~70質量%が殊更に好ましく、15~70質量%が最も好ましい。球状シリカ粉末の含有量が5質量%以上であると十分な剥離強度が得られ、90質量%以下であると樹脂組成物の粘度が上がり過ぎず、取り扱いがしやすい。ここで、樹脂組成物中の球状シリカ粉末の含有量は、5質量%以上であるのが好ましく、10質量%以上がより好ましく、15質量%以上がさらに好ましく、また、90質量%以下であるのが好ましく、85質量%以下がより好ましく、80質量%以下がさらに好ましく、75質量%が特に好ましく、70質量%以下が最も好ましい。
(Resin composition and slurry composition)
Since the spherical silica powder of the present invention has a small specific surface area, it has good dispersibility in various solvents and excellent miscibility with resin compositions.
The resin composition according to this embodiment contains the spherical silica powder of the present invention and a resin. The content of spherical silica powder in the resin composition is preferably 5 to 90% by mass, more preferably 10 to 85% by mass, still more preferably 10 to 80% by mass, particularly preferably 10 to 75% by mass, and 10% by mass. ~70% by weight is particularly preferred, and 15 to 70% by weight is most preferred. When the content of the spherical silica powder is 5% by mass or more, sufficient peel strength can be obtained, and when it is 90% by mass or less, the viscosity of the resin composition does not increase excessively, making it easy to handle. Here, the content of the spherical silica powder in the resin composition is preferably 5% by mass or more, more preferably 10% by mass or more, still more preferably 15% by mass or more, and 90% by mass or less. , more preferably 85% by mass or less, even more preferably 80% by mass or less, particularly preferably 75% by mass or less, and most preferably 70% by mass or less.
 樹脂としては、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル樹脂、フッ素樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド等のポリアミド樹脂;ポリブチレンテレフタレート、ポリエチレンテレフタレート等のポリエステル樹脂;ポリフェニレンエーテル樹脂、ポリフェニレンスルフィド樹脂、フェノール樹脂、オルトジビニルベンゼン樹脂、芳香族ポリエステル樹脂、ポリスルホン、液晶ポリマー、ポリエーテルスルホン、ポリカーボネート、マレイミド変成樹脂、ABS(アクリロニトリル・ブタジエン・スチレン)樹脂、AAS(アクリロニトリルーアクリルゴム・スチレン)樹脂、AES(アクリロニトリル・エチレン・プロピレン・ジエンゴム-スチレン)樹脂、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン-エチレン共重合体(ETFE)の1種または2種以上等を使用することができる。樹脂組成物における誘電正接は樹脂の特性にも依存するので、これらを考慮して使用する樹脂を選択すればよい。 Resins include epoxy resins, silicone resins, phenol resins, melamine resins, urea resins, unsaturated polyester resins, fluorine resins, polyimide resins, polyamideimide resins, polyamide resins such as polyetherimide; Polyester resin; polyphenylene ether resin, polyphenylene sulfide resin, phenolic resin, orthodivinylbenzene resin, aromatic polyester resin, polysulfone, liquid crystal polymer, polyethersulfone, polycarbonate, maleimide modified resin, ABS (acrylonitrile-butadiene-styrene) resin, AAS (acrylonitrile-acrylic rubber/styrene) resin, AES (acrylonitrile/ethylene/propylene/diene rubber-styrene) resin, polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene One or more of hexafluoropropylene copolymer (FEP) and tetrafluoroethylene-ethylene copolymer (ETFE) can be used. Since the dielectric loss tangent in the resin composition also depends on the properties of the resin, the resin to be used should be selected in consideration of these properties.
 樹脂としては、熱硬化性樹脂を含有することが好ましい。熱硬化性樹脂は1種を用いてもよく、2種以上を用いてもよい。熱硬化性樹脂としては、エポキシ樹脂、ポリフェニレンエーテル樹脂、ポリイミド樹脂、フェノール樹脂、オルトジビニルベンゼン樹脂等が挙げられる。密着性、耐熱性等の観点から、熱硬化性樹脂は、エポキシ樹脂、ポリフェニレンエーテル樹脂又はオルトジビニルベンゼン樹脂が好ましい。 The resin preferably contains a thermosetting resin. One type of thermosetting resin may be used, or two or more types may be used. Thermosetting resins include epoxy resins, polyphenylene ether resins, polyimide resins, phenol resins, orthodivinylbenzene resins, and the like. From the viewpoint of adhesion, heat resistance, etc., the thermosetting resin is preferably an epoxy resin, a polyphenylene ether resin, or an orthodivinylbenzene resin.
 密着性、誘電特性等の観点から、熱硬化性樹脂の重量平均分子量は、1000~7000が好ましく、1000~5000がより好ましく、1000~3000が更に好ましい。重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて、ポリスチレン換算により求める。 The weight average molecular weight of the thermosetting resin is preferably 1,000 to 7,000, more preferably 1,000 to 5,000, and still more preferably 1,000 to 3,000 from the viewpoint of adhesion, dielectric properties, and the like. A weight average molecular weight is calculated|required by polystyrene conversion using a gel permeation chromatography (GPC).
 シリカ粒子の偏在化抑制、吸水性低減、低誘電正接、密着性等の観点から、熱硬化性樹脂100質量部に対する球状シリカ粉末の含有量は、10~400質量部が好ましく、50~300質量部がより好ましく、70~250質量部が更に好ましい。特に、シリカ粒子を高充填とすることが望ましい場合には、前記シリカ粒子の含有量は、80質量部以上が好ましく、90質量部以上がより好ましい。

 球状シリカ粉末は、上述した作用機構により、充分に濡れて均一分散した状態にあり、熱硬化性樹脂とも高度に相互作用しやすい状態にある。そのため、前記含有量が、かかる範囲にある本組成物、すなわち熱硬化性樹脂に対する球状シリカ粉末の充填が多い本組成物においても、両成分が安定化しやすく、金属基材層に対する密着性に優れた成形物を形成できる。
From the viewpoint of suppression of uneven distribution of silica particles, reduction of water absorption, low dielectric loss tangent, adhesion, etc., the content of spherical silica powder with respect to 100 parts by mass of thermosetting resin is preferably 10 to 400 parts by mass, and 50 to 300 parts by mass. parts is more preferred, and 70 to 250 parts by mass is even more preferred. In particular, when it is desirable to highly fill the silica particles, the content of the silica particles is preferably 80 parts by mass or more, more preferably 90 parts by mass or more.

Due to the action mechanism described above, the spherical silica powder is sufficiently wet and uniformly dispersed, and is highly likely to interact with the thermosetting resin. Therefore, even in the present composition in which the content is within this range, that is, in the present composition in which the thermosetting resin is filled with a large amount of spherical silica powder, both components are easily stabilized, and adhesion to the metal substrate layer is excellent. moldings can be formed.
 また、本発明の球状シリカ粉末は、スラリー組成物の充填材として用いることができる。スラリー組成物は、水系又は油系の媒体中に本発明の球状シリカ粉末を分散させた泥状の組成物をいう。
 スラリー組成物中、球状シリカ粉末を、1~50質量%含むことが好ましく、5~40質量%含むことがより好ましい。
In addition, the spherical silica powder of the present invention can be used as a filler for slurry compositions. The slurry composition refers to a muddy composition in which the spherical silica powder of the present invention is dispersed in an aqueous or oil medium.
The slurry composition preferably contains 1 to 50% by mass, more preferably 5 to 40% by mass, of spherical silica powder.
 油系の媒体としては、アセトン、メタノール、エタノール、ブタノール、2-プロパノール、1-プロパノール、イソブチルアルコール、1-ブタノール、2-ブタノール、2-メトキシエタノール、2-エトキシエタノール、1-メトキシ-2-プロパノール、2-アセトキシ-1-メトキシプロパン、酢酸プロピル、酢酸イソブチル、酢酸ブチル、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、N,N-ジメチルホルムアミド、メチルイソブチルケトン、N-メチルピロリドン、n-ヘキサン、n-ヘプタン、シクロヘキサン、メチルシクロヘキサン、シクロヘキサノン及び混合物であるナフサ等が挙げられる。これらは単独で用いてもよいし、2種以上の混合物として用いてもよい。 Oil-based media include acetone, methanol, ethanol, butanol, 2-propanol, 1-propanol, isobutyl alcohol, 1-butanol, 2-butanol, 2-methoxyethanol, 2-ethoxyethanol, 1-methoxy-2- propanol, 2-acetoxy-1-methoxypropane, propyl acetate, isobutyl acetate, butyl acetate, toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, N,N-dimethylformamide, methyl isobutyl ketone, N-methylpyrrolidone, n-hexane, Examples include n-heptane, cyclohexane, methylcyclohexane, cyclohexanone and naphtha which is a mixture thereof. These may be used alone or as a mixture of two or more.
 樹脂組成物及びスラリー組成物には、上記樹脂や媒体以外に任意の成分を含んでいてもよい。任意の成分としては、例えば、分散助剤、界面活性剤、シリカ以外のフィラー等が挙げられる。 The resin composition and slurry composition may contain optional components in addition to the above resin and medium. Examples of optional components include dispersing aids, surfactants, fillers other than silica, and the like.
 溶媒と球状シリカ粉末を含む混合液の分散処理は、顔料分散等で使用される分散装置を使用できる。例えば、ディスパー、ホモミキサー、プラネタリーミキサー等のミキサー類、ホモジナイザー(例えば、エム・テクニック社製「クレアミックス」、PRIMIX社「フィルミックス」等、シルバーソン社製「アブラミックス」等)類、ペイントコンディショナー(レッドデビル社製)、コロイドミル(例えば、PUC社製「PUCコロイドミル」、IKA社製「コロイドミルMK」)類、コーンミル(例えば、IKA社製「コーンミルMKO」等)、ボールミル、サンドミル(例えば、シンマルエンタープライゼス社製「ダイノミル」等)、アトライター、パールミル(例えば、アイリッヒ社製「DCPミル」等)、コボールミル等のメディア型分散機、湿式ジェットミル(例えば、ジーナス社製「ジーナスPY」、スギノマシン社製「スターバースト」、ナノマイザー社製「ナノマイザー」等)、エム・テクニック社製「クレアSS-5」、奈良機械社製「MICROS」等のメディアレス分散機、その他ロールミル、ニーダー等が挙げられる。その中でも、粉砕メディア(ボール、ビーズ等)を用いないものが望ましい。粉砕メディアを用いると、摩耗したメディアのコンタミネーションが懸念されるためである。具体的には、湿式ジェットミル(ジーナス社製「ジーナスPY」、スギノマシン社製「スターバースト」、ナノマイザー社製「ナノマイザー」等)、エム・テクニック社製「クレアSS-5」、奈良機械社製「MICROS」等のメディアレス分散機が望ましい。 Dispersion equipment used for pigment dispersion can be used to disperse the mixed liquid containing the solvent and spherical silica powder. For example, mixers such as disper, homomixer, and planetary mixer, homogenizers (e.g., M Technic "Clairmix", PRIMIX "Filmix", Silverson "Abramix", etc.), paints Conditioner (manufactured by Red Devil), colloid mill (e.g. PUC "PUC Colloid Mill", IKA "Colloid Mill MK"), cone mills (e.g. IKA "Cone Mill MKO" etc.), ball mill, sand mill (For example, "Dyno Mill" manufactured by Shinmaru Enterprises Co., Ltd.), Attritor, Pearl Mill (eg, "DCP Mill" manufactured by Eirich Co., Ltd.), Media-type dispersers such as coball mills, wet jet mills (For example, Genus Co., Ltd. " Genus PY", Sugino Machine "Starburst", Nanomizer "Nanomizer", etc.), M Technic "Crea SS-5", Nara Machinery "MICROS", etc. Medialess dispersers, other roll mills , a kneader, and the like. Among them, those that do not use grinding media (balls, beads, etc.) are desirable. This is because the use of pulverizing media raises concerns about contamination of worn media. Specifically, wet jet mills ("Genus PY" manufactured by Genus, "Starburst" manufactured by Sugino Machine, "Nanomizer" manufactured by Nanomizer, etc.), "Crea SS-5" manufactured by M Technic, and Nara Machinery. A medialess dispersing machine such as "MICROS" manufactured by Fujikura is desirable.
 また、分散処理時の温度は、0~100℃で行うのが好ましい。前記温度範囲で分散処理することで溶媒の粘度が適度に保たれ、生産性が保たれ、また溶媒の蒸発を抑えて固形分を容易に制御できる。処理温度は、0~100℃であるのが好ましく、5~90℃がより好ましく、10~80℃がさらに好ましい。ここで、処理温度は、5℃以上であるのがより好ましく、10℃以上がさらに好ましく、また、90℃以下であるのがより好ましく、80℃以下がさらに好ましい。 Also, the temperature during the dispersion treatment is preferably 0 to 100°C. By carrying out the dispersion treatment within the above temperature range, the viscosity of the solvent can be appropriately maintained, the productivity can be maintained, and the evaporation of the solvent can be suppressed to easily control the solid content. The treatment temperature is preferably 0 to 100°C, more preferably 5 to 90°C, even more preferably 10 to 80°C. Here, the treatment temperature is more preferably 5° C. or higher, more preferably 10° C. or higher, and more preferably 90° C. or lower, further preferably 80° C. or lower.
 分散処理の時間としては、粒子破壊が進まないよう使用する分散装置に応じて適宜設定すればよいが、0.5~60分で行うのが好ましく、0.5~10分がより好ましく、0.5~5分がさらに好ましい。 The time for the dispersion treatment may be appropriately set according to the dispersing device to be used so that the particle destruction does not proceed, but it is preferably 0.5 to 60 minutes, more preferably 0.5 to 10 minutes, and 0.5 to 10 minutes. 0.5 to 5 minutes is more preferred.
 その後、分散処理でも分散しきれずに残った球状シリカ粉末の凝集物を湿式分級する。湿式分級は篩や遠心力による分級等が挙げられる。篩を用いる場合、目開き100μm以下の篩により分級するのが好ましい。篩としては、例えば、電鋳ふるいのような緻密な格子状の構造を持つ金属を用いるのが好ましい。 After that, the aggregates of the spherical silica powder that remained undispersed even in the dispersion treatment are wet-classified. Examples of wet classification include classification using a sieve and centrifugal force. When using a sieve, it is preferable to classify with a sieve having an opening of 100 μm or less. As the sieve, for example, it is preferable to use a metal having a dense lattice structure such as an electroformed sieve.
 篩の目開きは、0.2~100μmであるのが好ましく、0.5~75μmがより好ましく、0.5~50μmがさらに好ましく、1~35μmが特に好ましい。ここで、篩の目開きは100μm以下であるのが好ましく、75μm以下がより好ましく、50μm以下がさらに好ましく、35μm以下が特に好ましく、また、0.2μm以上であるのが好ましく、0.5μm以上がより好ましく、1μm以上がさらに好ましい。 The mesh size of the sieve is preferably 0.2-100 μm, more preferably 0.5-75 μm, even more preferably 0.5-50 μm, and particularly preferably 1-35 μm. Here, the sieve opening is preferably 100 μm or less, more preferably 75 μm or less, even more preferably 50 μm or less, particularly preferably 35 μm or less, and preferably 0.2 μm or more, and 0.5 μm or more. is more preferable, and 1 μm or more is even more preferable.
 その後、必要に応じて希釈あるいは濃縮し、適当な濃度に調整してもよい。濃縮の方法としては、気化濃縮、固液分離等が挙げられる。 After that, it may be diluted or concentrated as necessary to adjust to an appropriate concentration. Concentration methods include vaporization concentration, solid-liquid separation, and the like.
 なお、本発明のスラリー組成物の製造方法では、溶媒と球状シリカ粉末の混合液にシランカップリング剤を添加してもよい。シランカップリング剤としては前述のシランカップリング剤が例示される。 In addition, in the method for producing the slurry composition of the present invention, a silane coupling agent may be added to the mixed liquid of the solvent and the spherical silica powder. Examples of the silane coupling agent include the silane coupling agents described above.
 本発明の球状シリカ粉末を含む樹脂組成物を用いて樹脂フィルムを作製したとき、その誘電正接が、周波数10GHzにおいて0.012以下であるのが好ましく、0.010以下がより好ましく、0.009以下がさらに好ましい。樹脂フィルムの周波数10GHzでの誘電正接が0.012以下であると、電気特性に優れるので電子機器や通信機器等への利用が期待できる。誘電正接が小さいほど、回路の伝送損失が抑えられるため、下限値は特に限定されない。 When a resin film is produced using the resin composition containing the spherical silica powder of the present invention, the dielectric loss tangent thereof at a frequency of 10 GHz is preferably 0.012 or less, more preferably 0.010 or less, and 0.009. More preferred are: When the resin film has a dielectric loss tangent of 0.012 or less at a frequency of 10 GHz, the resin film has excellent electrical properties and can be expected to be used in electronic devices, communication devices, and the like. Since the transmission loss of the circuit is suppressed as the dielectric loss tangent becomes smaller, the lower limit value is not particularly limited.
 また、本発明の球状シリカ粉末を含む樹脂組成物を用いて樹脂フィルムを作製したとき、その比誘電率が、周波数10GHzにおいて2.0~3.5であるのが好ましく、下限は、2.2以上がより好ましく、2.3以上がさらに好ましく、また上限は、3.2以下がより好ましく、3.0以下がさらに好ましい。樹脂フィルムの周波数10GHzでの比誘電率が前記範囲であると、電気特性に優れるので電子機器や通信機器等への利用が期待できる。 In addition, when a resin film is produced using the resin composition containing the spherical silica powder of the present invention, the dielectric constant thereof at a frequency of 10 GHz is preferably 2.0 to 3.5, and the lower limit is 2.0. The upper limit is more preferably 2 or more, more preferably 2.3 or more, and the upper limit is more preferably 3.2 or less, further preferably 3.0 or less. When the relative permittivity of the resin film at a frequency of 10 GHz is within the above range, it is expected to be used in electronic devices, communication devices, etc., because it has excellent electrical properties.
 比誘電率は、専用の装置(例えば、キーコム株式会社製「ベクトルネットワークアナライザ E5063A」)を用い、摂動方式共振器法にて測定できる。
 樹脂フィルムの誘電正接は、スプリットポスト誘電体共振器(SPDR)(例えば、Agilent Technologies社製)を用いて測定できる。
The dielectric constant can be measured by a perturbation-type resonator method using a dedicated device (for example, "Vector Network Analyzer E5063A" manufactured by Keycom Co., Ltd.).
The dielectric loss tangent of the resin film can be measured using a split-post dielectric resonator (SPDR) (manufactured by Agilent Technologies, for example).
 また、上記樹脂フィルムの平均線膨張率が、10~50ppm/℃であるのが好ましい。平均線膨張率が前記範囲であると、基材として広く使用される銅箔の熱膨張係数に近い範囲であるので、電気特性に優れる。平均線膨張率は、12ppm/℃以上であるのがより好ましく、15ppm/℃以上がさらに好ましく、また40ppm/℃以下であるのがより好ましく、30ppm/℃以下がさらに好ましい。 Also, the resin film preferably has an average coefficient of linear expansion of 10 to 50 ppm/°C. When the average coefficient of linear expansion is within the above range, the range is close to the coefficient of thermal expansion of copper foil, which is widely used as a base material, and thus the electrical properties are excellent. The average coefficient of linear expansion is more preferably 12 ppm/°C or higher, more preferably 15 ppm/°C or higher, and more preferably 40 ppm/°C or lower, further preferably 30 ppm/°C or lower.
 平均線膨張率は、熱機械分析装置(例えば、島津製作所社製、「TMA-60」)を使用して、上記樹脂フィルムを荷重5N、昇温速度2℃/minで加熱し、30℃から150℃までのサンプルの寸法変化を測定し、平均を算出することで求められる。 The average coefficient of linear expansion is determined by using a thermomechanical analyzer (for example, "TMA-60" manufactured by Shimadzu Corporation), heating the resin film at a load of 5 N and a temperature increase rate of 2 ° C./min, and increasing from 30 ° C. It is obtained by measuring the dimensional change of the sample up to 150° C. and calculating the average.
 また、本発明の球状シリカ粉末は、各種充填材として使用でき、特にパソコン、ノートパソコン、デジタルカメラ等の電子機器や、スマートフォン、ゲーム機等の通信機器等に用いられる電子基板の作製に用いられる樹脂組成物の充填材として好適に使用できる。具体的には、本発明のシリカ粉末は、低誘電正接化、低伝送損失化、低吸湿化、剥離強度向上のために、樹脂組成物、プリプレグ、金属箔張積層板、プリント配線板、樹脂シート、接着層、接着フィルム、ソルダーレジスト、バンプリフロー用、再配線絶縁層、ダイボンド材、封止材、アンダーフィル、モールドアンダーフィルおよび積層インダクタ等への応用も期待される。 In addition, the spherical silica powder of the present invention can be used as various fillers, and is particularly used in the production of electronic substrates used in electronic devices such as personal computers, notebook computers and digital cameras, and communication devices such as smartphones and game machines. It can be suitably used as a filler for resin compositions. Specifically, the silica powder of the present invention is used in resin compositions, prepregs, metal foil-clad laminates, printed wiring boards, and resins for low dielectric loss tangent, low transmission loss, low moisture absorption, and improved peel strength. It is also expected to be applied to sheets, adhesive layers, adhesive films, solder resists, bump reflow, rewiring insulating layers, die bonding materials, sealing materials, underfills, mold underfills, laminated inductors, and the like.
 以下、本発明を実施例により詳しく説明するが、本発明はこれらに限定されるものではない。以下の説明において、共通する成分は同じものを用いている。また、特に説明のない限り、「部」、「%」は「質量部」、「質量%」を表す。例1~12は実施例であり、例13~14は比較例である。 The present invention will be described in detail below with reference to examples, but the present invention is not limited to these. In the following description, the same common components are used. Moreover, unless otherwise specified, "parts" and "%" represent "mass parts" and "mass%". Examples 1-12 are working examples, and examples 13-14 are comparative examples.
<試験例1>
(例1)
 球状シリカ前駆体として、湿式法で製造されたシリカ粉末1(AGCエスアイテック社製:H-31、d50=3.5μm)を用いた。シリカ粉末1のチタン(Ti)含有量を測定したところ、300ppmであった。シリカ粉末1を15g、アルミナ坩堝に充填し、電気炉内温度1300℃にて1時間加熱処理した。加熱処理後、室温まで冷却し、めのう乳鉢で擂潰して、球状シリカ粉末を得た。
<Test Example 1>
(Example 1)
As a spherical silica precursor, silica powder 1 produced by a wet method (manufactured by AGC Si Tech: H-31, d50=3.5 μm) was used. When the titanium (Ti) content of silica powder 1 was measured, it was 300 ppm. 15 g of silica powder 1 was filled in an alumina crucible and heat-treated at an electric furnace temperature of 1300° C. for 1 hour. After the heat treatment, the mixture was cooled to room temperature and ground in an agate mortar to obtain a spherical silica powder.
(例2)
 球状シリカ前駆体として、湿式法で製造されたシリカ粉末2(AGCエスアイテック社製:H-51、d50=5.5μm)を用いた以外は、例1と同様の処理を行い、球状シリカ粉末を得た。
 なお、球状シリカ前駆体として使用したシリカ粉末2のTi含有量を測定したところ、300ppmであった。
(Example 2)
Spherical silica powder was obtained in the same manner as in Example 1, except that silica powder 2 (manufactured by AGC Si Tech Co., Ltd.: H-51, d50 = 5.5 µm) produced by a wet method was used as the spherical silica precursor. got
The Ti content of the silica powder 2 used as the spherical silica precursor was measured and found to be 300 ppm.
(例3)
 球状シリカ前駆体として、湿式法で製造されたシリカ粉末3(AGCエスアイテック社製:H-121、d50=13μm)を用いた以外は、例1と同様の処理を行い、球状シリカ粉末を得た。
 なお、球状シリカ前駆体として使用したシリカ粉末3のTi含有量を測定したところ、300ppmであった。
(Example 3)
Spherical silica powder was obtained in the same manner as in Example 1, except that silica powder 3 (manufactured by AGC Si Tech Co., Ltd.: H-121, d50 = 13 μm) produced by a wet method was used as the spherical silica precursor. rice field.
In addition, when the Ti content of silica powder 3 used as a spherical silica precursor was measured, it was 300 ppm.
(例4)
 球状シリカ前駆体として、湿式法で製造されたシリカ粉末4(AGCエスアイテック社製:H-201、d50=20μm)を用いた以外は、例1と同様の処理を行い、球状シリカ粉末を得た。
 なお、球状シリカ前駆体として使用したシリカ粉末4のTi含有量を測定したところ、300ppmであった。
(Example 4)
Spherical silica powder was obtained in the same manner as in Example 1, except that silica powder 4 (manufactured by AGC Si Tech Co., Ltd.: H-201, d50 = 20 µm) produced by a wet method was used as the spherical silica precursor. rice field.
The Ti content of the silica powder 4 used as the spherical silica precursor was measured and found to be 300 ppm.
(例5)
 例1で用いたのと同様の、湿式法で製造されたシリカ粉末1(AGCエスアイテック社製:H-31、d50=3.5μm、Ti含有量=300ppm)を15g、SUSバットに充填し、恒温恒湿槽で温度40℃、相対湿度(RH)80%の環境に24時間暴露させ、球状シリカ前駆体を得た。
 得られた球状シリカ前駆体を全量アルミナ坩堝に充填し、電気炉内温度1300℃にて1時間加熱処理した。加熱処理後、室温まで冷却し、めのう乳鉢で擂潰して、球状シリカ粉末を得た。
(Example 5)
15 g of silica powder 1 produced by a wet method (manufactured by AGC Si Tech Co., Ltd.: H-31, d50 = 3.5 μm, Ti content = 300 ppm) similar to that used in Example 1 was filled in a SUS vat. and a constant temperature and humidity chamber for 24 hours at a temperature of 40° C. and a relative humidity (RH) of 80% to obtain a spherical silica precursor.
The entire amount of the spherical silica precursor obtained was filled in an alumina crucible and heat-treated at an electric furnace temperature of 1300° C. for 1 hour. After the heat treatment, the mixture was cooled to room temperature and ground in an agate mortar to obtain a spherical silica powder.
(例6)
 例1で用いたのと同様の、湿式法で製造されたシリカ粉末1(AGCエスアイテック社製:H-31、d50=3.5μm、Ti含有量=300ppm)を15g、200mlビーカーに入れ、エタノールを100ml加えて1時間攪拌したあと、固液分離し、得られた固体を60℃で24時間真空乾燥し、球状シリカ前駆体を得た。
 得られた球状シリカ前駆体を全量アルミナ坩堝に充填し、電気炉内温度1300℃にて1時間加熱処理した。加熱処理後、室温まで冷却し、めのう乳鉢で擂潰して、球状シリカ粉末を得た。
(Example 6)
15 g of silica powder 1 (manufactured by AGC Si Tech Co., Ltd.: H-31, d50 = 3.5 μm, Ti content = 300 ppm) produced by a wet method similar to that used in Example 1 was placed in a 200 ml beaker, After adding 100 ml of ethanol and stirring for 1 hour, solid-liquid separation was performed, and the obtained solid was vacuum-dried at 60° C. for 24 hours to obtain a spherical silica precursor.
The entire amount of the spherical silica precursor obtained was filled in an alumina crucible and heat-treated at an electric furnace temperature of 1300° C. for 1 hour. After the heat treatment, the mixture was cooled to room temperature and ground in an agate mortar to obtain a spherical silica powder.
(例7)
 例1で用いたのと同様の、湿式法で製造されたシリカ粉末1(AGCエスアイテック社製:H-31、d50=3.5μm、Ti含有量=300ppm)を15g、200mlビーカーに入れ、蒸留水を100ml加え、ウォーターバス中で1時間かけて80℃まで加温し、ビーカーの水温を78~82℃に保ちながら4時間攪拌したあと、固液分離し、得られた固体を100℃で24時間真空乾燥し、球状シリカ前駆体を得た。
 得られた球状シリカ前駆体を全量アルミナ坩堝に充填し、電気炉内温度1300℃にて1時間加熱処理した。加熱処理後、室温まで冷却し、めのう乳鉢で擂潰して、球状シリカ粉末を得た。
(Example 7)
15 g of silica powder 1 (manufactured by AGC Si Tech Co., Ltd.: H-31, d50 = 3.5 μm, Ti content = 300 ppm) produced by a wet method similar to that used in Example 1 was placed in a 200 ml beaker, Add 100 ml of distilled water, heat to 80°C over 1 hour in a water bath, stir for 4 hours while keeping the water temperature in a beaker at 78 to 82°C, separate solid and liquid, and cool the obtained solid to 100°C. for 24 hours to obtain a spherical silica precursor.
The entire amount of the spherical silica precursor obtained was filled in an alumina crucible and heat-treated at an electric furnace temperature of 1300° C. for 1 hour. After the heat treatment, the mixture was cooled to room temperature and ground in an agate mortar to obtain a spherical silica powder.
(例8)
 球状シリカ前駆体として、湿式法で製造されたシリカ粉末5(AGCエスアイテック社製:H-33、d50=3.0μm)を用いた以外は、例1と同様の処理を行い、球状シリカ粉末を得た。
 なお、球状シリカ前駆体として使用したシリカ粉末5のTi含有量を測定したところ、300ppmであった。
(Example 8)
Spherical silica powder was obtained in the same manner as in Example 1, except that silica powder 5 (manufactured by AGC Si Tech Co., Ltd.: H-33, d50 = 3.0 μm) was used as the spherical silica precursor. got
In addition, when the Ti content of the silica powder 5 used as the spherical silica precursor was measured, it was 300 ppm.
(例9)
 球状シリカ前駆体として、湿式法で製造されたシリカ粉末6(AGCエスアイテック社製:H-51、d50=5.5μm)を使用した以外は、例1と同様の処理を行い、球状シリカ粉末を得た。
 なお、球状シリカ前駆体として使用したシリカ粉末6のTi含有量を測定したところ、1450ppmであった。
(Example 9)
Spherical silica powder was obtained in the same manner as in Example 1 except that silica powder 6 produced by a wet method (manufactured by AGC Si Tech Co., Ltd.: H-51, d50 = 5.5 µm) was used as the spherical silica precursor. got
The Ti content of the silica powder 6 used as the spherical silica precursor was measured and found to be 1450 ppm.
(例10)
 球状シリカ前駆体として、湿式法で製造されたシリカ粉末7(AGCエスアイテック社製:H-51、d50=5.5μm)を使用した以外は、例1と同様の処理を行い、球状シリカ粉末を得た。
 なお、球状シリカ前駆体として使用したシリカ粉末7のTi含有量を測定したところ、35ppmであった。
(Example 10)
Spherical silica powder was obtained in the same manner as in Example 1 except that silica powder 7 produced by a wet method (manufactured by AGC Si Tech Co., Ltd.: H-51, d50 = 5.5 µm) was used as the spherical silica precursor. got
The Ti content of the silica powder 7 used as the spherical silica precursor was measured and found to be 35 ppm.
(例11)
 例1で得られたシリカ粉末10gと、3-(メタクリロイルオキシ)プロピルトリメトキシシラン10mg、デカン5gを混合し、溶媒を150℃で真空乾燥して留去し、表面処理された球状シリカ粉末を得た。
(Example 11)
10 g of the silica powder obtained in Example 1, 10 mg of 3-(methacryloyloxy)propyltrimethoxysilane, and 5 g of decane were mixed, and the solvent was distilled off by vacuum drying at 150° C. to obtain the surface-treated spherical silica powder. Obtained.
(例12)
 球状シリカ前駆体として、湿式法で製造されたシリカ粉末1(AGCエスアイテック社製:H-31、d50=3.5μm)を用いた。シリカ粉末1のチタン(Ti)含有量を測定したところ、300ppmであった。シリカ粉末1を15g、アルミナ坩堝に充填し、電気炉内温度1050℃にて6時間加熱処理した。加熱処理後、室温まで冷却し、めのう乳鉢で擂潰して、球状シリカ粉末を得た。
(Example 12)
As a spherical silica precursor, silica powder 1 produced by a wet method (manufactured by AGC Si Tech: H-31, d50=3.5 μm) was used. When the titanium (Ti) content of silica powder 1 was measured, it was 300 ppm. 15 g of silica powder 1 was filled in an alumina crucible and heat-treated at an electric furnace temperature of 1050° C. for 6 hours. After the heat treatment, the mixture was cooled to room temperature and ground in an agate mortar to obtain a spherical silica powder.
(例13)
 乾式法で製造された原料シリカから製造された球状シリカ粉末8(デンカ社製:FB-5D)を用いた。球状シリカ粉末8のTi含有量を測定したところ、22ppmであった。球状シリカ粉末8を15g、アルミナ坩堝に充填し、電気炉内温度1300℃にて1時間加熱処理した。加熱処理後、室温まで冷却し、めのう乳鉢で擂潰して、球状シリカ粉末を得た。
(Example 13)
Spherical silica powder 8 (manufactured by Denka: FB-5D) produced from raw material silica produced by a dry method was used. When the Ti content of the spherical silica powder 8 was measured, it was 22 ppm. 15 g of spherical silica powder 8 was filled in an alumina crucible and heat-treated at an electric furnace temperature of 1300° C. for 1 hour. After the heat treatment, the mixture was cooled to room temperature and ground in an agate mortar to obtain a spherical silica powder.
(例14)
 VMC法で製造された原料シリカから製造された球状シリカ粉末9(アドマテックス社製:SC-04)をそのまま用いた。球状シリカ粉末9のTi含有量を測定したところ、28ppmであった。
(Example 14)
Spherical silica powder 9 (manufactured by Admatechs: SC-04) produced from raw material silica produced by the VMC method was used as it was. When the Ti content of the spherical silica powder 9 was measured, it was 28 ppm.
 例1~14の球状シリカ粉末について以下の評価を行った。結果を表1に示す。
 また、例1の球状シリカ粉末の走査型電子顕微鏡観察画像(SEM像)を図1に示す。
The spherical silica powders of Examples 1 to 14 were evaluated as follows. Table 1 shows the results.
Further, a scanning electron microscope observation image (SEM image) of the spherical silica powder of Example 1 is shown in FIG.
「評価」
1.メジアン径
 メジアン径は、レーザー回折法の粒度分布測定装置(マイクロトラック・ベル社製MT3300EXII)を用いて測定した。装置内で超音波を60秒間3回照射することで球状シリカ粉末を分散させてから測定を行った。測定は60秒間2回ずつ行い、その平均値を求めた。
"evaluation"
1. Median Diameter The median diameter was measured using a laser diffraction particle size distribution analyzer (Microtrac Bell MT3300EXII). Measurement was performed after the spherical silica powder was dispersed by irradiating ultrasonic waves three times for 60 seconds in the apparatus. The measurement was performed twice for 60 seconds each, and the average value was obtained.
2.比表面積
 球状シリカ粉末を230℃で減圧乾燥して水分を完全に除去し、試料とした。この試料について、マイクロメリティック社製の自動比表面積・細孔分布測定装置「トライスターII」にて、窒素ガスを用いて多点BET法により比表面積を求めた。
2. Specific Surface Area Spherical silica powder was dried under reduced pressure at 230° C. to completely remove moisture, and used as a sample. The specific surface area of this sample was determined by the multi-point BET method using nitrogen gas using an automatic specific surface area/pore size distribution measuring device "Tristar II" manufactured by Micromeritic.
3.細孔容積
 前駆体として使用したシリカ粉末を230℃で減圧乾燥して水分を完全に除去し、試料とした。この試料について、マイクロメリティック社製の自動比表面積・細孔分布測定装置「トライスターII」にて、窒素ガスを用いてBJH法により細孔容積を求めた。
3. Pore Volume Silica powder used as a precursor was dried under reduced pressure at 230° C. to completely remove moisture, and used as a sample. The pore volume of this sample was determined by the BJH method using nitrogen gas using an automatic specific surface area/pore size distribution analyzer "Tristar II" manufactured by Micromeritic.
4.強熱減量
 JIS K0067:1992に準拠し、前駆体として使用したシリカ粉末1gを、850℃で0.5時間、加熱乾燥したときの質量減量を強熱減量とした。
4. Loss on ignition In accordance with JIS K0067:1992, 1 g of silica powder used as a precursor was dried by heating at 850°C for 0.5 hours, and the weight loss on ignition was defined as the loss on ignition.
5.Ti濃度
 前駆体として使用したシリカ粉末に過塩素酸とフッ酸を加えて強熱し主成分のケイ素を除去したのちに誘導結合プラズマ(ICP)発光分析で測定した。
5. Ti concentration After adding perchloric acid and hydrofluoric acid to the silica powder used as a precursor and heating to remove silicon as the main component, the Ti concentration was measured by inductively coupled plasma (ICP) emission spectrometry.
6.誘電正接
 誘電正接は、専用の装置(ベクトルネットワークアナライザ E5063A、キーコム社製)を用い、摂動方式共振器法にて、試験周波数1GHz、試験温度約24℃、湿度約45%、測定回数3回で測定を実施した。具体的には、球状シリカ粉末を150℃で真空乾燥後、ポリテトラフルオロエチレン(PTFE)製の筒に粉末を十分にタップしながら充填し、容器ごと誘電率を測定した後、容器中の粉体の充填率を用いて誘電正接に換算した。
6. Dielectric loss tangent Dielectric loss tangent is measured three times at a test frequency of 1 GHz, a test temperature of about 24°C, a humidity of about 45%, and a perturbation resonator method using a dedicated device (vector network analyzer E5063A, manufactured by Keycom). Measurements were made. Specifically, after vacuum-drying the spherical silica powder at 150°C, the powder was filled into a polytetrafluoroethylene (PTFE) cylinder while fully tapping, and the dielectric constant was measured together with the container. The dielectric loss tangent was converted using the body filling factor.
7.シラノール基量
 粒子表面のシラノール基量を赤外分光スペクトルにより測定した。
 赤外分光スペクトルは、IR Prestige-21(島津製作所社製)を用い、ダイヤモンド中へ球状シリカ粉末を分散させて拡散反射法で測定した。測定範囲は400~4000cm-1、分解能は4cm-1、積算回数は128回とした。
 ダイヤモンド粉末への希釈は、[質量希釈率]=([サンプル質量])/([ダイヤモンド質量]+[サンプル質量])と定義し、[質量希釈率]=85-2.5×[BET比表面積]とした。
 また、球状シリカ粉末は180℃で1時間真空乾燥したものを用いた。
 IRスペクトルを800cm-1で規格化し、3800cm-1でベースラインを合わせたあと、3746cm-1付近のSi-OHピーク強度の相対値と、3300~3700cm-1にあるうちの最大ピークから、結合Si-OHピーク強度の相対値を求めた。
7. Amount of Silanol Groups The amount of silanol groups on the particle surface was measured by infrared spectroscopy.
The infrared spectroscopic spectrum was measured by diffuse reflection method using IR Prestige-21 (manufactured by Shimadzu Corporation) by dispersing spherical silica powder in diamond. The measurement range was 400 to 4000 cm -1 , the resolution was 4 cm -1 , and the number of integrations was 128 times.
Dilution to diamond powder is defined as [mass dilution rate] = ([sample mass]) / ([diamond mass] + [sample mass]), [mass dilution rate] = 85-2.5 x [BET ratio surface area].
Also, the spherical silica powder used was vacuum-dried at 180° C. for 1 hour.
After normalizing the IR spectrum at 800 cm −1 and adjusting the baseline at 3800 cm −1 , from the relative value of the Si—OH peak intensity near 3746 cm −1 and the maximum peak among those at 3300 to 3700 cm −1 , the binding A relative value of the Si—OH peak intensity was obtained.
8.粘度と粒ゲージ
 球状シリカ粉末の樹脂分散性を調べるため、次のような試験を実施した。
 煮アマニ油(山桂産業社製)6部と球状シリカ粉末8部を混合し、自転公転式の撹拌機であるあわとり練太郎(シンキー社製)で2000rpm、3分間混練し、混練物を作製した。得られた混練物を、回転式レオメータを用いてせん断速度1s-1で30秒測定し、30秒時点での粘度を求めた。なお煮アマニ油のみで測定した粘度は46mPa・sであった。
 また、得られた混練物をJIS K5400:1990 粒ゲージ法で測定を行った。
8. Viscosity and Particle Gauge In order to examine the resin dispersibility of the spherical silica powder, the following test was carried out.
6 parts of boiled linseed oil (manufactured by Sankei Sangyo Co., Ltd.) and 8 parts of spherical silica powder are mixed, and kneaded at 2000 rpm for 3 minutes with an Awatori Mixer (manufactured by Thinky Corporation), which is a rotation-revolution type agitator, to obtain a kneaded product. made. The resulting kneaded product was measured at a shear rate of 1 s −1 for 30 seconds using a rotary rheometer to obtain the viscosity at 30 seconds. The viscosity measured only with boiled linseed oil was 46 mPa·s.
Moreover, the obtained kneaded material was measured by the JIS K5400:1990 grain gauge method.
9.吸湿量
 球状シリカ粉末の吸湿性を調べるため、次のような試験を実施した。
 球状シリカ粒子を200℃で乾燥後、直径10cmのアルミ皿に5g秤量し、平らに広げた。40℃で、RH90%の環境に24時間放置したものを、カールフィッシャー法(電量滴定法)で測定した。
 〔カールフィッシャー法(電量滴定法)の条件〕
  微量水分測定装置(CA-200型、三菱ケミカルアナリテック社製)
  水分気化装置(VA-200、三菱ケミカルアナリテック社製)
  陽極液(ハイドラナールクーロマット AG-OVEN、林純薬社製)
  陰極液(ハイドラナールクーロマット CG、林純薬社製)
  加熱温度:200℃
  窒素流量:約250ml/分
9. Moisture Absorption In order to examine the hygroscopicity of the spherical silica powder, the following test was carried out.
After drying the spherical silica particles at 200° C., 5 g was weighed in an aluminum dish with a diameter of 10 cm and spread evenly. It was measured by the Karl Fischer method (coulometric titration method) after being left in an environment of 90% RH at 40° C. for 24 hours.
[Conditions for the Karl Fischer method (coulometric titration method)]
Trace moisture measuring device (CA-200 type, manufactured by Mitsubishi Chemical Analytic Tech)
Moisture vaporizer (VA-200, manufactured by Mitsubishi Chemical Analytic Tech)
Anolyte (Hydranal Coulomat AG-OVEN, manufactured by Hayashi Pure Chemical Co., Ltd.)
Catholyte (Hydranal Coulomat CG, manufactured by Hayashi Pure Chemical Co., Ltd.)
Heating temperature: 200°C
Nitrogen flow rate: about 250 ml/min
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の結果より、球状シリカ粉末の比表面積とメジアン径との積を変化させた結果、例1~12の球状シリカ粉末は、誘電正接および粘度、粒ゲージ、吸湿量が低い結果となり、例13、14より、比表面積とメジアン径との積が大きくなりすぎると、誘電正接が悪化することがわかった。メジアン径に対して比表面積が大きいということは、微小な粒子や表面の荒れなどの存在を示唆しており、これによって表面残基の存在量が増え、誘電正接が上昇していると考えられる。また、微小な粒子や表面の荒れが存在することで、樹脂組成物とした際に増粘し、粘度が上昇していると考えられる。また、メジアン径は0.5~20μmが好ましい。メジアン径が小さいと粘度が上がり、大きいと粒ゲージが増大するためである。 From the results in Table 1, as a result of changing the product of the specific surface area and the median diameter of the spherical silica powder, the spherical silica powders of Examples 1 to 12 have low dielectric loss tangents, viscosities, grain gauges, and moisture absorption amounts. 13 and 14, it was found that the dielectric loss tangent deteriorates when the product of the specific surface area and the median diameter becomes too large. The fact that the specific surface area is large relative to the median diameter suggests the presence of fine particles and surface roughness, which is thought to increase the abundance of surface residues and increase the dielectric loss tangent. . In addition, it is believed that the presence of fine particles and surface roughness increases the viscosity of the resin composition, resulting in an increase in viscosity. Also, the median diameter is preferably 0.5 to 20 μm. This is because if the median diameter is small, the viscosity increases, and if the median diameter is large, the grain gauge increases.
 また、例1~14より、シリカ前駆体の強熱減量が多いと誘電正接が低くなることがわかった。これは、シリカ前駆体の強熱減量が1.0%未満であると焼成時にシラノール基が残りやすくなるため、誘電正接が上昇すると考えられる。なお、シリカ前駆体の強熱減量が15.0%を超えると、焼成時の減量が大きくなり、収率が悪化すると予測される。
 そして、例1~14より、シリカ前駆体の細孔容積も誘電正接に関係することがわかった。細孔容積が小さ過ぎると、シリカ前駆体を焼成した際にシリカが収縮せず、比表面積が小さくなりにくいため、誘電正接は上昇すると想定される。
Moreover, from Examples 1 to 14, it was found that the dielectric loss tangent decreased when the ignition loss of the silica precursor was large. This is probably because if the ignition loss of the silica precursor is less than 1.0%, silanol groups tend to remain during firing, which increases the dielectric loss tangent. If the ignition loss of the silica precursor exceeds 15.0%, it is predicted that the loss during firing will increase and the yield will deteriorate.
From Examples 1 to 14, it was found that the pore volume of the silica precursor is also related to the dielectric loss tangent. If the pore volume is too small, the silica will not shrink when the silica precursor is fired, and the specific surface area will not easily decrease, so it is assumed that the dielectric loss tangent will increase.
<試験例2>
 例1、3、11、14の球状シリカ粉末を用いて樹脂フィルムを作製した。
 ビフェニル型エポキシ樹脂(エポキシ当量276、日本化薬(株)製「NC-3000」)25部をメチルエチルケトン(MEK)13部に攪拌しながら加熱溶解させた。室温にまで冷却後、そこへ活性エステル系硬化剤(DIC(株)製「HP8000-65T」、活性基当量223、不揮発成分65%のトルエン溶液)32部を混合し、自転公転式の撹拌機であるあわとり練太郎(シンキー社製)で2000rpm、5分間混練した。続けて、硬化促進剤として4-ジメチルアミノピリジン(DMAP)0.3部、2-エチル-4-メチルイミダゾール(四国化成工業株式会社製「2E4MZ」)1.8部を混合し、あわとり練太郎で2000rpm、5分間混練した。そこへ球状シリカ粉末65.2部を混合し、あわとり練太郎で2000rpm、5分間混合した。
<Test Example 2>
Using the spherical silica powders of Examples 1, 3, 11 and 14, resin films were produced.
25 parts of a biphenyl-type epoxy resin (epoxy equivalent: 276, “NC-3000” manufactured by Nippon Kayaku Co., Ltd.) was heated and dissolved in 13 parts of methyl ethyl ketone (MEK) while stirring. After cooling to room temperature, 32 parts of an active ester curing agent ("HP8000-65T" manufactured by DIC Corporation, a toluene solution with an active group equivalent weight of 223 and a non-volatile component of 65%) was mixed and mixed with a rotation-revolution stirrer. The mixture was kneaded at 2000 rpm for 5 minutes with a Thinky Mixer. Subsequently, 0.3 parts of 4-dimethylaminopyridine (DMAP) and 1.8 parts of 2-ethyl-4-methylimidazole (manufactured by Shikoku Kasei Kogyo Co., Ltd. "2E4MZ") were mixed as a curing accelerator and kneaded. The mixture was kneaded with Taro at 2000 rpm for 5 minutes. 65.2 parts of spherical silica powder was mixed therein, and the mixture was mixed at 2000 rpm for 5 minutes with a Mixer.
 次に、離型処理された透明なポリエチレンテレフタレート(PET)フィルム(リンテック社製「PET5011 550」、厚み50μm)を用意した。このPETフィルムの離型処理面に、アプリケーターを用いて、得られたワニスを乾燥後の厚みが40μmとなるように塗工し、190℃のギアオーブン内で90分間乾燥し、硬化させた。その後、裁断し、縦200mm×横200mm×厚み40μmの樹脂フィルムの硬化物(評価サンプル)を作製した。 Next, a release-treated transparent polyethylene terephthalate (PET) film ("PET5011 550" manufactured by Lintec, thickness 50 μm) was prepared. Using an applicator, the resulting varnish was applied to the release-treated surface of the PET film so that the thickness after drying was 40 μm, dried in a gear oven at 190° C. for 90 minutes, and cured. Then, it was cut to prepare a cured resin film (evaluation sample) of 200 mm long×200 mm wide×40 μm thick.
(1)誘電正接の評価
 得られた評価サンプルについて、スプリットポスト誘電体共振器(Agilent Technologies社製)にて、誘電正接(測定周波数:10GHz)を測定した。また、得られた評価サンプルを85℃、RH85%の恒温恒湿槽に24時間保管し、吸湿後の評価サンプルについて同様に、誘電正接を測定した。
(1) Evaluation of dielectric loss tangent The obtained evaluation sample was measured for dielectric loss tangent (measurement frequency: 10 GHz) with a split-post dielectric resonator (manufactured by Agilent Technologies). Further, the obtained evaluation sample was stored in a constant temperature and humidity chamber at 85° C. and 85% RH for 24 hours, and the dielectric loss tangent was similarly measured for the evaluation sample after moisture absorption.
(2)平均線膨張率の測定
 評価サンプルを、3mm×25mmの大きさに裁断した。このサンプルについて、熱機械分析装置(島津製作所社製、「TMA-60」)を使用して、荷重5N、昇温速度2℃/minで加熱した。そして、30℃から150℃までのサンプルの寸法変化を測定し、長辺の寸法変化を温度で割って、平均線膨張率(ppm/℃)を求めた。
(2) Measurement of Average Coefficient of Linear Expansion An evaluation sample was cut into a size of 3 mm×25 mm. This sample was heated using a thermomechanical analyzer ("TMA-60" manufactured by Shimadzu Corporation) under a load of 5N and a temperature increase rate of 2°C/min. Then, the dimensional change of the sample was measured from 30° C. to 150° C., and the average coefficient of linear expansion (ppm/° C.) was obtained by dividing the dimensional change of the long side by the temperature.
 結果を表2に示す。 The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2の結果より、例1、例3及び例11の球状シリカ粉末を使用したものは、球状シリカ粉末の誘電正接が小さいため、樹脂組成物としても誘電正接が優位に改善した。また、本発明の球状シリカ粉末は吸湿しにくいため、樹脂組成物の吸湿性が抑えられ、加湿条件での保管後も良好な電気特性を示すことが分かった。 From the results in Table 2, the dielectric loss tangent of the spherical silica powders of Examples 1, 3 and 11 was small, so the dielectric loss tangent of the resin composition was significantly improved. In addition, since the spherical silica powder of the present invention does not easily absorb moisture, the resin composition is less hygroscopic and exhibits good electrical properties even after storage under humidified conditions.
 本発明を詳細にまた特定の実施形態を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は、2021年7月28日出願の日本特許出願(特願2021-123495)及び2021年11月30日出願の日本特許出願(特願2021-194372)に基づくものであり、その内容はここに参照として取り込まれる。  Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application (Japanese patent application 2021-123495) filed on July 28, 2021 and a Japanese patent application (Japanese patent application 2021-194372) filed on November 30, 2021, and the content is Incorporated here as a reference. 

Claims (10)

  1.  メジアン径d50が0.5~20μmであり、比表面積A(m/g)と前記メジアン径d50(μm)の積A×d50が2.7~5.0μm・m/gである球状シリカ粉末。 Spherical having a median diameter d50 of 0.5 to 20 μm and a product A×d50 of the specific surface area A (m 2 /g) and the median diameter d50 (μm) of 2.7 to 5.0 μm·m 2 /g silica powder.
  2.  前記球状シリカ粉末の誘電正接が、周波数1GHzにおいて0.0020以下である、請求項1に記載の球状シリカ粉末。 The spherical silica powder according to claim 1, wherein the dielectric loss tangent of the spherical silica powder is 0.0020 or less at a frequency of 1 GHz.
  3.  前記球状シリカ粉末を含む混練物の、下記測定方法により測定される粘度が5000mPa・s以下である、請求項1又は2に記載の球状シリカ粉末。
    (測定方法)
     煮アマニ油6質量部と前記球状シリカ粉末8質量部を混合し、2000rpmで3分間混練して得た混練物を、回転式レオメータを用いてせん断速度1s-1で30秒測定し、30秒時点での粘度を求める。
    3. The spherical silica powder according to claim 1, wherein the kneaded material containing said spherical silica powder has a viscosity of 5000 mPa.s or less as measured by the following measuring method.
    (Measuring method)
    6 parts by mass of boiled linseed oil and 8 parts by mass of the spherical silica powder were mixed and kneaded at 2000 rpm for 3 minutes. Determine the viscosity at that point.
  4.  前記球状シリカ粉末の表面の結合シラノール基に由来する3300~3700cm-1にある最大IRピーク強度が、0.2以下である、請求項1~3のいずれか1項に記載の球状シリカ粉末。 The spherical silica powder according to any one of claims 1 to 3, wherein the maximum IR peak intensity at 3300 to 3700 cm -1 originating from the bonded silanol groups on the surface of the spherical silica powder is 0.2 or less.
  5.  前記球状シリカ粉末が、Tiを30~1500ppm含む、請求項1~4のいずれか1項に記載の球状シリカ粉末。 The spherical silica powder according to any one of claims 1 to 4, wherein the spherical silica powder contains 30 to 1500 ppm of Ti.
  6.  請求項1~5のいずれか1項に記載の球状シリカ粉末の製造方法であって、湿式法によって球状のシリカ前駆体を形成することを含む、球状シリカ粉末の製造方法。 A method for producing the spherical silica powder according to any one of claims 1 to 5, comprising forming a spherical silica precursor by a wet method.
  7.  JIS K0067:1992に準拠して、前記シリカ前駆体1gを850℃で0.5時間、加熱乾燥としたときの、前記シリカ前駆体の質量減量が5.0~15.0質量%である、請求項6に記載の球状シリカ粉末の製造方法。 In accordance with JIS K0067: 1992, when 1 g of the silica precursor is heat-dried at 850 ° C. for 0.5 hours, the weight loss of the silica precursor is 5.0 to 15.0% by mass. The method for producing the spherical silica powder according to claim 6.
  8.  前記シリカ前駆体の細孔容積が、0.3~2.2ml/gである、請求項6又は7に記載の球状シリカ粉末の製造方法。 The method for producing spherical silica powder according to claim 6 or 7, wherein the silica precursor has a pore volume of 0.3 to 2.2 ml/g.
  9.  請求項1~5のいずれか1項に記載の球状シリカ粉末を5~90質量%含む樹脂組成物。 A resin composition containing 5 to 90% by mass of the spherical silica powder according to any one of claims 1 to 5.
  10.  請求項1~5のいずれか1項に記載の球状シリカ粉末を1~50質量%含むスラリー組成物。 A slurry composition containing 1 to 50% by mass of the spherical silica powder according to any one of claims 1 to 5.
PCT/JP2022/028277 2021-07-28 2022-07-20 Spherical silica powder and method for producing spherical silica powder WO2023008290A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023538470A JPWO2023008290A1 (en) 2021-07-28 2022-07-20
KR1020247002993A KR20240037979A (en) 2021-07-28 2022-07-20 Globular silica powder and method for producing spherical silica powder
CN202280052479.6A CN117730054A (en) 2021-07-28 2022-07-20 Spherical silica powder and method for producing spherical silica powder

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-123495 2021-07-28
JP2021123495 2021-07-28
JP2021194372 2021-11-30
JP2021-194372 2021-11-30

Publications (1)

Publication Number Publication Date
WO2023008290A1 true WO2023008290A1 (en) 2023-02-02

Family

ID=85086838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028277 WO2023008290A1 (en) 2021-07-28 2022-07-20 Spherical silica powder and method for producing spherical silica powder

Country Status (4)

Country Link
JP (1) JPWO2023008290A1 (en)
KR (1) KR20240037979A (en)
TW (1) TW202319345A (en)
WO (1) WO2023008290A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005022915A (en) * 2003-07-01 2005-01-27 Mitsubishi Rayon Co Ltd Surface-modified spherical silica, method of manufacturing the same and resin composition for sealing
JP2010163317A (en) * 2009-01-15 2010-07-29 Admatechs Co Ltd Silicon-containing alloy for producing spherical silica powder and its producing method and spherical silica powder
JP2015036357A (en) * 2013-08-13 2015-02-23 電気化学工業株式会社 Surface-treated silica powder, slurry composition, and resin composition using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0493282U (en) 1990-12-28 1992-08-13
JP7433022B2 (en) 2019-11-13 2024-02-19 日鉄ケミカル&マテリアル株式会社 Hollow silica particles, their manufacturing method, resin composite compositions and resin composites using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005022915A (en) * 2003-07-01 2005-01-27 Mitsubishi Rayon Co Ltd Surface-modified spherical silica, method of manufacturing the same and resin composition for sealing
JP2010163317A (en) * 2009-01-15 2010-07-29 Admatechs Co Ltd Silicon-containing alloy for producing spherical silica powder and its producing method and spherical silica powder
JP2015036357A (en) * 2013-08-13 2015-02-23 電気化学工業株式会社 Surface-treated silica powder, slurry composition, and resin composition using the same

Also Published As

Publication number Publication date
KR20240037979A (en) 2024-03-22
JPWO2023008290A1 (en) 2023-02-02
TW202319345A (en) 2023-05-16

Similar Documents

Publication Publication Date Title
TWI700243B (en) Hexagonal boron nitride powder, its manufacturing method, and its composition and heat dissipation material
JP7069314B2 (en) Bulked boron nitride particles, boron nitride powder, method for producing boron nitride powder, resin composition, and heat dissipation member
CN111164047B (en) Hexagonal boron nitride powder, method for producing same, and composition and heat dissipating material using same
WO2021172294A1 (en) Hollow silica particles and method for producing same
JP7419938B2 (en) Silicon-containing oxide coated aluminum nitride particles
JPWO2020153505A1 (en) Filler composition, silicone resin composition and heat dissipation parts
WO2018212279A1 (en) Composite particle material, production method therefor, composite particle material slurry, and resin composition
JP6345533B2 (en) Aluminum nitride particles and method for producing the same
Thomas et al. Dielectric properties of PTFE loaded with micro-and nano-Sm 2 Si 2 O 7 ceramics
WO2018230638A1 (en) Carbon-modified boron nitride, method for producing same, and highly heat-conductive resin composition
WO2023008290A1 (en) Spherical silica powder and method for producing spherical silica powder
WO2023032986A1 (en) Silica for electronic materials and method for producing same
JP2009073681A (en) Porous silica aggregate particles
CN117730054A (en) Spherical silica powder and method for producing spherical silica powder
WO2023218949A1 (en) Silica particle dispersion liquid
KR102288642B1 (en) Complex coating liquid, metal substrate structure, manufactured by using the same, and method of manufacturing the same
WO2023100676A1 (en) Hollow silica particles and method for producing same
WO2023243572A1 (en) Method for producing spherical silica powder
JP2023181991A (en) Method for producing spherical silica powder
JP2023181993A (en) Method for producing spherical silica powder
JP2023181992A (en) Method for producing spherical silica powder
WO2023286566A1 (en) Oxide composite particles, method for producing same, and resin composition
WO2023286565A1 (en) Oxide composite particles, method for producing same, and resin composition
WO2023218948A1 (en) Silica particle dispersion liquid
TW202406840A (en) Silicon oxide particle dispersion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22849352

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023538470

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20247002993

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE