JP2013103850A - Silica-based particle with moisture resistance, method for producing the same, semiconductor sealing resin composition containing the particle, and substrate with coating film formed using the resin composition - Google Patents

Silica-based particle with moisture resistance, method for producing the same, semiconductor sealing resin composition containing the particle, and substrate with coating film formed using the resin composition Download PDF

Info

Publication number
JP2013103850A
JP2013103850A JP2011247143A JP2011247143A JP2013103850A JP 2013103850 A JP2013103850 A JP 2013103850A JP 2011247143 A JP2011247143 A JP 2011247143A JP 2011247143 A JP2011247143 A JP 2011247143A JP 2013103850 A JP2013103850 A JP 2013103850A
Authority
JP
Japan
Prior art keywords
silica
particles
based particles
particle
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011247143A
Other languages
Japanese (ja)
Other versions
JP5822663B2 (en
Inventor
Hiroki Arao
弘樹 荒尾
Hirotada Aragane
宏忠 荒金
Tsuguo Koyanagi
嗣雄 小柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Catalysts and Chemicals Ltd filed Critical JGC Catalysts and Chemicals Ltd
Priority to JP2011247143A priority Critical patent/JP5822663B2/en
Publication of JP2013103850A publication Critical patent/JP2013103850A/en
Application granted granted Critical
Publication of JP5822663B2 publication Critical patent/JP5822663B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Silicon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor sealing resin composition formable of a coating film which ensures little variation of its relative dielectric constant and little variation of its dielectric loss tangent under high temperature and high humidity conditions, by improving the compressive strength and moisture resistance of silica-based particles having a cavity inside, and to provide a substrate capable of retaining high moisture resistance for a long time.SOLUTION: Silica-based particles have a cavity on the inside of a nonporous shell silica layer, and have a void fraction in the range of 20-95 vol.% and an average particle diameter in the range of 0.1-50 μm. The cavities of the silica-based particles have negative pressure of ≤133 hPa. The silica-based particles have compressive strength in the range of 0.1-200 kgf/mm.

Description

本発明は、内部に空洞を有するシリカ系粒子を構成する外殻シリカ層に存在する細孔を封止してなり、圧縮強度が強く、耐湿性に優れたシリカ系粒子とその製造方法に関する。さらに、該シリカ系粒子を充填材として熱硬化性樹脂に混合してなる半導体封止用樹脂組成物に関する。   The present invention relates to silica-based particles having a high compressive strength and excellent moisture resistance, and a method for producing the same, by sealing pores present in an outer silica layer constituting silica-based particles having cavities therein. Furthermore, it is related with the resin composition for semiconductor sealing formed by mixing this silica type particle with a thermosetting resin as a filler.

シリカ系粒子には種々の形状、大きさの粒子が知られており、その用途も多岐に亘っている。
シリカ系多孔質粒子の製造方法や無機酸化物粒子の表面をシリカ系被膜で被覆する方法は、今日に至るまで数多く提案されている。
Silica-based particles are known in various shapes and sizes, and their uses are diverse.
A number of methods for producing silica-based porous particles and methods for coating the surface of inorganic oxide particles with a silica-based coating have been proposed to date.

たとえば、特許文献1(特開昭61−270201号公報)には、平均粒子径が2500Å以下の一次粒子を含むコロイド液を噴霧乾燥して平均粒子径が1〜20μmの無機酸化物粒子(真球状シリカ粉末など)を製造する方法が開示されている。
また、特許文献2(特開平6−192593号公報)には、無機粒子の水性懸濁液に珪酸塩溶液と酸とを添加し、さらに該混合懸濁液を超音波振動の影響下に晒すことにより、前記無機粒子の表面を非晶質シリカで被覆する方法が開示されている。
さらに、特許文献3(特開2002−160907号公報)は、平均粒子径が2〜250nmの無機酸化物微粒子を含むコロイド液を噴霧乾燥して得られる平均粒子径が1〜100μmの無機酸化物微粒子集合体の外表面を、化学式RSi(OR′)4−nで表される有機ケイ素化合物の加水分解物からなるシリカ系層で被覆してなる球状多孔質粒子が開示されている。
For example, in Patent Document 1 (Japanese Patent Laid-Open No. Sho 61-270201), an inorganic oxide particle (true particle size) of 1 to 20 μm is obtained by spray drying a colloidal solution containing primary particles having an average particle size of 2500 mm or less. A method for producing a spherical silica powder or the like) is disclosed.
In Patent Document 2 (Japanese Patent Laid-Open No. 6-192593), a silicate solution and an acid are added to an aqueous suspension of inorganic particles, and the mixed suspension is exposed to the influence of ultrasonic vibration. Thus, a method of coating the surface of the inorganic particles with amorphous silica is disclosed.
Furthermore, Patent Document 3 (Japanese Patent Laid-Open No. 2002-160907) discloses an inorganic oxide having an average particle diameter of 1 to 100 μm obtained by spray-drying a colloidal liquid containing inorganic oxide fine particles having an average particle diameter of 2 to 250 nm. the outer surface of the fine particle aggregates, the chemical formula R n Si (OR ') 4 -n formed by coating a silica-based layer comprising a hydrolyzate of an organic silicon compound represented by spherical porous particles is disclosed.

特許文献4(特開2005−206436号公報)には、平均粒子径が0.5〜8μm、球形度が0.85以上、平均中空率が20〜70体積%の非晶質球状シリカ中空粉体とその製造方法が開示されており、強度、軽量性、断熱性、低誘電特性等に優れていることが開示されている。
しかしながら、前記非晶質球状シリカ中空粉体は、比表面積が40m/g以上、平均粒子径が10μm以下のシリカ原料粉末を高温火炎中に供給して球状化・中空化させて得られるが、平均粒子径の約5倍の粒子径を有する粒子が存在し、粒子径分布が不均一で、用途に制限があり、粒子径をより均一にするにはシリカ原料粉末の粒子径分布をより均一にする必要があり、また、粒子表面に微細粒子が融着した粒子が得られやすく、表面の滑らかさを要求される用途には不向きであった。
Patent Document 4 (Japanese Patent Application Laid-Open No. 2005-206436) discloses an amorphous spherical silica hollow powder having an average particle diameter of 0.5 to 8 μm, a sphericity of 0.85 or more, and an average hollowness of 20 to 70% by volume. The body and its manufacturing method are disclosed, and it is disclosed that it is excellent in strength, lightness, heat insulation, low dielectric properties and the like.
However, the amorphous spherical silica hollow powder is obtained by supplying a silica raw material powder having a specific surface area of 40 m 2 / g or more and an average particle diameter of 10 μm or less into a high-temperature flame to make it spherical and hollow. In addition, there are particles having a particle size about 5 times the average particle size, the particle size distribution is non-uniform, the application is limited, and in order to make the particle size more uniform, the particle size distribution of the silica raw material powder is more It is necessary to make it uniform, and it is easy to obtain particles in which fine particles are fused on the particle surface, which is unsuitable for applications that require smoothness of the surface.

さらに、特許文献5(特開平4−104907号公報)には、アルカリ金属ケイ酸塩水溶液を霧化し、100〜500℃の気流中へ導入してガラスバルーンとし、アルカリ金属の除去量を調節することにより、シリカバルーンの細孔径を制御したシリカバルーンの製造方法が開示されている。このとき、霧化する方法としては噴霧乾燥、超音波振動が採用されている。   Furthermore, in Patent Document 5 (Japanese Patent Laid-Open No. 4-104907), an alkali metal silicate aqueous solution is atomized and introduced into an air stream at 100 to 500 ° C. to form a glass balloon to adjust the removal amount of alkali metal. Thus, a method for producing a silica balloon in which the pore diameter of the silica balloon is controlled is disclosed. At this time, spray drying and ultrasonic vibration are employed as the atomizing method.

しかしながら、本願出願人が噴霧乾燥法に準拠して試験をした結果、アルカリ金属の除去工程でガラスバルーンが一部溶解し、所望のシリカバルーンを効率よく得ることが困難であった。また、得られるシリカバルーンは細孔を有する多孔質のシリカバルーンのみであり、内部に空洞を有する無孔質の粒子は得ることができなかった。
しかし、これらの特許文献には、無機酸化物粒子の表面をシリカ系物質で被覆する方法が開示されているものの、シリカ系多孔質粒子の表面に存在する細孔を封止する方法、さらに詳しくはシリカ系多孔質粒子の内部に存在する細孔はそのまま残し、粒子表面に存在する細孔のみを封止する方法については、何ら記載されていない。
However, as a result of a test conducted by the applicant of the present invention in accordance with the spray drying method, it was difficult to efficiently obtain a desired silica balloon because a part of the glass balloon was dissolved in the alkali metal removal step. Moreover, the silica balloon obtained was only a porous silica balloon having pores, and nonporous particles having cavities inside could not be obtained.
However, although these patent documents disclose a method of coating the surface of inorganic oxide particles with a silica-based material, a method for sealing pores existing on the surface of silica-based porous particles is described in more detail. Does not describe any method for sealing only the pores existing on the surface of the particles while leaving the pores existing inside the silica-based porous particles as they are.

無機酸化物微粒子を充填材として混合した半導体封止材用樹脂組成物についても、数多くの提案がなされている。例えば、特許文献6(特開2002−37620号公報)には、有機ケイ素化合物を加水分解、縮合させて得られたポリオルガノシロキサン粒子の焼成体からなる真球状シリカ粒子集合体を混合した半導体封止材用樹脂組成物が開示されているが、充填材としてシリカ系多孔質粒子を使用することについては、何ら記載されていない。   Many proposals have been made for a resin composition for a semiconductor sealing material in which inorganic oxide fine particles are mixed as a filler. For example, Patent Document 6 (Japanese Patent Application Laid-Open No. 2002-37620) discloses a semiconductor package in which a spherical silica particle aggregate composed of a fired product of polyorganosiloxane particles obtained by hydrolysis and condensation of an organosilicon compound is mixed. Although a resin composition for a stopper is disclosed, there is no description about using silica-based porous particles as a filler.

また、特許文献7(特開2001−220496号公報)には、ゾルゲル法から得られた多孔質シリカ粒子をエポキシ樹脂に混合した半導体封止材用樹脂組成物が開示されている。しかし、この多孔質シリカ粒子は、外部から浸入する水分をトラップすることを目的として使用されているので、その粒子表面に存在する細孔は封止されていない。   Further, Patent Document 7 (Japanese Patent Application Laid-Open No. 2001-220496) discloses a resin composition for a semiconductor sealing material in which porous silica particles obtained from a sol-gel method are mixed with an epoxy resin. However, since this porous silica particle is used for the purpose of trapping moisture entering from the outside, the pores existing on the particle surface are not sealed.

さらに、特許文献8(特開2010−155750号公報)には、一次粒子を含むコロイド液を噴霧乾燥して平均粒子径が1〜20μmの無機酸化物粒子(真球状シリカ粉末など)に珪酸や有機ケイ素化合物を加水分解・縮合させて、シリカ系多孔質粒子の内部に存在する細孔はそのまま残し、粒子表面に存在する細孔のみを封止する方法について開示されているが、封止したシリカ系粒子の耐湿性が不十分であった。   Further, in Patent Document 8 (Japanese Patent Laid-Open No. 2010-155750), a colloidal liquid containing primary particles is spray-dried to form inorganic oxide particles (such as true spherical silica powder) having an average particle diameter of 1 to 20 μm, such as silicic acid and A method of sealing only pores existing on the particle surface by hydrolyzing and condensing the organosilicon compound, leaving the pores existing inside the silica-based porous particles as they are, is disclosed. The moisture resistance of the silica-based particles was insufficient.

特開昭61−270201号公報JP-A 61-270201 特開平6−192593号公報JP-A-6-192593 特開2002−160907号公報JP 2002-160907 A 特開2005−206436号公報JP 2005-206436 A 特開平4−104907号公報JP-A-4-104907 特開2002−37620号公報JP 2002-37620 A 特開2001−220496号公報Japanese Patent Laid-Open No. 2001-220696 特開2010−155750号公報JP 2010-155750 A

本発明は、内部に空洞を有するシリカ系粒子の圧縮強度および耐湿性を向上することで、高温高湿条件下において比誘電率の変化量および誘電正接の変化量が殆どない塗膜を形成できる半導体封止用樹脂組成物、および高い耐湿性を長時間維持できる基材を提供する。   The present invention improves the compressive strength and moisture resistance of silica-based particles having cavities therein, thereby forming a coating film with little change in relative permittivity and dielectric loss tangent under high temperature and high humidity conditions. Provided are a resin composition for encapsulating a semiconductor and a substrate capable of maintaining high moisture resistance for a long time.

本発明は、以下を要旨とするものである。
1. 無孔質の外殻シリカ層の内部に空洞を有し、空隙率が20〜95体積%の範囲にあり平均粒子径が0.1〜50μmの範囲にあることを特徴とするシリカ系粒子。
2. 前記シリカ系粒子の空洞が負圧である上記(1)に記載のシリカ系粒子。
3. 前記空洞の負圧が133hPa以下である上記(2)に記載のシリカ系粒子。
4. 前記シリカ系粒子の圧縮強度が、0.1〜200kgf/mm2の範囲にあることを特徴とする上記(1)〜(3)のいずれかに記載のシリカ系粒子。
5. 前記シリカ系粒子が、温度25℃、湿度90%の空気雰囲気下に7日間放置した時の吸湿率(重量変化率)が0.1%以下である上記(1)〜(4)に記載のシリカ系粒子。
The gist of the present invention is as follows.
1. A silica-based particle having a void inside a nonporous outer shell silica layer, having a porosity in a range of 20 to 95% by volume and an average particle diameter in a range of 0.1 to 50 µm.
2. The silica-based particle according to (1), wherein the silica-based particle has a negative pressure.
3. The silica-based particle according to (2), wherein the negative pressure of the cavity is 133 hPa or less.
4). The silica-based particles according to any one of the above (1) to (3), wherein the compressive strength of the silica-based particles is in the range of 0.1 to 200 kgf / mm 2 .
5. The silica-based particles according to the above (1) to (4), wherein the moisture absorption rate (weight change rate) when left for 7 days in an air atmosphere at a temperature of 25 ° C. and a humidity of 90% is 0.1% or less. Silica-based particles.

6. 下記工程(a)〜(d)を順次実施することを特徴とする上記(1)〜(5)のいずれに記載のシリカ系粒子の製造方法。
(a)珪酸アルカリ水溶液を熱風気流中に噴霧乾燥してシリカ系粒子前駆体粒子を調製する工程
(b)シリカ系粒子前駆体粒子を酸水溶液に浸漬し、アルカリを除去する工程
(c)水熱処理する工程
(d)乾燥・加熱処理する工程
7. 工程(b)と工程(c)の間で下記工程(c′)を実施する上記(6)に記載のシリカ系粒子の製造方法。
(c′)乾燥・加熱処理する工程
8. 工程(c)の水熱処理温度が、180〜350℃である上記(6)または(7)に記載のシリカ系粒子の製造方法。
6). The method for producing silica-based particles according to any one of the above (1) to (5), wherein the following steps (a) to (d) are sequentially performed.
(A) Step of preparing silica-based particle precursor particles by spray drying an alkali silicate aqueous solution in a hot air stream (b) Step of immersing silica-based particle precursor particles in an acid aqueous solution to remove alkali (c) Water 6. Heat treatment step (d) Drying / heat treatment step The method for producing silica-based particles according to (6), wherein the following step (c ′) is performed between the step (b) and the step (c).
(C ′) Drying and heat treatment step 8. The method for producing silica-based particles according to (6) or (7) above, wherein the hydrothermal treatment temperature in step (c) is 180 to 350 ° C.

9. 上記(1)〜(5)のいずれかに記載のシリカ系粒子と熱硬化性樹脂を含む半導体封止用樹脂組成物。
10. 前記シリカ系粒子の体積をAで表し、前記熱硬化性樹脂の体積をBで表したとき、その体積比(A/B)が10/100〜95/100の範囲にあることを特徴とする上記(9)記載の半導体封止用樹脂組成物。
9. The resin composition for semiconductor sealing containing the silica type particle in any one of said (1)-(5), and a thermosetting resin.
10. When the volume of the silica-based particles is represented by A and the volume of the thermosetting resin is represented by B, the volume ratio (A / B) is in the range of 10/100 to 95/100. The resin composition for semiconductor encapsulation as described in said (9).

11. 上記(9)または(10)に記載の樹脂組成物からなる塗膜が形成された基材。
12. 上記基材が、高温高湿耐久性試験(温度80℃、湿度80%、保持時間1000時間)において、試験前後における共振法を用いた比誘電率の変化量(△ε)が0.2以下、さらに誘電正接の変化量(△tanδ)が0.01以下である上記(11)に記載の基材。
11. The base material with which the coating film which consists of a resin composition as described in said (9) or (10) was formed.
12 In the high-temperature and high-humidity durability test (temperature 80 ° C., humidity 80%, holding time 1000 hours), the substrate has a relative dielectric constant change (Δε) of 0.2 or less using the resonance method before and after the test. Furthermore, the base material according to the above (11), wherein the change in dielectric loss tangent (Δtan δ) is 0.01 or less.

本発明のシリカ系粒子によれば、圧縮強度が強く、耐湿性が高く、比誘電率および誘電正接の変化量が殆どない塗膜を得ることができる。
本発明のシリカ系粒子の製造方法によれば、耐湿性が高く、低い比誘電率および誘電正接の変化量が殆どない塗膜を得ることができるシリカ系粒子を製造できる。
本発明の半導体封止用樹脂組成物は、耐湿性が高く、比誘電率および誘電正接の変化量が殆どない塗膜が形成された基材を得ることができる。
According to the silica-based particles of the present invention, it is possible to obtain a coating film having high compressive strength, high moisture resistance, and almost no change in relative permittivity and dielectric loss tangent.
According to the method for producing silica-based particles of the present invention, it is possible to produce silica-based particles that can obtain a coating film that has high moisture resistance and has a low relative dielectric constant and little change in dielectric loss tangent.
The resin composition for encapsulating a semiconductor of the present invention can provide a substrate on which a coating film having high moisture resistance and almost no change in relative permittivity and dielectric loss tangent is formed.

以下、本発明に係るシリカ系粒子、該シリカ系粒子の製造方法、該粒子を含む半導体封止用樹脂組成物および該樹脂組成物から塗膜が形成された基材について具体的に説明する。   Hereinafter, the silica-based particles according to the present invention, the method for producing the silica-based particles, the semiconductor sealing resin composition containing the particles, and the substrate on which a coating film is formed from the resin composition will be specifically described.

[シリカ系粒子]
本発明に係るシリカ系粒子は、無孔質の外殻シリカ層の内部に空洞を有し、空隙率が20〜95体積%の範囲にあり平均粒子径が0.1〜50μmの範囲にあることを特徴とする。
粒子の空隙率は20〜95体積%、さらには25〜90体積%の範囲にあることが好ましい。
空隙率が20体積%未満の場合は、屈折率が充分に低くならず、低屈折率の樹脂などへの応用ができない場合がある。
前記シリカ系粒子の空隙率が95体積%を越えるものは得ることが困難であり、得られたとしても、粒子径によっては殻が薄くなり、粒子強度が不充分となる場合がある。
[Silica-based particles]
The silica-based particles according to the present invention have cavities inside the nonporous shell silica layer, the porosity is in the range of 20 to 95% by volume, and the average particle size is in the range of 0.1 to 50 μm. It is characterized by that.
The porosity of the particles is preferably in the range of 20 to 95% by volume, more preferably 25 to 90% by volume.
When the porosity is less than 20% by volume, the refractive index is not sufficiently low, and application to a resin having a low refractive index may not be possible.
It is difficult to obtain a silica-based particle having a porosity of more than 95% by volume. Even if it is obtained, the shell may be thin depending on the particle diameter, and the particle strength may be insufficient.

本発明のシリカ系粒子は、平均粒子径が0.1〜50μmの範囲にある。平均粒子径が0.1μm未満のものは、噴霧乾燥法を用いた生産性を考慮した場合、噴霧乾燥法を用いて製造することが困難である。また、平均粒子径が50μmを超えるシリカ系粒子は、半導体用途としては不向きである。一方、3次元実装技術を含む半導体用の実装材料用途としては、平均粒子径が0.1〜10μmのシリカ系粒子がより好ましい。   The silica-based particles of the present invention have an average particle diameter in the range of 0.1 to 50 μm. Those having an average particle size of less than 0.1 μm are difficult to produce using the spray drying method in consideration of productivity using the spray drying method. Silica-based particles having an average particle diameter exceeding 50 μm are not suitable for semiconductor applications. On the other hand, silica-based particles having an average particle diameter of 0.1 to 10 μm are more preferable for use as a mounting material for semiconductors including three-dimensional mounting technology.

上記のシリカ系粒子を製造する場合、乾燥・加熱処理を減圧下で行うと、得られるシリカ系粒子の外殻層内部が負圧のシリカ系粒子を得ることができる。
従って、上記減圧下で乾燥・加熱処理して得られるシリカ系粒子は、平均粒子径が0.1〜50μmの範囲にあり、外殻シリカ層の内部に空洞を有し、該空洞の空隙率が20〜95重量%の範囲にあり、外殻シリカ層が無孔質であり、空洞内部が負圧であることを特徴としている。
前記空洞内部の負圧が133hPa以下あることが好ましい。
When the above silica-based particles are produced, when the drying / heating treatment is performed under reduced pressure, silica-based particles having a negative pressure inside the outer shell layer of the obtained silica-based particles can be obtained.
Therefore, the silica-based particles obtained by drying and heat treatment under reduced pressure have an average particle diameter in the range of 0.1 to 50 μm, have cavities inside the outer shell silica layer, and the porosity of the cavities. Is in the range of 20 to 95% by weight, the outer shell silica layer is nonporous, and the inside of the cavity is negative pressure.
The negative pressure inside the cavity is preferably 133 hPa or less.

内部に空洞を有するシリカ系粒子は、屈折率は、1.1〜1.4と低い。中空粒子の屈折率が1.1以上であれば、屈折率が1.2以上の塗膜を得やすく、ガラスや樹脂のいずれの基材でも、反射防止効果の高い塗膜が得られる。また、前記粒子の屈折率が1.1以上であれば、十分な厚さのシェルが形成され、前記粒子の機械的強度が高くなる。
内部に空洞を有するシリカ系粒子の屈折率が1.4以下であれば、屈折率が1.4以下の塗膜を得やすく、ガラスや樹脂のいずれの基材でも、反射防止効果の高い塗膜が得られる。
Silica-based particles having cavities therein have a low refractive index of 1.1 to 1.4. If the refractive index of the hollow particles is 1.1 or more, it is easy to obtain a coating film having a refractive index of 1.2 or more, and a coating film having a high antireflection effect can be obtained with any substrate of glass or resin. Further, if the refractive index of the particles is 1.1 or more, a sufficiently thick shell is formed, and the mechanical strength of the particles is increased.
If the refractive index of silica-based particles having cavities therein is 1.4 or less, it is easy to obtain a coating film having a refractive index of 1.4 or less. A membrane is obtained.

本発明のシリカ系粒子としては、シリカ粒子、シリカ以外の無機酸化物を粒子中に50重量%未満で含むシリカ・アルミナ、シリカ・ジルコニア、シリカ・チタニア等のシリカ系粒子が用いられる。なかでも、実質的にシリカのみからなり、粒子径が均一なシリカゾルに由来するシリカ粒子は好適に用いることができる。   As the silica particles of the present invention, silica particles such as silica particles, silica / alumina, silica / zirconia, silica / titania, etc. containing inorganic oxides other than silica in less than 50% by weight are used. Especially, the silica particle which consists only of silica and originates in a silica sol with a uniform particle diameter can be used conveniently.

シリカ系粒子の圧縮強度は0.1〜200kgf/mm2の範囲にあることが好ましい。
圧縮強度が0.1kgf/mm未満の場合、強度が弱く、樹脂との混合作業や塗膜中で粒子が壊れ、形状を維持できない場合がある。また、圧縮強度が200kgf/mmを超えると粒子自身が脆くなり、粒子同士の衝突などで壊れる恐れがある。
The compressive strength of the silica-based particles is preferably in the range of 0.1 to 200 kgf / mm 2 .
When the compressive strength is less than 0.1 kgf / mm 2 , the strength is weak, and the particles may be broken in the mixing operation with the resin or in the coating film, and the shape may not be maintained. Further, if the compressive strength exceeds 200 kgf / mm 2 , the particles themselves become brittle and may be broken due to collisions between the particles.

本発明のシリカ系粒子は耐湿性を有することが好ましい。ここで、耐湿性とは、シリカ系粒子を、温度25℃、湿度90%の空気雰囲気下に7日間放置した時の吸湿率(重量変化率)が0.1%以下であることを意味する。湿気を嫌う用途で使用する場合、粒子自身の吸湿率が0.1%を越えると、塗膜中に水分が取り込まれることになり、不具合の発生の重大な要因となる。   The silica-based particles of the present invention preferably have moisture resistance. Here, the moisture resistance means that the moisture absorption rate (weight change rate) when the silica-based particles are left in an air atmosphere at a temperature of 25 ° C. and a humidity of 90% for 7 days is 0.1% or less. . When used in applications where moisture is not desired, if the moisture absorption rate of the particles themselves exceeds 0.1%, moisture is taken into the coating film, which is a significant factor in the occurrence of defects.

[シリカ系粒子の製造方法]
本発明に係るシリカ系粒子の製造方法は、下記の工程(a)〜(d)からなることを特徴としている。
(a)珪酸アルカリ水溶液を熱風気流中に噴霧乾燥してシリカ系粒子前駆体粒子を調製する工程
(b)シリカ系粒子前駆体粒子を酸水溶液に浸漬し、アルカリを除去する工程
(c)水熱処理する工程
(d)乾燥・加熱処理する工程
[Method for producing silica-based particles]
The method for producing silica-based particles according to the present invention is characterized by comprising the following steps (a) to (d).
(A) Step of preparing silica-based particle precursor particles by spray drying an alkali silicate aqueous solution in a hot air stream (b) Step of immersing silica-based particle precursor particles in an acid aqueous solution to remove alkali (c) Water Heat treatment step (d) Drying and heat treatment step

工程(a)
珪酸アルカリ水溶液を熱風気流中に噴霧乾燥してシリカ系粒子前駆体粒子を調製する。
本発明に用いる珪酸アルカリとしては、通常、水に可溶の珪酸ナトリウム、珪酸カリウムが用いられる。
珪酸アルカリのSiO/MOモル比(但し、Mはアルカリ金属を示す。)は1〜5、さらには2〜4の範囲にあることが好ましい。
珪酸アルカリのSiO/MOモル比が1未満の場合は、アルカリ量が多すぎるために後述する工程(b)における酸洗浄が困難となるだけでなく、噴霧乾燥品の潮解性が顕著となるためにシリカ系微粒子が得られない場合がある。
珪酸アルカリのSiO/MOモル比が5を越えると、珪酸アルカリの可溶性が低下し、水溶液の調製が困難であり、できたとしても水溶液中では数nm以下のシリカ微粒子が発生する場合があり、噴霧乾燥しても本発明に使用できるシリカ系粒子前駆体粒子が得られない場合がある。
Step (a)
An aqueous silica silicate solution is spray-dried in a hot air stream to prepare silica-based particle precursor particles.
As the alkali silicate used in the present invention, sodium silicate and potassium silicate soluble in water are usually used.
The SiO 2 / M 2 O molar ratio of alkali silicate (where M represents an alkali metal) is preferably in the range of 1 to 5, more preferably 2 to 4.
When the SiO 2 / M 2 O molar ratio of the alkali silicate is less than 1, the alkali amount is too large, so that not only acid cleaning in the step (b) described later becomes difficult, but also the deliquescence of the spray-dried product is remarkable. Therefore, silica-based fine particles may not be obtained.
When the SiO 2 / M 2 O molar ratio of the alkali silicate exceeds 5, the solubility of the alkali silicate is reduced, and it is difficult to prepare an aqueous solution. Even if it is possible, silica fine particles of several nm or less are generated in the aqueous solution. In some cases, silica-based particle precursor particles that can be used in the present invention may not be obtained even by spray drying.

珪酸アルカリ水溶液のSiOとしての濃度は1〜30重量%、さらには5〜28重量%の範囲にあることが好ましい。
珪酸アルカリ水溶液のSiOとしての濃度が1重量%未満の場合は、生産性を考慮した場合に非効率となる場合がある。
珪酸アルカリ水溶液のSiOとしての濃度が30重量%を越えると、珪酸アルカリ水溶液としての安定性が著しく低下して高粘性になり噴霧乾燥が困難となる場合があり、噴霧乾燥できたとしても粒子径分布、外殻の厚さ等が極めて不均一になる場合があり、用途が制限される場合がある。
The concentration of the alkali silicate aqueous solution as SiO 2 is preferably in the range of 1 to 30% by weight, more preferably 5 to 28% by weight.
When the concentration of the alkali silicate aqueous solution as SiO 2 is less than 1% by weight, it may be inefficient when productivity is taken into consideration.
If the concentration of the alkali silicate aqueous solution as SiO 2 exceeds 30% by weight, the stability as the alkali silicate aqueous solution is remarkably lowered and the viscosity may become high and spray drying may be difficult. In some cases, the diameter distribution, the thickness of the outer shell, and the like are extremely nonuniform, and the application may be limited.

珪酸アルカリ水溶液を熱風気流中に噴霧乾燥するが、噴霧乾燥方法としては、後述するシリカ系微粒子が得られれば特に制限は無いが、回転ディスク法、加圧ノズル法、2流体ノズル法等従来公知の方法を採用することができる。本発明では、内部に空洞を有する粒子を得る場合、2流体ノズル法が好適である。   The alkali silicate aqueous solution is spray-dried in a hot air stream, and the spray-drying method is not particularly limited as long as silica-based fine particles to be described later are obtained, but a conventionally known method such as a rotating disk method, a pressurized nozzle method, and a two-fluid nozzle method. This method can be adopted. In the present invention, the two-fluid nozzle method is suitable for obtaining particles having cavities inside.

本発明のシリカ系粒子を製造する場合は、前記噴霧乾燥における入口温度が300〜600℃、さらには350〜550℃の範囲にあり、出口温度が120〜300℃、さらには130〜250℃の範囲にあることが好ましい。
この時、噴霧乾燥における入口温度が300℃未満の場合は、出口温度によっても異なるが、内部に空洞を有するシリカ系粒子が得られない場合がある。
噴霧乾燥における入口温度が600℃を越えると、破裂状態のシリカ系粒子前駆体粒子が形成されるようになり、内部に空洞を有するシリカ系粒子を得ることが困難となる場合があり、得られたとしても外殻の厚みが薄くなり、得られるシリカ系粒子の強度が不充分となる場合がある。
When producing the silica-based particles of the present invention, the inlet temperature in the spray drying is in the range of 300 to 600 ° C., more preferably 350 to 550 ° C., and the outlet temperature is 120 to 300 ° C., more preferably 130 to 250 ° C. It is preferable to be in the range.
At this time, when the inlet temperature in spray drying is less than 300 ° C., it may vary depending on the outlet temperature, but silica-based particles having cavities inside may not be obtained.
When the inlet temperature in spray drying exceeds 600 ° C., ruptured silica-based particle precursor particles are formed, and it may be difficult to obtain silica-based particles having cavities inside. Even if this is the case, the thickness of the outer shell becomes thin, and the strength of the resulting silica-based particles may be insufficient.

熱風の出口温度が120℃未満の場合は、内部に空洞を有するシリカ系粒子が得られない場合がある。
熱風の出口温度が300℃を越えると、破裂状態のシリカ系粒子前駆体粒子が形成されるようになり、内部に空洞を有するシリカ系粒子を得ることが困難となる場合があり、得られたとしても外殻の厚みが薄くなり、得られるシリカ系粒子の強度が不充分となる場合がある。
When the outlet temperature of hot air is less than 120 ° C., silica-based particles having cavities inside may not be obtained.
When the outlet temperature of the hot air exceeds 300 ° C., a silica-based particle precursor particle in a ruptured state is formed, and it may be difficult to obtain silica-based particles having cavities inside. However, the thickness of the outer shell may be reduced, and the strength of the resulting silica-based particles may be insufficient.

工程(b)
シリカ系粒子前駆体粒子を酸水溶液に浸漬し、アルカリを除去する。
酸としては、塩酸、硝酸、硫酸等の鉱酸、酢酸、酒石酸、リンゴ酸等の有機酸等を用いることができる。通常、この様な酸を用いるが、陽イオン交換樹脂等を用いることもできる。本発明では塩酸、硝酸、硫酸等の鉱酸が好適に用いられる。
Step (b)
Silica-based particle precursor particles are immersed in an acid aqueous solution to remove alkali.
Examples of the acid include mineral acids such as hydrochloric acid, nitric acid, and sulfuric acid, and organic acids such as acetic acid, tartaric acid, and malic acid. Usually, such an acid is used, but a cation exchange resin or the like can also be used. In the present invention, mineral acids such as hydrochloric acid, nitric acid and sulfuric acid are preferably used.

シリカ系粒子前駆体粒子を酸水溶液に浸漬する際、シリカ粒子前駆体粒子中のMOモル数(Msp)と酸のモル数(Ma)とのモル比(Ma)/(Msp)が0.6〜4.7、さらには1〜4.5の範囲となるように浸漬することが好ましい。
前記モル比(Ma)/(Msp)が0.6未満の場合は、MOに対して酸の量が少なすぎるために、アルカリの除去とともに起きると考えられる珪酸の縮合、ケイ酸のシリカ骨格化が進行せず、シリカ系粒子前駆体粒子が部分的に溶解したり、溶解した珪酸アルカリがゲル化する場合がある。
前記モル比(Ma)/(Msp)が4.7を越えてもさらに、上記した珪酸の縮合、骨格化が進むこともなく、酸が過剰であり経済的でない。
When the silica-based particle precursor particles are immersed in the acid aqueous solution, the molar ratio (Ma) / (Msp) between the number of moles of M 2 O (Msp) and the number of moles of acid (Ma) in the silica particle precursor particles is 0. It is preferable to immerse so that it may become the range of 1.6-4.7, and also 1-4.
When the molar ratio (Ma) / (Msp) is less than 0.6, the amount of acid relative to M 2 O is too small, so that condensation of silicic acid, which is considered to occur along with the removal of alkali, silica of silicic acid In some cases, the skeletonization does not proceed and the silica-based particle precursor particles are partially dissolved, or the dissolved alkali silicate is gelled.
Even if the molar ratio (Ma) / (Msp) exceeds 4.7, the above-described condensation and skeletonization of silicic acid does not proceed, and the acid is excessive and not economical.

また、酸水溶液に浸漬した際のシリカ系粒子前駆体粒子の濃度がSiOとして1〜30重量%、さらには5〜25重量%の範囲にあることが好ましい。
酸水溶液に浸漬した際のシリカ系粒子前駆体粒子の濃度がSiOとして1重量%未満の場合は、アルカリ除去、洗浄性に問題はないが製造効率が低下する。また、前記した酸とシリカのモル比、珪酸アルカリのシリカとアルカリのモル比によっては、酸の濃度が低くなる場合があり、シリカ系粒子前駆体粒子が部分的に溶解したり、溶解した珪酸アルカリがゲル化する場合がある。
酸水溶液に浸漬した際のシリカ系粒子前駆体粒子の濃度がSiOとして30重量%を越えると、濃度が濃すぎてアルカリ除去、洗浄効率が低下する場合があり、また、シリカ系粒子前駆体粒子の粒子径が小さい場合には特に分散液の粘度が高くなりアルカリ除去、洗浄効率が低下する場合がある。
The concentration of the silica-based particle precursor particles when immersed in an aqueous acid solution is 1 to 30 wt% as SiO 2, and more preferably in the range of 5 to 25 wt%.
The concentration of the silica-based particle precursor particles when immersed in aqueous acid solution in the case of less than 1% by weight SiO 2, alkali removal, there is no problem in cleanability production efficiency decreases. Further, depending on the molar ratio of the acid and silica described above and the silica and alkali molar ratio of the alkali silicate, the concentration of the acid may be lowered, and the silica-based particle precursor particles may be partially dissolved or dissolved silicic acid. The alkali may gel.
If the concentration of the silica-based particle precursor particles when immersed in an acid aqueous solution exceeds 30% by weight as SiO 2 , the concentration may be too high and alkali removal and cleaning efficiency may be reduced. When the particle diameter of the particles is small, the viscosity of the dispersion is particularly high, and alkali removal and cleaning efficiency may be reduced.

アルカリを除去する条件としては、アルカリを除去できれば特に制限はないが、概ね温度が5〜70℃の範囲、時間は0.5〜24時間の範囲である。
ついで、従来公知の方法で洗浄する。例えば、純水にて濾過洗浄すればよい。
なお、本発明では、必用に応じて上記アルカリの除去および洗浄を繰り返し行うこともできる。
洗浄後のアルカリの残存量は、用途によっても異なるが、MOとして0.5重量%以下、さらには0.1重量%以下であることが好ましい。
The conditions for removing the alkali are not particularly limited as long as the alkali can be removed, but the temperature is generally in the range of 5 to 70 ° C. and the time is in the range of 0.5 to 24 hours.
Subsequently, it wash | cleans by a conventionally well-known method. For example, it may be filtered and washed with pure water.
In the present invention, the alkali removal and washing can be repeated as necessary.
The remaining amount of alkali after washing varies depending on the use, but it is preferably 0.5% by weight or less, more preferably 0.1% by weight or less as M 2 O.

工程(c)
シリカ系粒子前駆体粒子分散液を水熱処理する。
前記工程(b)から得られたシリカ系粒子前駆体粒子は、前記分散液を加熱する必要があるため、該混合液をオートクレーブなどの耐圧容器に入れて行う必要がある。
前記混合液を180〜350℃の温度にて加熱処理すると、前記シリカ系粒子前駆体粒子および/またはその溶解物で前記シリカ系粒子前駆体粒子の表面に存在する細孔の内部が塞がれ、該細孔を封止することができる。加熱温度は、さらに200〜250℃が好ましい。
Step (c)
The silica-based particle precursor particle dispersion is hydrothermally treated.
Since the silica-based particle precursor particles obtained from the step (b) need to heat the dispersion, it is necessary to put the mixed solution in a pressure vessel such as an autoclave.
When the mixed solution is heat-treated at a temperature of 180 to 350 ° C., the inside of pores existing on the surface of the silica-based particle precursor particles is blocked with the silica-based particle precursor particles and / or a solution thereof. The pores can be sealed. The heating temperature is preferably 200 to 250 ° C.

また、この段階では、粒子表面の細孔を緻密に封止することを目的として、珪酸や有機ケイ素化合物などの従来公知の液状ケイ素化合物を前記混合液中にさらに加えることもできる。例えば、特開2010−155750号公報などに記載のように、シリカ系粒子の水熱処理時に珪酸や有機ケイ素化合物を、記載の割合で添加し水熱処理を行ってもよい。これは、前記液状ケイ素化合物を加えても、これらが前記シリカ系粒子前駆体粒子の内部に侵入することは殆どなく、その表面に存在する細孔のみを封止してなる、耐湿性に優れたシリカ系粒子を得ることができる。   In this stage, a conventionally known liquid silicon compound such as silicic acid or an organosilicon compound can be further added to the mixed solution for the purpose of densely sealing the pores on the particle surface. For example, as described in Japanese Patent Application Laid-Open No. 2010-155750, hydrothermal treatment may be performed by adding silicic acid or an organosilicon compound in the stated ratio during hydrothermal treatment of silica-based particles. This is because even if the liquid silicon compound is added, they hardly penetrate into the silica-based particle precursor particles, and only the pores existing on the surface are sealed. Silica-based particles can be obtained.

ここで、前記温度が180℃未満であると、前記シリカ系粒子前駆体粒子の表面に存在する細孔を十分に封止することができない場合があり、また前記温度が350℃を超えると、前記シリカ系粒子前駆体粒子の溶解が進み、しかもその溶解物(さらには、前記シリカ粒子の溶解物)が加熱終了後に該粒子上などに析出して非多孔質粒子や非球状粒子などになってしまうことがあるので、好ましくない。   Here, when the temperature is less than 180 ° C, pores present on the surface of the silica-based particle precursor particles may not be sufficiently sealed, and when the temperature exceeds 350 ° C, Dissolution of the silica-based particle precursor particles proceeds, and the dissolved product (and further, the dissolved silica particles) is deposited on the particles after heating to become non-porous particles or non-spherical particles. This is not preferable.

また、この加熱処理は、5〜20時間、好ましくは10〜16時間かけて行うことが好ましい。ここで、前記処理時間が5時間未満であると、前記シリカ系粒子前駆体粒子の表面に存在する細孔を十分に封止することができない場合があり、また前記処理時間が20時間を超えると、前記シリカ系粒子前駆体粒子の溶解が進み、しかもその溶解物(さらには、前記シリカ粒子の溶解物)が加熱終了後に該粒子上などに析出して非多孔質粒子や非球状粒子などになってしまうことがあるので、好ましくない。
この工程では、前記混合液中に含まれるシリカ粒子が溶解され、この溶解物が少なくとも前記シリカ系粒子前駆体粒子の表面に存在する細孔の内部に入って固着するので、該粒子の表面に存在する細孔を封止することができる。
The heat treatment is preferably performed for 5 to 20 hours, preferably 10 to 16 hours. Here, if the treatment time is less than 5 hours, pores present on the surface of the silica-based particle precursor particles may not be sufficiently sealed, and the treatment time exceeds 20 hours. And the dissolution of the silica-based particle precursor particles proceeds, and the dissolved product (and the dissolved silica particles) is deposited on the particles after the heating, and the non-porous particles, non-spherical particles, etc. This is not preferable.
In this step, the silica particles contained in the mixed solution are dissolved, and this dissolved material enters at least the inside of the pores existing on the surface of the silica-based particle precursor particles, and is thus fixed on the surface of the particles. Existing pores can be sealed.

工程(d)
ついで、乾燥・加熱処理する。
乾燥・加熱処理温度は90〜1200℃、さらには110〜1150℃の範囲にあることが好ましい。
乾燥・加熱処理温度が90℃未満の場合は、細孔が消失しない場合があり、外殻が無孔質なシリカ系粒子が得られない場合がある。
乾燥・加熱処理温度が1200℃を越えても、さらに無孔質化することもなく、また、さらに粒子強度が向上することもなく、温度、粒子径によっては分散し難い凝集体粒子となる場合がある。
Step (d)
Next, it is dried and heated.
The drying / heat treatment temperature is preferably in the range of 90 to 1200 ° C, more preferably 110 to 1150 ° C.
When the drying / heat treatment temperature is less than 90 ° C., the pores may not disappear, and silica-based particles having a nonporous outer shell may not be obtained.
Even when the drying / heat treatment temperature exceeds 1200 ° C., it does not become non-porous, and the particle strength does not further improve, resulting in aggregate particles that are difficult to disperse depending on the temperature and particle size. There is.

工程(c′)
この工程(c′)は任意工程であり、工程(b)と工程(c)の間において、シリカ系粒子前駆体粒子を、乾燥・加熱処理する工程である。
乾燥・加熱処理温度は30〜120℃、さらには40〜100℃の範囲にあることが好ましい。
また、乾燥・加熱処理を減圧下で行い、得られるシリカ系粒子の外殻層内部が負圧であることが好ましく、さらに空洞内部の負圧が133hPa以下であることが好ましい。
乾燥・加熱処理温度が30℃未満の場合は、付着水が多く残存し、用途に制限がある他、乾燥処理に長時間を要し生産性が低下する問題がある。
乾燥・加熱処理温度が120℃を越えると、アルカリを除去した際にできる細孔が消滅する場合がある。
Step (c ′)
This step (c ′) is an optional step, and is a step of drying and heat-treating the silica-based particle precursor particles between the step (b) and the step (c).
The drying / heating temperature is preferably 30 to 120 ° C, more preferably 40 to 100 ° C.
Moreover, it is preferable that drying and heat processing are performed under reduced pressure, and the inside of the outer shell layer of the obtained silica-based particles is preferably negative pressure, and the negative pressure inside the cavity is preferably 133 hPa or less.
When the drying / heat treatment temperature is less than 30 ° C., a large amount of adhering water remains, and there is a problem that productivity is reduced because the drying treatment takes a long time in addition to the limitation of use.
When the drying / heat treatment temperature exceeds 120 ° C., pores formed when alkali is removed may disappear.

[半導体封止用樹脂組成物]
本発明に係る半導体封止用樹脂組成物は、前記シリカ系粒子を充填材として熱硬化性樹脂に混合してなるものである。
前記熱硬化性樹脂としては、一般に半導体封止用に使用されているものであれば、特に制限なく使用することができる。さらに、熱硬化性樹脂の中でも、光硬化樹脂または熱硬化樹脂を使用することが好ましい。このようなものとしては、エポキシ系樹脂、ポリイミド系樹脂、ビスマレイミド系樹脂、アクリル系樹脂、メタクリル系樹脂、シリコン系樹脂、BTレジン、シアネート系樹脂は好適に用いることができる。例えば、エポキシ系樹脂としては、ビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂、トリフェノールアルカン型エポキシ樹脂、ビフェニル骨格を有するエポキシ樹脂、ナフタレン骨格を有するエポキシ樹脂、ジシクロペンタジエンフェノールノボラック樹脂、フェノールアラルキル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、脂環式エポキシ樹脂、複素環型エポキシ樹脂、ハロゲン化エポキシ樹脂などが挙げられる。また、これらの樹脂化合物については、単独で使用してもよく、2種以上を混合して使用してもよい。
[Resin composition for semiconductor encapsulation]
The resin composition for semiconductor encapsulation according to the present invention is obtained by mixing the silica-based particles with a thermosetting resin as a filler.
As said thermosetting resin, if it is generally used for semiconductor sealing, it can be especially used without a restriction | limiting. Furthermore, among thermosetting resins, it is preferable to use a photocurable resin or a thermosetting resin. As such materials, epoxy resins, polyimide resins, bismaleimide resins, acrylic resins, methacrylic resins, silicon resins, BT resins, and cyanate resins can be suitably used. For example, epoxy resins include bisphenol type epoxy resin, novolak type epoxy resin, triphenolalkane type epoxy resin, epoxy resin having biphenyl skeleton, epoxy resin having naphthalene skeleton, dicyclopentadienephenol novolak resin, phenol aralkyl type epoxy. Examples thereof include resins, glycidyl ester type epoxy resins, alicyclic epoxy resins, heterocyclic type epoxy resins, and halogenated epoxy resins. Moreover, about these resin compounds, you may use individually and may mix and use 2 or more types.

前記シリカ系粒子は、該シリカ系粒子の重量をAで表し、前記熱硬化性樹脂の重量をBで表したとき、その重量比(A/B)が10/100〜95/100、好ましくは30/100〜80/100となるように混合することが好ましい。ここで、前記重量比が10/100未満であると、前記シリカ系粒子の特性である低熱膨張係数効果、熱硬化性硬化が悪くなり、また前記重量比が95/100を超えると、流動性が悪くなるため半導体を効率よく封止することが難しくなるので、好ましくない。   When the weight of the silica particles is represented by A and the weight of the thermosetting resin is represented by B, the weight ratio (A / B) is 10/100 to 95/100, preferably It is preferable to mix so that it may become 30/100-80/100. Here, when the weight ratio is less than 10/100, the low thermal expansion coefficient effect and thermosetting curing, which are the characteristics of the silica-based particles, deteriorate, and when the weight ratio exceeds 95/100, fluidity Since it becomes difficult to seal a semiconductor efficiently, it is not preferable.

前記半導体封止用樹脂組成物の調製に際しては、フェノール化合物、アミン化合物、酸無水物などの硬化剤が使用される。この硬化剤としては、エポキシ樹脂の硬化剤に使用されているものならば、制限なく使用することができる。この中でも、1分子中にフェノール性水酸基を2個以上有する、ビスフェノール型樹脂、ノボラック樹脂、トリフェノールアルカン型樹脂、レゾール型フェノール樹脂、フェノールアラルキル樹脂、ビフェニル型フェノール樹脂、ナフタレン型フェノール樹脂、シクロペンタジエン型フェノール樹脂などのフェノール樹脂や、メチルヘキサヒドロフタル酸、メチルテトラヒドロフタル酸、無水メチルナジック酸等の酸無水物を使用することが好ましい。   In the preparation of the semiconductor sealing resin composition, a curing agent such as a phenol compound, an amine compound, or an acid anhydride is used. As this hardening | curing agent, if it is used for the hardening | curing agent of an epoxy resin, it can be used without a restriction | limiting. Among these, bisphenol type resin, novolak resin, triphenolalkane type resin, resol type phenol resin, phenol aralkyl resin, biphenyl type phenol resin, naphthalene type phenol resin, cyclopentadiene having two or more phenolic hydroxyl groups in one molecule. It is preferable to use phenolic resins such as type phenolic resins and acid anhydrides such as methylhexahydrophthalic acid, methyltetrahydrophthalic acid, and methylnadic anhydride.

さらに、前記半導体封止用樹脂組成物には、必要に応じて着色剤、応力緩和剤、消泡剤、レベリング剤、カップリング剤、難燃剤、硬化促進剤などを添加することができる。
また、前記半導体封止用樹脂組成物の調製は、従来公知の方法で行うことができる。すなわち、該樹脂組成物は、たとえば、前記熱硬化性樹脂、前記シリカ系粒子、前記硬化剤、さらに必要に応じて前記添加剤を混合し、ロールミルなどで混練した後、減圧脱泡処理を施して調製される。
Furthermore, a coloring agent, a stress relaxation agent, an antifoaming agent, a leveling agent, a coupling agent, a flame retardant, a curing accelerator, and the like can be added to the semiconductor sealing resin composition as necessary.
Moreover, the said semiconductor sealing resin composition can be prepared by a conventionally well-known method. That is, the resin composition is, for example, mixed with the thermosetting resin, the silica-based particles, the curing agent and, if necessary, the additive, kneaded with a roll mill or the like, and then subjected to vacuum defoaming treatment. Prepared.

[被膜付基材]
前記半導体封止用樹脂組成物を用いた被膜付基材の形成方法は、ディップ法、スプレー法、スピナー法、ロールコート法、バーコート法、グラビア印刷法、マイクログラビア印刷法等の周知の方法で基材に塗布し、乾燥する等常法によって硬化させることによって被膜を形成することができ、被膜付基材を作成できる。
[Substrate with coating]
A method for forming a coated substrate using the resin composition for semiconductor encapsulation is a known method such as a dipping method, a spray method, a spinner method, a roll coating method, a bar coating method, a gravure printing method, or a micro gravure printing method. The film can be formed by coating the substrate with a conventional method such as drying and curing, and a substrate with a film can be produced.

被膜付基材は、湿気を嫌う用途で使用する場合、塗膜付基材の高温皇室耐久性試験において、比誘電率の変化量(△ε)が0.2を越えて、さらに誘電正接(△tan δ)が0.01を越えると、塗膜中に水分が取り込まれることになり、不具合の発生の重大な要因となる。   When the coated substrate is used in applications where moisture is not required, in the high temperature imperial durability test of the coated substrate, the change in relative dielectric constant (Δε) exceeds 0.2, and the dielectric loss tangent ( When Δtan δ) exceeds 0.01, moisture is taken into the coating film, which is a significant factor in the occurrence of defects.

[測定方法]
次に、本発明で用いられる測定方法を示せば、以下の通りである。
(1)シリカ系粒子の平均粒子径
シリカ系粒子の粉体を40重量%のグリセリン含有水溶液に分散させてなるスラリー液(固形分濃度0.1〜5質量%)を調製し、これを超音波発生装置(iuch社製US−2型)にかけて5分間、分散処理を施す。次いで、前記グリセリン水溶液を加えて濃度を調節した分散液より試料を取り、これをガラスセル(長さ10mm、幅10mm、高さ45cmのサイズ)に入れて、遠心沈降式粒度分布測定装置(堀場製作所製:CAPA−700)を用いて平均粒子径を測定する。
[Measuring method]
Next, the measurement method used in the present invention is as follows.
(1) Average particle diameter of silica-based particles A slurry liquid (solid content concentration of 0.1 to 5% by mass) prepared by dispersing a powder of silica-based particles in a 40% by weight glycerin-containing aqueous solution is prepared. Dispersion treatment is performed for 5 minutes on a sound wave generator (US-2 type manufactured by Iuch). Next, a sample is taken from the dispersion whose concentration has been adjusted by adding the glycerin aqueous solution, and the sample is placed in a glass cell (size of 10 mm in length, 10 mm in width, and 45 cm in height). The average particle diameter is measured using Seiko Seisakusho: CAPA-700).

(2)シリカ系微粒子の平均粒子径
ナノサイズの粒子径を有するシリカ系微粒子の水分散ゾル(固形分 含有量20重量%)0.15gに純水19.85gを混合して調製した固形分含有量0.15%の試料を、長さ1cm、幅1cm、高さ5cmの石英セルに入れて、動的光散乱法による超微粒子粒度分析装置(大塚電子(株)製、型式ELS−Z2)を用いて、粒子群の粒子径分布を測定する。なお、本発明でいう平均粒子径は、この測定結果をキュムラント解析して算出された値を示す。
(2) Average particle diameter of silica-based fine particles Solid content prepared by mixing 19.85 g of pure water with 0.15 g of an aqueous dispersion sol (solid content 20 wt%) of silica-based fine particles having a nano-sized particle size. A sample having a content of 0.15% was placed in a quartz cell having a length of 1 cm, a width of 1 cm, and a height of 5 cm, and an ultrafine particle size analyzer by dynamic light scattering method (model ELS-Z2 manufactured by Otsuka Electronics Co., Ltd.). ) To measure the particle size distribution of the particle group. In addition, the average particle diameter as used in the field of this invention shows the value computed by cumulant analysis of this measurement result.

(3)シリカ系粒子の真密度
日本工業規格JIS Z8807に規定される測定方法により、ピクノメーターを用いて水熱処理前のシリカ系粒子の真密度を求める。
(3) True density of silica-based particles The true density of silica-based particles before hydrothermal treatment is determined using a pycnometer by a measurement method defined in Japanese Industrial Standard JIS Z8807.

(4)シリカ系粒子の空隙率
前記(3)で求められた水熱処理前のシリカ系粒子の真密度を用いて、以下の式から算出する。ここで用いる2.2という数値は、シリカの密度を示す。
空隙率(%)=[2.2−(水熱処理前のシリカ系粒子の真密度)]/2.2×100
(4) Porosity of silica-based particles Using the true density of silica-based particles before hydrothermal treatment determined in (3) above, the following formula is used. The numerical value of 2.2 used here indicates the density of silica.
Porosity (%) = [2.2− (true density of silica-based particles before hydrothermal treatment)] / 2.2 × 100

(5)シリカ系粒子を含む混合液のpH
シリカ系粒子を含む混合液にアンモニアなどを添加してpHを調整した分散液を、25℃の恒温槽中で30分以上攪拌した後、pH4、7および9の標準液で更正が完了したpHメータ(堀場製作所製、F22)のガラス電極を挿入して測定する。
(5) pH of the mixed solution containing silica-based particles
A pH of which the pH is adjusted with a standard solution of pH 4, 7 and 9 after stirring a dispersion whose pH is adjusted by adding ammonia or the like to a mixed solution containing silica-based particles for 30 minutes or more in a thermostatic bath at 25 ° C. Measurement is performed by inserting a glass electrode of a meter (H22, F22).

(6)シリカ系粒子の圧縮強度
シリカ系粒子の粉体より、平均粒子径±0.5μmの範囲にある粒子1個を試料として取り、微小圧縮試験機(島津製作所製、MCTM−200)を用いて、この試料に一定の負荷速度で荷重を負荷し、粒子が破壊した時点の加重値を圧縮強度(kgf/mm)とする。さらに、この操作を4回繰り返し、5個の試料について圧縮強度を測定し、その平均値を粒子圧縮強度とする。
(6) Compressive strength of silica-based particles From a powder of silica-based particles, one particle having an average particle diameter of ± 0.5 μm is taken as a sample, and a micro compression tester (manufactured by Shimadzu Corporation, MCTM-200) is used. Using this, a load is applied to the sample at a constant load speed, and the weight at the time when the particles are broken is defined as the compressive strength (kgf / mm 2 ). Further, this operation is repeated four times, the compressive strength is measured for five samples, and the average value is taken as the particle compressive strength.

(7)シリカ系粒子の吸湿率
所定量のシリカ系微粒子を磁性ルツボに入れて、その重量を精密電子天秤(ASONE社 ASP214)を用いて秤量する。次いで、前記磁性ルツボを温度25℃、湿度90%に調整されたデシケーター内に入れて7日間放置し、その後、前記磁性ルツボを取り出してその重量を精密電子天秤で秤量する。次に、その重量変化を算出し、その値を吸湿率とする。
(7) Moisture absorption rate of silica-based particles A predetermined amount of silica-based fine particles is placed in a magnetic crucible, and the weight thereof is weighed using a precision electronic balance (ASPONE, ASP214). Next, the magnetic crucible is placed in a desiccator adjusted to a temperature of 25 ° C. and a humidity of 90% and left for 7 days. Thereafter, the magnetic crucible is taken out and weighed with a precision electronic balance. Next, the weight change is calculated, and the value is defined as the moisture absorption rate.

(8)シリカ系粒子の空隙内部圧の測定方法
以下の方法で空隙内部圧を測定し、以下の基準で評価した。
U字管マノメータの一方に接続した100ccガラス瓶に、シリカ系微粒子を粒子密度で換算した40cc相当の重量を投入し、次に濃度48重量%の水酸化ナトリウム水溶液50cc投入し、直ちに圧抜き弁を閉じて密閉状態にした。このとき、ガラス瓶内部の空気層の空間は10ccであった。次に、マグネットスターラーを用いて攪拌しながら、オイルバスにて80℃で15時間加熱してシリカ系微粒子を溶解させ、ついで、室温まで冷却した。この時の空気層の空間は25cc(ガラス瓶内部の空気層の体積:10ccとシリカ系粒子の内部空隙体積:16ccの和と凡そ等しい)となった。これにより、シリカ系微粒子の内部空隙がシリカの溶解により開放されたことが分かった。次に、U字管マノメータの他方には48%水酸化ナトリウム水溶液のみを90cc投入した100ccガラス瓶を接続し、双方のガラス瓶内部の蒸気圧を等しくした。これにより、マノメータで測定した差圧を元に、ボイルの法則からシリカ系微粒子の内部圧力を算出できる。このときのU字管マノメータの差圧を読み取って、空隙内部圧を算出した。
(8) Method for measuring void internal pressure of silica-based particles The void internal pressure was measured by the following method and evaluated according to the following criteria.
A 100 cc glass bottle connected to one of the U-shaped manometers is charged with a weight equivalent to 40 cc of silica-based fine particles, and then 50 cc of a 48 wt% sodium hydroxide aqueous solution is added. Closed and sealed. At this time, the space of the air layer inside the glass bottle was 10 cc. Next, while stirring with a magnetic stirrer, the mixture was heated at 80 ° C. for 15 hours in an oil bath to dissolve the silica-based fine particles, and then cooled to room temperature. The space of the air layer at this time was 25 cc (the volume of the air layer inside the glass bottle: 10 cc and the internal void volume of the silica-based particles: approximately 16 cc). Thereby, it turned out that the internal space | gap of the silica type fine particle was open | released by melt | dissolution of the silica. Next, the other U-tube manometer was connected to a 100 cc glass bottle containing 90 cc of a 48% aqueous sodium hydroxide solution, and the vapor pressures inside both glass bottles were made equal. Thus, the internal pressure of the silica-based fine particles can be calculated from Boyle's law based on the differential pressure measured with a manometer. The pressure inside the U-shaped tube manometer at this time was read to calculate the void internal pressure.

評価基準
差圧が133hPa以下 : ◎
差圧が133hPa超〜500hPa : ○
差圧が500hPa超〜1013hPa未満 : △
差圧が1013hPa : ×
Evaluation standard differential pressure is 133 hPa or less: ◎
Differential pressure is over 133 hPa to 500 hPa: ○
Differential pressure is over 500 hPa and less than 1013 hPa: Δ
Differential pressure is 1013 hPa: ×

(9)耐久性試験
耐久性試験は、高温高湿試験において基材の比誘電率と誘電正接を測定して実施した。
1.基材の作成
ビスフェノールA型エポキシ樹脂とビスフェノールF型エポキシ樹脂の混合エポキシ樹脂(東都化成社製、ZX-1059、エポキシ当量約165)、硬化剤(新日本理化(株)社製、リカシッド MH−700)および硬化促進剤(四国化成(株)社製、キュアゾール 2PHZ−PW)とを重量比で100/86/1で混合撹拌した混合液とシリカ系粒子を体積比50/50で混合したものを、樹脂混合装置を用いて混錬、減圧脱泡処理を施して樹脂組成物を調製した。
調製した組成物をディップコート法によりPET基板上に、シリカ系被膜形成用樹脂組成物を塗布した。塗布方法は従来公知のいずれの方法を用いても特に制限はない。塗布した塗膜は、70℃、16時間乾燥した後、150℃、3時間焼成硬化して評価用基材を作成した。
(9) Durability test The durability test was performed by measuring the relative dielectric constant and dielectric loss tangent of the substrate in a high temperature and high humidity test.
1. Preparation of base material Mixed epoxy resin of bisphenol A type epoxy resin and bisphenol F type epoxy resin (manufactured by Tohto Kasei Co., Ltd., ZX-1059, epoxy equivalent of about 165), curing agent (manufactured by Shin Nippon Rika Co., Ltd., Ricacid MH- 700) and a curing accelerator (manufactured by Shikoku Kasei Co., Ltd., Curazole 2PHZ-PW) mixed at 100/86/1 by weight and silica-based particles mixed at a volume ratio of 50/50. These were kneaded using a resin mixing device and subjected to reduced pressure defoaming treatment to prepare a resin composition.
The prepared composition was coated on a PET substrate with a resin composition for forming a silica-based film by a dip coating method. The application method is not particularly limited even if any conventionally known method is used. The coated film was dried at 70 ° C. for 16 hours, and then baked and cured at 150 ° C. for 3 hours to prepare a substrate for evaluation.

2.比誘電率および誘電正接の測定方法
上記1で作成した基材を、120℃、1時間乾燥することで表面に付いた吸着水を除いた後、同軸型共振器((株)エーイーティー社製、周波数:9.4GHz、解析ソフト:3次元電磁界解析、CST社製 MW-Studio)を用いて、耐久性試験前の比誘電率(ε1)、誘電正接(tan δ1)を測定した。その後、該基材を高温高湿耐久性試験器(エスペックス(株)社製、小型環境試験機 SH−241)を用いて、80℃、湿度80%の条件下1000時間放置した。その後、上記比誘電率測定方法と同様手法で、耐久性試験の比誘電率(ε2)、誘電正接(tan δ2)を測定した。次に、各物性の耐久性試験前後の差を算出し、各々の物性の変化量(△ε、△tan δ)とした。
2. Measuring method of relative dielectric constant and dielectric loss tangent After removing the adsorbed water attached to the surface by drying the substrate prepared in 1 above at 120 ° C. for 1 hour, a coaxial resonator (AT Co., Ltd.) The relative dielectric constant (ε1) and the dielectric loss tangent (tan δ1) before the durability test were measured using the product, frequency: 9.4 GHz, analysis software: three-dimensional electromagnetic field analysis, MW-Studio manufactured by CST. Thereafter, the substrate was allowed to stand for 1000 hours under conditions of 80 ° C. and 80% humidity using a high-temperature and high-humidity durability tester (manufactured by ESPEX Co., Ltd., small environmental tester SH-241). Thereafter, the relative permittivity (ε2) and dielectric loss tangent (tan δ2) of the durability test were measured by the same method as the above relative permittivity measuring method. Next, the difference between each physical property before and after the durability test was calculated and used as the amount of change in each physical property (Δε, Δtan δ).

以下、実施例に基づき本発明を更に具体的に説明する。しかし、本発明は、これらの実施例に記載された範囲に限定されるものではない。   Hereinafter, the present invention will be described more specifically based on examples. However, the present invention is not limited to the scope described in these examples.

[実施例1]
シリカ系粒子(1)の調製
水ガラス水溶液(SiO/NaOモル比3.2、SiO濃度24重量%)3000gを用い、2流体ノズルの一方に0.62kg/hrの流量で、他方のノズルに空気を31800L/hr(空/液体積比63600)の流量で、入口温度400℃の熱風に噴霧してシリカ系粒子前駆体粒子(1)を得た。この時、出口温度は150℃であった。
ついで、シリカ系粒子前駆体粒子(1)500gを濃度10重量%の硫酸水溶液3200gに浸漬して1.5時間撹拌した。この時、固形分(SiO)濃度は10.2重量%、分散液の温度は35℃、pHは3.0であった。また、酸のモル数(Ma)とのモル比(Ma)/(Msp)は1.2であった。
[Example 1]
Preparation of silica-based particles (1) Using 3000 g of water glass aqueous solution (SiO 2 / Na 2 O molar ratio 3.2, SiO 2 concentration 24 wt%) at a flow rate of 0.62 kg / hr in one of two fluid nozzles, The other nozzle was sprayed with hot air at an inlet temperature of 400 ° C. at a flow rate of 31800 L / hr (air / liquid volume ratio 63600) to obtain silica-based particle precursor particles (1). At this time, the outlet temperature was 150 ° C.
Subsequently, 500 g of silica-based particle precursor particles (1) were immersed in 3200 g of a 10 wt% sulfuric acid aqueous solution and stirred for 1.5 hours. At this time, the solid content (SiO 2 ) concentration was 10.2 wt%, the temperature of the dispersion was 35 ° C., and the pH was 3.0. The molar ratio (Ma) / (Msp) with the number of moles of acid (Ma) was 1.2.

その後、シリカ系粒子前駆体粒子(1)を含む混合液をオートクレーブなどの耐圧容器に入れて、200℃で16時間水熱処理を行い、室温まで冷却して抜きだした。
得られた混合液を、ブフナー漏斗(関谷理化硝子器械(株)製、3.2L)を用いて定量濾紙(アドバンテック(株)製 No.5C)でろ過した後、繰り返し洗浄して、表面が封止されたシリカ系粒子の集合体からなるケーキ状物質を得た。
ついで、乾燥機にて、120℃で24時間乾燥・加熱処理してシリカ系粒子(1)を調製した。
得られたシリカ系粒子(1)の平均粒子径、粒子の真密度、空隙率、吸湿率、圧縮強度を測定し、結果を表1に示す。
Thereafter, the mixed liquid containing the silica-based particle precursor particles (1) was put in a pressure vessel such as an autoclave, hydrothermally treated at 200 ° C. for 16 hours, cooled to room temperature, and extracted.
The obtained liquid mixture was filtered with a quantitative filter paper (No. 5C, manufactured by Advantech Co., Ltd.) using a Buchner funnel (3.2 L manufactured by Sekiya Rika Glass Instruments Co., Ltd.), and then repeatedly washed to obtain a surface. A cake-like substance comprising an aggregate of sealed silica-based particles was obtained.
Subsequently, it dried and heat-processed at 120 degreeC for 24 hours with the dryer, and prepared the silica type particle | grains (1).
The average particle diameter, the true density, the porosity, the moisture absorption rate, and the compressive strength of the obtained silica-based particles (1) were measured, and the results are shown in Table 1.

[実施例2]
シリカ系粒子(2)の調製
水ガラス水溶液(SiO/NaOモル比3.2、SiO濃度24重量%)3000gを用い、2流体ノズルの一方に0.62kg/hrの流量で、他方のノズルに空気を31800L/hr(空/液体積比63600)の流量で、入口温度400℃の熱風に噴霧してシリカ系粒子前駆体粒子(2)を得た。この時、出口温度は150℃であった。
ついで、シリカ系粒子前駆体粒子(1)500gを濃度10重量%の硫酸水溶液3200gに浸漬して1.5時間撹拌した。この時、固形分(SiO)濃度は10.2重量%、分散液の温度は35℃、pHは3.0であった。また、酸のモル数(Ma)とのモル比(Ma)/(Msp)は1.2であった。
ついで、乾燥機にて、真空ポンプにて、減圧度1hPaで排気しながら、乾燥・加熱処理を120℃で24時間乾燥・加熱処理してシリカ系粒子(2)を調製した。
[Example 2]
Preparation of silica-based particles (2) Using 3000 g of water glass aqueous solution (SiO 2 / Na 2 O molar ratio 3.2, SiO 2 concentration 24 wt%) at a flow rate of 0.62 kg / hr in one of two fluid nozzles, The other nozzle was sprayed with hot air at an inlet temperature of 400 ° C. at a flow rate of 31800 L / hr (air / liquid volume ratio 63600) to obtain silica-based particle precursor particles (2). At this time, the outlet temperature was 150 ° C.
Next, 500 g of silica-based particle precursor particles (1) were immersed in 3200 g of a 10 wt% sulfuric acid aqueous solution and stirred for 1.5 hours. At this time, the solid content (SiO 2 ) concentration was 10.2 wt%, the temperature of the dispersion was 35 ° C., and the pH was 3.0. The molar ratio (Ma) / (Msp) with the number of moles of acid (Ma) was 1.2.
Next, the silica-based particles (2) were prepared by drying and heating at 120 ° C. for 24 hours while evacuating with a vacuum pump at a reduced pressure of 1 hPa with a dryer.

その後、シリカ系粒子(2)を含む混合液にSiO2換算基準で4.5重量%含む珪酸液をシリカ系粒子(2)の重量に対し10重量%を加えた溶液をオートクレーブなどの耐圧容器に入れて、200℃で16時間水熱処理を行い、室温まで冷却して抜きだした。
得られた混合液を、ブフナー漏斗(関谷理化硝子器械(株)製、3.2L)を用いて定量濾紙(アドバンテック(株)製 No.5C)でろ過した後、繰り返し洗浄して、表面封止シリカ系粒子の集合体からなるケーキ状物質を得た。
ついで、乾燥機にて、120℃で24時間乾燥・加熱処理してシリカ系粒子(2)を調製した。
得られたシリカ系粒子(2)の平均粒子径、粒子の真密度、空隙率、吸湿率、圧縮強度を測定し、結果を表1に示す。また、シリカ系粒子(2)の空隙内部圧は◎であった。
Thereafter, a solution obtained by adding 10% by weight of a silica solution containing 4.5% by weight in terms of SiO2 to the mixed solution containing silica-based particles (2) to the weight of the silica-based particles (2) is put in a pressure vessel such as an autoclave. The mixture was hydrothermally treated at 200 ° C. for 16 hours, cooled to room temperature and extracted.
The obtained liquid mixture was filtered with a quantitative filter paper (No. 5C, manufactured by Advantech Co., Ltd.) using a Buchner funnel (3.2 L, manufactured by Sekiya Rika Glass Instrument Co., Ltd.), then repeatedly washed, and surface-sealed. A cake-like substance composed of an aggregate of silica-based particles was obtained.
Subsequently, it dried and heat-processed at 120 degreeC for 24 hours with the dryer, and prepared the silica type particle (2).
The average particle diameter, the true density, the porosity, the moisture absorption rate, and the compressive strength of the obtained silica particles (2) were measured, and the results are shown in Table 1. The void internal pressure of the silica-based particles (2) was ◎.

[実施例3]
実施例1において、水ガラス水溶液の流量を0.08kg/hrで行った以外は同様にしてシリカ系粒子(3)を調製した。
得られたシリカ系粒子(3)の平均粒子径、粒子の真密度、空隙率、吸湿率、圧縮強度を測定し、結果を表1に示す。
[Example 3]
Silica-based particles (3) were prepared in the same manner as in Example 1 except that the flow rate of the water glass aqueous solution was 0.08 kg / hr.
The average particle diameter, the true density, the porosity, the moisture absorption rate, and the compressive strength of the obtained silica-based particles (3) were measured, and the results are shown in Table 1.

[実施例4]
実施例1において、空気の流量を15900L/hrで行った以外は同様にしてシリカ系粒子(4)を調製した。
得られたシリカ系粒子(4)の平均粒子径、粒子の真密度、空隙率、吸湿率、圧縮強度を測定し、結果を表1に示す。
[Example 4]
Silica-based particles (4) were prepared in the same manner as in Example 1 except that the air flow rate was 15900 L / hr.
The average particle diameter, the true density, the porosity, the moisture absorption rate, and the compressive strength of the obtained silica-based particles (4) were measured, and the results are shown in Table 1.

[実施例5]
実施例2において、空気の流量を15900L/hrで行った以外は同様にしてシリカ系粒子(5)を調製した。
得られたシリカ系粒子(5)の平均粒子径、粒子の真密度、空隙率、吸湿率、圧縮強度を測定し、結果を表1に示す。また、シリカ系粒子(5)の空隙内部圧は◎であった。
[Example 5]
Silica-based particles (5) were prepared in the same manner as in Example 2, except that the air flow rate was 15900 L / hr.
The average particle diameter, the true density, the porosity, the moisture absorption rate, and the compressive strength of the obtained silica particles (5) were measured, and the results are shown in Table 1. The void internal pressure of the silica-based particles (5) was ◎.

[実施例6]
実施例1において、空気の流量を5500L/hrで行った以外は同様にしてシリカ系粒子(6)を調製した。
得られたシリカ系粒子(6)の平均粒子径、粒子の真密度、空隙率、吸湿率、圧縮強度を測定し、結果を表1に示す。
[Example 6]
Silica-based particles (6) were prepared in the same manner as in Example 1, except that the flow rate of air was 5500 L / hr.
The average particle diameter, the true density of the particles, the porosity, the moisture absorption rate, and the compressive strength of the obtained silica-based particles (6) were measured, and the results are shown in Table 1.

[比較例1]
実施例1において、水熱処理を行わなかった以外は同様にしてシリカ系粒子(7)を調製した。
得られたシリカ系粒子(7)の平均粒子径、粒子の真密度、空隙率、吸湿率、圧縮強度を測定し、結果を表1に示す。
[Comparative Example 1]
In Example 1, silica-based particles (7) were similarly prepared except that hydrothermal treatment was not performed.
The average particle diameter, the true density, the porosity, the moisture absorption rate, and the compressive strength of the obtained silica-based particles (7) were measured, and the results are shown in Table 1.

[比較例2]
実施例1において、水熱処理の温度を150℃で行った以外は同様にしてシリカ系粒子(8)を調製した。
得られたシリカ系粒子(7)の平均粒子径、粒子の真密度、空隙率、吸湿率、圧縮強度を測定し、結果を表1に示す。
[Comparative Example 2]
Silica-based particles (8) were prepared in the same manner as in Example 1 except that the hydrothermal treatment temperature was 150 ° C.
The average particle diameter, the true density, the porosity, the moisture absorption rate, and the compressive strength of the obtained silica-based particles (7) were measured, and the results are shown in Table 1.

[比較例3]
溶融シリカ粒子(アドマテックス(株)社製、SO−E3;平均粒子径1μm)をSiO換算基準で20重量%含む溶液にSiO換算基準で4.5重量%含む珪酸液を溶融シリカ粒子の重量に対し10重量%を加えた溶液をオートクレーブなどの耐圧容器に入れて、200℃で16時間水熱処理を行い、室温まで冷却して抜きだした。
得られた混合液を、ブフナー漏斗(関谷理化硝子器械(株)製、3.2L)を用いて定量濾紙(アドバンテック(株)製 No.5C)でろ過した後、繰り返し洗浄して、表面封止シリカ系粒子の集合体からなるケーキ状物質を得た。
ついで、乾燥機にて、120℃で24時間乾燥・加熱処理してシリカ系粒子(9)を調製した。
得られたシリカ系粒子(9)の平均粒子径、粒子の真密度、空隙率、吸湿率、圧縮強度を測定し、結果を表1に示す。
[Comparative Example 3]
A fused silica particle containing a silica solution containing 4.5% by weight on a SiO 2 basis in a solution containing 20% by weight on a SiO 2 basis on a fused silica particle (manufactured by Admatechs Co., Ltd., SO-E3; average particle diameter 1 μm) A solution obtained by adding 10% by weight to the weight of the above was placed in a pressure-resistant container such as an autoclave, hydrothermally treated at 200 ° C. for 16 hours, cooled to room temperature, and extracted.
The obtained liquid mixture was filtered with a quantitative filter paper (No. 5C, manufactured by Advantech Co., Ltd.) using a Buchner funnel (3.2 L, manufactured by Sekiya Rika Glass Instrument Co., Ltd.), then repeatedly washed, and surface-sealed. A cake-like substance composed of an aggregate of silica-based particles was obtained.
Subsequently, it dried and heat-processed at 120 degreeC for 24 hours with the dryer, and prepared the silica type particle (9).
The average particle diameter, the true density of the particles, the porosity, the moisture absorption rate, and the compressive strength of the obtained silica-based particles (9) were measured, and the results are shown in Table 1.

Figure 2013103850
Figure 2013103850

[組成物および基材の作成と耐久性試験前後の物性評価]
実施例1〜6および比較例1〜3で得たシリカ系粒子(1)〜(9)を、前記[測定方法](9)に記載した方法を用いて、組成物および基材を作成した。その後、耐久性試験前後の物性評価し、結果を表2に示す。
[Preparation of composition and base material and evaluation of physical properties before and after durability test]
Compositions and substrates were prepared from the silica-based particles (1) to (9) obtained in Examples 1 to 6 and Comparative Examples 1 to 3 using the method described in [Measuring method] (9). . Thereafter, physical properties were evaluated before and after the durability test, and the results are shown in Table 2.

Figure 2013103850
Figure 2013103850

Claims (12)

無孔質の外殻シリカ層の内部に空洞を有し、空隙率が20〜95体積%の範囲にあり平均粒子径が0.1〜50μmの範囲にあることを特徴とするシリカ系粒子。
A silica-based particle having a void inside a nonporous outer shell silica layer, having a porosity in a range of 20 to 95% by volume and an average particle diameter in a range of 0.1 to 50 µm.
前記シリカ系粒子の空洞が負圧である請求項1に記載のシリカ系粒子。   The silica-based particle according to claim 1, wherein the silica-based particle has a negative pressure. 前記空洞の負圧が133hPa以下である請求項2に記載のシリカ系粒子。   The silica-based particle according to claim 2, wherein the negative pressure of the cavity is 133 hPa or less. 前記シリカ系粒子の圧縮強度が、0.1〜200kgf/mm2の範囲にあることを特徴とする請求項1〜3のいずれかに記載のシリカ系粒子。 The silica-based particles according to any one of claims 1 to 3, wherein the compression strength of the silica-based particles is in the range of 0.1 to 200 kgf / mm 2 . 前記シリカ系粒子が、温度25℃、湿度90%の空気雰囲気下に7日間放置した時の吸湿率(重量変化率)が0.1%以下である請求項1〜4のいずれかに記載のシリカ系粒子。
5. The moisture absorption rate (weight change rate) when the silica-based particles are allowed to stand for 7 days in an air atmosphere at a temperature of 25 ° C. and a humidity of 90% is 0.1% or less. Silica-based particles.
下記工程(a)〜(d)を順次実施することを特徴とする請求項1〜5のいずれに記載のシリカ系粒子の製造方法。
(a)珪酸アルカリ水溶液を熱風気流中に噴霧乾燥してシリカ系粒子前駆体粒子を調製する工程
(b)シリカ系粒子前駆体粒子を酸水溶液に浸漬し、アルカリを除去する工程
(c)水熱処理する工程
(d)乾燥・加熱処理する工程
6. The method for producing silica-based particles according to claim 1, wherein the following steps (a) to (d) are sequentially performed.
(A) Step of preparing silica-based particle precursor particles by spray drying an alkali silicate aqueous solution in a hot air stream (b) Step of immersing silica-based particle precursor particles in an acid aqueous solution to remove alkali (c) Water Heat treatment step (d) Drying and heat treatment step
工程(b)と工程(c)の間で下記工程(c′)を実施する請求項6に記載のシリカ系粒子の製造方法。
(c′)乾燥・加熱処理する工程
The method for producing silica-based particles according to claim 6, wherein the following step (c ') is carried out between the step (b) and the step (c).
(C ′) Drying / heating process
工程(c)の水熱処理温度が、180〜350℃である請求項6または7に記載のシリカ系粒子の製造方法。
The method for producing silica-based particles according to claim 6 or 7, wherein the hydrothermal treatment temperature in step (c) is 180 to 350 ° C.
請求項1〜5のいずれかに記載のシリカ系粒子と熱硬化性樹脂を含む半導体封止用樹脂組成物。   The resin composition for semiconductor sealing containing the silica-type particle in any one of Claims 1-5, and a thermosetting resin. 前記シリカ系粒子の体積をAで表し、前記熱硬化性樹脂の体積をBで表したとき、その体積比(A/B)が10/100〜95/100の範囲にあることを特徴とする請求項9記載の半導体封止用樹脂組成物。
When the volume of the silica-based particles is represented by A and the volume of the thermosetting resin is represented by B, the volume ratio (A / B) is in the range of 10/100 to 95/100. The resin composition for semiconductor encapsulation according to claim 9.
請求項9または10に記載の樹脂組成物からなる塗膜が形成された基材。   The base material in which the coating film which consists of a resin composition of Claim 9 or 10 was formed. 前記基材が、高温高湿耐久性試験(温度80℃、湿度80%、保持時間1000時間)において、試験前後における共振法を用いた比誘電率の変化量(△ε)が0.2以下、さらに誘電正接の変化量(△tanδ)が0.01以下である請求項11に記載の基材。   In the high-temperature and high-humidity durability test (temperature 80 ° C., humidity 80%, holding time 1000 hours), the substrate has a relative dielectric constant change (Δε) of 0.2 or less using the resonance method before and after the test. Furthermore, the base material of Claim 11 whose variation | change_quantity ((DELTA) tan (delta)) of a dielectric loss tangent is 0.01 or less.
JP2011247143A 2011-11-11 2011-11-11 Silica-based particles having moisture resistance and a method for producing the same, a resin composition for encapsulating a semiconductor containing the particles, and a substrate on which a coating film is formed by the resin composition Active JP5822663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011247143A JP5822663B2 (en) 2011-11-11 2011-11-11 Silica-based particles having moisture resistance and a method for producing the same, a resin composition for encapsulating a semiconductor containing the particles, and a substrate on which a coating film is formed by the resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011247143A JP5822663B2 (en) 2011-11-11 2011-11-11 Silica-based particles having moisture resistance and a method for producing the same, a resin composition for encapsulating a semiconductor containing the particles, and a substrate on which a coating film is formed by the resin composition

Publications (2)

Publication Number Publication Date
JP2013103850A true JP2013103850A (en) 2013-05-30
JP5822663B2 JP5822663B2 (en) 2015-11-24

Family

ID=48623682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011247143A Active JP5822663B2 (en) 2011-11-11 2011-11-11 Silica-based particles having moisture resistance and a method for producing the same, a resin composition for encapsulating a semiconductor containing the particles, and a substrate on which a coating film is formed by the resin composition

Country Status (1)

Country Link
JP (1) JP5822663B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017071526A (en) * 2015-10-06 2017-04-13 株式会社トクヤマシルテック Silica balloon material having excellent suspension profile for solvent
WO2020195205A1 (en) * 2019-03-26 2020-10-01 デンカ株式会社 Spherical silica powder
WO2022145350A1 (en) * 2020-12-28 2022-07-07 日揮触媒化成株式会社 Hollow particle and method for producing same, and resin composition
WO2022210919A1 (en) * 2021-03-31 2022-10-06 日揮触媒化成株式会社 Powder, production method therefor, and resin composition production method
WO2022210920A1 (en) * 2021-03-31 2022-10-06 日揮触媒化成株式会社 Powder, production method therefor, and resin composition production method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0360422A (en) * 1988-10-31 1991-03-15 Tokai Carbon Co Ltd Production of silica balloon
JP2005206436A (en) * 2004-01-26 2005-08-04 Denki Kagaku Kogyo Kk Spherical inorganic hollow powder and its manufacturing process and resin composition
JP2009114010A (en) * 2007-11-05 2009-05-28 Jgc Catalysts & Chemicals Ltd Spherical silica particles and method for producing the same
JP2011225756A (en) * 2010-04-21 2011-11-10 Kao Corp Low dielectric resin composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0360422A (en) * 1988-10-31 1991-03-15 Tokai Carbon Co Ltd Production of silica balloon
JP2005206436A (en) * 2004-01-26 2005-08-04 Denki Kagaku Kogyo Kk Spherical inorganic hollow powder and its manufacturing process and resin composition
JP2009114010A (en) * 2007-11-05 2009-05-28 Jgc Catalysts & Chemicals Ltd Spherical silica particles and method for producing the same
JP2011225756A (en) * 2010-04-21 2011-11-10 Kao Corp Low dielectric resin composition

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017071526A (en) * 2015-10-06 2017-04-13 株式会社トクヤマシルテック Silica balloon material having excellent suspension profile for solvent
WO2020195205A1 (en) * 2019-03-26 2020-10-01 デンカ株式会社 Spherical silica powder
JP6793282B1 (en) * 2019-03-26 2020-12-02 デンカ株式会社 Spherical silica powder
JP2021038138A (en) * 2019-03-26 2021-03-11 デンカ株式会社 Method for producing fused spherical silica powder
WO2022145350A1 (en) * 2020-12-28 2022-07-07 日揮触媒化成株式会社 Hollow particle and method for producing same, and resin composition
WO2022210919A1 (en) * 2021-03-31 2022-10-06 日揮触媒化成株式会社 Powder, production method therefor, and resin composition production method
WO2022210920A1 (en) * 2021-03-31 2022-10-06 日揮触媒化成株式会社 Powder, production method therefor, and resin composition production method

Also Published As

Publication number Publication date
JP5822663B2 (en) 2015-11-24

Similar Documents

Publication Publication Date Title
JP5822663B2 (en) Silica-based particles having moisture resistance and a method for producing the same, a resin composition for encapsulating a semiconductor containing the particles, and a substrate on which a coating film is formed by the resin composition
KR101911566B1 (en) High-purity silicon dioxide granules for quartz glass applications and method for producing said granules
CA2646043C (en) Method for the production of glassy monoliths via the sol-gel process
JP5148971B2 (en) Spherical silica particles and method for producing the same
WO2010052945A1 (en) Aspherical silica sol, process for producing the same, and composition for polishing
EP3909913A1 (en) Additive manufacturing of silica aerogel objects
CN111607253B (en) Preparation method of silica aerogel thermal insulation filler
US20220009786A1 (en) Method for producing aerogels and aerogels obtained using said method
CN111792659B (en) Method for preparing spherical alumina by oil column forming process
TW201915108A (en) Coating liquid, coating film production method, and coating film
JP4636869B2 (en) Method for producing porous silica-based particles and porous silica-based particles obtained from the method
JP5480497B2 (en) Method for producing surface-encapsulated silica-based particles, surface-encapsulated silica-based particles, and a resin composition for semiconductor encapsulation obtained by mixing the particles
CN109023591A (en) A kind of α-Al2O3The preparation method of continuous fiber
JP4883967B2 (en) Method for producing porous silica-based particles and porous silica-based particles obtained from the method
JP7132827B2 (en) Hollow silica particles and method for producing the same
JP5258318B2 (en) Method for surface treatment of mesoporous silica, slurry composition for resin addition, filler for resin, and method for producing resin composition
JPWO2020012554A1 (en) Coating liquid manufacturing method, coating liquid and coating film
JPWO2020012553A1 (en) Coating liquid and coating film
WO2021089815A1 (en) Additive manufacturing of silica aerogel objects
JP5505900B2 (en) High concentration silica sol
CN115612315A (en) Preparation method of surface modified spherical silicon dioxide micropowder
JP3744569B2 (en) Hygroscopic silica particles and method for producing the same
CN111232991B (en) Silicon dioxide aerogel spherical powder with special structure and preparation method thereof
JPH0798659B2 (en) Spherical silica, production method thereof, epoxy resin composition and cured product thereof
KR20080047020A (en) Method for preparing a sphere type silica aerogel using the droplet falling system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151006

R150 Certificate of patent or registration of utility model

Ref document number: 5822663

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250