JP2005206436A - Spherical inorganic hollow powder and its manufacturing process and resin composition - Google Patents

Spherical inorganic hollow powder and its manufacturing process and resin composition Download PDF

Info

Publication number
JP2005206436A
JP2005206436A JP2004016502A JP2004016502A JP2005206436A JP 2005206436 A JP2005206436 A JP 2005206436A JP 2004016502 A JP2004016502 A JP 2004016502A JP 2004016502 A JP2004016502 A JP 2004016502A JP 2005206436 A JP2005206436 A JP 2005206436A
Authority
JP
Japan
Prior art keywords
powder
spherical inorganic
spherical
inorganic hollow
hollow powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004016502A
Other languages
Japanese (ja)
Other versions
JP4244323B2 (en
Inventor
Yasuhisa Nishi
泰久 西
Hiroaki Kikkai
浩明 吉開
Toru Umezaki
亨 梅崎
Takashi Fukuda
貴史 福田
Mitsuyoshi Iwasa
光芳 岩佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2004016502A priority Critical patent/JP4244323B2/en
Publication of JP2005206436A publication Critical patent/JP2005206436A/en
Application granted granted Critical
Publication of JP4244323B2 publication Critical patent/JP4244323B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a spherical inorganic hollow powder which is finer than the one of the prior art and has a higher hollow ratio and purity with the increased fineness and its manufacturing process and a resin composition containing the powder. <P>SOLUTION: The invention relates to a spherical inorganic hollow powder having an average particle size of ≤8 μm and an average sphericity of ≥0.85. Preferably, it has a 50% burst pressure of ≥10 MPa and an average hollow ratio of 20-70 vol.%. More preferably, the spherical inorganic hollow powder contains ≥98 mass% amorphous spherical silica hollow powder. The invention also relates to a resin composition containing the spherical inorganic hollow powder. The spherical inorganic hollow powder is manufactured by heat-treating an inorganic raw material powder using a burner provided at least with a section of a quadruplex tube incorporating a supporting gas feed pipe, a flammable gas feed pipe, a supporting gas feed pipe and a feed pipe for the inorganic raw material powder in this order. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、球状無機質中空粉体およびその製造方法、樹脂組成物に関する。   The present invention relates to a spherical inorganic hollow powder, a method for producing the same, and a resin composition.

微小中空ガラス球状粉体は、非中空無機質粉体に比較して比重が軽く、低誘電特性、耐熱性、断熱性、耐圧性、耐衝撃性を有し、電気的特性、寸法安定性、成形性などの物性改良効果がある。このため、例えば軽量化目的のため、自動車や携帯電子機器や家庭電化製品などのモールディングコンパウンド等の樹脂成形部品、パテやシーリング材、船舶用浮力材、合成木材、強化セメント外壁材、軽量外壁材、人工大理石等に用いられている。一方、中空粒子という形態に起因して低誘電率化効果を有することから、多層プリント基板や電線被覆材、半導体封止材等低誘電率化ニーズがある分野での利用が期待される。このように、微小中空ガラス球状粉体は広い用途を有するが、それに伴い、近年、更なる中空ガラス球状粉体の微細化、ガラス以外の無機酸化物中空粉体の出現等が強く要求されてきている。   Small hollow glass spherical powder is lighter in specific gravity than non-hollow inorganic powder, has low dielectric properties, heat resistance, heat insulation, pressure resistance, impact resistance, electrical characteristics, dimensional stability, molding There is an effect of improving physical properties such as properties. For this reason, for example, for the purpose of weight reduction, resin molded parts such as molding compounds for automobiles, portable electronic devices and home appliances, putty and sealing materials, buoyancy materials for ships, synthetic wood, reinforced cement outer wall materials, lightweight outer wall materials It is used for artificial marble. On the other hand, since it has a low dielectric constant effect due to the form of hollow particles, it is expected to be used in fields where there is a need for a low dielectric constant, such as multilayer printed boards, wire coating materials, and semiconductor encapsulants. As described above, the fine hollow glass spherical powder has a wide range of uses, and accordingly, in recent years, further miniaturization of the hollow glass spherical powder, the emergence of inorganic oxide hollow powders other than glass, and the like have been strongly demanded. ing.

従来の球状無機質中空粉体の典型は中空ガラス球状粉体である。その製造方法は、シリカゲルにガラス形成成分および発泡剤成分を担持させた微粉末を炉中で焼成して、微小中空ガラス球状体を得る方法である(特許文献1)。この方法により得られる中空ガラス球状体の物性としては、粒子密度は0.3g/cm程度であり、またその平均粒子径は70μm程度であることが示されている。しかしながら、このような製法においては、発泡剤成分が必須であり、また発泡剤成分が残留してしまうなど純度が高まらず、しかも更なる微細化、中空率化には限度があった。
特公平4−37017号公報
A typical conventional spherical inorganic hollow powder is a hollow glass spherical powder. The production method is a method in which fine powder in which a glass-forming component and a foaming agent component are supported on silica gel is fired in a furnace to obtain a fine hollow glass sphere (Patent Document 1). As the physical properties of the hollow glass spheres obtained by this method, it is shown that the particle density is about 0.3 g / cm 3 and the average particle diameter is about 70 μm. However, in such a production method, the foaming agent component is essential, the purity does not increase such as the foaming agent component remaining, and there is a limit to further refinement and hollowness.
Japanese Examined Patent Publication No. 4-37017

本発明の目的は、従来品よりも更に微細化された球状無機質中空粉体、特に微細化とともに更に高中空率化と高純度化された球状無機質中空粉体と、その製造方法及びそれを含有した樹脂組成物を提供することである。   An object of the present invention is to provide a spherical inorganic hollow powder that is further refined than conventional products, in particular, a spherical inorganic hollow powder that is further refined and refined to a higher hollow ratio, a method for producing the same, and a method for producing the same It is providing the made resin composition.

すなわち、本発明は、平均粒径が8μm以下、平均球形度が0.85以上であることを特徴とする球状無機質中空粉体である。中でも、50%破壊圧力が10MPa以上、平均中空率が20〜70体積%であることが好ましい。更には、球状無機質中空粉体が、非晶質球状シリカ中空粉末を98質量%以上含有するものであることが好ましい。また、本発明は、これらの球状無機質中空粉体を含有してなることを特徴とする樹脂組成物である。   That is, the present invention is a spherical inorganic hollow powder characterized by having an average particle size of 8 μm or less and an average sphericity of 0.85 or more. Among these, it is preferable that the 50% breaking pressure is 10 MPa or more and the average hollowness is 20 to 70% by volume. Furthermore, it is preferable that the spherical inorganic hollow powder contains 98% by mass or more of amorphous spherical silica hollow powder. Moreover, this invention is a resin composition characterized by including these spherical inorganic hollow powders.

さらに、本発明は、助燃性ガス供給管、可燃性ガス供給管、助燃性ガス供給管、無機質原料粉末供給管の順に組まれた四重管部分を少なくとも備えたバーナーによって形成された高温火炎中に、比表面積40m/g以上、平均粒径10μm以下の無機質原料粉末を上記無機質原料粉末供給管から供給して球状化・中空化させた後、捕集することを特徴とする球状無機質中空粉体の製造方法である。特に、無機質原料粉末が、比表面積200m/g以上のシリカ粉末であることが好ましい。 Further, the present invention provides a high-temperature flame formed by a burner having at least a quadruple tube portion assembled in the order of an auxiliary combustion gas supply pipe, an inflammable gas supply pipe, an auxiliary combustion gas supply pipe, and an inorganic raw material powder supply pipe. In addition, a spherical inorganic hollow is characterized in that an inorganic raw material powder having a specific surface area of 40 m 2 / g or more and an average particle size of 10 μm or less is supplied from the inorganic raw material powder supply pipe, spheroidized and hollowed, and then collected. It is a manufacturing method of powder. In particular, the inorganic raw material powder is preferably a silica powder having a specific surface area of 200 m 2 / g or more.

本発明によれば、上記目的を達成することができる。たとえば、ワニス粘度が1000mPa・s以下、特に800mPa・s以下の成形性を良好にして、熱膨張係数が30ppm以下、特に20ppm以下、難燃性がV−0、比誘電率が3.5以下、特に3.0以下(25℃、1GHz)の樹脂成形体を製造することができる。   According to the present invention, the above object can be achieved. For example, good moldability with a varnish viscosity of 1000 mPa · s or less, particularly 800 mPa · s or less, a thermal expansion coefficient of 30 ppm or less, particularly 20 ppm or less, flame retardancy of V-0, and a relative dielectric constant of 3.5 or less. In particular, it is possible to produce a resin molded body of 3.0 or less (25 ° C., 1 GHz).

本発明の球状無機質中空粉体は、粒子としては微細かつ高球形度のものである。まず、平均粒子径は体積基準の平均粒径として8μm以下である。平均粒径が8μmをこえると、例えば樹脂成型物にした場合には、表面の平滑性が損なわれ、外観の悪化や凹凸部を起点とした劣化の原因となり、また多層基板用の層間絶縁層材料やレジスト材料用フィラーとして使用した場合には、所定の層厚中に収まりきれなくなり、導通部の短絡等種々不具合を招く恐れがある。平均粒径の下限には特に制約はないが、樹脂との混合性、粉体としてのハンドリンク性等の点から0.5μm以上であることが好ましい。また、最大粒径についても特に制約はないが、平均粒径の5倍以内であることが望ましい。平均粒子径は、例えばベックマン・コールター社製レーザー回折散乱法粒度分布測定装置(商品名「LS−230」)を用いて測定することができる。 The spherical inorganic hollow powder of the present invention has fine and high sphericity as particles. First, the average particle diameter is 8 μm or less as a volume-based average particle diameter. When the average particle size exceeds 8 μm, for example, when a resin molded product is used, the smoothness of the surface is impaired, which causes deterioration of appearance and deterioration starting from uneven portions, and an interlayer insulating layer for multilayer substrates. When used as a material or a filler for a resist material, it cannot be contained within a predetermined layer thickness, which may cause various problems such as a short circuit of a conductive part. Although there is no restriction | limiting in particular in the minimum of an average particle diameter, It is preferable that it is 0.5 micrometer or more from points, such as mixability with resin and the hand-linkability as a powder. The maximum particle size is not particularly limited, but is preferably within 5 times the average particle size. The average particle diameter can be measured, for example, using a laser diffraction scattering method particle size distribution analyzer (trade name “LS-230”) manufactured by Beckman Coulter.

平均球形度は0.85以上である。平均球形度が0.85未満では、やはり樹脂との混合性及び樹脂組成物の流動性に難がある。平均球形度は、実体顕微鏡(例えばニコン社製モデル「SMZ−10型」)、走査型電子顕微鏡等にて撮影した粒子像を画像解析装置(例えば日本アビオニクス社製)に取り込み、次のようにして測定することができる。この方法以外にも、粒子像分析装置(例えばシスメックス社製「FPIA−1000」)にて定量的に自動計測された個々の粒子の真円度から、式、球形度=(真円度)2により換算して求めることもできる。 The average sphericity is 0.85 or more. If the average sphericity is less than 0.85, the mixing property with the resin and the fluidity of the resin composition are also difficult. The average sphericity is obtained by taking a particle image taken with a stereomicroscope (for example, Nikon model “SMZ-10”), a scanning electron microscope or the like into an image analyzer (for example, manufactured by Avionics, Japan) as follows. Can be measured. In addition to this method, from the roundness of individual particles quantitatively automatically measured by a particle image analyzer (for example, “FPIA-1000” manufactured by Sysmex Corporation), the formula, sphericity = (roundness) 2 It can also be obtained by conversion.

すなわち、粒子像から粒子の投影面積(A)と周囲長(PM)を測定する。周囲長(PM)に対応する真円の面積を(B)とすると、その粒子の真円度はA/Bとして表示できる。そこで、試料粒子の周囲長(PM)と同一の周囲長を持つ真円を想定すると、PM=2πr、B=πr2であるから、B=π×(PM/2π)2となり、個々の粒子の球形度は、球形度=A/B=A×4π/(PM)2として算出することができる。このようにして得られた任意の粒子200個の球形度を求め、その平均値を平均球形度とする。 That is, the projected area (A) and the perimeter (PM) of the particle are measured from the particle image. When the area of a perfect circle corresponding to the perimeter (PM) is (B), the roundness of the particle can be displayed as A / B. Therefore, assuming a perfect circle having the same peripheral length as the sample particle (PM), PM = 2πr and B = πr 2 , so that B = π × (PM / 2π) 2 , and each particle The sphericity can be calculated as sphericity = A / B = A × 4π / (PM) 2 . The sphericity of 200 arbitrary particles thus obtained is obtained, and the average value is defined as the average sphericity.

本発明でいう中空粉体とは、以下によって測定された平均中空率が10体積%(以下、vol%とする。)以上の粉体であると定義される。平均中空率が10vol%未満では、中空粒子の特徴である軽量性、断熱性、低誘電特性の効果を十分に発現しない。特に好ましい平均中空率は20〜70vol%である。70vol%を超えると、粒子の殻厚が薄くなり粉体のハンドリング中や、樹脂との混練中に粒子が破壊されてしまう恐れがある。 The hollow powder as used in the present invention is defined as a powder having an average hollowness ratio measured by the following of 10% by volume (hereinafter referred to as vol%) or more. When the average hollowness is less than 10 vol%, the effects of light weight, heat insulation, and low dielectric properties, which are the characteristics of the hollow particles, are not sufficiently exhibited. A particularly preferable average hollow ratio is 20 to 70 vol%. When it exceeds 70 vol%, the shell thickness of the particles becomes thin, and there is a possibility that the particles are destroyed during handling of the powder or kneading with the resin.

すなわち、平均中空率は、粒子の理論密度に対する粒子密度の実測値との比から算出することができる。例えば、球状シリカ中空粒子の密度の測定値が1.1g/cmである場合、その平均中空率は非晶質シリカの理論密度2.2g/cmで除することによって、50%と算出される。密度は、例えばセイシン企業社製ピクノメーター法自動粉粒体真密度測定器(商品名「オートトゥルーデンサーMAT−7000」)を用いて測定することができる。 That is, the average hollow ratio can be calculated from the ratio of the measured particle density to the theoretical density of the particles. For example, when the measured value of the density of the spherical silica hollow particles is 1.1 g / cm 3 , the average hollow ratio is calculated as 50% by dividing by the theoretical density of amorphous silica 2.2 g / cm 3. Is done. The density can be measured using, for example, a pycnometer automatic powder particle true density measuring device (trade name “Auto True Densor MAT-7000”) manufactured by Seishin Enterprise Co., Ltd.

また、50%破壊圧力は10MPa以上であることが望ましい。10MPa未満では樹脂に混合したときに破壊する粒子が多くなる恐れがある。ここで、50%破壊圧力とは、例えば神戸製鋼所社製冷間等方加圧装置(CIP)により粉体を加圧し、平均中空率が半減した圧力として定義される。 The 50% breaking pressure is desirably 10 MPa or more. If it is less than 10 MPa, there is a possibility that the number of particles that are destroyed when mixed with resin increases. Here, the 50% breaking pressure is defined as a pressure at which the average hollowness is halved by pressing the powder with a cold isostatic press (CIP) manufactured by Kobe Steel, for example.

球状無機質中空粉体の材質については、非晶質シリカが98質量%以上であることが好ましい。非晶質シリカは、他の無機質酸化物に比べて、強度、低熱膨張性、電気絶縁性に優れる。球状無機質中空粉体の材質が、アルミナ、ジルコニア、チタニア、カルシアなどのシリカ以外である場合、その純度は98%以上であることが好ましい。成分数が2以上の複合酸化物である場合は、複合酸化物を構成している成分は不純物としない。 As for the material of the spherical inorganic hollow powder, the amorphous silica is preferably 98% by mass or more. Amorphous silica is superior in strength, low thermal expansion, and electrical insulation compared to other inorganic oxides. When the material of the spherical inorganic hollow powder is other than silica such as alumina, zirconia, titania, and calcia, the purity is preferably 98% or more. In the case of a complex oxide having two or more components, the component constituting the complex oxide is not an impurity.

不純物量は、例えば蛍光X線分析装置(XRF)、エネルギー分散型蛍光X線分析装置(EDX)、原子吸光光度計(AAS)、プラズマ発光分光分析装置(ICP)などによって測定することができる。本発明では、球状無機質中空粉末を、フッ化水素、過塩素酸の混合溶液で加熱溶解し、純水で稀釈してから、島津製作所社製原子吸光光度計を用いて測定した。 The amount of impurities can be measured by, for example, an X-ray fluorescence analyzer (XRF), an energy dispersive X-ray fluorescence analyzer (EDX), an atomic absorption photometer (AAS), a plasma emission spectrometer (ICP), or the like. In the present invention, the spherical inorganic hollow powder was heated and dissolved in a mixed solution of hydrogen fluoride and perchloric acid, diluted with pure water, and then measured using an atomic absorption photometer manufactured by Shimadzu Corporation.

本発明の球状無機質中空粉体は、本発明の製造方法、すなわち助燃性ガス供給管、可燃性ガス供給管、助燃性ガス供給管、無機質原料粉末供給管の順に組まれた四重管部分を少なくとも備えたバーナーによって高温火炎を形成し、そこに比表面積40m/g以上の無機質原料粉末を上記無機質原料粉末供給管から供給して球状化・中空化させた後、捕集する方法、によって製造することができる。 The spherical inorganic hollow powder of the present invention comprises the production method of the present invention, that is, a quadruple tube portion assembled in the order of an auxiliary combustion gas supply pipe, an inflammable gas supply pipe, an auxiliary combustion gas supply pipe, and an inorganic raw material powder supply pipe. A method in which a high-temperature flame is formed by a burner provided at least, and an inorganic raw material powder having a specific surface area of 40 m 2 / g or more is supplied from the inorganic raw material powder supply pipe, spheroidized and hollowed, and then collected. Can be manufactured.

ここで、無機質原料粉末の比表面積が40m/g未満であると、球状化又は中空化のいずれか又は両方を達成することができない。好ましい比表面積は50m/g以上、特に100m/g以上である。平均粒径は10μm以下であり、0.1〜8μmであることが好ましい。 Here, when the specific surface area of the inorganic raw material powder is less than 40 m 2 / g, either or both of spheroidization and hollowing cannot be achieved. A preferred specific surface area is 50 m 2 / g or more, particularly 100 m 2 / g or more. An average particle diameter is 10 micrometers or less, and it is preferable that it is 0.1-8 micrometers.

本発明で用いられる無機質原料粉末の材質としては、シリカ、アルミナ、ジルコニア、チタニア、マグネシアなどを例示することができる。電気的特性、化学的安定性、寸法安定性、成形性などを考慮すると、非晶質シリカが好適であり、特に微細な球状無機質中空粉体の得やすさから、比表面積200m/g以上のシリカ粉末が最適である。 Examples of the material of the inorganic raw material powder used in the present invention include silica, alumina, zirconia, titania, magnesia and the like. In consideration of electrical characteristics, chemical stability, dimensional stability, moldability, etc., amorphous silica is preferable. In particular, a specific surface area of 200 m 2 / g or more is obtained because it is easy to obtain a fine spherical inorganic hollow powder. The silica powder is optimal.

無機質原料粉末は、助燃性ガス供給管、可燃性ガス供給管、助燃性ガス供給管、無機質原料粉末供給管の順に組まれた四重管部分を少なくとも備えたバーナーの当該無機質原料粉末供給管から高温火炎中に供給される。ここで、四重管部分を少なくとも備えたバーナーという意味は、この四重管部分に更に隣接させて、可燃性ガス供給管、助燃性ガス供給管及び無機質原料粉末供給管から選ばれた1又は2以上を配置されたバーナーであっても良いということである。無機質原料粉末の供給は、それを例えば空気、窒素、酸素、アルゴン、ヘリウム、可燃性ガスなどのガスから選ばれた1種又は2種以上の混合ガスに同伴させて供給する乾式法や、水、可燃性液体、有機溶剤などの媒体から選ばれた1種又は2種以上の混合媒体に分散させてスラリー化しそれを供給する湿式法によって行うことができる。生産性の面からは乾式法が好ましい。   The inorganic raw material powder is supplied from the inorganic raw material powder supply tube of the burner provided with at least a quadruple tube part assembled in the order of the auxiliary gas supply tube, the flammable gas supply tube, the auxiliary gas supply tube, and the inorganic material powder supply tube. Supplied in a high temperature flame. Here, the meaning of the burner having at least a quadruple pipe portion is one or more selected from a combustible gas supply pipe, an auxiliary combustible gas supply pipe, and an inorganic raw material powder supply pipe, further adjacent to the quadruple pipe portion. That is, it may be a burner in which two or more are arranged. The inorganic raw material powder can be supplied by, for example, a dry method in which it is supplied with one or two or more mixed gases selected from gases such as air, nitrogen, oxygen, argon, helium, and flammable gas, In addition, it can be carried out by a wet method in which it is dispersed in one or more mixed media selected from a medium such as a flammable liquid and an organic solvent, and is slurried and supplied. From the viewpoint of productivity, the dry method is preferred.

高温火炎は、上記バーナーの助燃性ガス供給管、可燃性ガス供給管、助燃性ガス供給管からそれぞれのガスを炉内に噴射させることによって形成させることができる。助燃性ガス供給管に挟まれた可燃性ガス供給管からは可燃性ガスが噴射される。可燃性ガスとしては、例えばメタン、エタン、アセチレン、プロパン、ブタン、プロピレンなどの炭化水素ガス及び水素ガスから選ばれた1種又は2種類以上の混合ガスが用いられる。一方、助燃性ガス供給管からは例えば空気、酸素などから選ばれた1種又は2種の助燃性ガスが噴射される。 A high temperature flame can be formed by injecting each gas into the furnace from the burner's auxiliary combustion gas supply pipe, combustible gas supply pipe, and auxiliary combustion gas supply pipe. A combustible gas is injected from a combustible gas supply pipe sandwiched between auxiliary combustion gas supply pipes. As the combustible gas, for example, one kind or two or more kinds of mixed gases selected from hydrocarbon gases such as methane, ethane, acetylene, propane, butane, and propylene, and hydrogen gas are used. On the other hand, one or two types of auxiliary combustion gases selected from, for example, air and oxygen are injected from the auxiliary combustion gas supply pipe.

炉は、竪型炉、横型炉などのいずれでもよいが、球状無機質中空粉体の炉内への付着抑制、火炎の安定性、操業安定性の観点から、上記四重管部分を少なくとも備えたバーナーを炉頂に有し、下部が捕集系に接続されてなる竪型炉が好ましい。捕集系には集塵機が設置されており、排気側に設けたブロワーなどによって、燃焼排ガス又は炉の下部から積極的に供給した空気などと共に捕集系に吸引輸送され、捕集される。集塵機としては、例えばサイクロン、電気集塵機、バッグフィルター等を用いることができる。このような竪型炉の構造については、バーナー構造を除き、多くの公知があるのでそれを使用することができる。 The furnace may be either a vertical furnace or a horizontal furnace. However, from the viewpoints of suppressing adhesion of spherical inorganic hollow powder to the furnace, flame stability, and operational stability, the furnace includes at least the quadruple tube portion. A vertical furnace having a burner at the furnace top and a lower part connected to the collection system is preferred. A dust collector is installed in the collection system, and is sucked and transported to the collection system together with combustion exhaust gas or air positively supplied from the lower part of the furnace by a blower provided on the exhaust side and collected. As a dust collector, a cyclone, an electric dust collector, a bag filter, etc. can be used, for example. Regarding the structure of such a vertical furnace, there are many known structures except for the burner structure, which can be used.

球状無機質中空粉体の平均球形度は、主に可燃性ガスの流量制御による炉内の温度制御によって、また平均粒径、平均中空率、50%破壊圧力、純度は、主に無機質原料粉末の粒度、比表面積、純度によって調整制御が可能である。具体的には、可燃性ガスの流量を多くすると、反応容器内の温度が高くなり、原料が十分に加熱されるため、平均球形度の高い球状無機質中空粉体が得られる。しかし、可燃性ガスの流量を多くしすぎると、粉体が過熱状態になり、加熱球状化の際に気泡が封入されずに抜けやすくなる傾向があるので注意が必要である。無機質原料粉末の比表面積が高いほど、加熱球状化の際に内部に気泡が封入されやすく中空率の高いものを製造することができる。   The average sphericity of the spherical inorganic hollow powder is mainly controlled by controlling the temperature in the furnace by controlling the flow rate of the combustible gas, and the average particle size, average hollow ratio, 50% breaking pressure, and purity are mainly those of the inorganic raw material powder. Adjustment control is possible by particle size, specific surface area, and purity. Specifically, when the flow rate of the combustible gas is increased, the temperature in the reaction vessel is increased and the raw material is sufficiently heated, so that a spherical inorganic hollow powder having a high average sphericity can be obtained. However, if the flow rate of the combustible gas is increased too much, the powder becomes overheated, and there is a tendency that bubbles are not enclosed during the heating spheroidization, so that care must be taken. The higher the specific surface area of the inorganic raw material powder, the easier it is for air bubbles to be enclosed inside during the heating spheronization, and the higher the hollow ratio can be produced.

次に、本発明の樹脂組成物について説明する。本発明の樹脂組成物は本発明の球状無機質中空粉体を1〜97質量%含有していることが好ましい。   Next, the resin composition of the present invention will be described. The resin composition of the present invention preferably contains 1 to 97% by mass of the spherical inorganic hollow powder of the present invention.

樹脂としては、例えばエポキシ樹脂、シリコーン樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル、フッ素樹脂、BTレジン、ポリイミド、ポリアミドイミド、ポリエーテルイミド等のポリアミド、ポリブチレンテレフタレート、ポリエチレンテレフタレート等のポリエステル、ポリフェニレンスルフィド、全芳香族ポリエステル、ポリスルホン、液晶ポリマー、ポリエーテルスルホン、ポリカーボネイト、マレイミド変成樹脂、ABS樹脂、AAS(アクリロニトリルーアクリルゴム・スチレン)樹脂、AES(アクリロニトリル・エチレン・プロピレン・ジエンゴムースチレン)樹脂などの樹脂から選ばれた1種又は2種以上が使用される。 Examples of the resin include epoxy resins, silicone resins, phenol resins, melamine resins, urea resins, unsaturated polyesters, fluororesins, BT resins, polyimides, polyamideimides, polyetherimides, and other polyamides, polybutylene terephthalates, polyethylene terephthalates, etc. Polyester, polyphenylene sulfide, wholly aromatic polyester, polysulfone, liquid crystal polymer, polyethersulfone, polycarbonate, maleimide modified resin, ABS resin, AAS (acrylonitrile-acrylic rubber / styrene) resin, AES (acrylonitrile / ethylene / propylene / diene rubber) One or two or more selected from resins such as (styrene) resin are used.

これらの中、多層プリント基板や半導体封止材料としては、1分子中にエポキシ基を2個以上有するエポキシ樹脂が好ましい。その具体例をあげれば、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、フェノール類とアルデヒド類のノボラック樹脂をエポキシ化したもの、ビスフェノールA、ビスフェノールF及びビスフェノールSなどのグリシジルエーテル、フタル酸やダイマー酸などの多塩基酸とエポクロルヒドリンとの反応により得られるグリシジルエステル酸エポキシ樹脂、線状脂肪族エポキシ樹脂、脂環式エポキシ樹脂、複素環式エポキシ樹脂、アルキル変性多官能エポキシ樹脂、βーナフトールノボラック型エオキシ樹脂、1,6−ジヒドロキシナフタレン型エポキシ樹脂、2,7−ジヒドロキシナフタレン型エポキシ樹脂、ビスヒドロキシビフェニル型エポキシ樹脂、更には難燃性を付与するために臭素などのハロゲンを導入したエポキシ樹脂などである。特に、耐湿性や耐ハンダリフロー性の点からは、オルソクレゾールノボラック型エポキシ樹脂、ビスヒドロキシビフェニル型エポキシ樹脂、ナフタレン骨格のエポキシ樹脂が好適である。 Among these, as the multilayer printed circuit board and the semiconductor sealing material, an epoxy resin having two or more epoxy groups in one molecule is preferable. Specific examples include phenol novolac type epoxy resins, orthocresol novolak type epoxy resins, epoxidized phenol and aldehyde novolak resins, glycidyl ethers such as bisphenol A, bisphenol F and bisphenol S, phthalic acid, Glycidyl ester acid epoxy resin, linear aliphatic epoxy resin, alicyclic epoxy resin, heterocyclic epoxy resin, alkyl-modified polyfunctional epoxy resin obtained by reaction of polybasic acid such as dimer acid and epochlorohydrin, β-naphthol novolac type epoxy resin, 1,6-dihydroxynaphthalene type epoxy resin, 2,7-dihydroxynaphthalene type epoxy resin, bishydroxybiphenyl type epoxy resin, and halo such as bromine for imparting flame retardancy Epoxy resins obtained by introducing the emissions, and the like. In particular, from the viewpoint of moisture resistance and solder reflow resistance, orthocresol novolac type epoxy resins, bishydroxybiphenyl type epoxy resins, and naphthalene skeleton epoxy resins are suitable.

エポキシ樹脂の硬化剤としては、例えばノボラック型樹脂、ポリパラヒドロキシスチレン樹脂、フェノール類、酸無水物、芳香族アミンなどから選ばれた1種又は2種以上が使用される。ノボラック型樹脂としては、フェノール、クレゾール、キシレノール、レゾルシノール、クロロフェノール、t−ブチルフェノール、ノニルフェノール、イソプロピルフェノール、オクチルフェノール等の群から選ばれた1種又は2種以上の混合物をホルムアルデヒド、パラホルムアルデヒド又はパラキシレンとともに酸化触媒下で反応させて得られたノボラック型樹脂などが用いられ、フェノール類としては、ビスフェノールAやビスフェノールS等のビスフェノール化合物、ピロガロールやフロログルシノール等の3官能フェノール類などが用いられ、酸無水物としては、無水マレイン酸、無水フタル酸、無水ピロメリット酸などが用いられ、芳香族アミンとしては、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルスルホンなどが用いられる。 As the curing agent for the epoxy resin, for example, one or more selected from a novolak type resin, a polyparahydroxystyrene resin, phenols, acid anhydrides, aromatic amines and the like are used. As the novolak type resin, one or a mixture of two or more selected from the group of phenol, cresol, xylenol, resorcinol, chlorophenol, t-butylphenol, nonylphenol, isopropylphenol, octylphenol, etc. is used as formaldehyde, paraformaldehyde or paraxylene. In addition, novolak-type resins obtained by reacting under an oxidation catalyst are used, and as phenols, bisphenol compounds such as bisphenol A and bisphenol S, trifunctional phenols such as pyrogallol and phloroglucinol are used, and the like. As the acid anhydride, maleic anhydride, phthalic anhydride, pyromellitic anhydride, etc. are used, and as the aromatic amine, metaphenylene diamine, diaminodiphenylmethane, diaminodiphenyl. Such as vinyl sulfonic is used.

本発明の樹脂組成物がエポキシ樹脂組成物である場合、エポキシ樹脂とエポキシ樹脂の硬化剤との反応を促進させるために硬化促進剤を配合することができる。硬化促進剤としては、例えば1,8ージアザビシクロ(5,4,0)ウンデセンー7,トリフェニルホスフィン、ベンジルジメチルアミン、2−メチルイミダゾールなどから選ばれた1種又は2種以上が使用される。 When the resin composition of the present invention is an epoxy resin composition, a curing accelerator can be blended in order to accelerate the reaction between the epoxy resin and the epoxy resin curing agent. As the curing accelerator, for example, one or more selected from 1,8-diazabicyclo (5,4,0) undecene-7, triphenylphosphine, benzyldimethylamine, 2-methylimidazole and the like are used.

本発明の樹脂組成物には、必要に応じ、低応力化剤、シランカップリング剤、表面処理剤、難燃助剤、難燃剤、着色剤、離型剤などを配合することができる。低応力化剤としては、例えばシリコ−ンゴム、ポリサルファイドゴム、アクリル系ゴム、ブタジエン系ゴム、スチレン系ブロックコポリマ−や飽和型エラストマ−等のゴム状物質や、例えばアミノシリコ−ン、エポキシシリコ−ン、アルコキシシリコ−ン等で変性された変性エポキシ樹脂、変性フェノ−ル樹脂などが用いられる。シランカップリング剤としては、例えばγ−グリシドキシプロピルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシシラン、例えばアミノプロピルトリエトキシシラン、ウレイドプロピルトリエトキシシラン、N−フェニルアミノプロピルトリメトキシシラン等のアミノシランや、例えばフェニルトリメトキシシラン、メチルトリメトキシシラン、オクタデシルトリメトキシシラン等の疎水性シラン化合物やメルカプトシランなどが用いられる。表面処理剤としては、例えばZrキレート、チタネートカップリング剤、アルミニウム系カップリング剤など、難燃助剤としては、例えばSb23、Sb24、Sb25など、難燃剤としては、例えばハロゲン化エポキシ樹脂やリン化合物など、着色剤としては、例えばカーボンブラック、酸化鉄、染料、顔料などが用いられる。離型剤としては、例えば天然ワックス類、合成ワックス類、直鎖脂肪酸の金属塩、酸アミド類、エステル類、パラフィン等のワックス類などが用いられる。 If necessary, the resin composition of the present invention may contain a stress reducing agent, a silane coupling agent, a surface treatment agent, a flame retardant aid, a flame retardant, a colorant, a release agent, and the like. Examples of the stress-reducing agent include rubbery substances such as silicone rubber, polysulfide rubber, acrylic rubber, butadiene rubber, styrene block copolymer, and saturated elastomer, for example, amino silicone, epoxy silicone, A modified epoxy resin or a modified phenolic resin modified with alkoxysilicone or the like is used. Examples of the silane coupling agent include epoxy silanes such as γ-glycidoxypropyltrimethoxysilane and β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, such as aminopropyltriethoxysilane, ureidopropyltriethoxysilane, An aminosilane such as N-phenylaminopropyltrimethoxysilane, a hydrophobic silane compound such as phenyltrimethoxysilane, methyltrimethoxysilane, or octadecyltrimethoxysilane, or mercaptosilane is used. Examples of surface treatment agents include Zr chelates, titanate coupling agents, and aluminum coupling agents. Examples of flame retardant aids include Sb 2 O 3 , Sb 2 O 4 , and Sb 2 O 5. Examples of colorants such as halogenated epoxy resins and phosphorus compounds include carbon black, iron oxide, dyes, and pigments. As the release agent, for example, natural waxes, synthetic waxes, metal salts of linear fatty acids, acid amides, esters, waxes such as paraffin, and the like are used.

特に、高い耐湿信頼性や高温放置安定性が要求される場合には、各種イオントラップ剤の添加が有効である。イオントラップ剤の市販品としては、協和化学社製商品名「DHF−4A」、「KW−2000」、「KW−2100」や東亜合成化学工業社製商品名「IXE−600」などがある。 In particular, when high moisture resistance reliability and high temperature storage stability are required, addition of various ion trapping agents is effective. Examples of commercially available ion trapping agents include Kyowa Chemical Co., Ltd. trade names “DHF-4A”, “KW-2000”, “KW-2100”, and Toa Gosei Chemical Co., Ltd. trade names “IXE-600”.

本発明の樹脂組成物は、例えば上記各材料の所定量をブレンダーやヘンシェルミキサー等によりブレンドした後、加熱ロール、ニーダー、一軸又は二軸押し出し機等により混練したものを冷却後、粉砕することによって製造することができる。多層プリント基板用途や塗料用途においては、上記各材料と有機溶剤とを混合してワニスとするが、これには、らいかい機、ビーズミル、3本ロール、攪拌ミキサーなどの混合機が使用される。ワニスとした後は真空脱気によりワニス中の気泡を除去しておくことが好ましい。消泡機能、破泡機能をもたせるために、例えばシリコーン系、アクリル系、フッ素系等の消泡剤の添加は有効である。 The resin composition of the present invention is obtained by, for example, blending a predetermined amount of each of the above materials with a blender, a Henschel mixer or the like, then kneading with a heating roll, kneader, uniaxial or biaxial extruder, etc. Can be manufactured. In multilayer printed circuit board applications and paint applications, the above materials and organic solvents are mixed to make a varnish. For this purpose, a mixer such as a rough machine, a bead mill, three rolls, a stirring mixer is used. . After forming the varnish, it is preferable to remove bubbles in the varnish by vacuum degassing. In order to provide an antifoaming function and an antifoaming function, it is effective to add an antifoaming agent such as a silicone type, an acrylic type or a fluorine type.

実施例で用いた装置は、外側より助燃性ガス供給管A、可燃性ガス供給管、助燃性ガス供給管B、無機質原料粉末供給管の順に組まれた四重管構造ノズルからなるバーナーの4本を竪型炉の頂部に設置する一方、炉の下部を捕集系(バッグフィルター)に接続されてなるものであり、生成物(球状無機質中空粉体)は燃焼排ガスと共にブロワーで吸引輸送されバッグフィルターで捕集される。   The apparatus used in the examples is a burner 4 composed of a quadruple tube structure nozzle assembled in the order of an auxiliary combustion gas supply pipe A, an inflammable gas supply pipe, an auxiliary combustion gas supply pipe B, and an inorganic raw material powder supply pipe from the outside. The book is installed at the top of the vertical furnace, while the lower part of the furnace is connected to a collection system (bag filter), and the product (spherical inorganic hollow powder) is sucked and transported together with combustion exhaust gas by a blower. Collected with bag filter.

実施例1〜5 比較例1〜3
バーナー1本あたり、助燃性ガス供給管Aから空気を30Nm/Hr、可燃性ガス供給管からLPGを3〜8Nm/Hr、助燃性ガス供給管Bから酸素を5〜25Nm/Hr供給して高温火炎が形成する一方、表1に示される無機質原料粉末(シリカ粉末)をバーナーの無機質原料粉末供給管から搬送用空気20〜30Nm/Hrとともに約5kg/Hrの割合で高温火炎の中心部に供給し、得られた生成物をバッグフィルターから捕集した。その結果、無機質原料粉末の特性とLPG及び酸素の供給量とを変えたことによって、種々の球状無機質中空粉体(球状シリカ中空粉体)が製造された。それらの粒子径分布(平均粒径D50、最大粒径D100)、平均球形度、平均中空率、50%破壊圧力、純度の測定結果を表1に示す。
Examples 1-5 Comparative Examples 1-3
Per one burner, the air from the combustion supporting gas supply tube A 30Nm 3 / Hr, 3~8Nm 3 / Hr of LPG from the combustible gas supply pipe, 5 to 25 nm 3 / Hr supplied oxygen from combustion supporting gas supply tube B While the high temperature flame is formed, the inorganic raw material powder (silica powder) shown in Table 1 is transferred from the inorganic raw material powder supply pipe of the burner to the high temperature flame at a rate of about 5 kg / Hr together with the conveying air 20-30 Nm 3 / Hr. The product obtained was collected from the bag filter by feeding to the center. As a result, various spherical inorganic hollow powders (spherical silica hollow powders) were produced by changing the characteristics of the inorganic raw material powder and the supply amounts of LPG and oxygen. The particle diameter distribution (average particle diameter D50, maximum particle diameter D100), average sphericity, average hollowness, 50% breaking pressure, and purity are shown in Table 1.

得られた球状無機質中空粉体の特性を評価するため、臭素化ビスフェノールA型液状エポキシ樹脂100質量部、ジシアンジアミド4質量部、2−エチル4−メチルイミダゾール0.2質量部をメチルエチルケトン200質量部に溶解した後、3−グリシドキシプロピルトリメトキシシラン1質量部、球状無機質中空粉体を上記エポキシ樹脂100体積部に対して50体積部を加え、高速ミキサーで10分間攪拌してワニスを製造した。   In order to evaluate the properties of the obtained spherical inorganic hollow powder, 100 parts by mass of brominated bisphenol A type liquid epoxy resin, 4 parts by mass of dicyandiamide, and 0.2 parts by mass of 2-ethyl 4-methylimidazole were added to 200 parts by mass of methyl ethyl ketone. After dissolution, 1 part by mass of 3-glycidoxypropyltrimethoxysilane and 50 parts by volume of spherical inorganic hollow powder were added to 100 parts by volume of the epoxy resin, and stirred for 10 minutes with a high-speed mixer to produce a varnish. .

得られたワニスの粘度を測定した後、そのワニスをガラスクロスに含浸させ150℃の電気炉で5分間加熱した後、切断してプリプレグを得た。このプリプレグを12枚重ね、圧力4.5MPa、温度185℃で150分の加熱成型プレスをして積層板を製造し、その熱膨張係数と難燃性と比誘電率を測定した。それらの結果を表1に示す。 After measuring the viscosity of the obtained varnish, the varnish was impregnated into a glass cloth, heated in an electric furnace at 150 ° C. for 5 minutes, and then cut to obtain a prepreg. Twelve prepregs were stacked, and a laminate was manufactured by heating and pressing for 150 minutes at a pressure of 4.5 MPa and a temperature of 185 ° C., and its thermal expansion coefficient, flame retardancy, and relative dielectric constant were measured. The results are shown in Table 1.

(1)ワニス粘度
トキメック社製E型粘度計を用い、3°R14のコーンローター、温度30℃、ローター回転数2.5rpmの条件で測定した。
(1) Varnish viscosity Using an E-type viscometer manufactured by Tokimec Co., Ltd., it was measured under the conditions of a cone rotor of 3 ° R14, a temperature of 30 ° C, and a rotor rotational speed of 2.5 rpm.

(2)積層板の熱膨張係数
得られた積層板から、直径5mm×高さ10mmのテストピースを切り出し、島津製作所社製熱機械分析装置(TMA)を用い、JIS K7197規格に準じて測定した。
(2) Coefficient of thermal expansion of laminate plate A test piece having a diameter of 5 mm and a height of 10 mm was cut out from the obtained laminate plate, and measured according to JIS K7197 standard using a thermomechanical analyzer (TMA) manufactured by Shimadzu Corporation. .

(3)積層板の難燃性
得られた積層板から、12.7mm×127mm×1mmのテストピースを切り出し、UL−94規格に準じて測定した。
(3) Flame retardancy of laminated board From the obtained laminated board, a test piece of 12.7 mm x 127 mm x 1 mm was cut out and measured according to UL-94 standards.

(4)積層板の比誘電率
得られた積層板から、直径100mm×厚み2mmのテストピースを切り出し、ヒューレット・パッカード社製誘電率測定器を用いて、JIS K6911規格に準じて測定した。
(4) Relative dielectric constant of laminated plate A test piece having a diameter of 100 mm and a thickness of 2 mm was cut out from the obtained laminated plate, and measured according to JIS K6911 standard using a dielectric constant measuring device manufactured by Hewlett-Packard Company.

Figure 2005206436
Figure 2005206436

実施例と比較例の対比から明らかなように、本発明によれば、ワニス粘度が1000mPa・s以下、特に800mPa・s以下という成形性を良好にして、熱膨張係数が30ppm以下、特に20ppm以下、難燃性がV−0、比誘電率が3.5以下、特に3.0以下の積層板とそれに用いる球状無機質中空粉体が得られた。   As is clear from the comparison between the examples and the comparative examples, according to the present invention, the moldability of varnish viscosity of 1000 mPa · s or less, particularly 800 mPa · s or less is improved, and the thermal expansion coefficient is 30 ppm or less, particularly 20 ppm or less. Further, a laminate having a flame retardancy of V-0 and a relative dielectric constant of 3.5 or less, particularly 3.0 or less, and a spherical inorganic hollow powder used therefor were obtained.

本発明の球状無機質中空粉体は、自動車、携帯電子機器、家庭電化製品等のモールディングコンパウンドなどの樹脂成形部品、更にはパテ、シーリング材、船舶用浮力材、合成木材、強化セメント外壁材、軽量外壁材などの充填材として使用される。また、本発明の樹脂組成物は、ガラス織布、ガラス不織布、その他有機基材に含浸硬化させてなる例えばプリント基板用のプリプレグ、プリプレグの1枚又は複数枚を銅箔等と共に加熱成型された電子部品、更には電線被覆材、半導体封止材、ワニスなどの製造に使用される。   The spherical inorganic hollow powder of the present invention is a resin molded part such as molding compounds for automobiles, portable electronic devices, home appliances, etc., as well as putty, sealing materials, buoyancy materials for ships, synthetic wood, reinforced cement outer wall materials, lightweight Used as a filler for outer wall materials. In addition, the resin composition of the present invention was formed by heat-molding one or a plurality of prepregs for a printed circuit board, for example, a prepreg for a printed circuit board or a prepreg obtained by impregnating and curing glass woven fabric, glass nonwoven fabric, or other organic base material It is used for manufacturing electronic parts, and further, wire covering materials, semiconductor encapsulants, varnishes and the like.

Claims (6)

平均粒径が8μm以下、平均球形度が0.85以上であることを特徴とする球状無機質中空粉体。 A spherical inorganic hollow powder having an average particle diameter of 8 μm or less and an average sphericity of 0.85 or more. 50%破壊圧力が10MPa以上、平均中空率が20〜70体積%であることを特徴とする請求項1記載の球状無機質中空粉体。 2. The spherical inorganic hollow powder according to claim 1, wherein the 50% breaking pressure is 10 MPa or more and the average hollowness is 20 to 70% by volume. 球状無機質中空粉体が、非晶質球状シリカ中空粉末を98質量%以上含有するものであることを特徴とする請求項1又は2記載の球状無機質中空粉体。 3. The spherical inorganic hollow powder according to claim 1, wherein the spherical inorganic hollow powder contains 98% by mass or more of amorphous spherical silica hollow powder. 助燃性ガス供給管、可燃性ガス供給管、助燃性ガス供給管、無機質原料粉末供給管の順に組まれた四重管部分を少なくとも備えたバーナーによって形成された高温火炎中に、比表面積40m/g以上、平均粒径10μm以下の無機質原料粉末を上記無機質原料粉末供給管から供給して球状化・中空化させた後、捕集することを特徴とする球状無機質中空粉体の製造方法。 A specific surface area of 40 m 2 in a high-temperature flame formed by a burner having at least a quadruple tube portion assembled in the order of an auxiliary combustion gas supply pipe, an inflammable gas supply pipe, an auxiliary combustion gas supply pipe, and an inorganic raw material powder supply pipe A method for producing a spherical inorganic hollow powder, wherein inorganic raw material powder having an average particle size of 10 μm / g or more is supplied from the inorganic raw material powder supply pipe and is spheroidized and hollowed and then collected. 無機質原料粉末が、比表面積200m/g以上のシリカ粉末であることを特徴とする請求項4項記載の球状無機質中空粉体の製造方法。 The method for producing a spherical inorganic hollow powder according to claim 4, wherein the inorganic raw material powder is a silica powder having a specific surface area of 200 m 2 / g or more. 請求項1〜3記載のいずれかの球状無機質中空粉体を含有してなることを特徴とする樹脂組成物。 A resin composition comprising the spherical inorganic hollow powder according to any one of claims 1 to 3.
JP2004016502A 2004-01-26 2004-01-26 Spherical inorganic hollow powder, method for producing the same, and resin composition Expired - Fee Related JP4244323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004016502A JP4244323B2 (en) 2004-01-26 2004-01-26 Spherical inorganic hollow powder, method for producing the same, and resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004016502A JP4244323B2 (en) 2004-01-26 2004-01-26 Spherical inorganic hollow powder, method for producing the same, and resin composition

Publications (2)

Publication Number Publication Date
JP2005206436A true JP2005206436A (en) 2005-08-04
JP4244323B2 JP4244323B2 (en) 2009-03-25

Family

ID=34901629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004016502A Expired - Fee Related JP4244323B2 (en) 2004-01-26 2004-01-26 Spherical inorganic hollow powder, method for producing the same, and resin composition

Country Status (1)

Country Link
JP (1) JP4244323B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006062902A (en) * 2004-08-26 2006-03-09 Denki Kagaku Kogyo Kk Spherical inorganic hollow powder and method for producing the same, and resin composition
WO2007102569A1 (en) * 2006-03-08 2007-09-13 Denki Kagaku Kogyo Kabushiki Kaisha Inorganic hollow powder, process for producing the inorganic hollow powder, and composition comprising the inorganic hollow powder
WO2007125891A1 (en) * 2006-04-24 2007-11-08 Denki Kagaku Kogyo Kabushiki Kaisha Inorganic hollow particle, process for producing the same, and composition containing the same
JP2008031409A (en) * 2006-06-27 2008-02-14 Matsushita Electric Works Ltd Low dielectric resin composition, prepreg, metal-clad laminate, printed circuit board
WO2009110514A1 (en) * 2008-03-05 2009-09-11 電気化学工業株式会社 Inorganic hollow powder, process for producing the same, and composition containing the same
JP2010260755A (en) * 2009-05-01 2010-11-18 Denki Kagaku Kogyo Kk Inorganic hollow powder, method for producing the same and application of the hollow powder
JP2010285307A (en) * 2009-06-10 2010-12-24 Denki Kagaku Kogyo Kk Amorphous siliceous powder and method for producing the same, and usage
WO2011007698A1 (en) * 2009-07-14 2011-01-20 花王株式会社 Low-permittivity resin composition
JP2012136363A (en) * 2010-12-24 2012-07-19 Kao Corp Hollow silica particle
JP2013103850A (en) * 2011-11-11 2013-05-30 Jgc Catalysts & Chemicals Ltd Silica-based particle with moisture resistance, method for producing the same, semiconductor sealing resin composition containing the particle, and substrate with coating film formed using the resin composition
JP2013133231A (en) * 2011-12-23 2013-07-08 Jgc Catalysts & Chemicals Ltd Method for producing metal oxide particle, metal oxide particle and application of the particle
WO2013121703A1 (en) * 2012-02-13 2013-08-22 株式会社トクヤマシルテック Silica balloon material having novel characteristic profiles
JP2016121026A (en) * 2014-12-24 2016-07-07 太平洋セメント株式会社 Fine aluminosilicate hollow particle
JP2020083723A (en) * 2018-11-28 2020-06-04 太平洋セメント株式会社 Manufacturing method of inorganic oxide hollow particle
US11137683B2 (en) * 2016-12-26 2021-10-05 Toray Industries, Inc. Photosensitive resin composition and photosensitive resin printing plate precursor containing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021172293A1 (en) 2020-02-27 2021-09-02

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006062902A (en) * 2004-08-26 2006-03-09 Denki Kagaku Kogyo Kk Spherical inorganic hollow powder and method for producing the same, and resin composition
WO2007102569A1 (en) * 2006-03-08 2007-09-13 Denki Kagaku Kogyo Kabushiki Kaisha Inorganic hollow powder, process for producing the inorganic hollow powder, and composition comprising the inorganic hollow powder
JP5411497B2 (en) * 2006-03-08 2014-02-12 電気化学工業株式会社 Inorganic hollow powder, method for producing the same, and composition containing the inorganic hollow powder
US7816428B2 (en) 2006-04-24 2010-10-19 Denki Kagaku Kogyo Kabushiki Kaisha Inorganic hollow particle, process for producing the same, and composition containing the same
JP5414027B2 (en) * 2006-04-24 2014-02-12 電気化学工業株式会社 Inorganic hollow powder, method for producing the same, and composition using the same
KR101083453B1 (en) * 2006-04-24 2011-11-16 덴끼 가가꾸 고교 가부시키가이샤 Inorganic hollow particle, process for producing the same, and composition containing the same
WO2007125891A1 (en) * 2006-04-24 2007-11-08 Denki Kagaku Kogyo Kabushiki Kaisha Inorganic hollow particle, process for producing the same, and composition containing the same
JP2008031409A (en) * 2006-06-27 2008-02-14 Matsushita Electric Works Ltd Low dielectric resin composition, prepreg, metal-clad laminate, printed circuit board
WO2009110514A1 (en) * 2008-03-05 2009-09-11 電気化学工業株式会社 Inorganic hollow powder, process for producing the same, and composition containing the same
JP5519489B2 (en) * 2008-03-05 2014-06-11 電気化学工業株式会社 Method for producing inorganic hollow powder and resin composition used therefor
JP2010260755A (en) * 2009-05-01 2010-11-18 Denki Kagaku Kogyo Kk Inorganic hollow powder, method for producing the same and application of the hollow powder
JP2010285307A (en) * 2009-06-10 2010-12-24 Denki Kagaku Kogyo Kk Amorphous siliceous powder and method for producing the same, and usage
WO2011007698A1 (en) * 2009-07-14 2011-01-20 花王株式会社 Low-permittivity resin composition
US8785522B2 (en) 2009-07-14 2014-07-22 Kao Corporation Low-permittivity resin composition
JP2012136363A (en) * 2010-12-24 2012-07-19 Kao Corp Hollow silica particle
JP2013103850A (en) * 2011-11-11 2013-05-30 Jgc Catalysts & Chemicals Ltd Silica-based particle with moisture resistance, method for producing the same, semiconductor sealing resin composition containing the particle, and substrate with coating film formed using the resin composition
JP2013133231A (en) * 2011-12-23 2013-07-08 Jgc Catalysts & Chemicals Ltd Method for producing metal oxide particle, metal oxide particle and application of the particle
WO2013121703A1 (en) * 2012-02-13 2013-08-22 株式会社トクヤマシルテック Silica balloon material having novel characteristic profiles
JPWO2013121703A1 (en) * 2012-02-13 2015-05-11 株式会社トクヤマシルテック Silica balloon material with novel characteristic profile
JP2016121026A (en) * 2014-12-24 2016-07-07 太平洋セメント株式会社 Fine aluminosilicate hollow particle
US11137683B2 (en) * 2016-12-26 2021-10-05 Toray Industries, Inc. Photosensitive resin composition and photosensitive resin printing plate precursor containing the same
JP2020083723A (en) * 2018-11-28 2020-06-04 太平洋セメント株式会社 Manufacturing method of inorganic oxide hollow particle
JP7232024B2 (en) 2018-11-28 2023-03-02 太平洋セメント株式会社 Method for producing inorganic oxide hollow particles

Also Published As

Publication number Publication date
JP4244323B2 (en) 2009-03-25

Similar Documents

Publication Publication Date Title
JP5414027B2 (en) Inorganic hollow powder, method for producing the same, and composition using the same
JP4112540B2 (en) Manufacturing method of spherical inorganic hollow powder.
JP5411497B2 (en) Inorganic hollow powder, method for producing the same, and composition containing the inorganic hollow powder
JP4244323B2 (en) Spherical inorganic hollow powder, method for producing the same, and resin composition
JP5294015B2 (en) Ceramic powder and its use
JP5358273B2 (en) Inorganic hollow powder, its production method and its use
JP4880268B2 (en) Inorganic powder and its use
JP5519489B2 (en) Method for producing inorganic hollow powder and resin composition used therefor
JPWO2009017058A1 (en) Silica powder, production method thereof and composition using the same
JP2004244491A (en) Highly thermally conductive inorganic powder and resin composition compounded therewith
JPWO2007132770A1 (en) Ceramic powder and its use
JP5259500B2 (en) Amorphous siliceous powder and its production method and application
JP4192073B2 (en) Method for producing silica powder
JP3446951B2 (en) Inorganic powder and resin composition filled therewith
JPWO2009154186A1 (en) Amorphous siliceous powder, method for producing the same, resin composition, and semiconductor sealing material
JP2012250869A (en) Spherical alumina powder, manufacturing method therefor and composition using this powder
JP3721285B2 (en) Spherical inorganic powder and its use
JP6612919B2 (en) Amorphous silica powder, resin composition, and semiconductor encapsulant
JP5345787B2 (en) Method for producing silica-alumina composite oxide ultrafine powder for semiconductor encapsulant
JP2006328345A (en) Flame retardancy-imparting agent and flame-retardant resin composition
TW200936500A (en) Silica powder, process for its production and its use
WO2022202583A1 (en) Inorganic oxide powder, resin composition, and compression molded article
WO2022071131A1 (en) Spherical alumina powder, resin composition, and semiconductor sealing material
WO2022202592A1 (en) Inorganic oxide powder, resin composition, and compression molded product

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081226

R150 Certificate of patent or registration of utility model

Ref document number: 4244323

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140116

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees