WO2010052945A1 - Aspherical silica sol, process for producing the same, and composition for polishing - Google Patents

Aspherical silica sol, process for producing the same, and composition for polishing Download PDF

Info

Publication number
WO2010052945A1
WO2010052945A1 PCT/JP2009/059810 JP2009059810W WO2010052945A1 WO 2010052945 A1 WO2010052945 A1 WO 2010052945A1 JP 2009059810 W JP2009059810 W JP 2009059810W WO 2010052945 A1 WO2010052945 A1 WO 2010052945A1
Authority
WO
WIPO (PCT)
Prior art keywords
spherical silica
silica sol
fine particles
range
spherical
Prior art date
Application number
PCT/JP2009/059810
Other languages
French (fr)
Japanese (ja)
Inventor
西田 広泰
中山 和洋
Original Assignee
日揮触媒化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2008286618A external-priority patent/JP5602358B2/en
Application filed by 日揮触媒化成株式会社 filed Critical 日揮触媒化成株式会社
Priority to US13/127,634 priority Critical patent/US9272916B2/en
Publication of WO2010052945A1 publication Critical patent/WO2010052945A1/en
Priority to US14/947,393 priority patent/US10160894B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols

Definitions

  • the present invention relates to a non-spherical silica sol in which non-spherical silica fine particles having a plurality of hook-shaped protrusions on the surface of silica fine particles as a nucleus are dispersed in a dispersion medium and a method for producing the same.
  • the present invention also relates to a polishing composition containing the non-spherical silica sol.
  • non-spherical silica sol in which non-spherical silica fine particles are dispersed in a solvent, the shape of the non-spherical silica fine particles is known to be chain, beaded or oblong.
  • Such non-spherical silica sols are used as various abrasives, for example.
  • Non-spherical silica sol containing irregular particles JP-A to 1-317115 (Patent Document 1), particle diameter measured by the image analysis method particle diameter measured by (D 1) and the nitrogen gas adsorption method (D 2 D 1 / D 2 is 5 or more, D 1 is 40 to 500 millimicrons, and the thickness measured by electron microscope observation is uniform within the range of 5 to 40 millimicrons
  • D 1 particle diameter measured by the image analysis method particle diameter measured by (D 1) and the nitrogen gas adsorption method
  • D 2 D 1 / D 2 is 5 or more
  • D 1 is 40 to 500 millimicrons
  • the thickness measured by electron microscope observation is uniform within the range of 5 to 40 millimicrons
  • a method for producing a non-spherical silica sol in which elongated colloidal silica particles having an extension direction only in one plane are dispersed in a liquid medium is disclosed.
  • Step (c) is a production method comprising the step of heating the mixture obtained in the previous step at 60 to 150 ° C. for 0.5 to 40 hours.
  • Patent Document 4 the total number of colloidal silica particles having a major axis of 7 to 1000 nm and a minor axis / major axis ratio of 0.3 to 0.8 mm obtained by image analysis of an electron micrograph is described.
  • a semiconductor wafer abrasive comprising a stable sol of silica occupying 50% or more of the number of particles has been proposed.
  • JP-A-7-118008 (patent document 5), an aqueous solution of a water-soluble calcium salt, magnesium salt or a mixture thereof is added to an aqueous colloidal solution of active silicic acid, and an alkaline substance is added to the resulting aqueous solution.
  • a part of the obtained mixture is heated to 60 ° C. or more to form a heel solution, the remainder is used as a feed solution, the feed solution is added to the heel solution, and water is evaporated during the addition to thereby evaporate SiO 2.
  • a method for producing an elongated non-spherical silica sol obtained by concentrating the concentration to 6 to 30% by weight is disclosed.
  • Patent Document 6 (1) a method in which an alkali silicate aqueous solution is neutralized with a mineral acid and an alkaline substance is added and heat-ripened, and (2) the alkali silicate aqueous solution is subjected to cation exchange treatment. (3) A method of heating and aging active silicic acid obtained by hydrolyzing an alkoxysilane such as ethyl silicate, or (4) Fine silica powder Colloidal silica produced by, for example, a method of directly dispersing in an aqueous medium is a colloidal silica particle having a particle size of usually 4 to 1,000 nm, preferably 7 to 500 nm, dispersed in an aqueous medium.
  • SiO 2 has a concentration of 0.5 to 50% by weight, preferably 0.5 to 30% by weight. It is described that the silica particles have a spherical shape, a distorted shape, a flat shape, a plate shape, an elongated shape, a fibrous shape, and the like.
  • Patent Document 7 discloses a silicon wafer polishing method using an abrasive mainly composed of colloidal silica particles, in which methyl silicate purified by distillation is converted into ammonia or methanol in a methanol solvent. There has been proposed a silicon wafer polishing method characterized by using colloidal silica particles obtained by reacting ammonia and ammonium salt with water as a catalyst and having a major axis / minor axis ratio of 1.4 or more.
  • Patent Document 8 includes a spherical colloidal silica particle having an average particle diameter of 10 to 80 nm and a metal oxide-containing silica which joins the spherical colloidal silica particle, and an image analysis method for the spherical colloidal silica particle.
  • the ratio D 1 / D 2 of the measured particle diameter (D 1 ) obtained by the above method and the measured particle diameter (D 2 ) obtained by the nitrogen adsorption method is 3 or more, and this D 1 is 50 to 500 nm.
  • a non-spherical silica sol is described in which beaded colloidal silica particles in which colloidal silica particles are connected only in one plane are dispersed.
  • International Publication WO 00/15552 discloses a production method of (a) a predetermined colloidal solution of active silicic acid or an acidic non-spherical silica sol, an aqueous solution of a water-soluble metal salt, and an aqueous solution of the colloidal aqueous solution or acidic non-spherical silica sol.
  • the spherical silica sol has a ratio A / B (weight ratio) of 5 to 100 between the silica content (A) derived from the acidic spherical non-spherical silica sol and the silica content (B) derived from the mixed solution 1, and the acidic mixing the total silica content of the mixture 2 obtained by mixing (a + B) is added an amount containing SiO 2 concentration of 5 to 40 wt% in the mixture 2 of the spherical non-spherical silica sol with the mixed solution 1
  • a method comprising adding an alkali metal hydroxide, a water-soluble organic base or a water-soluble silicate to the obtained mixture 2 so as to have a pH of 7 to 11,
  • Patent Document 9 discloses a water-soluble II value in an aqueous colloidal solution of active silicic acid containing 0.5 to 10% by weight as SiO 2 and having a pH of 2 to 6.
  • an aqueous solution containing a valent metal salt alone or in combination of two or more metal oxides with respect to SiO 2 of the colloidal aqueous solution of the active silicic acid is designated as MO (in the case of a valent metal salt, MO, M 2 O 3 in the case of a metal salt of the above, where M represents a II or III valent metal atom, and O represents an oxygen atom) and mixed in an amount of 1 to 10% by weight.
  • an acidic spherical non-spherical silica sol having an average particle diameter of 10 to 120 nm and a pH of 2 to 6 is added to the obtained mixed liquid (1), the silica content (A) derived from the acidic spherical non-spherical silica sol, and the mixed liquid (1 )
  • the ratio A / B (weight ratio) to the silica content (B) derived from 00, and the acidic spherical non-spherical silica sol and the mixture (1) the total silica content of the mixture obtained by mixing (2) and (A + B) is SiO 2 concentration of 5 to 40 wt% in the mixed solution (2)
  • an alkali metal hydroxide or the like is added to the mixed solution (2) so as to have a pH of 7 to 11 and mixed, and the obtained mixed solution (3) is heated to 100 to 200 ° C. Describes a method for producing a beaded non-spherical silica sol heated at 0.5 to 50 hours.
  • Patent Document 10 discloses a composition having a silica concentration of 1 to 8 mol / liter, an acid concentration of 0.0018 to 0.18 mol / liter, and a water concentration of 2 to 30 mol / liter.
  • the alkyl silicate is hydrolyzed with an acid catalyst without using a solvent, diluted with water so that the silica concentration is in the range of 0.2 to 15 mol / liter, and then the alkali catalyst is used so that the pH becomes 7 or more.
  • the average diameter in the thickness direction obtained by electron microscope observation is 5 to 100 nm, and the length is 15 to 50 times the length of the amorphous amorphous
  • a method for producing a non-spherical silica sol in which silica particles are dispersed in a liquid dispersion is described.
  • Patent Document 11 discloses an acidic aqueous solution of activated silicic acid having a SiO 2 concentration of about 2 to 6% by weight obtained by decation treatment of an aqueous solution of an alkali metal silicate such as water glass.
  • an alkaline earth metal such as a salt of Ca, Mg, Ba or the like is added at a weight ratio of 100 to 1500 ppm with respect to SiO 2 of the above active silicic acid in terms of its oxide, and further SiO 2 / M 2 in this solution.
  • M represents an alkali metal atom, NH 4 or a quaternary ammonium group.
  • the liquid obtained by adding the alkali substance in an amount of 20 to 150 in molar ratio is initially used as the heel liquid.
  • the average particle diameter is in the range of 5 to 300 nm as polishing particles capable of suppressing dishing (overpolishing) and polishing the substrate surface flatly.
  • Abrasive particles characterized by comprising a group of irregularly shaped particles in which two or more primary particles are combined are described.
  • the particles constituting the irregularly shaped particle group occupy the total number of primary particles in the abrasive particles.
  • abrasive particles having a number of secondary particles in the range of 5 to 100% are effective.
  • Patent Document 13 discloses a semiconductor polishing slurry characterized by containing non-spherical colloidal silica, an oxidizing agent and an organic acid, and the balance being water. Among them, non-spherical colloidal silica (major axis / minor axis) having a major axis / minor axis of 1.2 to 5.0 has been proposed, and the same non-true colloid is disclosed in Japanese Patent Application Laid-Open No. 2004-311652 (Patent Document 14). Spherical colloidal silica is disclosed.
  • Patent Document 15 discloses (a) an alkali metal silicate aqueous solution of 0.05 to 5.0% by weight as SiO 2.
  • the silicic acid solution adding step Before, during or after the addition step, a step of adding one or more metal compounds of divalent to tetravalent metals, (c) the mixed solution at an arbitrary temperature of 60 ° C.
  • silica consists - method for producing alumina coated linear non-spherical silica sol is disclosed.
  • JP-A-3-257010 discloses a continuous surface having a size of 0.2 to 5 ⁇ m as observed with an electron microscope on the surface of silica particles.
  • a description of silica particles having uneven projections, an average particle diameter of 5 to 100 ⁇ m, a specific surface area obtained by the BET method of 20 m 2 / g or less, and a pore volume of 0.1 mL / g or less. is there.
  • Patent Document 17 discloses silica-based fine particles having substantially spherical and / or hemispherical protrusions on the entire surface of the seed particles, and the protrusions are seeded by chemical bonding. There is a description of silica-based fine particles that are bound to the particles.
  • (A) a step of hydrolyzing and condensing a specific alkoxysilane compound to produce polyorganosiloxane particles
  • (B) a step of treating the polyorganosiloxane particles with a surface adsorbent
  • (C) the above There is a description of a method for producing silica-based fine particles, including a step of forming protrusions using the alkoxysilane compound on the entire surface of the polyorganosiloxane particles surface-treated in step B).
  • Patent Document 18 discloses silica-based particles having substantially spherical and / or hemispherical protrusions on the entire surface of the seed particles, and the protrusions are seeded by chemical bonding. Silica-based particles are disclosed that are bound to particles and have different compressive elastic moduli at 10% compression between seed particles and protrusions.
  • Patent Document 16 the particles described in JP-A-3-257010 (Patent Document 16) are composed only of silica having an average particle diameter of 5 to 100 ⁇ m, and are disclosed in JP-A-2002-38049 (Patent Document 17). Only silica-based particles having an average particle diameter of 0.5 to 30 ⁇ m are disclosed, and the same applies to JP-A-2004-35293 (Patent Document 18).
  • JP-A-1-317115 Japanese Patent Laid-Open No. 4-65314 JP-A-4-187512 Japanese Patent No. 3441142 Japanese Patent Application Laid-Open No. 7-118008 JP-A-8-279480 JP-A-11-214338 International Publication WO00 / 15552 JP 2001-11433 A JP 2001-48520 A JP 2001-150334 A JP 2003-133267 A JP 2004-288732 A JP 2004-311652 A JP 2002-3212 A JP-A-3-257010 JP 2002-38049 A JP 2004-35293 A
  • An object of the present invention is to provide a silica sol having non-spherical silica fine particles having excellent characteristics such as abrasiveness and having a small average particle diameter and dispersed in a dispersion medium, and a method for producing the same. Another object is to provide a polishing composition containing the non-spherical silica sol.
  • the present invention that solves the above-mentioned problems has an average particle diameter measured by dynamic light scattering of 3 to 200 nm, a minor axis / major axis ratio of 0.01 to 0.8, and a specific surface area of 10 to 800 m.
  • the non-spherical silica sol is characterized in that non-spherical silica fine particles in the range of 2 / g and having a plurality of hook-shaped protrusions on the surface are dispersed in a dispersion medium.
  • a preferred embodiment of the non-spherical silica sol according to the present invention is as follows. First, from any point on the outer edge of the non-spherical silica fine particle on a plane including the long axis of the non-spherical silica fine particle having the hook-shaped protrusion.
  • Y is a distance to an intersection B between the long axis passing through a point on the outer edge and a line orthogonal to the major axis, and from the one intersection A of the outer edge of the non-spherical silica fine particle to the major axis, the intersection Examples of the non-spherical silica sol in which when the XY curve is drawn with the distance to B as X, the XY curve has a plurality of maximum values.
  • the point passes from the arbitrary point on the outer edge of the non-spherical silica fine particle to the point on the outer edge.
  • the non-spherical silica sol include a variation coefficient of the distance Y in the range of 5 to 50%, where Y is the distance to the intersection B between the straight line perpendicular to the long axis and the long axis.
  • the nonspherical silica sol in which the number of nonspherical silica fine particles having ridge-like projections is 50% or more of the total number of silica fine particles as a dispersoid As a fourth preferred embodiment, the non-spherical silica sol in which the non-spherical silica fine particles having ridge-like protrusions are composed of [SiO 4/2 ] units can be mentioned.
  • the non-spherical silica sol in which the non-spherical silica fine particles having ridge-like projections are polysiloxanes composed of [SiO 4/2 ] units obtained by hydrolysis of tetraethoxysilane.
  • a sixth preferred embodiment includes the nonspherical silica sol, wherein the ratio of sodium contained in the nonspherical silica fine particles is 100 mass ppm or less.
  • Another invention in the present application is a polishing composition
  • a polishing composition comprising the abrasive comprising the non-spherical silica sol and the non-spherical silica sol.
  • Another invention in the present application is that, in the presence of an electrolyte comprising a salt of a strong acid (the equivalent number of the electrolyte is represented by (EE)), 100 parts by mass of the following A liquid (in terms of silica), 50 to 2500 parts by mass of B liquid
  • a liquid in terms of silica
  • B liquid is added so that the equivalent ratio of the alkali to the electrolyte (EA / EE) is in the range of 0.4 to 8.
  • Non-spherical seed silica fine particles having an average particle diameter measured by a dynamic light scattering method in the range of 3 to 200 nm and a minor axis / major axis ratio in the range of 0.01 to 0.8 are dispersed in the dispersion medium.
  • Nonspherical seed silica sol B liquid An aqueous alkali silicate solution (the number of equivalents of alkali contained in B liquid is represented by (EA))
  • EA aqueous alkali silicate solution
  • the liquid B and the electrolyte are added to the liquid A at a temperature range of 40 to 150 ° C. over 15 minutes to 10 hours, respectively, and then aged.
  • a method for producing a non-spherical silica sol can be mentioned.
  • the temperature range of a mixed solvent containing a water-soluble organic solvent and water is maintained at 30 to 150 ° C.
  • the mixed solvent is represented by 1) the following general formula (1)
  • a water-soluble organic solvent solution of a tetrafunctional silane compound and 2) an alkali catalyst solution are added simultaneously or intermittently. After the addition is completed, the liquid is further maintained in a temperature range of 30 to 150 ° C.
  • the molar ratio of water to the tetrafunctional silane compound is in the range of 2 to 4. It is a manufacturing method.
  • R is an alkyl group having 2 to 4 carbon atoms.
  • the non-spherical silica fine particles contained in the non-spherical silica sol according to the present invention have a unique structure different from ordinary non-spherical silica fine particles
  • the non-spherical silica sol according to the present invention has a filling property, an oil absorption property, and an electric property. It has excellent physical properties and optical properties such as, for example, is useful as an abrasive and a polishing composition, and is particularly excellent in the effect of polishing properties.
  • FIG. 1 is a schematic diagram of how to determine the number of local maximum values.
  • FIG. 2 is a schematic diagram of how to obtain the variation coefficient of the distance Y.
  • FIG. 3 is a scanning electron micrograph (magnification: 250,000 times) of the non-spherical silica sol prepared in Example 3.
  • Non-spherical silica sol The non-spherical silica sol of the present invention has an average particle diameter measured by a dynamic light scattering method of 3 to 200 nm, a minor axis / major axis ratio of 0.01 to 0.8, and a specific surface area of 10 to 800 m 2.
  • the non-spherical silica fine particles having a range of / g and having a plurality of hook-shaped protrusions on the surface are dispersed in a dispersion medium.
  • the non-spherical silica fine particles that are the dispersoid of the non-spherical silica sol according to the present invention preferably have a minor axis / major axis ratio in the range of 0.01 to 0.8.
  • a shape that is regarded as an unusual shape such as a fiber shape, a column shape, or a spheroid shape, that is, a shape that is not regarded as a spherical shape is taken.
  • the minor axis / major axis ratio exceeds 0.8, the particles are almost spherical.
  • the case where the minor axis / major axis ratio is less than 0.01 includes the case where the production is not easy.
  • a more preferable range of the minor axis / major axis ratio is 0.1 to 0.7, and an even more preferable range is 0.12 to 0.65.
  • the non-spherical silica sol according to the present invention is structurally different from conventional non-spherical silica sols such as non-spherical silica sols in that the non-spherical silica fine particles as a dispersoid have a plurality of hook-shaped protrusions on the surface thereof. It is. That is, the non-spherical silica fine particles contained in the non-spherical silica sol according to the present invention can be said to be non-spherical confetti-like silica fine particles or saddle-shaped projection-coated non-spherical silica fine particles.
  • the non-spherical silica sol according to the present invention has a unique effect in various uses, for example, a use for polishing, a filler for a resin or a film forming component, a filler for an ink receiving layer, etc. It becomes possible to show.
  • the hook-like protrusions can be confirmed by, for example, an electron micrograph of a non-spherical silica sol, and have a structure protruding from the peripheral portion or a swollen structure on the particle surface.
  • the non-spherical silica fine particles according to the present invention may be those using water glass or the like as a raw material as described later, or those prepared using alkoxysilane as a raw material. Examples of the latter include non-spherical silica sol, wherein the non-spherical silica fine particles are composed of [SiO 4/2 ] units. A method for producing such a non-spherical silica sol will be described later.
  • the long axis passes through a point on the outer edge from an arbitrary point on the outer edge of the non-spherical silica fine particle on a plane including the long axis of the non-spherical silica fine particle.
  • XY curve where Y is the distance to the intersection B of the straight line orthogonal to the long axis and the long axis, and X is the distance from one intersection A of the outer edge of the non-spherical silica fine particle to the long axis It is desirable that the XY curve has a plurality of maximum values.
  • the major axis of the non-spherical silica fine particles was determined in an image of a scanning electron micrograph (250,000 to 500,000 times) of the non-spherical silica fine particles, and the total length of the long axis was divided into 40 equal parts.
  • Each point (point B) and a straight line perpendicular to the point are stretched to one side of the fine particle, and the distance between the point where the fine particle intersects the outer edge is recorded as Y.
  • X be the distance between one point (point A) of the two intersections between the outer edge of the non-spherical silica fine particle and the long axis and the corresponding point (point B).
  • the XY curve By plotting the Y value corresponding to each X with Y as the vertical axis and X as the horizontal axis, the XY curve can be drawn, and the number of local maximum values of this XY curve can be measured.
  • the non-spherical silica fine particles For non-spherical silica fine particles, such measurement is performed for 50 particles, and the average of the number of local maximum values is 2 or more, the non-spherical silica fine particles have the plurality of local maximum values. It was decided to handle it as having.
  • An outline of how to determine the number of local maximum values is shown in FIG. In FIG. 1, “1” represents the major axis, “2” represents the outer edge, “3” represents the position at which the maximum value is obtained, “4” represents the 40-segment line, and “L” represents the length in the major axis direction.
  • the number of local maximum values is preferably in the range of 2 to 10, more preferably in the range of 3 to 8. Note that the number of maximum values may be obtained by measurement with an analytical instrument.
  • the non-spherical silica fine particles more preferably, on a plane including the long axis of the fine particles, from any point on the outer edge of the non-spherical silica fine particles through the point on the outer edge and the long axis
  • the variation coefficient of the distance Y is in the range of 5 to 50%.
  • the range of 0 to 10% of the long axis radius M from the center point is 0 to 20%.
  • the maximum coefficient of variation (CV value) among them is defined as the coefficient of variation (CV value) for the distance Y in the particle.
  • the above measurements 1) to 3) were performed on 50 particles, and the average value was adopted as the coefficient of variation (CV value) for the distance Y in the non-spherical silica fine particles.
  • FIG. 2 An outline of how to obtain the coefficient of variation of the distance Y value is shown in FIG.
  • “1”, “2”, and “L” are the same as those in FIG. 1
  • “M” is the length of the radius in the major axis direction
  • “N” is a length of 50% of M. Represents.
  • the non-spherical silica fine particles When the Y curve has a plurality of maximum values, the non-spherical silica fine particles have ridge-like projections, and in such non-spherical silica fine particles, the coefficient of variation (CV) with respect to the distance Y from the outer edge to the major axis. (Value) in the range of 5 to 50% indicates that there is a significant variation in the length of the distance Y from the outer edge of the particle to the major axis, and there are undulations on the surface of the non-spherical silica fine particles. Will be shown.
  • the coefficient of variation (CV value) for the distance Y from the outer edge to the long axis is less than 5%
  • the surface of the non-spherical silica fine particles is slightly undulated. Cases or cases where there is substantially no undulations.
  • the coefficient of variation (CV value) for the distance Y from the outer edge to the long axis is 50% or more, it is not easy to prepare, and such particles have a problem in robustness due to the structure. May come out.
  • the coefficient of variation (CV value) for the distance Y from the outer edge to the long axis is more preferably in the range of 7 to 45%. Further, it is more preferably in the range of 10 to 40%.
  • the average particle size of the non-spherical silica fine particles that are the dispersoid of the non-spherical silica sol according to the present invention is preferably in the range of 3 to 200 nm in terms of the average particle size measured by the dynamic light scattering method. If the average particle diameter is in this range, for example, in each of the above applications, an effective effect based on the shape of the non-spherical silica sol according to the present invention is likely to occur. When the average particle diameter exceeds 200 nm, although depending on the size of the raw material fine particles, the tendency to flatten the hook-shaped protrusions is generally increased because the built-up process generally proceeds excessively.
  • the average particle diameter of the non-spherical silica fine particles measured by the dynamic light scattering method is preferably in the range of 10 to 195 nm, and more preferably in the range of 20 to 195 nm.
  • the non-spherical silica fine particles having an average particle diameter range of 3 to 200 nm by the dynamic light scattering method the non-spherical silica fine particles having a long axis average diameter of 3 to 190 nm by the image analysis method are used.
  • the long axis means the maximum diameter of the non-spherical silica fine particles.
  • the image analysis method means the maximum diameter of particles measured in a scanning electron micrograph (magnification 250,000 to 500,000 times). Specific measurement methods are shown in the examples.
  • the average value of the major axis is preferably in the range of 10 to 180 nm, and more preferably in the range of 15 to 170 nm.
  • the non-spherical silica fine particles have a specific surface area in the range of 10 to 800 m 2 / g, preferably 20 to 500 m 2 / g, and more preferably 30 to 300 m 2 / g.
  • the specific surface area is less than 10 m 2 / g, non-spherical silica fine particles having almost no wrinkle-like protrusions on the surface are contained, which is not preferable.
  • the specific surface area is a numerical value determined by the BET method (nitrogen adsorption method).
  • the solvent in which the non-spherical silica fine particles are dispersed may be water, an organic solvent, or a mixed solvent thereof.
  • examples thereof include alcohols such as methyl alcohol, ethyl alcohol and isopropyl alcohol, water-soluble organic solvents such as ethers, esters and ketones.
  • the non-spherical silica sol according to the present invention is obtained by dispersing silica fine particles containing non-spherical silica fine particles having a plurality of hook-shaped protrusions on the surface as a dispersoid in a dispersion medium. Need not be non-spherical silica fine particles having a plurality of hook-shaped protrusions on the surface.
  • the ratio is preferably 50% or more, and more preferably 60% or more. The higher the ratio, the easier it is to obtain a practical polishing rate when the spherical silica sol is used for polishing.
  • the silica concentration of the non-spherical silica sol according to the present invention is usually preferably in the range of 1 to 50% by mass, and more preferably in the range of 5 to 30% by mass.
  • the production method of the non-spherical silica sol according to the present invention is not necessarily limited, but is usually prepared by the first production method or the second production method of the non-spherical silica sol described later.
  • the first method for producing a non-spherical silica sol includes a case where a commercially available non-spherical silica sol is used as a raw material, and particularly includes a case where a non-spherical silica sol prepared using water glass as a raw material is used.
  • a non-spherical silica sol prepared using water glass as a raw material is used.
  • sodium derived from the raw water glass or the like may remain at a relatively high concentration in the non-spherical silica fine particles.
  • a non-spherical silica sol according to the present invention is applied to an abrasive of an electronic material or a semiconductor material, for example, there is a possibility of causing contamination with sodium.
  • a tetrafunctional silane compound is used as a raw material, so that there is no possibility that sodium is mixed into the non-spherical silica fine particles.
  • the content of sodium contained in the non-spherical silica fine particles can be reduced to 100 ppm by mass or less.
  • the present non-spherical silica sol can be suitably used as an abrasive for electronic materials or semiconductor materials.
  • the non-spherical silica fine particles prepared by the second method for producing the non-spherical silica sol are obtained by hydrolysis of a tetrafunctional silane compound such as tetraethoxysilane, and are composed of [SiO 4/2 ] units. It becomes a polysiloxane structure.
  • a first method for producing a non-spherical silica sol according to the present invention includes a non-spherical seed silica sol in which non-spherical seed silica fine particles are dispersed in a dispersion medium (hereinafter referred to as “Liquid A”) from a strong acid salt.
  • Liquid B an alkali silicate aqueous solution
  • EA the number of equivalents of alkali
  • EE electrolyte
  • the non-spherical seed silica fine particle is a silica used for producing non-spherical silica fine particles having the ridge-like projections according to the present invention by growing silica on the surface of the non-spherical silica fine particles. Refers to fine particles.
  • Non-spherical seed silica sol (A liquid)
  • the average particle diameter measured by the dynamic light scattering method is in the range of 3 to 200 nm
  • the minor axis / major axis ratio is in the range of 0.01 to 0.8
  • the specific surface area is 15 to 800 m 2 / g.
  • a non-spherical silica sol obtained by dispersing non-spherical silica fine particles in a range in a dispersion medium is used.
  • the method for producing a non-spherical silica sol of the present invention is not particularly limited, and a commercially available non-spherical silica sol or a known non-spherical silica sol may be applied. it can.
  • a known non-spherical silica sol can be obtained, for example, by the following production methods (I) to (V).
  • a silicic acid solution is added to an aqueous solution of a water-soluble silicate, and SiO 2 / M 2 O [M is selected from alkali metal, tertiary ammonium, quaternary ammonium or guanidine] (molar ratio) Is prepared by adding a silicic acid solution intermittently or continuously at a temperature of 60 to 200 ° C.
  • a silica sol having a pH of 7 to 9 In the range of 60 to 98 ° C. and a method for producing an anisotropic silica sol (see JP2007-153671)
  • a polymetal salt compound is added to 100 parts by weight of the silica solid content of the silica sol. Addition of 0.01 to 70 parts by weight and heating at 50 to 160 ° C. (see Japanese Patent Application Laid-Open No.
  • a method for producing an anisotropic shaped silica sol, wherein a mixture with a salt is added continuously or intermittently (see JP2007-153692A)
  • V A method for producing an anisotropic shaped silica sol according to the following steps (1) and (2) (see WO2007 / 018069).
  • the silica hydrogel obtained by neutralizing silicate with an acid is washed to remove salts, and the molar ratio of SiO 2 / M 2 O (M: Na, K, NH 3 ) is 30 to 500.
  • a silicic acid solution at 200 ° C.
  • such raw material non-spherical silica sol is diluted with pure water as necessary to obtain a silica solid content concentration of 2 It is desirable to adjust to ⁇ 40%.
  • the non-spherical seed silica sol used as the liquid A is a silica sol having a short diameter / long diameter ratio of non-spherical silica fine particles as a dispersoid in the range of 0.01 to 0.8, and the non-spherical silica sol to be obtained Those having an average particle size smaller than or equivalent to that of the non-spherical silica fine particles which are the dispersoid of the above are used.
  • a more preferable range of the minor axis / major axis ratio is 0.1 to 0.7, and an even more preferable range is 0.12 to 0.65.
  • the average particle diameter by the dynamic light scattering method is preferably in the range of 3 to 200 nm, more preferably in the range of 5 to 150 nm, and further preferably. Is in the range of 10 to 120 nm.
  • the specific surface area of the non-spherical seed silica fine particles is preferably in the range of, for example, 5 to 800 m 2 / g.
  • the concentration of the non-spherical seed silica sol varies depending on the particle diameter of the non-spherical seed silica fine particles, but is preferably in the range of 0.005 to 10% by mass, more preferably 0.01 to 5% by mass as silica.
  • the silica concentration is less than 0.005% by mass, the amount of non-spherical seed silica fine particles serving as core particles is too small, and it is necessary to slow down the supply rate of the alkali silicate aqueous solution (liquid B) and / or the electrolyte.
  • the particle size distribution of the obtained sol may be broad, which is inefficient in preparing the non-spherical silica sol.
  • concentration of the non-spherical seed silica sol exceeds 10% by mass, the concentration may be too high and the core particles may aggregate when supplying the alkali silicate aqueous solution and / or the electrolyte. In this case also, the particle size distribution is broad. And tend to produce particles adhered to each other, which is undesirable for the preparation of non-spherical silica sols.
  • the pH of the non-spherical seed silica sol is 8-12, especially 9. Desirably, it is in the range of 5 to 115.
  • the pH is less than 8, the reactivity of the surface of the core particles is low, so that the supplied alkali silicate (liquid B) is deposited on the surface at a slow rate.
  • the supplied alkali silicate liquid B
  • unreacted alkali silicate increases or new fine particles Is generated, and the particle size distribution of the resulting sol may be broad or aggregated particles may be obtained, which is not desirable for the efficient production of a non-spherical silica sol.
  • the pH exceeds 12, the silica solubility increases, so that the silica deposition is delayed, and therefore the particle growth tends to be delayed.
  • the pH adjustment of the non-spherical seed silica sol can be performed by adding an alkali.
  • alkali metal hydroxides such as NaOH and KOH, ammonia water, quaternary ammonium hydroxide, amine compounds, and the like can be used.
  • the temperature at which the non-spherical seed silica sol is prepared is not particularly limited, and is usually in the range of 10 to 30 ° C.
  • Silicic acid alkali aqueous solution (liquid B) In the present invention, an electrolyte and an alkali silicate aqueous solution (liquid B) are added to the liquid A to grow silica fine particles.
  • the electrolyte can be partly or wholly added to the liquid A in advance, but may be added continuously or intermittently together with the alkali silicate aqueous solution of the liquid B.
  • alkali silicate used as the liquid B examples include alkali silicate salts such as LiOH, NaOH, KOH, RbOH, CsOH, NH 4 OH, and quaternary ammonium hydride.
  • alkali silicate salts such as LiOH, NaOH, KOH, RbOH, CsOH, NH 4 OH, and quaternary ammonium hydride.
  • sodium silicate (water glass), potassium silicate, etc. can be used suitably.
  • an alkali silicate aqueous solution obtained by hydrolyzing a hydrolyzable organic compound such as tetraethylorthosilicate (TEOS) using excess NaOH or the like is also suitable.
  • TEOS tetraethylorthosilicate
  • the temperature of the non-spherical seed silica sol when adding the alkaline silicate aqueous solution of the solution B is in the range of 40 to 150 ° C., more preferably 60 to 100 ° C.
  • the temperature is less than 40 ° C., the reaction rate of silicic acid is slow, and there are cases where unreacted silicic acid increases or particles having a desired size cannot be obtained.
  • the temperature of the non-spherical seed silica sol exceeds 150 ° C., there is a problem that the operating pressure becomes too high and the cost of the apparatus becomes high and the production capacity is lowered and the economy is lowered.
  • the temperature exceeds 150 ° C. the effect of increasing the reaction rate and particle growth rate is practically small.
  • the addition amount of the aqueous solution of alkali silicate in the B liquid depends on the temperature and reaction time when growing the core particles, but is usually 50 to 2500 with respect to 100 parts by mass of silica contained in the A liquid. It is preferable that it is the range of a mass part. If the amount is less than 50 parts by mass, the particle growth itself is low, and it is not easy to efficiently obtain a non-spherical silica sol exhibiting the necessary surface roughness. When the amount exceeds 2500 parts by mass, the growth of the core particles proceeds excessively, and thus the tendency to become silica fine particles having a flattened surface increases.
  • a more preferable amount of addition of B liquid is in the range of 80 to 1800 parts by mass.
  • Electrolyte As the electrolyte used in the present invention, a conventionally known acid and base salt which is soluble in water can be used. In particular, an electrolyte composed of a salt of a strong acid is preferable because it can accept alkali alkali silicate and at this time forms silicic acid used for the growth of core particles. Examples of water-soluble electrolytes composed of such strong acid salts include sodium salts, potassium salts, lithium salts, rubidium salts, cesium salts, ammonium salts, calcium salts, and magnesium salts of strong acids such as sulfuric acid, nitric acid, and hydrochloric acid. It is done. Alum which is a double salt of sulfuric acid such as potassium alum and ammonium alum is also suitable.
  • the amount of the electrolyte is such that the ratio (EA / EE) of the number of alkali equivalents (EA) to the number of equivalents of electrolyte (EE) (EA / EE) contained in the liquid B is 0.4 to 8, particularly 0.8. It is preferable to be in the range of 4-5.
  • the ratio (EA / EE) is less than 0.4, the electrolyte salt concentration in the dispersion may be too high and the particles may aggregate.
  • the ratio (EA / EE) exceeds 8, the amount of electrolyte is small and the particle growth rate becomes insufficient, and there is no difference from the conventional growth of core particles by supplying an acidic silicic acid solution.
  • the above-mentioned electrolyte accepts alkali silicate alkali, so that generation of silicic acid used for particle growth of core particles is reduced, and particles having a desired particle diameter are obtained. There are times when you can't.
  • the electrolyte preferably has a concentration of the electrolyte in the dispersion in the range of 0.05 to 10% by mass. A range of 0.1 to 5% by mass is recommended.
  • Such an electrolyte may be partly or wholly added separately from the alkali silicate aqueous solution (B solution), or may be added continuously or intermittently with the alkali silicate aqueous solution (B solution). .
  • the amount of electrolyte at this time is also preferably in the relationship between the amount of alkali silicate and the ratio of the number of equivalents described above.
  • the B liquid added to the A liquid is diluted with water or concentrated as necessary, so that the SiO 2 concentration is in the range of 0.5 to 10% by mass, more preferably 1 to 7% by mass. It is preferable to adjust so that.
  • the SiO 2 concentration is less than 0.5% by mass, the concentration is too low, the production efficiency is low, and concentration may be required for use as a product.
  • concentration exceeds 10% by mass, the silica particles tend to aggregate, and a sol in which silica particles having a uniform particle diameter are monodispersed may not be obtained.
  • the electrolyte or electrolyte and water are added to the B solution and then supplied to the A solution, the above range is recommended as the concentration of SiO 2 in the system.
  • the pH of the dispersion may be maintained in the range of 8 to 13, preferably 10 to 12, while adding an alkali or an acid if desired.
  • alkali to be added sodium hydroxide, potassium hydroxide, lithium hydroxide, aqueous ammonia, or amines such as triethylamine, triethanolamine can be used, and acids such as hydrochloric acid, nitric acid, sulfuric acid, or acetic acid can be used. Organic acids can be used.
  • non-spherical seed silica fine particles are grown by adding the B liquid to the A liquid in the presence of an electrolyte composed of a strong acid salt, non-spherical silica fine particles having a plurality of hook-shaped protrusions on the surface are obtained. .
  • silica derived from B liquid it is thought that it precipitates on the surface of a core particle, or precipitates in a system as a fine silica particle, but these all have a potential difference with a relatively big core particle, Is highly reactive. This is presumed to be a factor that causes the surface of the nuclear particle to be undulated and generate hook-shaped projections.
  • the silica concentration is high, and the smaller the particle diameter, the easier the aggregation by the electrolyte, so the low concentration Grain growth at is desirable.
  • the B liquid and the electrolyte when adding the B liquid and the electrolyte to the A liquid, it is preferable to add them over a temperature range of 40 to 150 ° C. over 15 minutes to 10 hours. Addition under such conditions is preferred in terms of particle stability.
  • the aging temperature is in the range of 40 to 150 ° C., preferably 60 to 100 ° C., and the aging time is about 30 minutes to 5 hours, depending on the aging temperature. By performing such aging, a silica sol having a more uniform particle diameter and excellent stability can be obtained.
  • ions in the dispersion may be removed after the temperature of the dispersion is cooled to approximately 40 ° C. or lower.
  • a conventionally known method can be adopted as a method for removing ions in the dispersion, and examples thereof include a method such as an ultrafiltration membrane method, an ion exchange resin method, and an ion exchange membrane method.
  • the amount of remaining anions is 0.01% by mass or less, preferably 0.005% by mass or less of SiO 2 . If the amount of residual ions is 0.01% by mass or less, although depending on the concentration described later, a silica sol having sufficient stability can be obtained, and there are no adverse effects of impurities in many applications.
  • the obtained silica sol is concentrated as necessary.
  • concentration method an ultrafiltration membrane method, a distillation method, or a combination thereof is usually employed, and the concentration of the silica sol after concentration is generally in the range of 1 to 50% by mass in terms of SiO 2 .
  • the silica sol is appropriately diluted during use or further concentrated.
  • a production method in which hydrolysis condensation is carried out with a water molar ratio in the range of 2 to 4 is preferably used. According to this production method, a non-spherical silica sol composed of [SiO 4/2 ] units and having non-spherical silica fine particles having a plurality of hook-shaped protrusions on the surface dispersed in a dispersion medium is obtained.
  • R is an alkyl group having 2 to 4 carbon atoms.
  • R is an alkyl group having 2 to 4 carbon atoms.
  • the reaction does not proceed sufficiently because the four alkoxy groups of the tetrafunctional silane compound are less than the molar amount of complete hydrolysis. , Aggregation or precipitation is likely to occur during the reaction.
  • the molar ratio of water to the tetrafunctional silane compound is larger than 4, since the amount of water is excessive, there is no sufficient difference in the reaction rate of the alkoxy group, resulting in a spherical surface undulation. It becomes easy to produce poor silica fine particles.
  • the range of the molar ratio of water to the tetrafunctional silane compound is preferably in the range of 2.0 to 3.8. A range of 2.0 to 3.6 is more preferable.
  • the tetrafunctional silane compound used in the production method according to the present invention means an alkoxysilane compound represented by the following general formula (1).
  • R is an alkyl group having 2 to 4 carbon atoms.
  • the tetrafunctional silane compound include tetraethoxysilane, tetrapropoxysilane, and tetrabutoxysilane.
  • An alkoxysilane having 5 or more carbon atoms may not have a practical hydrolysis rate due to steric hindrance of the alkoxy group.
  • the reaction rate of the hydrolysis reaction is faster than that of tetraethoxysilane, which is not desirable for practically synthesizing silica. For practical use, tetraethoxysilane is recommended.
  • the tetrafunctional silane compound In the production method according to the present invention, it is usually desirable to use the tetrafunctional silane compound by dissolving it in a water-soluble organic solvent.
  • a water-soluble organic solvent When used by dissolving in a water-soluble organic solvent, the influence of moisture in the atmosphere can be reduced.
  • the water-soluble organic solvent for dissolving the tetrafunctional silane compound include the same water-soluble organic solvents as described below. Specifically, those having a concentration of the tetrafunctional silane compound in the water-soluble organic solvent solution of the tetrafunctional silane compound in the range of 5 to 90% by mass are preferably used. If it is less than 5% by mass, the silica concentration in the reaction solution becomes low, which is not practical.
  • the concentration of the tetrafunctional silane compound is preferably in the range of 10 to 60% by mass. More preferably, the range of 20 to 40% by mass is recommended.
  • the water-soluble organic solvent used in the production method according to the present invention includes an organic solvent that dissolves the tetrafunctional silane compound represented by the general formula (1) and exhibits water solubility.
  • Examples of such water-soluble organic solvents include ethanol, isopropanol, t-butanol and the like.
  • About selection of a water-soluble organic solvent, what is excellent in compatibility with the tetrafunctional silane compound to be used is used suitably.
  • a mixed solvent of water-soluble organic solvent and water Regarding the amount of water contained in the mixed solvent of the water-soluble organic solvent and water, when the alkali catalyst solution does not contain water, it is necessary that the molar ratio of water to the tetrafunctional silane compound is within the above range. It becomes. When the alkali catalyst solution contains water, the total amount of water contained in the mixed solvent and water contained in the alkali catalyst solution is the molar ratio of water to the tetrafunctional silane compound. The amount needs to be within the above range.
  • the mixed solvent those satisfying this premise are used, but preferably those having a water-soluble organic solvent concentration in the range of 30 to 95% by mass (moisture in the range of 5 to 70% by mass). .
  • the proportion of the water-soluble organic solvent is less than 30% by mass (moisture is 70% by mass or more)
  • the added tetrafunctional silane compound and the mixed solvent are mixed. It becomes difficult and the tetrafunctional silane compound may be gelled.
  • the ratio of the water-soluble organic solvent exceeds 95% by mass (moisture is less than 5% by mass)
  • the water used for hydrolysis may be too small.
  • the ratio of the water-soluble organic solvent in the mixed solvent of water-soluble organic solvent and water is preferably in the range of 40 to 80% by mass. More preferably, the range of 50 to 70% by mass is recommended.
  • Alkali catalyst As the alkali catalyst used in the production method according to the present invention, basic compounds such as ammonia, amines, alkali metal hydrides, quaternary ammonium compounds and amine coupling agents are used. Although an alkali metal hydride can be used as a catalyst, it promotes hydrolysis of the alkoxy group of the alkoxysilane, and therefore, the remaining alkoxy groups (carbon) are reduced in the resulting particles and become harder. Although the polishing rate is high, scratches may occur, and when sodium hydride is used, there is a problem that the content of Na becomes high.
  • the amount of the alkali catalyst used is not limited as long as the desired hydrolysis rate can be obtained, but it is usually added in the range of 0.005 to 1 mol per mol of the tetrafunctional silane compound. Is preferred. More preferably, it is recommended to be added so as to be in the range of 0.01 to 0.8 mol.
  • the alkali catalyst is preferably diluted with water and / or a water-soluble organic solvent and used as an alkali catalyst solution.
  • water contained in this water-soluble organic catalyst also contributes to hydrolysis, it is naturally included in the amount of water used for hydrolysis.
  • the alkali catalyst concentration in the alkali catalyst solution is preferably in the range of 0.1 to 20% by mass. If it is less than 0.1% by mass, a practical catalytic function may not be obtained. In addition, when the amount is 20% by mass or more, the catalyst function often reaches an equilibrium and may be used excessively.
  • the alkali catalyst concentration in the alkali catalyst solution is more preferably in the range of 1 to 15% by mass. More preferably, the range of 2 to 12% by mass is recommended.
  • an aqueous ammonia solution or a mixture of an aqueous ammonium solution and ethanol can be suitably used.
  • the temperature range of the mixed solvent of water-soluble organic solvent and water is maintained at 30 to 150 ° C., and 1) a water-soluble organic solvent solution of a tetrafunctional silane compound and 2) an aqueous solution of an alkali catalyst are simultaneously, continuously or intermittently. For 30 minutes to 20 hours. Regarding the temperature range, if it is less than 30 ° C., hydrolysis condensation does not proceed sufficiently, which is not desirable. When it exceeds the boiling point of the mixed solvent, it can be carried out using a pressure-resistant vessel such as an autoclave. However, when it exceeds 150 ° C., a very high pressure is applied, which is not industrially desirable.
  • a range of 40-100 ° C is recommended. More preferably, the range of 50 to 80 ° C. is recommended. With respect to the required time range for the addition, 1 to 15 hours are preferably recommended. More preferably, 2 to 10 hours are recommended.
  • both the water-soluble organic solvent and water are used simultaneously, continuously or intermittently for 30 minutes to 20 hours. It is preferable to add to a mixed solvent. When the total amount of both is added all at once, hydrolytic condensation proceeds rapidly, resulting in the generation of a gel-like substance and silica fine particles cannot be obtained.
  • the silica sol is prepared by utilizing the reaction rate characteristics of the tetrafunctional silane compound.
  • the reaction rate characteristics of the tetrafunctional silane compound For example, when tetramethoxysilane is used, it is not easy to form a silica sol like tetraethoxysilane because the hydrolysis reaction is faster than that of tetraethoxysilane.
  • silica may aggregate or precipitate over time.
  • a temperature range of 40 to 100 ° C. is recommended for the temperature range during aging. More preferably, the range of 50 to 80 ° C. is recommended.
  • the aging time range is preferably 1 to 9 hours. More preferably, 2 to 8 hours are recommended.
  • the obtained silica sol is concentrated as necessary.
  • the concentration method an ultrafiltration membrane method, a distillation method, or a combination thereof is usually employed, and the concentration of the silica sol after concentration is generally in the range of 1 to 50% by mass in terms of SiO 2 .
  • the silica sol is appropriately diluted during use or further concentrated.
  • Organosol The non-spherical silica sol of the present invention can be produced by substituting with an organic solvent.
  • a conventionally known method can be employed as the substitution method.
  • the boiling point of the organic solvent is generally higher than that of water, it can be obtained by adding an organic solvent and performing distillation. Further, when the boiling point of the organic solvent is low, it can be obtained by the ultrafiltration membrane method disclosed in Japanese Patent Application Laid-Open No. 59-8614 filed by the applicant of the present application.
  • the concentration of the organosol obtained is in the range of 1 to 50% by weight in terms of SiO 2 .
  • this organosol can be used after being appropriately diluted or further concentrated.
  • the non-spherical silica sol of the present invention is useful as an abrasive and a polishing composition.
  • the non-spherical silica sol of the present invention can be applied as an abrasive by itself, and can also constitute a normal polishing composition together with other components (such as a polishing accelerator). Is possible.
  • the polishing composition according to the present invention is obtained by dispersing the above-mentioned non-spherical silica fine particles in a solvent.
  • a solvent water is usually used, but alcohols such as methyl alcohol, ethyl alcohol, and isopropyl alcohol can be used as necessary, and water-soluble organic solvents such as ethers, esters, and ketones are also used. be able to.
  • the concentration of the non-spherical silica fine particles in the polishing composition is preferably in the range of 2 to 50% by weight, more preferably 5 to 30% by weight. If the concentration is less than 2% by weight, the concentration may be too low depending on the type of substrate or insulating film, resulting in a slow polishing rate and productivity.
  • the concentration of silica particles exceeds 50% by weight, the stability of the abrasive will be insufficient, the polishing rate and the polishing efficiency will not be further improved, and the dried product will be removed in the step of supplying the dispersion for polishing treatment. It may be generated and attached, which may cause scratches.
  • the polishing composition according to the present invention varies depending on the type of the material to be polished, but it may be used by adding a conventionally known hydrogen peroxide, peracetic acid, urea peroxide, or a mixture thereof as necessary. it can.
  • a conventionally known hydrogen peroxide, peracetic acid, urea peroxide, or a mixture thereof as necessary. it can.
  • the polishing rate can be effectively improved.
  • add acid such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, polyphosphoric acid, amidosulfuric acid, hydrofluoric acid or the like, or add sodium salt, potassium salt, ammonium salt or a mixture thereof.
  • a flat polishing surface can be finally obtained by increasing or decreasing the polishing rate of the material to be polished having a specific component.
  • imidazole, benzotriazole, benzothiazole and the like can be used in order to form a passive layer or a dissolution inhibiting layer on the surface of the metal polishing material to prevent erosion of the substrate.
  • a complex forming material such as an organic acid such as citric acid, lactic acid, acetic acid, oxalic acid, phthalic acid, citric acid, or an organic acid salt thereof may be used.
  • organic acid include carboxylic acid, organic phosphoric acid, and amino acid.
  • carboxylic acids examples include monovalent carboxylic acids such as acetic acid, glycolic acid, and ascorbic acid, divalent carboxylic acids such as succinic acid and tartaric acid, and trivalent carboxylic acids such as citric acid.
  • carboxylic acids include monovalent carboxylic acids such as acetic acid, glycolic acid, and ascorbic acid, divalent carboxylic acids such as succinic acid and tartaric acid, and trivalent carboxylic acids such as citric acid.
  • amino acids include glycine and alanine. Among these, from the viewpoint of reducing scratches, inorganic acids, carboxylic acids and organic phosphoric acids are preferable.
  • hydrochloric acid for example, hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, polyphosphoric acid, glycolic acid, succinic acid, citric acid, aminotri (methylenephosphonic acid) Ethylenediaminetetra (methylenephosphonic acid) and diethylenetriaminepenta (methylenephosphonic acid) are suitable. These acids can be used as an acid for adjusting the pH.
  • Cationic, anionic, nonionic, and amphoteric surfactants can be appropriately selected and added to improve the dispersibility and stability of the abrasive slurry.
  • the pH of the abrasive slurry can be adjusted by adding an acid or a base as necessary in order to enhance the effect of each additive.
  • Non-spherical shape in which the average particle size measured by the dynamic light scattering method is in the range of 3 to 200 nm, the minor axis / major axis ratio is in the range of 0.01 to 0.8, and the specific surface area is in the range of 10 to 800 m 2 / g.
  • the non-spherical silica sol in which silica fine particles are dispersed in a dispersion medium, the non-spherical silica fine particles have a plurality of hook-shaped projections on the surface, and the non-spherical silica fine particles are arranged on the plane including the major axis of the non-spherical silica fine particles.
  • the distance from an arbitrary point on the outer edge of the spherical silica fine particle to the intersection B of the straight line passing through the point on the outer edge and perpendicular to the long axis and the long axis is Y
  • the outer edge of the non-spherical silica fine particle and the length A non-spherical silica sol characterized in that when an XY curve is drawn with a distance from one intersection A to the axis to the intersection B as X, the XY curve has a plurality of maximum values.
  • Non-spherical shape in which the average particle size measured by the dynamic light scattering method is in the range of 3 to 200 nm, the minor axis / major axis ratio is in the range of 0.01 to 0.8, and the specific surface area is in the range of 10 to 800 m 2 / g.
  • the non-spherical silica sol in which silica fine particles are dispersed in a dispersion medium, the non-spherical silica fine particles have a plurality of hook-shaped protrusions on the surface, and the non-spherical silica sol is formed on a plane including the major axis of the non-spherical silica fine particles.
  • Y is the distance from an arbitrary point on the outer edge of the silica fine particle to the intersection B of the straight line passing through the point on the outer edge and perpendicular to the major axis, and the outer edge of the non-spherical silica fine particle and the major axis
  • the XY curve when the XY curve is drawn with the distance from one intersection A to the intersection B as X, the XY curve has a plurality of maximum values, and the non-spherical silica fine particles On a plane including the major axis of
  • the variation coefficient of Y is A non-spherical silica sol characterized by being in the range of 5 to 50%.
  • Non-spherical shape in which the average particle size measured by the dynamic light scattering method is in the range of 3 to 200 nm, the minor axis / major axis ratio is in the range of 0.01 to 0.8, and the specific surface area is in the range of 10 to 800 m 2 / g.
  • the non-spherical silica sol in which silica fine particles are dispersed in a dispersion medium, the non-spherical silica fine particles have a plurality of hook-shaped projections on the surface, and the non-spherical silica fine particles are arranged on the plane including the major axis of the non-spherical silica fine particles.
  • the distance from an arbitrary point on the outer edge of the spherical silica fine particle to the intersection B of the straight line passing through the point on the outer edge and perpendicular to the long axis and the long axis is Y, the outer edge of the non-spherical silica fine particle and the length Including a non-spherical silica sol characterized in that when an XY curve is drawn with a distance from one intersection A with the axis to the intersection B as X, the XY curve has a plurality of maximum values Polishing composition.
  • Non-spherical shape in which the average particle size measured by the dynamic light scattering method is in the range of 3 to 200 nm, the minor axis / major axis ratio is in the range of 0.01 to 0.8, and the specific surface area is in the range of 10 to 800 m 2 / g.
  • the non-spherical silica sol in which silica fine particles are dispersed in a dispersion medium, the non-spherical silica fine particles have a plurality of hook-shaped protrusions on the surface, and the non-spherical silica sol is formed on a plane including the major axis of the non-spherical silica fine particles.
  • Y is the distance from an arbitrary point on the outer edge of the silica fine particle to the intersection B of the straight line passing through the point on the outer edge and perpendicular to the major axis, and the outer edge of the non-spherical silica fine particle and the major axis
  • the XY curve when the XY curve is drawn with the distance from one intersection A to the intersection B as X, the XY curve has a plurality of maximum values, and the non-spherical silica fine particles On a plane including the major axis of
  • the variation coefficient of Y is A polishing composition comprising a non-spherical silica sol characterized by being in the range of 5 to 50%.
  • Non-spherical shape in which the average particle size measured by the dynamic light scattering method is in the range of 3 to 200 nm, the minor axis / major axis ratio is in the range of 0.01 to 0.8, and the specific surface area is in the range of 10 to 800 m 2 / g.
  • a point on the outer edge of the non-spherical silica fine particle passes through a point on the outer edge on a plane including the long axis of the non-spherical silica fine particle.
  • the distance from the straight line perpendicular to the major axis to the intersection B of the major axis is Y, and the distance from one intersection A of the outer edge of the non-spherical silica fine particle to the major axis is X, X
  • the XY curve has a plurality of maximum values, and further on the outer edge of the non-spherical silica fine particle on a plane including the major axis of the non-spherical silica fine particle.
  • Non-spherical shape in which the average particle size measured by the dynamic light scattering method is in the range of 3 to 200 nm, the minor axis / major axis ratio is in the range of 0.01 to 0.8, and the specific surface area is in the range of 10 to 800 m 2 / g.
  • a point on the outer edge of the non-spherical silica fine particle passes through a point on the outer edge on a plane including the long axis of the non-spherical silica fine particle.
  • the distance from the straight line perpendicular to the major axis to the intersection B of the major axis is Y, and the distance from one intersection A of the outer edge of the non-spherical silica fine particle to the major axis is X, X
  • the XY curve has a plurality of maximum values, and further on the outer edge of the non-spherical silica fine particle on a plane including the major axis of the non-spherical silica fine particle.
  • non-spherical silica sol characterized in that the coefficient of variation of Y is in the range of 5 to 50%, where Y is the distance to the intersection B between the straight line perpendicular to the long axis and the long axis,
  • the non-spherical silica fine particles are made of polysiloxane composed of [SiO 4/2 ] units obtained by hydrolysis of tetraethoxysilane, and the sodium content is 100 mass ppm or less.
  • X be the length of one point (point A) of the two intersections between the outer edge of the non-spherical silica fine particle and the long axis, and the corresponding point (point B).
  • a calibration curve was prepared with X as the titer of 1 mol / L sodium hydroxide solution and Y as the pH value at that time. 6)
  • the consumption amount V (ml) of 0.1 mol / L sodium hydroxide solution required for pH 4.0 to 9.0 per 15 g of SiO 2 is obtained from the following formula (2), and the following formula (3) is obtained.
  • the specific surface area SA [m 2 / g] was determined.
  • the average particle diameter D1 (nm) was obtained from the formula (4).
  • the specific surface area was computed by the BET 1 point method from the adsorption amount of nitrogen using the nitrogen adsorption method (BET method) using the specific surface area measuring apparatus (The product made from Yuasa Ionics, model number multisorb 12). Specifically, 0.5 g of a sample is taken in a measurement cell, degassed for 20 minutes at 300 ° C. in a mixed gas stream of nitrogen 30 v% / helium 70 v%, and then the sample is liquidized in the mixed gas stream. The nitrogen temperature was maintained and nitrogen was adsorbed on the sample by equilibrium.
  • the sample temperature was gradually raised to room temperature while flowing the above mixed gas, the amount of nitrogen desorbed during that time was detected, and the specific surface area of the non-spherical silica sol was calculated using a calibration curve prepared in advance. Further, the obtained specific surface area (SA) was substituted into the formula (4) to determine the average particle diameter D1.
  • This aluminum disk substrate is a substrate (95 mm ⁇ / 25 mm ⁇ -1.27 mmt) in which Ni—P is electrolessly plated (a hard Ni—P plating layer having a composition of Ni 88% and P12%) on an aluminum substrate. It was used. This substrate was first polished and the surface roughness (Ra) was 0.17 nm. Polishing test The above substrate to be polished is set in a polishing apparatus (manufactured by Nano Factor Co., Ltd .: NF300), and a polishing pad (“Apollon” manufactured by Rodel) is used and polished at a substrate load of 0.05 MPa and a table rotation speed of 30 rpm. Polishing was performed by supplying the slurry for 5 minutes at a rate of 20 g / min.
  • the change in weight of the substrate to be polished before and after polishing was determined to calculate the polishing rate [nm / min].
  • Measurement of scratches (line marks) Regarding the occurrence of scratches, after polishing a substrate for an aluminum disk in the same manner as described above, an ultra-fine defect / visualization macro device (product name: Micro-MAX, manufactured by VISION PSYTEC) was used. The entire surface was observed with a Zoom 15, and the number of scratches (linear traces) on the polished substrate surface corresponding to 65.97 cm 2 was counted and totaled.
  • Polishing Slurry The sample silica sol was adjusted to a silica concentration of 20% by mass, and ultrapure water and a 5% by mass aqueous sodium hydroxide solution were added to prepare a polishing slurry of 9% silica by weight and pH 10.5. Polished substrate A glass substrate for hard disk made of 65 mm ⁇ tempered glass was used as the substrate to be polished. This glass substrate for hard disk has been subjected to primary polishing and has a maximum surface roughness of 0.21 ⁇ m.
  • Polishing test The above substrate to be polished was set in a polishing apparatus (manufactured by Nano Factor Co., Ltd .: NF300), and a polishing pad (“Apollon” manufactured by Rodel) was used and polished at a substrate load of 0.18 MPa and a table rotation speed of 30 rpm. Polishing was performed by supplying the slurry for 10 minutes at a rate of 20 g / min.
  • the change in weight of the substrate to be polished before and after polishing was determined to calculate the polishing rate [nm / min].
  • Measurement of scratches (line marks) Regarding the occurrence of scratches, after polishing the glass substrate in the same manner as described above, an ultra-fine defect / visualization macro device (product name: Micro-MAX, manufactured by VISION PSYTEC) was used. The entire surface was observed with Zoom 1, and the number of scratches (linear traces) on the polished substrate surface corresponding to 65.97 cm 2 was counted and totaled.
  • Evaluation method of polishing characteristics for thermal oxide film Preparation of Polishing Slurry KOH was added to silica sol having a silica concentration of 12.6% by mass obtained in each Example and each Comparative Example, and the pH was adjusted to 10.
  • polished substrate As the substrate to be polished, a thermal oxide film substrate obtained by wet-oxidizing a silicon wafer at 1050 ° C. was used. Polishing test The substrate to be polished was set in a polishing apparatus (manufactured by Nano Factor Co., Ltd .: NF330), a polishing pad (“IC-1000” manufactured by Rodel) was used, the substrate load was 0.05 MPa, and the table rotation speed was 30 rpm. Polishing was performed by supplying a polishing slurry for polishing at a rate of 20 g / min for 5 minutes. The film thickness before and after polishing was measured with a short wavelength ellipsometer, and the polishing rate was calculated.
  • Sodium determination method The sodium content was measured by the following procedure. 1) About 10 g of sample silica sol was collected in a platinum dish and weighed to 0.1 mg. 2) 5 ml of nitric acid and 20 ml of hydrofluoric acid were added, heated on a sand bath, and evaporated to dryness. 3) When the amount of liquid decreased, 20 ml of hydrofluoric acid was further added and heated on a sand bath to evaporate to dryness. 4) After cooling to room temperature, 2 ml of nitric acid and about 50 ml of water were added and dissolved by heating on a sand bath.
  • the resulting liquid was heated and aged at 98 ° C. for 30 minutes. Thereafter, 1,162 g of a silicic acid solution having the same composition as that of the silicic acid solution was added to this solution over a period of 4 hours, and a non-spherical silica sol having a pH of 8.9 was obtained.
  • This non-spherical silica sol had a SiO 2 / Na 2 O molar ratio of 76.
  • the average particle size calculated from the specific surface area measured by the BET method for the non-spherical silica fine particles contained in this non-spherical silica sol was 12 nm, and the average particle size by the dynamic light scattering method was 34 nm. Further, the minor diameter / major diameter ratio of the non-spherical silica fine particles was 0.45, and the specific surface area was 220 m 2 / g.
  • the average particle size of this non-spherical silica sol measured by the BET method was 35 nm, and the average particle size by the dynamic light scattering method was 70 nm. Further, the non-spherical silica sol had a minor axis / major axis ratio of 0.4 and a specific surface area of 180 m 2 / g.
  • a sodium silicate aqueous solution (SiO 2 / Na 2 O molar ratio: 3.1) having a SiO 2 concentration of 24% by weight was diluted with ion-exchanged water, and a sodium silicate aqueous solution (pH 11.3) having a SiO 2 concentration of 5% by weight. 1 kg was prepared.
  • silica hydrogel was thoroughly washed with an Oliver filter with a 28% aqueous ammonia solution (corresponding to about 120 times the SiO 2 solid content) to remove salts.
  • the sodium sulfate concentration after washing was less than 0.01% based on the SiO 2 solid content.
  • silica hydrogel was dispersed in pure water (silica concentration: 3% by weight) to prepare a silica hydrogel dispersion in a fluid slurry state with a strong stirrer. This was added to a 5% by weight NaOH aqueous solution and 28% ammonia. A 1: 1 mixture of water was added so that the SiO 2 / Na 2 O molar ratio was 75 and heated at 160 ° C. for 1 hour.
  • the average particle diameter of this non-spherical silica sol measured by the BET method was 50 nm, and the average particle diameter by the dynamic light scattering method was 100 nm. Further, the non-spherical silica sol had a minor axis / major axis ratio of 0.3 and a specific surface area of 50 m 2 / g.
  • Synthesis Example 4 18.7 g of a sodium silicate aqueous solution (SiO 2 / Na 2 O molar ratio 3) having a SiO 2 concentration of 24% by weight and a Na 2 O concentration of 8.16% by weight is placed in a separable flask equipped with a reflux and a stirrer. 895 g of water was added to prepare 914 g of an aqueous sodium silicate solution.
  • sodium silicate SiO 2 / Na 2 O molar ratio: 3
  • SiO 2 concentration 4.82% by weight
  • a mixed solution comprising a silicic acid solution and an aqueous sodium silicate solution (SiO 2 / Na 2 O molar ratio 60) was obtained.
  • the resulting mixture was warmed and aged at 80 ° C. for 30 minutes. While maintaining the temperature at 80 ° C., 329 g of a silicic acid solution having the same composition as that of the silicic acid solution was added to this solution over 2 hours to obtain a non-spherical silica sol having a pH of 8.7.
  • the non-spherical silica sol had a SiO 2 / Na 2 O molar ratio of 76.
  • This non-spherical silica sol was heated at 70 ° C. for 12 hours, and then concentrated by an evaporator until the SiO 2 concentration became 20% by weight.
  • the average particle diameter of this non-spherical silica sol converted from the specific surface area measured by the BET method was 6 nm, and the average particle diameter by the dynamic light scattering method was 12 nm. Further, the value of the ratio of minor axis / major axis was 0.15, and the specific surface area was 455 m 2 / g.
  • Example 1 Preparation of core particle dispersion
  • Non-spherical silica sol prepared by the same method as in Synthesis Example 1 (average particle diameter measured by dynamic light scattering method 24 nm, minor diameter / major diameter ratio 0.45, SiO 2 concentration 20 mass%) was diluted with pure water to 4170 g (SiO 2 concentration 1% by mass), and a 5% by mass sodium hydroxide aqueous solution was added so that the silica sol had a pH of 11. Next, the temperature of the silica sol was raised to 80 ° C. and maintained at 80 ° C. for 30 minutes to obtain a core particle dispersion (liquid A).
  • the alkali silicate aqueous solution (liquid B) and the electrolyte aqueous solution are each added at 80 ° C. over 1 hour.
  • the particle growth was carried out.
  • the equivalent ratio EA / EE of the alkali of B liquid and electrolyte was 1.0.
  • washing was performed with an ultrafiltration membrane until the pH of the core particle dispersion liquid with the grown particles reached 9.1.
  • concentration was performed to obtain a non-spherical silica sol having a SiO 2 concentration of 20% by mass.
  • the characteristics of the obtained non-spherical silica sol are shown in Table 3.
  • Table 3 shows the evaluation results of this non-spherical silica sol according to the above-mentioned [8] Evaluation method of polishing characteristics for aluminum substrate.
  • Example 2 Preparation of core particle dispersion
  • Non-spherical silica sol prepared by the same method as in Synthesis Example 4 (average particle diameter 12 nm, minor diameter / major diameter ratio 0.15, SiO 2 concentration 20 mass% measured by dynamic light scattering method) was diluted with pure water to 4170 g (SiO 2 concentration: 1% by mass), and a 5% by mass sodium hydroxide aqueous solution was added so that the silica sol had a pH of 11.
  • the temperature of the silica sol was raised to 65 ° C. and maintained at 65 ° C. for 30 minutes to obtain a core particle dispersion (liquid A).
  • 575 g of core particle growth water glass (manufactured by Dokai Chemical Co., Ltd .: JIS No. 3 water glass, SiO 2 concentration 24 mass%) was diluted with 2185 g of water to prepare 2760 g of an aqueous alkali silicate solution (liquid B).
  • 2352 g of water was added to 98.0 g of ammonium sulfate (made by Mitsubishi Chemical Corporation) as an electrolyte to prepare 2450 g of an aqueous electrolyte solution.
  • the alkali silicate aqueous solution (liquid B) and the electrolyte aqueous solution are respectively added at 65 ° C. over 1 hour.
  • the particle growth was carried out.
  • the equivalent ratio EA / EE of the alkali of B liquid and electrolyte was 1.0.
  • washing was performed with an ultrafiltration membrane until the pH of the core particle dispersion with the grown particles reached 9.4.
  • concentration was performed to obtain a non-spherical silica sol having a SiO 2 concentration of 20% by mass.
  • Non-spherical silica sol prepared by the same method as in Synthesis Example 2 (average particle diameter 70 nm, minor diameter / major diameter ratio 0.4, SiO 2 concentration 20 mass% measured by dynamic light scattering method) was diluted with pure water to 4170 g (SiO 2 concentration 1% by mass), and a 5% by mass sodium hydroxide aqueous solution was added so that the silica sol had a pH of 11. Next, the temperature of the silica sol was raised to 95 ° C. and maintained at 95 ° C.
  • a core particle dispersion (liquid A). 575 g of core particle growth water glass (manufactured by Dokai Chemical Co., Ltd .: JIS No. 3 water glass, SiO 2 concentration 24 mass%) was diluted with 2185 g of water to prepare 2760 g of an aqueous alkali silicate solution (liquid B). Moreover, 2376 g of water was added to 74.2 g of ammonium nitrate (manufactured by Mitsubishi Chemical Corporation) as an electrolyte to prepare 2450.2 g of an aqueous electrolyte solution.
  • the total amount of the alkali silicate aqueous solution (liquid B) and the electrolyte aqueous solution are respectively added at 95 ° C. over 1 hour with respect to the total amount of the core particle dispersion (liquid A) maintained at 95 ° C.
  • the particle growth was carried out.
  • the equivalent ratio of the alkali of B liquid to the electrolyte EA / EE was 0.8.
  • washing was performed with an ultrafiltration membrane until the pH of the particle-grown core particle dispersion reached 10.
  • concentration was performed to obtain a non-spherical silica sol having a SiO 2 concentration of 20% by mass.
  • the characteristics of the obtained non-spherical silica sol are shown in Table 3.
  • the scanning electron micrograph (magnification 250,000 times) of the obtained non-spherical silica sol is shown in FIG.
  • the production conditions for the non-spherical silica sol are shown in Tables 1 and 2.
  • Example 4 Preparation of core particle dispersion
  • Non-spherical silica sol prepared by the same method as in Synthesis Example 3 (average particle diameter 100 nm, minor diameter / major diameter ratio 0.30, SiO 2 concentration 20 mass% measured by dynamic light scattering method) was diluted with pure water to 3890 g (SiO 2 concentration 1 mass%), and a 5 mass% sodium hydroxide aqueous solution was added so that the silica sol had a pH of 11. Next, the temperature of the silica sol was raised to 80 ° C. and maintained at 80 ° C. for 30 minutes to obtain a core particle dispersion (liquid A).
  • the alkali silicate aqueous solution (liquid B) and the electrolyte aqueous solution are each added at 80 ° C. over 1 hour.
  • the particle growth was carried out.
  • the equivalent ratio EA between the alkali of B liquid and the electrolyte / EE was 0.65. Then, after aging at 80 ° C. for 1 hour, washing was performed with an ultrafiltration membrane until the pH reached 9.8. Subsequently, concentration was performed to obtain a non-spherical silica sol having a SiO 2 concentration of 20% by mass. The characteristics of the obtained non-spherical silica sol are shown in Table 3.
  • Table 3 shows the results of evaluating the polishing characteristics of the obtained non-spherical silica sol by the above-mentioned [9] Evaluation method of polishing characteristics for glass substrate.
  • evaluation results for Example 5 in the same manner as described in [9] Evaluation Method for Polishing Properties of Glass Substrate are shown in Table 1.
  • the production conditions for the non-spherical silica sol are shown in Tables 1 and 2.
  • Example 5 Preparation of core particle dispersion
  • Non-spherical silica sol prepared by the same method as in Synthesis Example 3 (average particle diameter 100 nm, minor diameter / major diameter ratio 0.30, SiO 2 concentration 20 mass% measured by dynamic light scattering method) was diluted with pure water to 3890 g (SiO 2 concentration 1 mass%), and a 5 mass% sodium hydroxide aqueous solution was added so that the silica sol had a pH of 11. Next, the temperature of the silica sol was raised to 80 ° C. and maintained at 80 ° C. for 30 minutes to obtain a core particle dispersion (liquid A).
  • the alkali silicate aqueous solution (liquid B) and the electrolyte aqueous solution are each added at 80 ° C. over 1 hour.
  • the particle growth was carried out.
  • the equivalent ratio of the alkali of B liquid to the electrolyte EA / EE was 1.0.
  • washing was performed with an ultrafiltration membrane until the pH reached 9.2.
  • concentration was performed to obtain a non-spherical silica sol having a SiO 2 concentration of 20% by mass.
  • the characteristics of the obtained non-spherical silica sol are shown in Table 3.
  • the production conditions for the non-spherical silica sol are shown in Tables 1 and 2.
  • Non-spherical silica sol prepared by the same method as in Synthesis Example 1 (average particle diameter measured by dynamic light scattering method 24 nm, minor diameter / major diameter ratio 0.45, SiO 2 concentration 20 mass%) was diluted with pure water to 730 g (SiO 2 concentration 1% by mass), and a 5% by mass sodium hydroxide aqueous solution was added so that the silica sol had a pH of 11. Next, the temperature of the silica sol was raised to 95 ° C. and maintained at 95 ° C. for 30 minutes to obtain a core particle dispersion (liquid A).
  • the alkali silicate aqueous solution (liquid B) and the electrolyte aqueous solution are respectively added at 95 ° C. over 9 hours.
  • the particle growth was carried out.
  • the equivalent ratio EA / EE of the alkali of B liquid and electrolyte was 1.0.
  • washing was performed with an ultrafiltration membrane until the pH reached 9.8.
  • concentration was performed to obtain a non-spherical silica sol having a SiO 2 concentration of 20% by mass.
  • the characteristics of the obtained non-spherical silica sol are shown in Table 3.
  • the specific surface area of the silica sol was measured by a nitrogen adsorption method.
  • the amount of sodium contained in the non-spherical silica fine particles was measured according to the aforementioned “[11] Sodium quantification method” and found to be less than 1 ppm by mass.
  • Table 3 shows the results of evaluating the polishing characteristics of the obtained non-spherical silica sol by the above-mentioned [10] Evaluation method of polishing characteristics for thermal oxide film.
  • the mixture was further maintained at this temperature for 3 hours and aged. Thereafter, it was concentrated with an ultrafiltration membrane to a solid concentration of 15% by weight to remove unreacted tetraethoxysilane. Further, ethanol and ammonia were almost removed by a rotary evaporator to obtain a non-spherical silica sol having a solid content concentration of 12.6% by weight.
  • the obtained non-spherical silica sol had the physical properties shown in Table 3.
  • the amount of sodium contained in the non-spherical silica fine particles was measured according to the aforementioned “[11] Sodium quantification method” and found to be less than 1 ppm by mass.
  • Table 3 shows the results of evaluating the polishing characteristics of the obtained non-spherical silica sol by the above-mentioned [10] Evaluation method of polishing characteristics for thermal oxide film.
  • the mixture was further maintained at this temperature for 3 hours and aged. Thereafter, it was concentrated with an ultrafiltration membrane to a solid concentration of 15% by weight to remove unreacted tetraethoxysilane. Further, ethanol and ammonia were almost removed by a rotary evaporator to obtain a non-spherical silica sol having a solid content concentration of 12.6% by weight.
  • the obtained non-spherical silica sol had the physical properties shown in Table 3.
  • the amount of sodium contained in the non-spherical silica fine particles was measured according to the aforementioned “[11] Sodium quantification method” and found to be less than 1 ppm by mass.
  • Table 3 shows the results of evaluating the polishing characteristics of the obtained non-spherical silica sol by the above-mentioned [10] Evaluation method of polishing characteristics for thermal oxide film.
  • the amount of sodium contained in the spherical silica fine particles was measured according to the above-mentioned “[11] Sodium quantification method” and found to be less than 1 ppm by mass.
  • the non-spherical silica sol of the present invention has high utility as an abrasive. In addition, it has excellent physical properties such as filling properties, oil absorption properties, electrical properties, and optical properties, so it is expected to be applied to paint additives, resin additives, ink receiving layer components, cosmetic components, etc. .

Abstract

An aspherical silica sol which comprises a dispersion medium and, dispersed therein, aspherical fine silica particles which, when examined by the dynamic light scattering method, have an average particle diameter in the range of 3-150 nm, a minor-axis/major-axis ratio in the range of 0.01-0.8, and a specific surface area in the range of 10-800 m2/g and which have warty projections on the surface.  A process for producing the silica sol is also provided.  The aspherical fine silica particles contained in the aspherical silica sol have a peculiar structure different from the structure of ordinary aspherical fine silica particles.  Due to this, the aspherical silica sol is excellent in physical properties such as suitability for filling, oil absorption, and electrical characteristics and in optical properties.  The silica sol is useful, for example, as an abrasive material and a composition for polishing, and is excellent especially in polishing effect.

Description

非球状シリカゾル、その製造方法および研磨用組成物Non-spherical silica sol, method for producing the same, and polishing composition
  本発明は、核となるシリカ微粒子の表面に複数の疣状突起を有してなる非球状シリカ微粒子が分散媒に分散してなる非球状シリカゾルおよびその製造方法に関するものである。また、本発明は、該非球状シリカゾルを含む研磨用組成物に関するものである。 The present invention relates to a non-spherical silica sol in which non-spherical silica fine particles having a plurality of hook-shaped protrusions on the surface of silica fine particles as a nucleus are dispersed in a dispersion medium and a method for producing the same. The present invention also relates to a polishing composition containing the non-spherical silica sol.
 非球状シリカ微粒子が溶媒に分散してなる非球状シリカゾルにおいて、非球状シリカ微粒子の形状としては、鎖状、数珠状または長球状が知られている。この様な非球状シリカゾルは、例えば、各種研磨剤として使用されている。 In a non-spherical silica sol in which non-spherical silica fine particles are dispersed in a solvent, the shape of the non-spherical silica fine particles is known to be chain, beaded or oblong. Such non-spherical silica sols are used as various abrasives, for example.
 異形粒子を含む非球状シリカゾルの製造方法としては、特開平1-317115号公報(特許文献1)に、画像解析法による測定粒子径(D1)と窒素ガス吸着法による測定粒子径(D2)との比D1/D2が5以上であり、D1が40~500ミリミクロンであり、そして電子顕微鏡観察により測定された太さが5~40ミリミクロンの範囲内で一様であり、一平面内のみに伸長方向を有する細長い形状の非晶質コロイダルシリカ粒子が液状媒体中に分散されてなる非球状シリカゾルの製造方法が開示されている。この方法は、(a)所定の活性珪酸のコロイド水溶液に、水溶性のカルシウム塩またはマグネシウム塩などを含有する水溶液を所定量添加し、混合する工程、(b) さらに、アルカリ金属酸化物、水溶性有機塩基またはそれらの水溶性珪酸塩をSiO2/M2O(但し、Mは上記アルカリ金属原子または有機塩基の分子を表わす。)のモル比として20~200となるように加えて混合する工程、(c)前工程によって得られた混合物を60~150℃で0.5~40時間加熱する工程からなる製造方法である。 As a method for producing non-spherical silica sol containing irregular particles, JP-A to 1-317115 (Patent Document 1), particle diameter measured by the image analysis method particle diameter measured by (D 1) and the nitrogen gas adsorption method (D 2 D 1 / D 2 is 5 or more, D 1 is 40 to 500 millimicrons, and the thickness measured by electron microscope observation is uniform within the range of 5 to 40 millimicrons A method for producing a non-spherical silica sol in which elongated colloidal silica particles having an extension direction only in one plane are dispersed in a liquid medium is disclosed. In this method, (a) a predetermined amount of an aqueous solution containing a water-soluble calcium salt or magnesium salt is added to a predetermined colloidal aqueous solution of active silicic acid and mixed, (b) an alkali metal oxide, a water-soluble solution An organic base or a water-soluble silicate thereof is added and mixed so that the molar ratio of SiO 2 / M 2 O (wherein M represents an alkali metal atom or an organic base molecule) is 20 to 200. Step (c) is a production method comprising the step of heating the mixture obtained in the previous step at 60 to 150 ° C. for 0.5 to 40 hours.
 特許第3441142号公報(特許文献4)には、電子顕微鏡写真の画像解析により求められる7~1000nmの長径および 0.3~0.8 の短径/長径比を有するコロイダルシリカ粒子の数が全粒子数の50%以上を占めるシリカの安定なゾルからなる半導体ウェハーの研磨剤が提案されている。 In Japanese Patent No. 3441142 (Patent Document 4), the total number of colloidal silica particles having a major axis of 7 to 1000 nm and a minor axis / major axis ratio of 0.3 to 0.8 mm obtained by image analysis of an electron micrograph is described. A semiconductor wafer abrasive comprising a stable sol of silica occupying 50% or more of the number of particles has been proposed.
 特開平7-118008号公報(特許文献5)には、活性珪酸のコロイド水溶液に、水溶性のカルシウム塩、マグネシウム塩またはこれらの混合物の水溶液を添加し、得られた水溶液にアルカリ性物質を加え、得られた混合物の一部を60℃以上に加熱してヒール液とし、残部をフィード液として、当該ヒール液に当該フィード液を添加し、当該添加の間に、水を蒸発させることによりSiO2濃度を6~30重量%まで濃縮することより得られる細長い形状の非球状シリカゾルの製造法が開示されている。 In JP-A-7-118008 (patent document 5), an aqueous solution of a water-soluble calcium salt, magnesium salt or a mixture thereof is added to an aqueous colloidal solution of active silicic acid, and an alkaline substance is added to the resulting aqueous solution. A part of the obtained mixture is heated to 60 ° C. or more to form a heel solution, the remainder is used as a feed solution, the feed solution is added to the heel solution, and water is evaporated during the addition to thereby evaporate SiO 2. A method for producing an elongated non-spherical silica sol obtained by concentrating the concentration to 6 to 30% by weight is disclosed.
 特開平8-279480号公報(特許文献6)には、(1)珪酸アルカリ水溶液を鉱酸で中和しアルカリ性物質を添加して加熱熟成する方法、(2)珪酸アルカリ水溶液を陽イオン交換処理して得られる活性珪酸にアルカリ性物質を添加して加熱熟成する方法、(3)エチルシリケート等のアルコキシシランを加水分解して得られる活性珪酸を加熱熟成する方法、または、(4)シリカ微粉末を水性媒体中で直接に分散する方法等によって製造されるコロイダルシリカが、通常4~1,000nm、好ましくは7~500nmの粒子径を有するコロイド状シリカ粒子が水性媒体に分散したものであり、SiO2 として0.5~50重量%、好ましくは0.5~30重量%の濃度を有することが開示されている。上記シリカ粒子の粒子形状は、球状、いびつ状、偏平状、板状、細長い形状、繊維状等であることが記載されている。 In JP-A-8-279480 (Patent Document 6), (1) a method in which an alkali silicate aqueous solution is neutralized with a mineral acid and an alkaline substance is added and heat-ripened, and (2) the alkali silicate aqueous solution is subjected to cation exchange treatment. (3) A method of heating and aging active silicic acid obtained by hydrolyzing an alkoxysilane such as ethyl silicate, or (4) Fine silica powder Colloidal silica produced by, for example, a method of directly dispersing in an aqueous medium is a colloidal silica particle having a particle size of usually 4 to 1,000 nm, preferably 7 to 500 nm, dispersed in an aqueous medium. It is disclosed that SiO 2 has a concentration of 0.5 to 50% by weight, preferably 0.5 to 30% by weight. It is described that the silica particles have a spherical shape, a distorted shape, a flat shape, a plate shape, an elongated shape, a fibrous shape, and the like.
 特開平11-214338号公報(特許文献7)には、コロイダルシリカ粒子を主材とした研磨材を用いるシリコンウェハーの研磨方法であって、蒸留により精製した珪酸メチルを、メタノール溶媒中でアンモニアまたはアンモニアおよびアンモニウム塩を触媒として水と反応させることにより得られ、且つ長径/短径比が1.4以上であるコロイダルシリカ粒子を用いることを特徴とするシリコンウェハーの研磨方法が提案されている。 Japanese Patent Laid-Open No. 11-214338 (Patent Document 7) discloses a silicon wafer polishing method using an abrasive mainly composed of colloidal silica particles, in which methyl silicate purified by distillation is converted into ammonia or methanol in a methanol solvent. There has been proposed a silicon wafer polishing method characterized by using colloidal silica particles obtained by reacting ammonia and ammonium salt with water as a catalyst and having a major axis / minor axis ratio of 1.4 or more.
 国際公開WO00/15552号(特許文献8)には、平均粒子径10~80nmの球状コロイダルシリカ粒子とこの球状コロイダルシリカ粒子を接合する金属酸化物含有シリカからなり、球状コロイダルシリカ粒子の画像解析法により求められる測定粒子径(D1)と窒素吸着法により求められる測定粒子径(D2)との比D1/D2が3以上であって、このD1が50~500nmであり、球状コロイダルシリカ粒子が一平面内のみにつながった数珠状コロイダルシリカ粒子が分散されてなる非球状シリカゾルが記載されている。 International Publication No. WO 00/15552 (Patent Document 8) includes a spherical colloidal silica particle having an average particle diameter of 10 to 80 nm and a metal oxide-containing silica which joins the spherical colloidal silica particle, and an image analysis method for the spherical colloidal silica particle. The ratio D 1 / D 2 of the measured particle diameter (D 1 ) obtained by the above method and the measured particle diameter (D 2 ) obtained by the nitrogen adsorption method is 3 or more, and this D 1 is 50 to 500 nm. A non-spherical silica sol is described in which beaded colloidal silica particles in which colloidal silica particles are connected only in one plane are dispersed.
 また国際公開WO00/15552号には、その製造方法として、(a)所定の活性珪酸のコロイド水溶液または酸性非球状シリカゾルに、水溶性金属塩の水溶液を、前記コロイド水溶液または酸性非球状シリカゾルのSiO2に対して金属酸化物として1~10重量%となる量を加えて混合液1を調製する工程、(b)前記混合液1に、平均粒子径10~80nm、pH2~6の酸性球状非球状シリカゾルを、この酸性球状非球状シリカゾルに由来するシリカ含量(A)とこの混合液1に由来するシリカ含量(B)との比A/B(重量比)が5~100、かつ、この酸性球状非球状シリカゾルとこの混合液1との混合により得られる混合液2の全シリカ含量(A+B)が混合液2においてSiO2濃度5~40重量%となる量加えて混合する工程、および、(c)得られた混合液2にアルカリ金属水酸化物、水溶性有機塩基または水溶性珪酸塩をpHが7~11となるように加えて混合し、加熱する工程からなる方法が記載されている。 In addition, International Publication WO 00/15552 discloses a production method of (a) a predetermined colloidal solution of active silicic acid or an acidic non-spherical silica sol, an aqueous solution of a water-soluble metal salt, and an aqueous solution of the colloidal aqueous solution or acidic non-spherical silica sol. A step of preparing a mixed solution 1 by adding an amount of 1 to 10% by weight as a metal oxide with respect to 2 , (b) an acidic spherical non-particle having an average particle size of 10 to 80 nm and a pH of 2 to 6 The spherical silica sol has a ratio A / B (weight ratio) of 5 to 100 between the silica content (A) derived from the acidic spherical non-spherical silica sol and the silica content (B) derived from the mixed solution 1, and the acidic mixing the total silica content of the mixture 2 obtained by mixing (a + B) is added an amount containing SiO 2 concentration of 5 to 40 wt% in the mixture 2 of the spherical non-spherical silica sol with the mixed solution 1 And (c) a method comprising adding an alkali metal hydroxide, a water-soluble organic base or a water-soluble silicate to the obtained mixture 2 so as to have a pH of 7 to 11, and mixing and heating. Is described.
 特開2001-11433号公報(特許文献9)には、SiO2として0.5~10重量%を含有し、かつ、pHが2~6である活性珪酸のコロイド水溶液に、水溶性のII価またはIII価の金属の塩を単独でまたは2種以上含有する水溶液を、同活性珪酸のコロイド水溶液のSiO2に対して、金属酸化物(II価の金属の塩の場合はMOとし、III価の金属の塩の場合はM23とする。但し、MはII価またはIII価の金属原子を表し、Oは酸素原子を表す。)として1~10重量%となる量を加えて混合し、得られた混合液(1)に、平均粒子径10~120nm、pH2~6の酸性球状非球状シリカゾルを、この酸性球状非球状シリカゾルに由来するシリカ含量(A)とこの混合液(1)に由来するシリカ含量(B)との比A/B(重量比)が5~100、かつ、この酸性球状非球状シリカゾルとこの混合液(1)との混合により得られる混合液(2)の全シリカ含量(A+B)が混合液(2)においてSiO2濃度5~40重量%となるように加えて混合し、さらに混合液(2)にアルカリ金属水酸化物等をpHが7~11となるように加えて混合し、得られた混合液(3)を100~200℃で0.5~50時間加熱する数珠状の非球状シリカゾルの製造方法が記載されている。 Japanese Patent Application Laid-Open No. 2001-11433 (Patent Document 9) discloses a water-soluble II value in an aqueous colloidal solution of active silicic acid containing 0.5 to 10% by weight as SiO 2 and having a pH of 2 to 6. Alternatively, an aqueous solution containing a valent metal salt alone or in combination of two or more metal oxides with respect to SiO 2 of the colloidal aqueous solution of the active silicic acid is designated as MO (in the case of a valent metal salt, MO, M 2 O 3 in the case of a metal salt of the above, where M represents a II or III valent metal atom, and O represents an oxygen atom) and mixed in an amount of 1 to 10% by weight. Then, an acidic spherical non-spherical silica sol having an average particle diameter of 10 to 120 nm and a pH of 2 to 6 is added to the obtained mixed liquid (1), the silica content (A) derived from the acidic spherical non-spherical silica sol, and the mixed liquid (1 ) The ratio A / B (weight ratio) to the silica content (B) derived from 00, and the acidic spherical non-spherical silica sol and the mixture (1) the total silica content of the mixture obtained by mixing (2) and (A + B) is SiO 2 concentration of 5 to 40 wt% in the mixed solution (2) Then, an alkali metal hydroxide or the like is added to the mixed solution (2) so as to have a pH of 7 to 11 and mixed, and the obtained mixed solution (3) is heated to 100 to 200 ° C. Describes a method for producing a beaded non-spherical silica sol heated at 0.5 to 50 hours.
 特開2001-48520号公報(特許文献10)には、シリカ濃度1~8モル/リットル、酸濃度0.0018~0.18モル/リットルで水濃度2~30モル/リットルの範囲の組成で、溶剤を使用しないでアルキルシリケートを酸触媒で加水分解した後、シリカ濃度が0.2~15モル/リットルの範囲となるように水で希釈し、次いでpHが7以上となるようにアルカリ触媒を加え加熱して珪酸の重合を進行させて、電子顕微鏡観察により得られる太さ方向の平均直径が5~100nmであり、長さがその15~50倍の長さの細長い形状の非晶質シリカ粒子が液状分散体中に分散されている非球状シリカゾルの製造方法が記載されている。 Japanese Patent Laid-Open No. 2001-48520 (Patent Document 10) discloses a composition having a silica concentration of 1 to 8 mol / liter, an acid concentration of 0.0018 to 0.18 mol / liter, and a water concentration of 2 to 30 mol / liter. The alkyl silicate is hydrolyzed with an acid catalyst without using a solvent, diluted with water so that the silica concentration is in the range of 0.2 to 15 mol / liter, and then the alkali catalyst is used so that the pH becomes 7 or more. Is heated to advance the polymerization of silicic acid, the average diameter in the thickness direction obtained by electron microscope observation is 5 to 100 nm, and the length is 15 to 50 times the length of the amorphous amorphous A method for producing a non-spherical silica sol in which silica particles are dispersed in a liquid dispersion is described.
 特開2001-150334号公報(特許文献11)には、水ガラスなどのアルカリ金属珪酸塩の水溶液を脱陽イオン処理することにより得られるSiO2濃度2~6重量%程度の活性珪酸の酸性水溶液に、アルカリ土類金属、例えば、Ca、Mg、Baなどの塩をその酸化物換算で上記活性珪酸のSiO2に対し100~1500ppmの重量比で添加し、さらにこの液中SiO2/M2O (M は、アルカリ金属原子、NHまたは第4級アンモニウム基を表す。) モル比が20~150となる量の同アルカリ物質を添加することにより得られる液を当初ヒール液とし、同様にして得られる2~6重量%のSiO2濃度と20~150 のSiO2/M2O (M は、上記に同じ) モル比を有する活性珪酸水溶液をチャージ液として、60~150℃で前記当初ヒール液に前記チャージ液を、1時間当たり、チャージ液SiO2/当初ヒール液SiO2の重量比として0.05~1.0 の速度で、液から水を蒸発除去しながら(またはせずに)添加する、歪な形状を有する非球状シリカゾルの製造方法が記載されている。 Japanese Patent Laid-Open No. 2001-150334 (Patent Document 11) discloses an acidic aqueous solution of activated silicic acid having a SiO 2 concentration of about 2 to 6% by weight obtained by decation treatment of an aqueous solution of an alkali metal silicate such as water glass. In addition, an alkaline earth metal such as a salt of Ca, Mg, Ba or the like is added at a weight ratio of 100 to 1500 ppm with respect to SiO 2 of the above active silicic acid in terms of its oxide, and further SiO 2 / M 2 in this solution. O (M represents an alkali metal atom, NH 4 or a quaternary ammonium group.) The liquid obtained by adding the alkali substance in an amount of 20 to 150 in molar ratio is initially used as the heel liquid. SiO 2 / M 2 O of SiO 2 concentration of from 2 to 6% by weight obtained and 20-150 Te (M is the same) the active silicic acid aqueous solution having a molar ratio as charged liquid, 60 ~ 0.99 ° C. The charge liquid the initially heel solution, per hour, the charge liquid SiO 2 / initially at a rate of 0.05-1.0 as a weight ratio of the heel solution SiO 2, while evaporating and removing water from the liquid (Matahase A method for producing a non-spherical silica sol having a distorted shape is described.
 特開2003-133267号公報(特許文献12)には、ディッシング(過研磨)を抑制し、基板表面を平坦に研磨することができる研磨用粒子として、平均粒子径が5~300nmの範囲にある1次粒子が2個以上結合した異形粒子群を含むことを特徴とする研磨用粒子が記載され、特に研磨用粒子中の全1次粒子の粒子数に占める、前記異形粒子群を構成する1次粒子の粒子数が5~100%の範囲にある研磨用粒子が有効であることについての記載がある。 In Japanese Patent Laid-Open No. 2003-133267 (Patent Document 12), the average particle diameter is in the range of 5 to 300 nm as polishing particles capable of suppressing dishing (overpolishing) and polishing the substrate surface flatly. Abrasive particles characterized by comprising a group of irregularly shaped particles in which two or more primary particles are combined are described. In particular, the particles constituting the irregularly shaped particle group occupy the total number of primary particles in the abrasive particles. There is a description that abrasive particles having a number of secondary particles in the range of 5 to 100% are effective.
 特開2004-288732号公報(特許文献13)には、非真球状コロイダルシリカ、酸化剤および有機酸を含有し、残部が水であることを特徴とする半導体研磨用スラリーについて開示されており、その中で、非真球状コロイダルシリカの(長径/短径)が1.2~5.0のものが提案されており、特開2004-311652号公報(特許文献14)にも同様な非真球状コロイダルシリカが開示されている。 Japanese Patent Application Laid-Open No. 2004-288732 (Patent Document 13) discloses a semiconductor polishing slurry characterized by containing non-spherical colloidal silica, an oxidizing agent and an organic acid, and the balance being water. Among them, non-spherical colloidal silica (major axis / minor axis) having a major axis / minor axis of 1.2 to 5.0 has been proposed, and the same non-true colloid is disclosed in Japanese Patent Application Laid-Open No. 2004-311652 (Patent Document 14). Spherical colloidal silica is disclosed.
 また、シリカ-アルミナ被覆鎖状非球状シリカゾルについて、特開2002-3212号公報(特許文献15)には、(a)SiOとして0.05~5.0重量%のアルカリ金属ケイ酸塩水溶液に、ケイ酸液を添加して、混合液のSiO/MO(モル比、Mはアルカリ金属または第4級アンモニウム)を30~60とする工程、(b)前記ケイ酸液添加工程の前、添加工程中または添加工程後に、原子価が2価~4価の金属の1種または2種以上の金属化合物を添加する工程、(c)該混合液を60℃以上の任意の温度で一定時間維持する工程、(d)次いで該反応液に再びケイ酸液を添加して反応液中のSiO2/M2O(モル比)を60~200とする工程、(e)さらに該反応液にアルカリ側でアルカリケイ酸塩水溶液とアルカリアルミン酸塩水溶液とを同時に添加する工程、からなるシリカ-アルミナ被覆鎖状非球状シリカゾルの製造方法が開示されている。 Regarding silica-alumina-coated chain non-spherical silica sol, JP-A No. 2002-3212 (Patent Document 15) discloses (a) an alkali metal silicate aqueous solution of 0.05 to 5.0% by weight as SiO 2. A step of adding a silicic acid solution to adjust SiO 2 / M 2 O (molar ratio, M is an alkali metal or quaternary ammonium) of the mixed solution to 30 to 60, (b) the silicic acid solution adding step Before, during or after the addition step, a step of adding one or more metal compounds of divalent to tetravalent metals, (c) the mixed solution at an arbitrary temperature of 60 ° C. or higher (D) Next, a step of adding a silicic acid solution again to the reaction solution to make SiO 2 / M 2 O (molar ratio) in the reaction solution 60 to 200, (e) Alkaline silicate aqueous solution and alkali Adding the aluminate solution at the same time, silica consists - method for producing alumina coated linear non-spherical silica sol is disclosed.
 シリカ系微粒子の表面に突起状構造を有する例として、特開平3-257010号公報(特許文献16)には、シリカ粒子表面に電子顕微鏡で観察して、0.2~5μmのサイズの連続的な凹凸状の突起を有し、平均粒子径が5~100μm、BET法により得られる比表面積が20m2/g以下、且つ、細孔容積が0.1mL/g以下であるシリカ粒子に関する記載がある。 As an example having a protrusion-like structure on the surface of silica-based fine particles, JP-A-3-257010 (Patent Document 16) discloses a continuous surface having a size of 0.2 to 5 μm as observed with an electron microscope on the surface of silica particles. A description of silica particles having uneven projections, an average particle diameter of 5 to 100 μm, a specific surface area obtained by the BET method of 20 m 2 / g or less, and a pore volume of 0.1 mL / g or less. is there.
 また、特開2002-38049号公報(特許文献17)には、シード粒子全面に、実質上球状および/または半球状の突起物を有するシリカ系微粒子であって、該突起物が化学結合によりシード粒子に結着していることを特徴とするシリカ系微粒子についての記載がある。さらに、(A)特定のアルコキシシラン化合物を加水分解、縮合させてポリオルガノシロキサン粒子を生成させる工程、(B)該ポリオルガノシロキサン粒子を表面吸着剤により表面処理する工程、および(C)上記(B)工程で表面処理されたポリオルガノシロキサン粒子全面に、該アルコキシシラン化合物を用いて突起を形成させる工程、を含むシリカ系微粒子の製造方法についての記載がある。 Japanese Patent Application Laid-Open No. 2002-38049 (Patent Document 17) discloses silica-based fine particles having substantially spherical and / or hemispherical protrusions on the entire surface of the seed particles, and the protrusions are seeded by chemical bonding. There is a description of silica-based fine particles that are bound to the particles. Furthermore, (A) a step of hydrolyzing and condensing a specific alkoxysilane compound to produce polyorganosiloxane particles, (B) a step of treating the polyorganosiloxane particles with a surface adsorbent, and (C) the above ( There is a description of a method for producing silica-based fine particles, including a step of forming protrusions using the alkoxysilane compound on the entire surface of the polyorganosiloxane particles surface-treated in step B).
 また、特開2004-35293号公報(特許文献18)には、シード粒子全面に、実質上球状および/または半球状の突起物を有するシリカ系粒子であって、該突起物が化学結合によりシード粒子に結着しており、かつシード粒子と突起物との10%圧縮時の圧縮弾性率がそれぞれ異なることを特徴とするシリカ系粒子が開示されている。 Japanese Patent Application Laid-Open No. 2004-35293 (Patent Document 18) discloses silica-based particles having substantially spherical and / or hemispherical protrusions on the entire surface of the seed particles, and the protrusions are seeded by chemical bonding. Silica-based particles are disclosed that are bound to particles and have different compressive elastic moduli at 10% compression between seed particles and protrusions.
 しかしながら、特開平3-257010号公報(特許文献16)に記載の粒子は、平均粒子径が5~100μmのシリカのみからなるものであり、特開2002-38049号公報(特許文献17)で開示されるシリカ系粒子は、その平均粒子径が実質的には0.5~30μのもののみが開示されており、特開2004-35293号公報(特許文献18)についても同様である。 However, the particles described in JP-A-3-257010 (Patent Document 16) are composed only of silica having an average particle diameter of 5 to 100 μm, and are disclosed in JP-A-2002-38049 (Patent Document 17). Only silica-based particles having an average particle diameter of 0.5 to 30 μm are disclosed, and the same applies to JP-A-2004-35293 (Patent Document 18).
特開平1-317115号公報JP-A-1-317115 特開平4-65314号公報Japanese Patent Laid-Open No. 4-65314 特開平4-187512号公報JP-A-4-187512 特許第3441142号公報Japanese Patent No. 3441142 特開平7-118008号公報Japanese Patent Application Laid-Open No. 7-118008 特開平8-279480号公報JP-A-8-279480 特開平11-214338号公報JP-A-11-214338 国際公開WO00/15552号International Publication WO00 / 15552 特開2001-11433号公報JP 2001-11433 A 特開2001-48520号公報JP 2001-48520 A 特開2001-150334号公報JP 2001-150334 A 特開2003-133267号公報JP 2003-133267 A 特開2004-288732号公報JP 2004-288732 A 特開2004-311652号公報JP 2004-311652 A 特開2002-3212号公報JP 2002-3212 A 特開平3-257010号公報JP-A-3-257010 特開2002-38049号公報JP 2002-38049 A 特開2004-35293号公報JP 2004-35293 A
 本発明は、研磨性等の優れた特性を有し、平均粒子径の小さい、非球状のシリカ微粒子が分散媒に分散してなるシリカゾルおよびその製造方法を提供することを課題とする。 また、該非球状シリカゾルを含む研磨用組成物を提供することを課題とする。 An object of the present invention is to provide a silica sol having non-spherical silica fine particles having excellent characteristics such as abrasiveness and having a small average particle diameter and dispersed in a dispersion medium, and a method for producing the same. Another object is to provide a polishing composition containing the non-spherical silica sol.
 前記課題を解決する本発明は、動的光散乱法により測定される平均粒子径が3~200nmの範囲、短径/長径比が0.01~0.8の範囲、比表面積が10~800m2/gの範囲にあり、表面に複数の疣状突起を有する非球状シリカ微粒子が分散媒に分散してなることを特徴とする非球状シリカゾルである。 The present invention that solves the above-mentioned problems has an average particle diameter measured by dynamic light scattering of 3 to 200 nm, a minor axis / major axis ratio of 0.01 to 0.8, and a specific surface area of 10 to 800 m. The non-spherical silica sol is characterized in that non-spherical silica fine particles in the range of 2 / g and having a plurality of hook-shaped protrusions on the surface are dispersed in a dispersion medium.
 本発明に係る前記非球状シリカゾルの好適な態様としては、第一に前記疣状突起を有する非球状シリカ微粒子の長軸を含む平面上において、前記非球状シリカ微粒子の外縁上の任意の点から、該外縁上の点を通り前記長軸と直交する直線と前記長軸との交点Bまでの距離をY、前記非球状シリカ微粒子の外縁と前記長軸との一方の交点Aから、前記交点Bまでの距離をXとしてX-Y曲線を描いた場合に、該X-Y曲線が複数の極大値を有する前記非球状シリカゾルを挙げることができる。 A preferred embodiment of the non-spherical silica sol according to the present invention is as follows. First, from any point on the outer edge of the non-spherical silica fine particle on a plane including the long axis of the non-spherical silica fine particle having the hook-shaped protrusion. , Y is a distance to an intersection B between the long axis passing through a point on the outer edge and a line orthogonal to the major axis, and from the one intersection A of the outer edge of the non-spherical silica fine particle to the major axis, the intersection Examples of the non-spherical silica sol in which when the XY curve is drawn with the distance to B as X, the XY curve has a plurality of maximum values.
 第二の好適な態様としては、前記疣状突起を有する非球状シリカ微粒子の長軸を含む平面上において、前記非球状シリカ微粒子の外縁上の任意の点から、該外縁上の点を通り前記長軸と直交する直線と前記長軸との交点Bまでの距離をYとした場合に、前記距離Yの変動係数が5~50%の範囲にある前記非球状シリカゾルを挙げることができる。
第三の好適な態様としては、前記疣状突起を有する非球状シリカ微粒子の個数が、分散質であるシリカ微粒子の全個数の50%以上である前記非球状シリカゾルを挙げることができる。
第四の好適な態様としては、前記疣状突起を有する非球状シリカ微粒子が、[SiO4/2]単位から構成されるものである前記非球状シリカゾルを挙げることができる。
第五の好適な態様としては、前記疣状突起を有する非球状シリカ微粒子が、テトラエトキシシランの加水分解により得られた[SiO4/2]単位から構成されるポリシロキサンである前記非球状シリカゾルを挙げることができる。
第六の好適な態様としては、前記非球状シリカ微粒子に含まれるナトリウムの割合が、100質量ppm以下であることを特徴とする前記非球状シリカゾルを挙げることができる。
As a second preferred embodiment, on a plane including the long axis of the non-spherical silica fine particles having the ridge-like protrusions, the point passes from the arbitrary point on the outer edge of the non-spherical silica fine particle to the point on the outer edge. Examples of the non-spherical silica sol include a variation coefficient of the distance Y in the range of 5 to 50%, where Y is the distance to the intersection B between the straight line perpendicular to the long axis and the long axis.
As a third preferred embodiment, there may be mentioned the nonspherical silica sol in which the number of nonspherical silica fine particles having ridge-like projections is 50% or more of the total number of silica fine particles as a dispersoid.
As a fourth preferred embodiment, the non-spherical silica sol in which the non-spherical silica fine particles having ridge-like protrusions are composed of [SiO 4/2 ] units can be mentioned.
As a fifth preferred embodiment, the non-spherical silica sol in which the non-spherical silica fine particles having ridge-like projections are polysiloxanes composed of [SiO 4/2 ] units obtained by hydrolysis of tetraethoxysilane. Can be mentioned.
A sixth preferred embodiment includes the nonspherical silica sol, wherein the ratio of sodium contained in the nonspherical silica fine particles is 100 mass ppm or less.
 本出願における他の発明は、前記非球状シリカゾルからなる研磨材、および前記非球状シリカゾルを含むことを特徴とする研磨用組成物である。 Another invention in the present application is a polishing composition comprising the abrasive comprising the non-spherical silica sol and the non-spherical silica sol.
 本出願における他の発明は、強酸の塩からなる電解質の存在下(電解質の当量数を(EE)で表す)、下記A液100質量部(シリカ換算)対して、B液50~2500質量部(シリカ換算)を添加して非球状シードシリカ微粒子を成長させる際に、アルカリと電解質の当量比(EA/EE)が0.4~8の範囲となるようにB液を添加することを特徴とする前記非球状シリカゾルの製造方法である。
A液:動的光散乱法により測定される平均粒子径が3~200nmの範囲、短径/長径比が0.01~0.8の範囲にある非球状シードシリカ微粒子が分散媒に分散してなる非球状シードシリカゾル
B液:珪酸アルカリ水溶液(B液に含まれるアルカリの当量数を(EA)で表す。)
 前記非球状シリカゾルの製造方法の好適な態様として、前記A液に、前記B液および前記電解質を、40~150℃の温度範囲で15分~10時間かけてそれぞれ添加し、熟成してなる前記非球状シリカゾルの製造方法を挙げることができる。
Another invention in the present application is that, in the presence of an electrolyte comprising a salt of a strong acid (the equivalent number of the electrolyte is represented by (EE)), 100 parts by mass of the following A liquid (in terms of silica), 50 to 2500 parts by mass of B liquid When adding non-spherical seed silica fine particles by adding (silica conversion), B liquid is added so that the equivalent ratio of the alkali to the electrolyte (EA / EE) is in the range of 0.4 to 8. The method for producing the non-spherical silica sol.
Liquid A: Non-spherical seed silica fine particles having an average particle diameter measured by a dynamic light scattering method in the range of 3 to 200 nm and a minor axis / major axis ratio in the range of 0.01 to 0.8 are dispersed in the dispersion medium. Nonspherical seed silica sol B liquid: An aqueous alkali silicate solution (the number of equivalents of alkali contained in B liquid is represented by (EA))
As a preferred embodiment of the method for producing the non-spherical silica sol, the liquid B and the electrolyte are added to the liquid A at a temperature range of 40 to 150 ° C. over 15 minutes to 10 hours, respectively, and then aged. A method for producing a non-spherical silica sol can be mentioned.
 また、本出願における、他の発明は、水溶性有機溶媒および水を含む混合溶媒の温度範囲を30~150℃に維持し、この混合溶媒に、1)下記一般式(1)で表される4官能性シラン化合物の水溶性有機溶媒溶液および2)アルカリ触媒溶液を同時に、連続的または断続的に添加し、添加終了後、この液状体をさらに30~150℃の温度範囲に維持することにより、該4官能性シラン化合物を加水分解縮合させて非球状シリカゾルを製造するにあたり、前記4官能性シラン化合物に対する水のモル比を2~4の範囲にすることを特徴とする前記非球状シリカゾルの製造方法である。 In another aspect of the present invention, the temperature range of a mixed solvent containing a water-soluble organic solvent and water is maintained at 30 to 150 ° C., and the mixed solvent is represented by 1) the following general formula (1) A water-soluble organic solvent solution of a tetrafunctional silane compound and 2) an alkali catalyst solution are added simultaneously or intermittently. After the addition is completed, the liquid is further maintained in a temperature range of 30 to 150 ° C. In producing the non-spherical silica sol by hydrolytic condensation of the tetrafunctional silane compound, the molar ratio of water to the tetrafunctional silane compound is in the range of 2 to 4. It is a manufacturing method.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 ((1)式中、Rは炭素数2~4のアルキル基である。)
 前記非球状シリカゾルの製造方法の好適な態様として、前記4官能性シラン化合物が、テトラエトキシシランである前記非球状シリカゾルの製造方法を挙げることができる。
(In the formula (1), R is an alkyl group having 2 to 4 carbon atoms.)
As a preferred embodiment of the method for producing the non-spherical silica sol, there can be mentioned the method for producing the non-spherical silica sol in which the tetrafunctional silane compound is tetraethoxysilane.
 本発明に係る非球状シリカゾルに含まれる非球状シリカ微粒子は、通常の非球状シリカ微粒子とは異なる特異な構造を有することから、本発明に係る非球状シリカゾルは、充填性、吸油性、電気特性などの物理特性および光学特性に優れ、例えば研磨材および研磨用組成物として有用であり、特に研磨特性の効果において優れる。
Since the non-spherical silica fine particles contained in the non-spherical silica sol according to the present invention have a unique structure different from ordinary non-spherical silica fine particles, the non-spherical silica sol according to the present invention has a filling property, an oil absorption property, and an electric property. It has excellent physical properties and optical properties such as, for example, is useful as an abrasive and a polishing composition, and is particularly excellent in the effect of polishing properties.
図1は、極大値個数の求め方の概略図である。FIG. 1 is a schematic diagram of how to determine the number of local maximum values. 図2は、距離Yの変動係数についての求め方の概略図である。FIG. 2 is a schematic diagram of how to obtain the variation coefficient of the distance Y. 図3は、実施例3で調製された非球状シリカゾルの走査型電子顕微鏡写真(倍率:250,000倍)である。FIG. 3 is a scanning electron micrograph (magnification: 250,000 times) of the non-spherical silica sol prepared in Example 3.
[非球状シリカゾル]
 本発明の非球状シリカゾルは、動的光散乱法により測定される平均粒子径が3~200nmの範囲、短径/長径比が0.01~0.8の範囲、比表面積が10~800m2/gの範囲にあり、表面に複数の疣状突起を有する非球状シリカ微粒子が分散媒に分散してなることを特徴とするものである。
[Non-spherical silica sol]
The non-spherical silica sol of the present invention has an average particle diameter measured by a dynamic light scattering method of 3 to 200 nm, a minor axis / major axis ratio of 0.01 to 0.8, and a specific surface area of 10 to 800 m 2. The non-spherical silica fine particles having a range of / g and having a plurality of hook-shaped protrusions on the surface are dispersed in a dispersion medium.
 本発明に係る非球状シリカゾルの分散質である非球状シリカ微粒子は、その短径/長径比が0.01~0.8の範囲にあるものが好適である。この範囲の短径/長径比である場合は、繊維状、柱状、回転楕円体状などの異形状と見做される形状、すなわち球状とは見做されない形状をとるものである。短径/長径比が0.8を超える場合はほぼ球状に近い粒子となる。短径/長径比が0.01未満の場合については、製造が容易でない場合が含まれる。短径/長径比のより好適な範囲は0.1~0.7であり、より一層好適な範囲は0.12~0.65である。 The non-spherical silica fine particles that are the dispersoid of the non-spherical silica sol according to the present invention preferably have a minor axis / major axis ratio in the range of 0.01 to 0.8. In the case of the minor axis / major axis ratio in this range, a shape that is regarded as an unusual shape such as a fiber shape, a column shape, or a spheroid shape, that is, a shape that is not regarded as a spherical shape is taken. When the minor axis / major axis ratio exceeds 0.8, the particles are almost spherical. The case where the minor axis / major axis ratio is less than 0.01 includes the case where the production is not easy. A more preferable range of the minor axis / major axis ratio is 0.1 to 0.7, and an even more preferable range is 0.12 to 0.65.
 本発明に係る非球状シリカゾルは、その分散質である非球状シリカ微粒子が、その表面に複数の疣状突起を有する点で、従来の非球状シリカゾルを始めとする非球状シリカゾルと構造上異なるものである。すなわち、本発明に係る非球状シリカゾルに含まれる非球状シリカ微粒子は、非球形金平糖状シリカ微粒子、あるいは疣状突起被覆非球状シリカ微粒子と言えるものである。本発明に係る非球状シリカゾルは、この疣状突起の存在により、各種用途、例えば、研磨用途、樹脂または被膜形成用成分の充填材、インク受容層の充填材などの用途において、特異な効果を示すことが可能となる。疣状突起については、例えば、非球状シリカゾルの電子顕微鏡写真にて確認できるものであり、粒子表面に周辺部位より突出した構造または膨らんだ構造をとるものである。 The non-spherical silica sol according to the present invention is structurally different from conventional non-spherical silica sols such as non-spherical silica sols in that the non-spherical silica fine particles as a dispersoid have a plurality of hook-shaped protrusions on the surface thereof. It is. That is, the non-spherical silica fine particles contained in the non-spherical silica sol according to the present invention can be said to be non-spherical confetti-like silica fine particles or saddle-shaped projection-coated non-spherical silica fine particles. The non-spherical silica sol according to the present invention has a unique effect in various uses, for example, a use for polishing, a filler for a resin or a film forming component, a filler for an ink receiving layer, etc. It becomes possible to show. The hook-like protrusions can be confirmed by, for example, an electron micrograph of a non-spherical silica sol, and have a structure protruding from the peripheral portion or a swollen structure on the particle surface.
 本発明に係る非球状シリカ微粒子については、後記したように水硝子などを原料として使用したものであってもよく、アルコキシシランを原料として調製されたものであっても構わない。後者の例としては、例えば、前記非球状シリカ微粒子が、[SiO4/2]単位から構成されるものであることを特徴とする非球状シリカゾルを挙げることができる。このような非球状シリカゾルの製造方法については後記する。 The non-spherical silica fine particles according to the present invention may be those using water glass or the like as a raw material as described later, or those prepared using alkoxysilane as a raw material. Examples of the latter include non-spherical silica sol, wherein the non-spherical silica fine particles are composed of [SiO 4/2 ] units. A method for producing such a non-spherical silica sol will be described later.
 前記非球状シリカ微粒子については、好適には、前記非球状シリカ微粒子の長軸を含む平面上において、前記非球状シリカ微粒子の外縁上の任意の点から、該外縁上の点を通り前記長軸と直交する直線と前記長軸との交点Bまでの距離をY、前記非球状シリカ微粒子の外縁と前記長軸との一方の交点Aから、前記交点Bまでの距離をXとしてX-Y曲線を描いた場合に、該X-Y曲線が複数の極大値を有することが望ましい。これについては、非球状シリカ微粒子の走査型電子顕微鏡写真(25万倍ないし50万倍)の画像にて、非球状シリカ微粒子の長軸を定め、長軸の全長を40等分し、当分したそれぞれの地点(点B)と、その点に直交する直線を微粒子の片側に延伸し、微粒子の外縁と交わった点との距離をYとして記録する。また、前記非球状シリカ微粒子の外縁と前記長軸との2つの交点のうちの一方点(点A)と、前記当分したそれぞれの地点(点B)との距離をXとする。前記Yを縦軸、前記Xを横軸とし、各Xに対応するYの値をプロットすることによりX-Y曲線を描き、このX-Y曲線の極大値の個数を計ることができる。本発明においては、非球状シリカ微粒子について、この様な測定を粒子50個について実施し、その極大値の個数の平均が2以上であるものについて、その非球状シリカ微粒子が、前記複数の極大値を有するものと取り扱うこととした。極大値の個数の求め方に関する概略を図1に示した。図1において、「1」は長軸、「2」は外縁、「3」は極大値をとる位置、「4」は40等分線、「L」は長軸方向の長さを表す。 About the non-spherical silica fine particles, preferably, the long axis passes through a point on the outer edge from an arbitrary point on the outer edge of the non-spherical silica fine particle on a plane including the long axis of the non-spherical silica fine particle. XY curve where Y is the distance to the intersection B of the straight line orthogonal to the long axis and the long axis, and X is the distance from one intersection A of the outer edge of the non-spherical silica fine particle to the long axis It is desirable that the XY curve has a plurality of maximum values. For this, the major axis of the non-spherical silica fine particles was determined in an image of a scanning electron micrograph (250,000 to 500,000 times) of the non-spherical silica fine particles, and the total length of the long axis was divided into 40 equal parts. Each point (point B) and a straight line perpendicular to the point are stretched to one side of the fine particle, and the distance between the point where the fine particle intersects the outer edge is recorded as Y. Further, let X be the distance between one point (point A) of the two intersections between the outer edge of the non-spherical silica fine particle and the long axis and the corresponding point (point B). By plotting the Y value corresponding to each X with Y as the vertical axis and X as the horizontal axis, the XY curve can be drawn, and the number of local maximum values of this XY curve can be measured. In the present invention, for non-spherical silica fine particles, such measurement is performed for 50 particles, and the average of the number of local maximum values is 2 or more, the non-spherical silica fine particles have the plurality of local maximum values. It was decided to handle it as having. An outline of how to determine the number of local maximum values is shown in FIG. In FIG. 1, “1” represents the major axis, “2” represents the outer edge, “3” represents the position at which the maximum value is obtained, “4” represents the 40-segment line, and “L” represents the length in the major axis direction.
 前記極大値の個数については、好適には2~10個の範囲であり、より好適には3~8個の範囲である。なお、極大値の個数については、分析機器による計測により求めても構わない。 The number of local maximum values is preferably in the range of 2 to 10, more preferably in the range of 3 to 8. Note that the number of maximum values may be obtained by measurement with an analytical instrument.
 また、前記非球状シリカ微粒子については、さらに好適には、微粒子の長軸を含む平面上において、前記非球状シリカ微粒子の外縁上の任意の点から、該外縁上の点を通り前記長軸と直交する直線と前記長軸との交点Bまでの距離をYとした場合に、前記距離Yの変動係数が5~50%の範囲にあることが望ましい。本発明における前記微粒子の外縁から長軸までの距離Yの変動係数の測定については、以下の方法により算定した。
1)長軸の中心点(微粒子の長軸を2等分する位置に位置する)から、同長軸上の片方の微粒子外縁までの距離(長軸半径M)を計測し、長軸上に、中心点から長軸半径Mの長さについて5%刻みで0~50%までプロットする。
2)前記各プロットにおいて長軸と直交する直線を引き、この直線が片側の微粒子外縁と交差する点から前記プロットまでの距離Yをそれぞれ測定する。
3)微粒子の外縁から長軸までの距離Yについての変動係数(CV値)については、長軸上において、前記中心点から前記長軸半径Mの0~10%の範囲、0~20%の範囲、0~30%の範囲、0~40%の範囲、0~50%の範囲でそれぞれ、距離Yの変動係数(CV値)を算出して5種類の変動係数(CV値)を得て、そのうちの最大の変動係数(CV値)を、その粒子における距離Yについての変動係数(CV値)とする。
4)上記1)~3)の測定を50個の粒子について実施し、その平均値を、非球状シリカ微粒子における距離Yについての変動係数(CV値)として採用した。距離Y値の変動係数の求め方の概略を図2に示した。図2において、「1」、「2」および「L」については図1の場合と同じであり、「M」は長軸方向の半径の長さ、「N」はMの50%の長さを表す。
Further, the non-spherical silica fine particles more preferably, on a plane including the long axis of the fine particles, from any point on the outer edge of the non-spherical silica fine particles through the point on the outer edge and the long axis When the distance to the intersection B between the orthogonal straight line and the long axis is Y, it is desirable that the variation coefficient of the distance Y is in the range of 5 to 50%. The measurement of the coefficient of variation of the distance Y from the outer edge of the fine particles to the long axis in the present invention was calculated by the following method.
1) Measure the distance (long axis radius M) from the center point of the long axis (located at the position that bisects the long axis of the fine particles) to one of the outer edges of the fine particles on the long axis. Plot from 0 to 50% in 5% increments for the length of the major axis radius M from the center point.
2) A straight line perpendicular to the major axis is drawn in each plot, and the distance Y from the point where the straight line intersects the outer edge of the fine particle on one side to the plot is measured.
3) Regarding the coefficient of variation (CV value) for the distance Y from the outer edge of the fine particle to the long axis, on the long axis, the range of 0 to 10% of the long axis radius M from the center point is 0 to 20%. Calculate the variation coefficient (CV value) of distance Y in each of the range, 0-30% range, 0-40% range, 0-50% range to obtain 5 types of variation coefficient (CV value) The maximum coefficient of variation (CV value) among them is defined as the coefficient of variation (CV value) for the distance Y in the particle.
4) The above measurements 1) to 3) were performed on 50 particles, and the average value was adopted as the coefficient of variation (CV value) for the distance Y in the non-spherical silica fine particles. An outline of how to obtain the coefficient of variation of the distance Y value is shown in FIG. In FIG. 2, “1”, “2”, and “L” are the same as those in FIG. 1, “M” is the length of the radius in the major axis direction, and “N” is a length of 50% of M. Represents.
 なお、前記距離Yの変動係数(CV値)は、変動係数(CV値)[%]=(距離Yの標準偏差(σ)/距離Yの平均値(Ya))×100の関係式から求められる。 The variation coefficient (CV value) of the distance Y is obtained from the relational expression of variation coefficient (CV value) [%] = (standard deviation of distance Y (σ) / average value of distance Y (Ya)) × 100. It is done.
 前記の通り、非球状シリカ微粒子の長軸を含む平面上において、前記非球状シリカ微粒子の外縁上の任意の点から、該外縁上の点を通り前記長軸と直交する直線と前記長軸との交点Bまでの距離をY、前記非球状シリカ微粒子の外縁と前記長軸との一方の交点Aから、前記交点Bまでの距離をXとしてX-Y曲線を描いた場合に、該X-Y曲線が複数の極大値をとる場合は、その非球状シリカ微粒子が疣状突起を有するものであり、その様な非球状シリカ微粒子において、外縁から長軸までの距離Yについての変動係数(CV値)が、5~50%の範囲である場合は、粒子の外縁から長軸までの距離Yの長さに有意なばらつきがあることを示すものであり、非球状シリカ微粒子表面に起伏があることを示すこととなる。 As described above, from a point on the outer edge of the non-spherical silica fine particle on a plane including the long axis of the non-spherical silica fine particle, a straight line passing through the point on the outer edge and orthogonal to the long axis and the long axis When the XY curve is drawn with the distance to the intersection B of Y being Y and the distance from one intersection A of the outer edge of the non-spherical silica fine particle to the major axis being X, the distance from the intersection B is X. When the Y curve has a plurality of maximum values, the non-spherical silica fine particles have ridge-like projections, and in such non-spherical silica fine particles, the coefficient of variation (CV) with respect to the distance Y from the outer edge to the major axis. (Value) in the range of 5 to 50% indicates that there is a significant variation in the length of the distance Y from the outer edge of the particle to the major axis, and there are undulations on the surface of the non-spherical silica fine particles. Will be shown.
 前記極大値の平均個数が2以上であって、外縁から長軸までの距離Yについての変動係数(CV値)が5%未満の場合は、非球状シリカ微粒子表面に起伏はあるものの僅かである場合または実質的に起伏がない場合が含まれる。外縁から長軸までの距離Yについての変動係数(CV値)が、50%以上である場合については調製することが容易ではなく、また、その様な粒子は、構造上、堅牢性に支障がでる場合がある。 When the average number of the maximum values is 2 or more and the coefficient of variation (CV value) for the distance Y from the outer edge to the long axis is less than 5%, the surface of the non-spherical silica fine particles is slightly undulated. Cases or cases where there is substantially no undulations. When the coefficient of variation (CV value) for the distance Y from the outer edge to the long axis is 50% or more, it is not easy to prepare, and such particles have a problem in robustness due to the structure. May come out.
 外縁から長軸までの距離Yについての変動係数(CV値)については、より好適には7~45%の範囲である。また、一層好適には10~40%の範囲である。 The coefficient of variation (CV value) for the distance Y from the outer edge to the long axis is more preferably in the range of 7 to 45%. Further, it is more preferably in the range of 10 to 40%.
  本発明に係る非球状シリカゾルの分散質である非球状シリカ微粒子の平均粒子径については、動的光散乱法により測定される平均粒子径において3~200nmの範囲が望ましい。この範囲の平均粒子径であれば、例えば、前記の各用途において、本発明に係る非球状シリカゾルの形状に基づく有効な効果を生じ易い。平均粒子径が200nm超える場合、原料の微粒子の大きさにもよるが、一般にビルトアップ工程が進行し過ぎるため疣状突起が平坦化する傾向が強まる。平均粒子径3nm未満の場合については、原料となる非球状シリカ微粒子の調製が容易ではない。前記動的光散乱法により測定される非球状シリカ微粒子の平均粒子径については、好適には10~195nmの範囲であり、さらに好適には20~195nmの範囲である。 平均 The average particle size of the non-spherical silica fine particles that are the dispersoid of the non-spherical silica sol according to the present invention is preferably in the range of 3 to 200 nm in terms of the average particle size measured by the dynamic light scattering method. If the average particle diameter is in this range, for example, in each of the above applications, an effective effect based on the shape of the non-spherical silica sol according to the present invention is likely to occur. When the average particle diameter exceeds 200 nm, although depending on the size of the raw material fine particles, the tendency to flatten the hook-shaped protrusions is generally increased because the built-up process generally proceeds excessively. When the average particle diameter is less than 3 nm, it is not easy to prepare non-spherical silica fine particles as a raw material. The average particle diameter of the non-spherical silica fine particles measured by the dynamic light scattering method is preferably in the range of 10 to 195 nm, and more preferably in the range of 20 to 195 nm.
 なお、前記の動的光散乱法による平均粒子径範囲が3~200nmの範囲にある非球状シリカ微粒子については、画像解析法による長軸の平均径が3~190nmの範囲にある非球状シリカ微粒子が対応する。ここで長軸は、非球状シリカ微粒子の最大径を意味する。また、本出願において、画像解析法とは、走査型電子顕微鏡写真(倍率25万倍ないし50万倍)にて、測定した粒子の最大径を意味する。具体的な測定方法については、実施例にて示した。前記長軸の平均値については、好適には10~180nmの範囲であり、さらに好適には15~170nmの範囲である。 For the non-spherical silica fine particles having an average particle diameter range of 3 to 200 nm by the dynamic light scattering method, the non-spherical silica fine particles having a long axis average diameter of 3 to 190 nm by the image analysis method are used. Corresponds. Here, the long axis means the maximum diameter of the non-spherical silica fine particles. In the present application, the image analysis method means the maximum diameter of particles measured in a scanning electron micrograph (magnification 250,000 to 500,000 times). Specific measurement methods are shown in the examples. The average value of the major axis is preferably in the range of 10 to 180 nm, and more preferably in the range of 15 to 170 nm.
 前記非球状シリカ微粒子は、比表面積が10~800m2/gの範囲にあり、好ましくは20~500m2/g、さらに好ましくは30~300m2/gの範囲にある。比表面積が10m2/gより小さい場合は、表面に殆ど疣状突起が生じていない非球状シリカ微粒子が含まれるため好ましくない。また、本発明に係る非球状シリカ微粒子として、比表面積が800m2/gより大きい粒子を調製することは容易ではない。前記比表面積は、BET法(窒素吸着法)により求められた数値である。          The non-spherical silica fine particles have a specific surface area in the range of 10 to 800 m 2 / g, preferably 20 to 500 m 2 / g, and more preferably 30 to 300 m 2 / g. When the specific surface area is less than 10 m 2 / g, non-spherical silica fine particles having almost no wrinkle-like protrusions on the surface are contained, which is not preferable. Moreover, it is not easy to prepare particles having a specific surface area larger than 800 m 2 / g as the non-spherical silica fine particles according to the present invention. The specific surface area is a numerical value determined by the BET method (nitrogen adsorption method).
 前記非球状シリカ微粒子が分散する溶媒については、水、有機溶媒、またはこれらの混合溶媒のいずれであっても良い。この様な例としては、メチルアルコール、エチルアルコール、イソプロピルアルコール等のアルコール類、エーテル類、エステル類、ケトン類など水溶性の有機溶媒を挙げることができる。 The solvent in which the non-spherical silica fine particles are dispersed may be water, an organic solvent, or a mixed solvent thereof. Examples thereof include alcohols such as methyl alcohol, ethyl alcohol and isopropyl alcohol, water-soluble organic solvents such as ethers, esters and ketones.
 本発明に係る非球状シリカゾルは、前記表面に複数の疣状突起を有する非球状シリカ微粒子を含むシリカ微粒子が分散質として分散媒中に分散してなるものであるが、分散質であるシリカ微粒子のすべてが前記表面に複数の疣状突起を有する非球状シリカ微粒子である必要はない。分散質であるシリカ微粒子の全個数に対する前記表面に複数の疣状突起を有する非球状シリカ微粒子の個数の比率は、高いほど好ましい。前記比率は、好ましくは50%以上、さらに好適には60%以上である。前記比率が高いほど、該被球状シリカゾルを研磨用途に使用した際に、実用的な研磨速度を得やすくなる。 The non-spherical silica sol according to the present invention is obtained by dispersing silica fine particles containing non-spherical silica fine particles having a plurality of hook-shaped protrusions on the surface as a dispersoid in a dispersion medium. Need not be non-spherical silica fine particles having a plurality of hook-shaped protrusions on the surface. The higher the ratio of the number of non-spherical silica fine particles having a plurality of hook-shaped protrusions on the surface to the total number of silica fine particles that are dispersoids, the better. The ratio is preferably 50% or more, and more preferably 60% or more. The higher the ratio, the easier it is to obtain a practical polishing rate when the spherical silica sol is used for polishing.
 本発明に係る非球状シリカゾルのシリカ濃度については、通常は1~50質量%の範囲が好ましく、さらに好適には、5~30質量%の範囲が好ましい。 The silica concentration of the non-spherical silica sol according to the present invention is usually preferably in the range of 1 to 50% by mass, and more preferably in the range of 5 to 30% by mass.
 本発明に係る非球状シリカゾルの製造方法については、必ずしも限定されるものではないが、通常は、後記非球状シリカゾルの第1の製造方法または第2の製造方法により調製される。 The production method of the non-spherical silica sol according to the present invention is not necessarily limited, but is usually prepared by the first production method or the second production method of the non-spherical silica sol described later.
 非球状シリカゾルの第1の製造方法では、原料として市販の非球状シリカゾルを使用する場合も含まれるものであり、特に水硝子を原料として調製された非球状シリカゾルを使用する場合が含まれる。この場合、低コストで本発明に係る非球状シリカゾルを調製できるものの、非球状シリカ微粒子に、原料の水硝子等に由来するナトリウムが比較的高濃度で残留する場合がある。この様な本発明に係る非球状シリカゾルを、例えば、電子材料または半導体材料の研磨材に適用した場合、ナトリウムによる汚染を招くおそれがある。 The first method for producing a non-spherical silica sol includes a case where a commercially available non-spherical silica sol is used as a raw material, and particularly includes a case where a non-spherical silica sol prepared using water glass as a raw material is used. In this case, although the non-spherical silica sol according to the present invention can be prepared at low cost, sodium derived from the raw water glass or the like may remain at a relatively high concentration in the non-spherical silica fine particles. When such a non-spherical silica sol according to the present invention is applied to an abrasive of an electronic material or a semiconductor material, for example, there is a possibility of causing contamination with sodium.
 他方、非球状シリカゾルの第2の製造方法では、原料に4官能性シラン化合物を使用するため、非球状シリカ微粒子にナトリウムが混入するおそれがない。この場合、非球状シリカ微粒子に含まれるナトリウムの含有量を100質量ppm以下にすることができ、例えば、本非球状シリカゾルを電子材料または半導体材料の研磨材に好適に用いることができる。 On the other hand, in the second method for producing a non-spherical silica sol, a tetrafunctional silane compound is used as a raw material, so that there is no possibility that sodium is mixed into the non-spherical silica fine particles. In this case, the content of sodium contained in the non-spherical silica fine particles can be reduced to 100 ppm by mass or less. For example, the present non-spherical silica sol can be suitably used as an abrasive for electronic materials or semiconductor materials.
 非球状シリカゾルの第2の製造方法で調製される非球状シリカ微粒子は、テトラエトキシシランなどの4官能性シラン化合物の加水分解により得られるものであり、[SiO4/2]単位から構成されるポリシロキサン構造をとるものとなる。

[非球状シリカゾルの第1の製造方法]
 本発明に係る非球状シリカゾルの第1の製造方法は、非球状シードシリカ微粒子が分散媒に分散してなる非球状シードシリカゾル(以下、「A液」と称する。)中に、強酸の塩からなる電解質の存在下、珪酸アルカリ水溶液(以下、この珪酸アルカリ水溶液を「B液」と称する。)を添加して核粒子を成長させる際に、A液のシリカ100質量部に対して、B液のシリカ50~2500質量部を、B液中のアルカリの当量数(EA)と電解質の当量数(EE)の比(EA/EE)が0.4~8の範囲となるように添加するものである。ここで、非球状シードシリカ微粒子とは、非球状シリカ微粒子のうち、その表面にシリカを成長させることにより、本発明に係る疣状突起を有する非球状シリカ微粒子を製造するのに使用されるシリカ微粒子をいう。
The non-spherical silica fine particles prepared by the second method for producing the non-spherical silica sol are obtained by hydrolysis of a tetrafunctional silane compound such as tetraethoxysilane, and are composed of [SiO 4/2 ] units. It becomes a polysiloxane structure.

[First production method of non-spherical silica sol]
A first method for producing a non-spherical silica sol according to the present invention includes a non-spherical seed silica sol in which non-spherical seed silica fine particles are dispersed in a dispersion medium (hereinafter referred to as “Liquid A”) from a strong acid salt. In the presence of an electrolyte, an alkali silicate aqueous solution (hereinafter, this alkali silicate aqueous solution is referred to as “Liquid B”) is added to grow B particles with respect to 100 parts by mass of silica of liquor A. 50 to 2500 parts by mass of silica is added so that the ratio of the number of equivalents of alkali (EA) to the number of equivalents of electrolyte (EE) (EA / EE) in the liquid B is in the range of 0.4 to 8. It is. Here, the non-spherical seed silica fine particle is a silica used for producing non-spherical silica fine particles having the ridge-like projections according to the present invention by growing silica on the surface of the non-spherical silica fine particles. Refers to fine particles.
 以下、本発明の非球状シリカゾルの製造方法について具体的に説明する。
非球状シードシリカゾル(A液)
 A液については、動的光散乱法により測定される平均粒子径が3~200nmの範囲、短径/長径比が0.01~0.8の範囲、比表面積が15~800m2/gの範囲にある非球状シリカ微粒子が分散媒に分散してなる非球状シリカゾルが使用される。
Hereinafter, the method for producing the non-spherical silica sol of the present invention will be specifically described.
Non-spherical seed silica sol (A liquid)
For the liquid A, the average particle diameter measured by the dynamic light scattering method is in the range of 3 to 200 nm, the minor axis / major axis ratio is in the range of 0.01 to 0.8, and the specific surface area is 15 to 800 m 2 / g. A non-spherical silica sol obtained by dispersing non-spherical silica fine particles in a range in a dispersion medium is used.
 本発明の非球状シリカゾルの製造方法において、原料として使用される非球状シードシリカゾルの製造方法については、格別限定されるものではなく、市販の非球状シリカゾルまたは公知の非球状シリカゾルを適用することができる。公知の非球状シリカゾルは、例えば以下の製造方法(I)~(V)により得ることができる。
(I)水溶性珪酸塩の水溶液に対して珪酸液を添加して、SiO2/M2O[Mはアルカリ金属、第3級アンモニウム、第4級アンモニウムまたはグアニジンから選ばれる](モル比)が30~65の範囲の混合液を調製し、該混合液に60~200℃の温度で、再度珪酸液を断続的または連続的に添加することによりシリカゾルを調製し、該シリカゾルをpH7~9の範囲にて、60~98℃で加熱することを特徴とする異方形状シリカゾルの製造方法(特開2007-153671参照) 
(II)平均粒子径が3~25nmの範囲にあるシリカ微粒子が分散した、pHが2~8の範囲にあるシリカゾルに、該シリカゾルのシリカ固形分100重量部に対して、ポリ金属塩化合物を0.01~70重量部添加し、50~160℃で加熱することを特徴とする異方形状シリカゾルの製造方法(特開2007-153672参照)
(III)平均粒子径が3~20nmの範囲にあるシリカゾルを脱陽イオン処理してpH2~5の範囲に調整し、次いで脱陰イオン処理した後、アルカリ性水溶液を添加してpH7~9に調整した後、60~250℃で加熱することを特徴とする異方形状シリカゾルの製造方法(特開2007―145633参照)
(IV)珪酸液(a)にアルカリ性水溶液を添加してpHを10.0~12.0に調整し、60~150℃の温度条件下、珪酸液(b)と2価以上の水溶性金属塩との混合物を連続的にまたは断続的に添加することを特徴とする異方形状シリカゾルの製造方法(特開2007-153692参照)
(V)次の(1)および(2)の工程による異方形状シリカゾルの製造方法(WO2007/018069号参照)。
(1)珪酸塩を酸で中和して得られるシリカヒドロゲルを洗浄することにより、塩類を除去し、SiO2/M2O(M:Na,K,NH)のモル比が30~500となるようにアルカリを添加した後、60~200℃の範囲に加熱してシリカゾルを得る工程
(2)該シリカゾルをシードゾルとし、必要に応じてアルカリを加え、pH9~12.5、温度60~200℃の条件下、珪酸液を連続的にまたは断続的に添加する工程
 本発明方法においては、この様な原料非球状シリカゾルを必要に応じて、純水で希釈してシリカ固形分濃度を2~40%に調整することが望ましい。
In the method for producing a non-spherical silica sol of the present invention, the method for producing a non-spherical seed silica sol used as a raw material is not particularly limited, and a commercially available non-spherical silica sol or a known non-spherical silica sol may be applied. it can. A known non-spherical silica sol can be obtained, for example, by the following production methods (I) to (V).
(I) A silicic acid solution is added to an aqueous solution of a water-soluble silicate, and SiO 2 / M 2 O [M is selected from alkali metal, tertiary ammonium, quaternary ammonium or guanidine] (molar ratio) Is prepared by adding a silicic acid solution intermittently or continuously at a temperature of 60 to 200 ° C. to prepare a silica sol having a pH of 7 to 9 In the range of 60 to 98 ° C., and a method for producing an anisotropic silica sol (see JP2007-153671)
(II) In a silica sol having a pH of 2 to 8 in which silica fine particles having an average particle diameter of 3 to 25 nm are dispersed, a polymetal salt compound is added to 100 parts by weight of the silica solid content of the silica sol. Addition of 0.01 to 70 parts by weight and heating at 50 to 160 ° C. (see Japanese Patent Application Laid-Open No. 2007-153672)
(III) Silica sol having an average particle size in the range of 3 to 20 nm is decationized to adjust the pH to 2 to 5, then deanized, and then adjusted to pH 7 to 9 by adding an alkaline aqueous solution. And then heating at 60 to 250 ° C. (see Japanese Patent Application Laid-Open No. 2007-145633)
(IV) An alkaline aqueous solution is added to the silicic acid solution (a) to adjust the pH to 10.0 to 12.0, and the silicic acid solution (b) and a water-soluble metal having a valence of 2 or more under a temperature condition of 60 to 150 ° C. A method for producing an anisotropic shaped silica sol, wherein a mixture with a salt is added continuously or intermittently (see JP2007-153692A)
(V) A method for producing an anisotropic shaped silica sol according to the following steps (1) and (2) (see WO2007 / 018069).
(1) The silica hydrogel obtained by neutralizing silicate with an acid is washed to remove salts, and the molar ratio of SiO 2 / M 2 O (M: Na, K, NH 3 ) is 30 to 500. (2) Step of obtaining silica sol by heating in the range of 60 to 200 ° C. after adding alkali so that the pH becomes 9 to 12.5, temperature 60 to 200 ° C. Step of continuously or intermittently adding a silicic acid solution at 200 ° C. In the method of the present invention, such raw material non-spherical silica sol is diluted with pure water as necessary to obtain a silica solid content concentration of 2 It is desirable to adjust to ~ 40%.
 A液として使用する非球状シードシリカゾルについては、分散質である非球状シリカ微粒子の短径/長径比が0.01~0.8の範囲にあるシリカゾルであって、得ようとする非球状シリカゾルの分散質である非球状シリカ微粒子より平均粒子径が小さいものあるいは同等のものが使用される。短径/長径比のより好適な範囲は0.1~0.7であり、より一層好適な範囲は0.12~0.65である。 The non-spherical seed silica sol used as the liquid A is a silica sol having a short diameter / long diameter ratio of non-spherical silica fine particles as a dispersoid in the range of 0.01 to 0.8, and the non-spherical silica sol to be obtained Those having an average particle size smaller than or equivalent to that of the non-spherical silica fine particles which are the dispersoid of the above are used. A more preferable range of the minor axis / major axis ratio is 0.1 to 0.7, and an even more preferable range is 0.12 to 0.65.
 非球状シードシリカゾルの分散質である非球状シードシリカ微粒子については、動的光散乱法による平均粒子径が好適には3~200nmの範囲であり、より好適には5~150nmの範囲、さらに好適には10~120nmの範囲である。 With respect to the non-spherical seed silica fine particles that are the dispersoid of the non-spherical seed silica sol, the average particle diameter by the dynamic light scattering method is preferably in the range of 3 to 200 nm, more preferably in the range of 5 to 150 nm, and further preferably. Is in the range of 10 to 120 nm.
 また、非球状シードシリカ微粒子の比表面積については、例えば5~800m2/gの範囲あるものが好ましい。 The specific surface area of the non-spherical seed silica fine particles is preferably in the range of, for example, 5 to 800 m 2 / g.
 非球状シードシリカゾルの濃度は、非球状シードシリカ微粒子の粒子径によっても異なるが、シリカとして0.005~10質量%、さらには0.01~5質量%の範囲にあることが好ましい。シリカ濃度が0.005質量%未満の場合は、核粒子となる非球状シードシリカ微粒子が少なすぎて、珪酸アルカリ水溶液(B液)および/または電解質の供給速度を遅くする必要があり、また供給速度を低下させない場合は新たな微粒子が発生し、これが核粒子として作用するため、得られるゾルの粒子径分布がブロードになることがあり、非球状シリカゾルの調製上、非効率的となる。非球状シードシリカゾルの濃度が10質量%を越えると、濃度が高すぎて珪酸アルカリ水溶液および/または電解質を供給する際に核粒子同士が凝集することがあり、この場合も粒子径分布がブロードになると共に互いに付着した粒子が生成する傾向があるため、非球状シリカゾルの調製にとって好ましくない。 The concentration of the non-spherical seed silica sol varies depending on the particle diameter of the non-spherical seed silica fine particles, but is preferably in the range of 0.005 to 10% by mass, more preferably 0.01 to 5% by mass as silica. When the silica concentration is less than 0.005% by mass, the amount of non-spherical seed silica fine particles serving as core particles is too small, and it is necessary to slow down the supply rate of the alkali silicate aqueous solution (liquid B) and / or the electrolyte. If the speed is not lowered, new fine particles are generated and act as core particles, so that the particle size distribution of the obtained sol may be broad, which is inefficient in preparing the non-spherical silica sol. If the concentration of the non-spherical seed silica sol exceeds 10% by mass, the concentration may be too high and the core particles may aggregate when supplying the alkali silicate aqueous solution and / or the electrolyte. In this case also, the particle size distribution is broad. And tend to produce particles adhered to each other, which is undesirable for the preparation of non-spherical silica sols.
 非球状シードシリカゾルのpHは8~12、特に9. 5~115の範囲にあることが望ましい。pHが8未満の場合は、核粒子表面の反応性が低いため、供給する珪酸アルカリ(B液)が表面に析出する速度が遅く、このため未反応の珪酸アルカリが増加したり、新たな微粒子が発生し、これが核粒子として作用するために得られるゾルの粒子径分布がブロードになったり、凝集粒子が得られることがあり、非球状シリカゾルの効率的な生成には望ましくない。pHが12を越えると、シリカの溶解度が高くなるためシリカの析出が遅くなり、このため粒子成長が遅くなる傾向がある。 The pH of the non-spherical seed silica sol is 8-12, especially 9. Desirably, it is in the range of 5 to 115. When the pH is less than 8, the reactivity of the surface of the core particles is low, so that the supplied alkali silicate (liquid B) is deposited on the surface at a slow rate. As a result, unreacted alkali silicate increases or new fine particles Is generated, and the particle size distribution of the resulting sol may be broad or aggregated particles may be obtained, which is not desirable for the efficient production of a non-spherical silica sol. When the pH exceeds 12, the silica solubility increases, so that the silica deposition is delayed, and therefore the particle growth tends to be delayed.
 非球状シードシリカゾルのpH調整はアルカリ添加によって行うことができる。具体的には、NaOH、KOHなどのアルカリ金属水酸化物や、アンモニア水、第4級アンモニウムハイドロオキサイド、アミン化合物等を用いることができる。なお、上記非球状シードシリカゾルの調製時の温度には特に制限はなく、通常10~30℃の範囲である。
珪酸アルカリ水溶液(B液)
 本発明では、前記A液に、電解質と、珪酸アルカリ水溶液(B液)とを添加してシリカ微粒子の粒子成長を行う。電解質はあらかじめA液中に一部または全部を添加しておくこともできるが、B液の珪酸アルカリ水溶液と共に、それぞれ連続的にあるいは断続的に添加しても良い。
The pH adjustment of the non-spherical seed silica sol can be performed by adding an alkali. Specifically, alkali metal hydroxides such as NaOH and KOH, ammonia water, quaternary ammonium hydroxide, amine compounds, and the like can be used. The temperature at which the non-spherical seed silica sol is prepared is not particularly limited, and is usually in the range of 10 to 30 ° C.
Silicic acid alkali aqueous solution (liquid B)
In the present invention, an electrolyte and an alkali silicate aqueous solution (liquid B) are added to the liquid A to grow silica fine particles. The electrolyte can be partly or wholly added to the liquid A in advance, but may be added continuously or intermittently together with the alkali silicate aqueous solution of the liquid B.
 B液として使用する珪酸アルカリとしては、LiOH、NaOH、KOH、RbOH、CsOH、NHOH、第4級アンモニウムハイドライドなどの珪酸アルカリ塩が挙げられる。この中でも、珪酸ナトリウム(水硝子)、珪酸カリウム等は好適に用いることができる。また、テトラエチルオルソシリケート(TEOS)などの加水分解性有機化合物を過剰のNaOHなどを用いて加水分解して得られる珪酸アルカリ水溶液なども好適である。 Examples of the alkali silicate used as the liquid B include alkali silicate salts such as LiOH, NaOH, KOH, RbOH, CsOH, NH 4 OH, and quaternary ammonium hydride. Among these, sodium silicate (water glass), potassium silicate, etc. can be used suitably. In addition, an alkali silicate aqueous solution obtained by hydrolyzing a hydrolyzable organic compound such as tetraethylorthosilicate (TEOS) using excess NaOH or the like is also suitable.
  B液の珪酸アルカリ水溶液を添加する際の非球状シードシリカゾルの温度は40~150℃、さらには60~100℃の範囲にあることが望ましい。温度が40℃未満では、珪酸の反応速度が遅く、未反応の珪酸が多くなったり、所望の大きさの粒子が得られないことがある。非球状シードシリカゾルの温度が150℃を越えると、操作圧力が高くなり過ぎて装置費用が高くなると共に生産能力が低下し経済性が低下する問題がある。また150℃を越えると、反応速度、粒子成長速度を速める効果も実用的には小さい。 It is desirable that the temperature of the non-spherical seed silica sol when adding the alkaline silicate aqueous solution of the solution B is in the range of 40 to 150 ° C., more preferably 60 to 100 ° C. When the temperature is less than 40 ° C., the reaction rate of silicic acid is slow, and there are cases where unreacted silicic acid increases or particles having a desired size cannot be obtained. When the temperature of the non-spherical seed silica sol exceeds 150 ° C., there is a problem that the operating pressure becomes too high and the cost of the apparatus becomes high and the production capacity is lowered and the economy is lowered. When the temperature exceeds 150 ° C., the effect of increasing the reaction rate and particle growth rate is practically small.
 B液の珪酸アルカリ水溶液の添加量(シリカ換算)は、核粒子を成長させるときの温度や反応時間にもよるが、通常はA液中に含まれるシリカ100質量部に対して、50~2500質量部の範囲であることが好ましい。50質量部未満では、粒子成長自体が低調であるため、必要な表面粗度を示す非球状シリカゾルを効率的に得ることが容易ではない。2500質量部を超える場合は、核粒子の成長が進行し過ぎるために、表面が平坦化したシリカ微粒子となる傾向が大きくなる。B液のさらに好適な添加量(シリカ換算)は、80~1800質量部の範囲である。
電解質
 本発明に用いる電解質としては、従来公知の酸と塩基とからなり水に可溶の塩を用いることができる。特に、強酸の塩からなる電解質は、珪酸アルカリのアルカリを受容することができ、このとき核粒子の粒子成長に用いられる珪酸を生成するので好ましい。このような強酸の塩からなる水可溶性の電解質としては、硫酸、硝酸、塩酸などの強酸のナトリウム塩、カリウム塩、リチウム塩、ルビジウム塩、セシウム塩、アンモニウム塩、カルシウム塩、マグネシウム塩などが挙げられる。また、カリウム明礬、アンモニウム明礬等の硫酸の複塩である明礬も好適である。
The addition amount of the aqueous solution of alkali silicate in the B liquid (silica conversion) depends on the temperature and reaction time when growing the core particles, but is usually 50 to 2500 with respect to 100 parts by mass of silica contained in the A liquid. It is preferable that it is the range of a mass part. If the amount is less than 50 parts by mass, the particle growth itself is low, and it is not easy to efficiently obtain a non-spherical silica sol exhibiting the necessary surface roughness. When the amount exceeds 2500 parts by mass, the growth of the core particles proceeds excessively, and thus the tendency to become silica fine particles having a flattened surface increases. A more preferable amount of addition of B liquid (in terms of silica) is in the range of 80 to 1800 parts by mass.
Electrolyte As the electrolyte used in the present invention, a conventionally known acid and base salt which is soluble in water can be used. In particular, an electrolyte composed of a salt of a strong acid is preferable because it can accept alkali alkali silicate and at this time forms silicic acid used for the growth of core particles. Examples of water-soluble electrolytes composed of such strong acid salts include sodium salts, potassium salts, lithium salts, rubidium salts, cesium salts, ammonium salts, calcium salts, and magnesium salts of strong acids such as sulfuric acid, nitric acid, and hydrochloric acid. It is done. Alum which is a double salt of sulfuric acid such as potassium alum and ammonium alum is also suitable.
  上記電解質の量は、B液中に含まれるアルカリの当量数(EA)と電解質の当量数(EE)の比(EA/EE)が、0.4~8、特に0. 4~5の範囲にとなるようにすることが好ましい。比(EA/EE)が0.4未満の場合は、分散液中の電解質塩濃度が高すぎて、粒子が凝集することがある。比(EA/EE)が8を越えると、電解質の量が少ないため粒子の成長速度が不充分となり、従来の酸性珪酸液を供給して核粒子の粒子成長を行うのと変わるところがない。また比(EA/EE)が8を越えると、前記した電解質が珪酸アルカリのアルカリを受容することにより、核粒子の粒子成長に用いられる珪酸の生成が少なくなり、所望の粒子径の粒子を得ることができないことがある。 The amount of the electrolyte is such that the ratio (EA / EE) of the number of alkali equivalents (EA) to the number of equivalents of electrolyte (EE) (EA / EE) contained in the liquid B is 0.4 to 8, particularly 0.8. It is preferable to be in the range of 4-5. When the ratio (EA / EE) is less than 0.4, the electrolyte salt concentration in the dispersion may be too high and the particles may aggregate. When the ratio (EA / EE) exceeds 8, the amount of electrolyte is small and the particle growth rate becomes insufficient, and there is no difference from the conventional growth of core particles by supplying an acidic silicic acid solution. On the other hand, when the ratio (EA / EE) exceeds 8, the above-mentioned electrolyte accepts alkali silicate alkali, so that generation of silicic acid used for particle growth of core particles is reduced, and particles having a desired particle diameter are obtained. There are times when you can't.
  前記電解質は、分散液中の電解質の濃度が0.05~10質量%の範囲にあることが好ましい。また、好適には0.1~5質量%の範囲が推奨される。このような電解質は、その一部または全部を珪酸アルカリ水溶液(B液)とは別個に添加して良いし、珪酸アルカリ水溶液(B液)と共にそれぞれ連続的にあるいは断続的に添加してもよい。このときの電解質の量も、珪酸アルカリの量と前記した当量数の比の関係にあることが好ましい。 The electrolyte preferably has a concentration of the electrolyte in the dispersion in the range of 0.05 to 10% by mass. A range of 0.1 to 5% by mass is recommended. Such an electrolyte may be partly or wholly added separately from the alkali silicate aqueous solution (B solution), or may be added continuously or intermittently with the alkali silicate aqueous solution (B solution). . The amount of electrolyte at this time is also preferably in the relationship between the amount of alkali silicate and the ratio of the number of equivalents described above.
 なお、A液に添加するB液については、必要に応じて、水で希釈したりあるいは濃縮してSiOの濃度が0.5~10質量%、さらには1~7質量%の範囲となるように調節することが好ましい。SiO2濃度が0.5質量%未満の場合は、濃度が低すぎて生産効率が低く、また製品としての使用に際して濃縮を必要とすることがある。他方、SiO2濃度が10質量%を越えると、シリカ粒子の凝集が起きる傾向があり、均一な粒子径のシリカ粒子が単分散したゾルが得られないことがある。また、B液に電解質または電解質と水を添加してから、A液に供給する場合も、その系中のSiOの濃度としては、上記範囲が推奨される。 The B liquid added to the A liquid is diluted with water or concentrated as necessary, so that the SiO 2 concentration is in the range of 0.5 to 10% by mass, more preferably 1 to 7% by mass. It is preferable to adjust so that. When the SiO 2 concentration is less than 0.5% by mass, the concentration is too low, the production efficiency is low, and concentration may be required for use as a product. On the other hand, when the SiO 2 concentration exceeds 10% by mass, the silica particles tend to aggregate, and a sol in which silica particles having a uniform particle diameter are monodispersed may not be obtained. Also, when the electrolyte or electrolyte and water are added to the B solution and then supplied to the A solution, the above range is recommended as the concentration of SiO 2 in the system.
  A液にB液を供給して核粒子を成長させる間、所望によりアルカリまたは酸を添加しながら分散液のpHを8~13、好ましくは10~12の範囲に維持しても良い。添加するアルカリとしては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、アンモニア水、あるいはトリエチルアミン、トリエタノールアミンなどのアミン類を用いることができ、酸としては塩酸、硝酸、硫酸、あるいは酢酸などの有機酸を用いることができる。 供給 While supplying the B liquid to the A liquid and growing the core particles, the pH of the dispersion may be maintained in the range of 8 to 13, preferably 10 to 12, while adding an alkali or an acid if desired. As the alkali to be added, sodium hydroxide, potassium hydroxide, lithium hydroxide, aqueous ammonia, or amines such as triethylamine, triethanolamine can be used, and acids such as hydrochloric acid, nitric acid, sulfuric acid, or acetic acid can be used. Organic acids can be used.
 以上のように、強酸の塩からなる電解質の存在下、A液にB液を添加して非球状シードシリカ微粒子を成長させると、表面に複数の疣状突起を有する非球状シリカ微粒子が得られる。 As described above, when non-spherical seed silica fine particles are grown by adding the B liquid to the A liquid in the presence of an electrolyte composed of a strong acid salt, non-spherical silica fine particles having a plurality of hook-shaped protrusions on the surface are obtained. .
  B液に由来するシリカについては、核粒子表面に析出するか、あるいは微小シリカ粒子として系中に析出するものと見られが、これらはいずれも相対的に大きな核粒子と電位差があり、核粒子との反応性が高い。このことが核粒子表面を起伏に富ませ、疣状突起を生成させる要因であると推察される。 About the silica derived from B liquid, it is thought that it precipitates on the surface of a core particle, or precipitates in a system as a fine silica particle, but these all have a potential difference with a relatively big core particle, Is highly reactive. This is presumed to be a factor that causes the surface of the nuclear particle to be undulated and generate hook-shaped projections.
  なお、核粒子に対する、電解質および珪酸アルカリの使用量が、本発明で規定される当量比範囲にある場合、シリカ濃度が高く、粒子径が小さい程、電解質による凝集が起こり易いために、低濃度での粒子成長が望ましい。 When the amount of electrolyte and alkali silicate used in the core particles is within the equivalent ratio range defined in the present invention, the silica concentration is high, and the smaller the particle diameter, the easier the aggregation by the electrolyte, so the low concentration Grain growth at is desirable.
 また、A液にB液および電解質を添加する場合には、40~150℃の温度範囲で15分~10時間かけてそれぞれ添加することが好ましい。このような条件で添加すると、粒子の安定性の点で好ましい。
熟成・脱イオン
 B液の添加後、必要に応じてこれを熟成する。熟成温度は40~150℃、好ましくは60~100℃の範囲であり、熟成時間は熟成温度によっても異なるが30分~5時間程度である。このような熟成を行うことによって粒子径がより均一で、安定性に優れたシリカゾルを得ることができる。
In addition, when adding the B liquid and the electrolyte to the A liquid, it is preferable to add them over a temperature range of 40 to 150 ° C. over 15 minutes to 10 hours. Addition under such conditions is preferred in terms of particle stability.
After adding the aging / deionized B solution, this is aged as necessary. The aging temperature is in the range of 40 to 150 ° C., preferably 60 to 100 ° C., and the aging time is about 30 minutes to 5 hours, depending on the aging temperature. By performing such aging, a silica sol having a more uniform particle diameter and excellent stability can be obtained.
 また、所望により、分散液の温度を概ね40℃以下に冷却した後、分散液中のイオンを除去しても良い。分散液中のイオンを除去する方法としては従来公知の方法を採用することができ、例えば、限外濾過膜法、イオン交換樹脂法、イオン交換膜法などの方法が挙げられる。脱イオンは、残存するアニオン量がSiOの0.01質量%以下、好ましくは0.005質量%以下とすることが好ましい。残存イオン量が0.01質量%以下であれば、後述する濃度にもよるが、充分な安定性を備えたシリカゾルを得ることができ、多くの用途において不純物の悪影響が見られない。 If desired, ions in the dispersion may be removed after the temperature of the dispersion is cooled to approximately 40 ° C. or lower. A conventionally known method can be adopted as a method for removing ions in the dispersion, and examples thereof include a method such as an ultrafiltration membrane method, an ion exchange resin method, and an ion exchange membrane method. In the deionization, it is preferable that the amount of remaining anions is 0.01% by mass or less, preferably 0.005% by mass or less of SiO 2 . If the amount of residual ions is 0.01% by mass or less, although depending on the concentration described later, a silica sol having sufficient stability can be obtained, and there are no adverse effects of impurities in many applications.
  得られたシリカゾルは、必要に応じて濃縮する。濃縮方法としては通常、限外濾過膜法、蒸留法あるいはこれらの組合せからなる方法などが採用され、濃縮後のシリカゾルの濃度はSiOに換算して概ね1~50質量%の範囲である。当該シリカゾルは、使用に際して適宜希釈して、あるいはさらに濃縮して用いられる。
[非球状シリカゾルの第2の製造方法]
 アルコキシシランを原料として調製される非球状シリカゾルの製造方法としては、水溶性有機溶媒および水を含む混合溶媒の温度範囲を30~150℃に維持し、そこに、1)下記一般式(1)で表される4官能性シラン化合物の水溶性有機溶媒溶液および2)アルカリ触媒溶液とを同時に、連続的または断続的に添加し、添加終了後、前記混合溶媒に前記1)および2)を添加して得られる液状体をさらに30~150℃の温度範囲に維持して、熟成することにより、該4官能性シラン化合物を加水分解縮合させてシリカゾルを製造するにあたり、該4官能性シラン化合物に対する水のモル比を2~4の範囲として、加水分解縮合を行う製造方法が好適に使用される。この製造方法によると、[SiO4/2]単位から構成される、表面に複数の疣状突起を有する非球状シリカ微粒子が分散媒に分散してなる非球状シリカゾルが得られる。
The obtained silica sol is concentrated as necessary. As the concentration method, an ultrafiltration membrane method, a distillation method, or a combination thereof is usually employed, and the concentration of the silica sol after concentration is generally in the range of 1 to 50% by mass in terms of SiO 2 . The silica sol is appropriately diluted during use or further concentrated.
[Second production method of non-spherical silica sol]
As a method for producing a non-spherical silica sol prepared using alkoxysilane as a raw material, the temperature range of a mixed solvent containing a water-soluble organic solvent and water is maintained at 30 to 150 ° C., and 1) the following general formula (1) A water-soluble organic solvent solution of a tetrafunctional silane compound represented by the formula (2) and 2) an alkali catalyst solution are added simultaneously or intermittently. After the addition is completed, the above 1) and 2) are added to the mixed solvent. The liquid obtained is further maintained in a temperature range of 30 to 150 ° C. and aged to hydrolyze and condense the tetrafunctional silane compound to produce a silica sol. A production method in which hydrolysis condensation is carried out with a water molar ratio in the range of 2 to 4 is preferably used. According to this production method, a non-spherical silica sol composed of [SiO 4/2 ] units and having non-spherical silica fine particles having a plurality of hook-shaped protrusions on the surface dispersed in a dispersion medium is obtained.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 ((1)式中、Rは炭素数2~4のアルキル基である。)
 特に非球状シリカ微粒子を得るためには、水溶性有機溶媒/水混合溶媒中、30~150℃の温度範囲にて、4官能性シラン化合物に対しモル比で2以上、4以下の量の水により4官能性シラン化合物を加水分解縮合することが必要である。
(In the formula (1), R is an alkyl group having 2 to 4 carbon atoms.)
In particular, in order to obtain non-spherical silica fine particles, an amount of water in a molar ratio of 2 to 4 with respect to the tetrafunctional silane compound in a water-soluble organic solvent / water mixed solvent at a temperature range of 30 to 150 ° C. It is necessary to hydrolyze and condense the tetrafunctional silane compound.
 第2の製造方法では、上記条件下において、4官能性シラン化合物の有する4つのアルコキシ基の反応速度に違いが生じるため、加水分解縮合初期に非球状の歪んだ形状のシリカ微粒子(一次粒子)が形成され、その様な歪んだ一次粒子が二次凝集する結果、表面に疣状突起を有するシリカ微粒子が生成するものと推察される。 In the second production method, since the reaction rate of the four alkoxy groups of the tetrafunctional silane compound varies under the above conditions, the silica fine particles (primary particles) having a non-spherical distorted shape at the initial stage of hydrolysis condensation As a result of the secondary aggregation of such distorted primary particles, it is presumed that silica fine particles having ridge-like projections on the surface are generated.
 前記4官能性シラン化合物に対する水のモル比が2未満の場合は、4官能性シラン化合物の有する4個のアルコキシ基が完全に加水分解するモル量より少なくなるため、反応が充分に進行せず、反応中に凝集または沈殿が生じ易くなる。また、4官能性シラン化合物に対する水のモル比が4より大きい場合は、水の量が過剰であるためアルコキシ基の反応速度に、充分な差異が生じないため結果的に球状で表面の起伏に乏しいシリカ微粒子が生成し易くなる。前記4官能性シラン化合物対する水のモル比の範囲については、好適には2.0~3.8の範囲が推奨される。さらに好適には2.0~3.6の範囲が推奨される。 When the molar ratio of water to the tetrafunctional silane compound is less than 2, the reaction does not proceed sufficiently because the four alkoxy groups of the tetrafunctional silane compound are less than the molar amount of complete hydrolysis. , Aggregation or precipitation is likely to occur during the reaction. In addition, when the molar ratio of water to the tetrafunctional silane compound is larger than 4, since the amount of water is excessive, there is no sufficient difference in the reaction rate of the alkoxy group, resulting in a spherical surface undulation. It becomes easy to produce poor silica fine particles. The range of the molar ratio of water to the tetrafunctional silane compound is preferably in the range of 2.0 to 3.8. A range of 2.0 to 3.6 is more preferable.
 [4官能性シラン化合物]
 本発明に係る製造方法で使用される4官能性シラン化合物とは、次の一般式(1)で表されるアルコキシシラン化合物を意味する。
[Tetrafunctional silane compound]
The tetrafunctional silane compound used in the production method according to the present invention means an alkoxysilane compound represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 ((1)式中、Rは炭素数2~4のアルキル基である。)
 前記4官能性シラン化合物としては、具体的には、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシランなどが挙げられる。炭素数5以上のアルコキシシランは、アルコキシ基の立体障害により、実用的な加水分解速度が得られない場合がある。また、テトラメトキシシランの場合は、加水分解反応の反応速度がテトラエトキシシランの場合より速く、実用的にシリカを合成するには望ましくない。実用上は、テトラエトキシシランの使用が推奨される。
(In the formula (1), R is an alkyl group having 2 to 4 carbon atoms.)
Specific examples of the tetrafunctional silane compound include tetraethoxysilane, tetrapropoxysilane, and tetrabutoxysilane. An alkoxysilane having 5 or more carbon atoms may not have a practical hydrolysis rate due to steric hindrance of the alkoxy group. In the case of tetramethoxysilane, the reaction rate of the hydrolysis reaction is faster than that of tetraethoxysilane, which is not desirable for practically synthesizing silica. For practical use, tetraethoxysilane is recommended.
 なお、本発明に係る製造方法において、通常、4官能性シラン化合物は、水溶性有機溶媒に溶解させて使用することが望ましい。水溶性有機溶媒に溶解させて使用するとにより、雰囲気中の水分の影響を低減することができる。4官能性シラン化合物を溶解する水溶性有機溶媒としては、下記の水溶性有機溶媒と同様のものが挙げられる。具体的には、4官能性シラン化合物の水溶性有機溶媒溶液中の4官能性シラン化合物の濃度が、5~90質量%の範囲のものが好適に使用される。5質量%未満では、反応液中のシリカ濃度が低くなり、実用的とはいえない。90質量%を超える場合は、反応条件にもよるが、反応液中のシリカ濃度が高くなりすぎて、シリカの凝集や沈殿が生じ易くなる。該4官能性シラン化合物の濃度については、好適には10~60質量%の範囲が推奨される。また、さらに好適には20~40質量%の範囲が推奨される。 In the production method according to the present invention, it is usually desirable to use the tetrafunctional silane compound by dissolving it in a water-soluble organic solvent. When used by dissolving in a water-soluble organic solvent, the influence of moisture in the atmosphere can be reduced. Examples of the water-soluble organic solvent for dissolving the tetrafunctional silane compound include the same water-soluble organic solvents as described below. Specifically, those having a concentration of the tetrafunctional silane compound in the water-soluble organic solvent solution of the tetrafunctional silane compound in the range of 5 to 90% by mass are preferably used. If it is less than 5% by mass, the silica concentration in the reaction solution becomes low, which is not practical. When it exceeds 90% by mass, although depending on the reaction conditions, the silica concentration in the reaction solution becomes too high and silica aggregation and precipitation are likely to occur. The concentration of the tetrafunctional silane compound is preferably in the range of 10 to 60% by mass. More preferably, the range of 20 to 40% by mass is recommended.
 なお、4官能性シラン化合物の水溶性有機溶媒溶液として、好適にはテトラエトキシシランのエタノール溶液の使用が推奨される。 Note that it is preferable to use an ethanol solution of tetraethoxysilane as the water-soluble organic solvent solution of the tetrafunctional silane compound.
 [水溶性有機溶媒]
 本発明に係る製造方法で使用される水溶性有機溶媒には、前記一般式(1)で表される4官能性シラン化合物を溶解し、水溶性を示す有機溶媒が含まれる。この様な水溶性有機溶媒の例としては、エタノール、イソプロパノール、t-ブタノールなどを挙げることができる。水溶性有機溶媒の選択については、使用する4官能性シラン化合物との相溶性に優れるものが好適に使用される。
[Water-soluble organic solvent]
The water-soluble organic solvent used in the production method according to the present invention includes an organic solvent that dissolves the tetrafunctional silane compound represented by the general formula (1) and exhibits water solubility. Examples of such water-soluble organic solvents include ethanol, isopropanol, t-butanol and the like. About selection of a water-soluble organic solvent, what is excellent in compatibility with the tetrafunctional silane compound to be used is used suitably.
 [水溶性有機溶媒と水の混合溶媒]
 水溶性有機溶媒と水の混合溶媒に含まれる水分量については、アルカリ触媒溶液が水分を含有しない場合は、4官能性シラン化合物に対する水のモル比が前記範囲内になる量であることが必要となる。また、アルカリ触媒溶液が水分を含有する場合にあっては、前記混合溶媒に含まれる水分量とアルカリ触媒溶液に含まれる水分量との合計量が、4官能性シラン化合物に対する水のモル比が前記範囲内になる量であることが必要となる。
[A mixed solvent of water-soluble organic solvent and water]
Regarding the amount of water contained in the mixed solvent of the water-soluble organic solvent and water, when the alkali catalyst solution does not contain water, it is necessary that the molar ratio of water to the tetrafunctional silane compound is within the above range. It becomes. When the alkali catalyst solution contains water, the total amount of water contained in the mixed solvent and water contained in the alkali catalyst solution is the molar ratio of water to the tetrafunctional silane compound. The amount needs to be within the above range.
 前記混合溶媒についてはこの前提を満たしたものが使用されるが、望ましくは水溶性有機溶媒の濃度が30~95質量%の範囲(水分が5~70質量%の範囲)のものが使用される。水溶性有機溶媒の割合が30質量%未満の場合(水分が70質量%以上)は、4官能性シラン化合物の量や加水分解速度によるが、添加された4官能性シラン化合物と混合溶媒が混ざり難くなり、4官能性シラン化合物がゲル化する場合がある。また、水溶性有機溶媒の割合が95質量%を超える場合(水分が5質量%未満)は、加水分解に使用する水分が過少となる場合がある。水溶性有機溶媒と水の混合溶媒における水溶性有機溶媒の割合については、好適には40~80質量%の範囲が推奨される。また、さらに好適には50~70質量%の範囲が推奨される。 As the mixed solvent, those satisfying this premise are used, but preferably those having a water-soluble organic solvent concentration in the range of 30 to 95% by mass (moisture in the range of 5 to 70% by mass). . When the proportion of the water-soluble organic solvent is less than 30% by mass (moisture is 70% by mass or more), depending on the amount of the tetrafunctional silane compound and the hydrolysis rate, the added tetrafunctional silane compound and the mixed solvent are mixed. It becomes difficult and the tetrafunctional silane compound may be gelled. Moreover, when the ratio of the water-soluble organic solvent exceeds 95% by mass (moisture is less than 5% by mass), the water used for hydrolysis may be too small. The ratio of the water-soluble organic solvent in the mixed solvent of water-soluble organic solvent and water is preferably in the range of 40 to 80% by mass. More preferably, the range of 50 to 70% by mass is recommended.
 [アルカリ触媒]
 本発明に係る製造方法で使用されるアルカリ触媒としては、アンモニア、アミン、アルカリ金属水素化物、第4級アンモニウム化合物、アミン系カップリング剤など、塩基性を示す化合物が用いられる。なお、触媒としてアルカリ金属水素化物を用いることもできるが、前記アルコキシシランのアルコキシ基の加水分解を促進し、このため得られる粒子中に残存アルコキシ基(炭素)が減少しより硬いものとなるため、研磨速度は高いもののスクラッチが発生する場合があり、さらにナトリウム水素化物を使用した場合は、Naの含有量が高くなる問題がある。
[Alkali catalyst]
As the alkali catalyst used in the production method according to the present invention, basic compounds such as ammonia, amines, alkali metal hydrides, quaternary ammonium compounds and amine coupling agents are used. Although an alkali metal hydride can be used as a catalyst, it promotes hydrolysis of the alkoxy group of the alkoxysilane, and therefore, the remaining alkoxy groups (carbon) are reduced in the resulting particles and become harder. Although the polishing rate is high, scratches may occur, and when sodium hydride is used, there is a problem that the content of Na becomes high.
 アルカリ触媒の使用量については、所望の加水分解速度が得られる限り限定されるものではないが、通常は、4官能性シラン化合物1モル当たり、0.005~1モルの範囲で添加されることが好ましい。さらに好ましくは0.01~0.8モルの範囲となるように添加されていることが推奨される。 The amount of the alkali catalyst used is not limited as long as the desired hydrolysis rate can be obtained, but it is usually added in the range of 0.005 to 1 mol per mol of the tetrafunctional silane compound. Is preferred. More preferably, it is recommended to be added so as to be in the range of 0.01 to 0.8 mol.
 なお、アルカリ触媒は、通常は水および/または水溶性有機溶媒で希釈して、アルカリ触媒溶液として使用することが好ましい。なお、この水溶性有機触媒に含まれる水分についても、加水分解に寄与するものであるので、当然に加水分解に使用される水分量に算入されるものである。 The alkali catalyst is preferably diluted with water and / or a water-soluble organic solvent and used as an alkali catalyst solution. In addition, since the water contained in this water-soluble organic catalyst also contributes to hydrolysis, it is naturally included in the amount of water used for hydrolysis.
 通常は、アルカリ触媒溶液におけるアルカリ触媒濃度については、0.1~20質量%の範囲が好ましい。0.1質量%未満では、実用的な触媒機能が得られない場合がある。また、20質量%以上の場合、触媒機能が平衡に達する場合が多く、過剰に使用することになる場合がある。 Usually, the alkali catalyst concentration in the alkali catalyst solution is preferably in the range of 0.1 to 20% by mass. If it is less than 0.1% by mass, a practical catalytic function may not be obtained. In addition, when the amount is 20% by mass or more, the catalyst function often reaches an equilibrium and may be used excessively.
 アルカリ触媒溶液におけるアルカリ触媒濃度については、より好適には、1~15質量%の範囲が推奨される。さらに好適には、2~12質量%の範囲が推奨される。 The alkali catalyst concentration in the alkali catalyst solution is more preferably in the range of 1 to 15% by mass. More preferably, the range of 2 to 12% by mass is recommended.
 アルカリ触媒については、例えば、アンモニア水溶液、アンモニウム水溶液とエタノールの混合物などが好適に使用できる。 As the alkali catalyst, for example, an aqueous ammonia solution or a mixture of an aqueous ammonium solution and ethanol can be suitably used.
 [製造工程]
 本発明に係るシリカゾルの好適な製造方法について以下に述べるが、本発明に係るシリカゾルの製造方法は、これに限定されるものではない。前記水溶性有機溶媒と水の混合溶媒の温度範囲を30~150℃に維持し、1)4官能性シラン化合物の水溶性有機溶媒溶液および2)アルカリ触媒の水溶液とを同時に、連続的または断続的に30分から20時間かけて添加する。前記温度範囲については、30℃未満では、加水分解縮合が充分に進行しないため望ましくない。混合溶媒の沸点を超える場合は、オートクレーブなどの耐圧容器を用いて行う事ができるが、150℃を超える場合は、非常に高い圧力がかかるため工業的に望ましくない。
[Manufacturing process]
Although the suitable manufacturing method of the silica sol which concerns on this invention is described below, the manufacturing method of the silica sol which concerns on this invention is not limited to this. The temperature range of the mixed solvent of water-soluble organic solvent and water is maintained at 30 to 150 ° C., and 1) a water-soluble organic solvent solution of a tetrafunctional silane compound and 2) an aqueous solution of an alkali catalyst are simultaneously, continuously or intermittently. For 30 minutes to 20 hours. Regarding the temperature range, if it is less than 30 ° C., hydrolysis condensation does not proceed sufficiently, which is not desirable. When it exceeds the boiling point of the mixed solvent, it can be carried out using a pressure-resistant vessel such as an autoclave. However, when it exceeds 150 ° C., a very high pressure is applied, which is not industrially desirable.
 この温度範囲については好適には40~100℃の範囲が推奨される。また、さらに好適には、50~80℃の範囲が推奨される。添加にかける前記の所要時間範囲については、好適には1~15時間が推奨される。また、さらに好適には、2~10時間が推奨される。 For this temperature range, a range of 40-100 ° C is recommended. More preferably, the range of 50 to 80 ° C. is recommended. With respect to the required time range for the addition, 1 to 15 hours are preferably recommended. More preferably, 2 to 10 hours are recommended.
 前記1)4官能性シラン化合物の水溶性有機溶媒溶液および2)アルカリ触媒の水溶液については、両者を同時に、連続的にまたは断続的に30分から20時間かけて、前記水溶性有機溶媒と水の混合溶媒に添加することが好ましい。両者の全量を一時に一括添加した場合、加水分解縮合が急激に進行するためゲル状物の発生を招き、シリカ微粒子を得ることができない。 For 1) the water-soluble organic solvent solution of the tetrafunctional silane compound and 2) the aqueous solution of the alkali catalyst, both the water-soluble organic solvent and water are used simultaneously, continuously or intermittently for 30 minutes to 20 hours. It is preferable to add to a mixed solvent. When the total amount of both is added all at once, hydrolytic condensation proceeds rapidly, resulting in the generation of a gel-like substance and silica fine particles cannot be obtained.
 本発明に係る製造方法では、前記の通り、4官能性シラン化合物の反応速度の特性を利用してシリカゾルを調製するものである。例えばテトラメトキシシランを使用した場合は、その加水分解反応は、テトラエトキシシランの場合に比べて速いため、テトラエトキシシランの様にシリカゾルを形成することは容易ではない。 In the production method according to the present invention, as described above, the silica sol is prepared by utilizing the reaction rate characteristics of the tetrafunctional silane compound. For example, when tetramethoxysilane is used, it is not easy to form a silica sol like tetraethoxysilane because the hydrolysis reaction is faster than that of tetraethoxysilane.
 加水分解縮合に必要な成分の添加が終了した後、所望により30~150℃にて、0.5~10時間の範囲で維持し、熟成することが好ましい。例えば、未反応の4官能性シラン化合物が残存していた場合、熟成することにより、未反応の4官能性シラン化合物の反応を促進し、完結させることができる。なお、未反応の4官能性シラン化合物の残存量によっては、経時でシリカの凝集や沈殿が生じる場合がある。熟成時の前記温度範囲については好適には40~100℃の範囲が推奨される。また、さらに好適には、50~80℃の範囲が推奨される。前記熟成時間範囲については、好適には1~9時間が推奨される。また、さらに好適には、2~8時間が推奨される。
得られたシリカゾルは、必要に応じて濃縮する。濃縮方法としては通常、限外濾過膜法、蒸留法あるいはこれらの組合せからなる方法などが採用され、濃縮後のシリカゾルの濃度はSiOに換算して概ね1~50質量%の範囲である。当該シリカゾルは、使用に際して適宜希釈して、あるいはさらに濃縮して用いられる。

オルガノゾル
 本発明の非球状シリカゾルは、有機溶媒で置換することによってオルガノゾルを製造することができる。置換方法としては従来公知の方法を採用することができ、有機溶媒の沸点が概ね水より高い場合には、有機溶媒を加えて蒸留することによって得ることができる。また、有機溶媒の沸点が低い場合には本願出願人の出願による特開昭59-8614号公報に開示した限外濾過膜法などによって得ることができる。得られるオルガノゾルの濃度はSiO2に換算して1~50重%の範囲である。また、このオルガノゾルは、使用に際して適宜希釈して、あるいはさらに濃縮して用いることができる。
[研磨材および研磨用組成物]
 本発明の非球状シリカゾルは研磨材および研磨用組成物として有用である。
After completion of the addition of the components necessary for the hydrolytic condensation, it is preferably aged at 30 to 150 ° C. for 0.5 to 10 hours if desired. For example, when an unreacted tetrafunctional silane compound remains, the reaction of the unreacted tetrafunctional silane compound can be promoted and completed by aging. Depending on the remaining amount of the unreacted tetrafunctional silane compound, silica may aggregate or precipitate over time. A temperature range of 40 to 100 ° C. is recommended for the temperature range during aging. More preferably, the range of 50 to 80 ° C. is recommended. The aging time range is preferably 1 to 9 hours. More preferably, 2 to 8 hours are recommended.
The obtained silica sol is concentrated as necessary. As the concentration method, an ultrafiltration membrane method, a distillation method, or a combination thereof is usually employed, and the concentration of the silica sol after concentration is generally in the range of 1 to 50% by mass in terms of SiO 2 . The silica sol is appropriately diluted during use or further concentrated.

Organosol The non-spherical silica sol of the present invention can be produced by substituting with an organic solvent. A conventionally known method can be employed as the substitution method. When the boiling point of the organic solvent is generally higher than that of water, it can be obtained by adding an organic solvent and performing distillation. Further, when the boiling point of the organic solvent is low, it can be obtained by the ultrafiltration membrane method disclosed in Japanese Patent Application Laid-Open No. 59-8614 filed by the applicant of the present application. The concentration of the organosol obtained is in the range of 1 to 50% by weight in terms of SiO 2 . In addition, this organosol can be used after being appropriately diluted or further concentrated.
[Abrasive and polishing composition]
The non-spherical silica sol of the present invention is useful as an abrasive and a polishing composition.
 具体的には、本発明の非球状シリカゾルは、それ自体で研磨材として適用可能なものであり、さらには、他の成分(研磨促進剤等)とともに通常の研磨用組成物を構成することも可能である。 Specifically, the non-spherical silica sol of the present invention can be applied as an abrasive by itself, and can also constitute a normal polishing composition together with other components (such as a polishing accelerator). Is possible.
 本発明に係る研磨用組成物は、前記した非球状シリカ微粒子が溶媒に分散したものである。溶媒としては通常、水を用いるが、必要に応じてメチルアルコール、エチルアルコール、イソプロピルアルコール等のアルコール類を用いることができ、他にエーテル類、エステル類、ケトン類など水溶性の有機溶媒を用いることができる。研磨用組成物中の非球状シリカ微粒子の濃度は2~50重量%、さらには5~30重量%の範囲にあることが好ましい。濃度が2重量%未満の場合は、基材や絶縁膜の種類によっては濃度が低すぎて研磨速度が遅く生産性が問題となることがある。シリカ粒子の濃度が50重量%を越えると研磨材の安定性が不充分となり、研磨速度や研磨効率がさらに向上することもなく、また研磨処理のために分散液を供給する工程で乾燥物が生成して付着することがあり傷(スクラッチ)発生の原因となることがある。 The polishing composition according to the present invention is obtained by dispersing the above-mentioned non-spherical silica fine particles in a solvent. As the solvent, water is usually used, but alcohols such as methyl alcohol, ethyl alcohol, and isopropyl alcohol can be used as necessary, and water-soluble organic solvents such as ethers, esters, and ketones are also used. be able to. The concentration of the non-spherical silica fine particles in the polishing composition is preferably in the range of 2 to 50% by weight, more preferably 5 to 30% by weight. If the concentration is less than 2% by weight, the concentration may be too low depending on the type of substrate or insulating film, resulting in a slow polishing rate and productivity. If the concentration of silica particles exceeds 50% by weight, the stability of the abrasive will be insufficient, the polishing rate and the polishing efficiency will not be further improved, and the dried product will be removed in the step of supplying the dispersion for polishing treatment. It may be generated and attached, which may cause scratches.
  本発明に係る研磨用組成物には、被研磨材の種類によっても異なるが、必要に応じて従来公知の過酸化水素、過酢酸、過酸化尿素などおよびこれらの混合物を添加して用いることができる。このような過酸化水素等を添加して用いると被研磨材が金属の場合には効果的に研磨速度を向上させることができる。また、必要に応じて塩酸、硫酸、硝酸、リン酸、ポリリン酸、アミド硫酸、フッ酸等の酸、あるいはこれら酸のナトリウム塩、カリウム塩、アンモニウム塩およびこれらの混合物などを添加して用いることができる。この場合、複数種の材質の被研磨材を研磨する際に、特定成分の被研磨材の研磨速度を速めたり、遅くすることによって、最終的に平坦な研磨面を得ることができる。 The polishing composition according to the present invention varies depending on the type of the material to be polished, but it may be used by adding a conventionally known hydrogen peroxide, peracetic acid, urea peroxide, or a mixture thereof as necessary. it can. When such hydrogen peroxide or the like is added and used, when the material to be polished is a metal, the polishing rate can be effectively improved. If necessary, add acid such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, polyphosphoric acid, amidosulfuric acid, hydrofluoric acid or the like, or add sodium salt, potassium salt, ammonium salt or a mixture thereof. Can do. In this case, when a plurality of kinds of materials to be polished are polished, a flat polishing surface can be finally obtained by increasing or decreasing the polishing rate of the material to be polished having a specific component.
  その他の添加剤として、例えば、金属被研磨材表面に不動態層あるいは溶解抑制層を形成して基材の浸食を防止するためにイミダゾール、ベンゾトリアゾール、ベンゾチアゾールなどを用いることができる。また、上記不動態層を攪乱するためにクエン酸、乳酸、酢酸、シュウ酸、フタル酸、クエン酸等の有機酸あるいはこれらの有機酸塩などの錯体形成材を用いることもできる。有機酸としては、その他に、カルボン酸、有機リン酸、アミノ酸等が挙げられる。カルボン酸の例としては、酢酸、グリコール酸、アスコルビン酸等の一価カルボン酸、蓚酸、酒石酸等の二価カルボン酸、クエン酸等の三価カルボン酸が挙げられ、有機リン酸としては、2-アミノエチルホスホン酸、1-ヒドロキシエチリデン-1,1-ジホスホン酸、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)等が挙げられる。また、アミノ酸としては、グリシン、アラニン等が挙げられる。これらの中でも、スクラッチ低減の観点から、無機酸、カルボン酸および有機リン酸が好ましく、例えば、塩酸、硝酸、硫酸、リン酸、ポリリン酸、グリコール酸、蓚酸、クエン酸、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラ(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)が適している。これらpHを調整するための酸として使用可能である。 イ ミ ダ ゾ ー ル As other additives, for example, imidazole, benzotriazole, benzothiazole and the like can be used in order to form a passive layer or a dissolution inhibiting layer on the surface of the metal polishing material to prevent erosion of the substrate. In order to disturb the passive layer, a complex forming material such as an organic acid such as citric acid, lactic acid, acetic acid, oxalic acid, phthalic acid, citric acid, or an organic acid salt thereof may be used. Other examples of the organic acid include carboxylic acid, organic phosphoric acid, and amino acid. Examples of carboxylic acids include monovalent carboxylic acids such as acetic acid, glycolic acid, and ascorbic acid, divalent carboxylic acids such as succinic acid and tartaric acid, and trivalent carboxylic acids such as citric acid. -Aminoethylphosphonic acid, 1-hydroxyethylidene-1,1-diphosphonic acid, aminotri (methylenephosphonic acid), ethylenediaminetetra (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic acid) and the like. Examples of amino acids include glycine and alanine. Among these, from the viewpoint of reducing scratches, inorganic acids, carboxylic acids and organic phosphoric acids are preferable. For example, hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, polyphosphoric acid, glycolic acid, succinic acid, citric acid, aminotri (methylenephosphonic acid) Ethylenediaminetetra (methylenephosphonic acid) and diethylenetriaminepenta (methylenephosphonic acid) are suitable. These acids can be used as an acid for adjusting the pH.
  研磨材スラリーの分散性や安定性を向上させるためにカチオン系、アニオン系、ノニオン系、両性系の界面活性剤を適宜選択して添加することができる。さらに、上記各添加剤の効果を高めるためなどに必要に応じて酸または塩基を添加して研磨材スラリーのpHを調節することができる。 カ チ オ ン Cationic, anionic, nonionic, and amphoteric surfactants can be appropriately selected and added to improve the dispersibility and stability of the abrasive slurry. Furthermore, the pH of the abrasive slurry can be adjusted by adding an acid or a base as necessary in order to enhance the effect of each additive.
 好適な態様1
  動的光散乱法により測定される平均粒子径が3~200nmの範囲、短径/長径比が0.01~0.8の範囲、比表面積が10~800m2/gの範囲にある非球状シリカ微粒子が分散媒に分散してなる非球状シリカゾルにおいて、該非球状シリカ微粒子が表面に複数の疣状突起を有するものであり、さらに前記非球状シリカ微粒子の長軸を含む平面上において、前記非球状シリカ微粒子の外縁上の任意の点から、該外縁上の点を通り前記長軸と直交する直線と前記長軸との交点Bまでの距離をY、前記非球状シリカ微粒子の外縁と前記長軸との一方の交点Aから、前記交点Bまでの距離をXとしてX-Y曲線を描いた場合に、該X-Y曲線が複数の極大値を有することを特徴とする非球状シリカゾル。
Preferred embodiment 1
Non-spherical shape in which the average particle size measured by the dynamic light scattering method is in the range of 3 to 200 nm, the minor axis / major axis ratio is in the range of 0.01 to 0.8, and the specific surface area is in the range of 10 to 800 m 2 / g. In a non-spherical silica sol in which silica fine particles are dispersed in a dispersion medium, the non-spherical silica fine particles have a plurality of hook-shaped projections on the surface, and the non-spherical silica fine particles are arranged on the plane including the major axis of the non-spherical silica fine particles. The distance from an arbitrary point on the outer edge of the spherical silica fine particle to the intersection B of the straight line passing through the point on the outer edge and perpendicular to the long axis and the long axis is Y, the outer edge of the non-spherical silica fine particle and the length A non-spherical silica sol characterized in that when an XY curve is drawn with a distance from one intersection A to the axis to the intersection B as X, the XY curve has a plurality of maximum values.
 好適な態様2
  動的光散乱法により測定される平均粒子径が3~200nmの範囲、短径/長径比が0.01~0.8の範囲、比表面積が10~800m2/gの範囲にある非球状シリカ微粒子が分散媒に分散してなる非球状シリカゾルにおいて、該非球状シリカ微粒子が表面に複数の疣状突起を有するものであり、前記非球状シリカ微粒子の長軸を含む平面上において、前記非球状シリカ微粒子の外縁上の任意の点から、該外縁上の点を通り前記長軸と直交する直線と前記長軸との交点Bまでの距離をY、前記非球状シリカ微粒子の外縁と前記長軸との一方の交点Aから、前記交点Bまでの距離をXとしてX-Y曲線を描いた場合に、該X-Y曲線が複数の極大値を有するものであって、さらに前記非球状シリカ微粒子の長軸を含む平面上において、前記非球状シリカ微粒子の外縁上の任意の点から、該外縁上の点を通り前記長軸と直交する直線と前記長軸との交点Bまでの距離をYとした場合に、前記Yの変動係数が5~50%の範囲であることを特徴とする非球状シリカゾル。
Preferred embodiment 2
Non-spherical shape in which the average particle size measured by the dynamic light scattering method is in the range of 3 to 200 nm, the minor axis / major axis ratio is in the range of 0.01 to 0.8, and the specific surface area is in the range of 10 to 800 m 2 / g. In a non-spherical silica sol in which silica fine particles are dispersed in a dispersion medium, the non-spherical silica fine particles have a plurality of hook-shaped protrusions on the surface, and the non-spherical silica sol is formed on a plane including the major axis of the non-spherical silica fine particles. Y is the distance from an arbitrary point on the outer edge of the silica fine particle to the intersection B of the straight line passing through the point on the outer edge and perpendicular to the major axis, and the outer edge of the non-spherical silica fine particle and the major axis And when the XY curve is drawn with the distance from one intersection A to the intersection B as X, the XY curve has a plurality of maximum values, and the non-spherical silica fine particles On a plane including the major axis of When the distance from an arbitrary point on the outer edge of the spherical silica fine particle to an intersection B between the long axis passing through the point on the outer edge and the long axis is Y, the variation coefficient of Y is A non-spherical silica sol characterized by being in the range of 5 to 50%.
 好適な態様3
  動的光散乱法により測定される平均粒子径が3~200nmの範囲、短径/長径比が0.01~0.8の範囲、比表面積が10~800m2/gの範囲にある非球状シリカ微粒子が分散媒に分散してなる非球状シリカゾルにおいて、該非球状シリカ微粒子が表面に複数の疣状突起を有するものであり、さらに前記非球状シリカ微粒子の長軸を含む平面上において、前記非球状シリカ微粒子の外縁上の任意の点から、該外縁上の点を通り前記長軸と直交する直線と前記長軸との交点Bまでの距離をY、前記非球状シリカ微粒子の外縁と前記長軸との一方の交点Aから、前記交点Bまでの距離をXとしてX-Y曲線を描いた場合に、該X-Y曲線が複数の極大値を有することを特徴とする非球状シリカゾルを含む研磨用組成物。
Preferred embodiment 3
Non-spherical shape in which the average particle size measured by the dynamic light scattering method is in the range of 3 to 200 nm, the minor axis / major axis ratio is in the range of 0.01 to 0.8, and the specific surface area is in the range of 10 to 800 m 2 / g. In a non-spherical silica sol in which silica fine particles are dispersed in a dispersion medium, the non-spherical silica fine particles have a plurality of hook-shaped projections on the surface, and the non-spherical silica fine particles are arranged on the plane including the major axis of the non-spherical silica fine particles. The distance from an arbitrary point on the outer edge of the spherical silica fine particle to the intersection B of the straight line passing through the point on the outer edge and perpendicular to the long axis and the long axis is Y, the outer edge of the non-spherical silica fine particle and the length Including a non-spherical silica sol characterized in that when an XY curve is drawn with a distance from one intersection A with the axis to the intersection B as X, the XY curve has a plurality of maximum values Polishing composition.
 好適な態様4
  動的光散乱法により測定される平均粒子径が3~200nmの範囲、短径/長径比が0.01~0.8の範囲、比表面積が10~800m2/gの範囲にある非球状シリカ微粒子が分散媒に分散してなる非球状シリカゾルにおいて、該非球状シリカ微粒子が表面に複数の疣状突起を有するものであり、前記非球状シリカ微粒子の長軸を含む平面上において、前記非球状シリカ微粒子の外縁上の任意の点から、該外縁上の点を通り前記長軸と直交する直線と前記長軸との交点Bまでの距離をY、前記非球状シリカ微粒子の外縁と前記長軸との一方の交点Aから、前記交点Bまでの距離をXとしてX-Y曲線を描いた場合に、該X-Y曲線が複数の極大値を有するものであって、さらに前記非球状シリカ微粒子の長軸を含む平面上において、前記非球状シリカ微粒子の外縁上の任意の点から、該外縁上の点を通り前記長軸と直交する直線と前記長軸との交点Bまでの距離をYとした場合に、前記Yの変動係数が5~50%の範囲にあることを特徴とする非球状シリカゾルを含むことを特徴とする研磨用組成物。
Preferred embodiment 4
Non-spherical shape in which the average particle size measured by the dynamic light scattering method is in the range of 3 to 200 nm, the minor axis / major axis ratio is in the range of 0.01 to 0.8, and the specific surface area is in the range of 10 to 800 m 2 / g. In a non-spherical silica sol in which silica fine particles are dispersed in a dispersion medium, the non-spherical silica fine particles have a plurality of hook-shaped protrusions on the surface, and the non-spherical silica sol is formed on a plane including the major axis of the non-spherical silica fine particles. Y is the distance from an arbitrary point on the outer edge of the silica fine particle to the intersection B of the straight line passing through the point on the outer edge and perpendicular to the major axis, and the outer edge of the non-spherical silica fine particle and the major axis And when the XY curve is drawn with the distance from one intersection A to the intersection B as X, the XY curve has a plurality of maximum values, and the non-spherical silica fine particles On a plane including the major axis of When the distance from an arbitrary point on the outer edge of the spherical silica fine particle to an intersection B between the long axis passing through the point on the outer edge and the long axis is Y, the variation coefficient of Y is A polishing composition comprising a non-spherical silica sol characterized by being in the range of 5 to 50%.
 好適な態様5
  動的光散乱法により測定される平均粒子径が3~200nmの範囲、短径/長径比が0.01~0.8の範囲、比表面積が10~800m2/gの範囲にある非球状シリカ微粒子が分散媒に分散してなる非球状シリカゾルにおいて、前記非球状シリカ微粒子の長軸を含む平面上において、前記非球状シリカ微粒子の外縁上の任意の点から、該外縁上の点を通り前記長軸と直交する直線と前記長軸との交点Bまでの距離をY、前記非球状シリカ微粒子の外縁と前記長軸との一方の交点Aから、前記交点Bまでの距離をXとしてX-Y曲線を描いた場合に、該X-Y曲線が複数の極大値を有するものであって、さらに前記非球状シリカ微粒子の長軸を含む平面上において、前記非球状シリカ微粒子の外縁上の任意の点から、該外縁上の点を通り前記長軸と直交する直線と前記長軸との交点Bまでの距離をYとした場合に、前記Yの変動係数が5~50%の範囲であることを特徴とする非球状シリカゾル。
Preferred embodiment 5
Non-spherical shape in which the average particle size measured by the dynamic light scattering method is in the range of 3 to 200 nm, the minor axis / major axis ratio is in the range of 0.01 to 0.8, and the specific surface area is in the range of 10 to 800 m 2 / g. In a non-spherical silica sol in which silica fine particles are dispersed in a dispersion medium, a point on the outer edge of the non-spherical silica fine particle passes through a point on the outer edge on a plane including the long axis of the non-spherical silica fine particle. The distance from the straight line perpendicular to the major axis to the intersection B of the major axis is Y, and the distance from one intersection A of the outer edge of the non-spherical silica fine particle to the major axis is X, X When a -Y curve is drawn, the XY curve has a plurality of maximum values, and further on the outer edge of the non-spherical silica fine particle on a plane including the major axis of the non-spherical silica fine particle. From any point, passing through a point on the outer edge The distance between a straight line perpendicular to the major axis to the intersection point B of the major axis when the Y, non-spherical silica sol, wherein the variation coefficient of the Y is in the range of 5-50%.
 好適な態様6
  動的光散乱法により測定される平均粒子径が3~200nmの範囲、短径/長径比が0.01~0.8の範囲、比表面積が10~800m2/gの範囲にある非球状シリカ微粒子が分散媒に分散してなる非球状シリカゾルにおいて、前記非球状シリカ微粒子の長軸を含む平面上において、前記非球状シリカ微粒子の外縁上の任意の点から、該外縁上の点を通り前記長軸と直交する直線と前記長軸との交点Bまでの距離をY、前記非球状シリカ微粒子の外縁と前記長軸との一方の交点Aから、前記交点Bまでの距離をXとしてX-Y曲線を描いた場合に、該X-Y曲線が複数の極大値を有するものであって、さらに前記非球状シリカ微粒子の長軸を含む平面上において、前記非球状シリカ微粒子の外縁上の任意の点から、該外縁上の点を通り前記長軸と直交する直線と前記長軸との交点Bまでの距離をYとした場合に、前記Yの変動係数が5~50%の範囲であることを特徴とする非球状シリカゾルであって、該非球状シリカ微粒子が、テトラエトキシシランの加水分解により得られた[SiO4/2]単位から構成されるポリシロキサンからなり、ナトリウムの含有量が、100質量ppm以下であることを特徴とする非球状シリカゾル。

[実施例および比較例で用いた分析方法]
[1]動的光散乱法による平均粒子径(D1)の測定方法
 動的光散乱法により測定される平均粒子径については、レーザー光による動的光散乱法により、粒子径分布測定装置(Particle Sizing Systems社製:NICOMP MODEL380)を用いて平均粒子径を測定した。
[2]粒子の外縁から長軸までの距離Yの極大値個数の測定方法
 非球状シリカ微粒子の走査型電子顕微鏡写真(25万倍ないし50万倍)の画像にて、非球状シリカ微粒子の長軸を定め、長軸の全長を40等分し、当分したそれぞれの地点(点B)と、その点に直交する直線を微粒子の片側に延伸し、微粒子の外縁と交わった点との距離をYとして記録する。また、前記非球状シリカ微粒子の外縁と前記長軸との2つの交点のうちの一方点(点A)と、前記当分したそれぞれの地点(点B)との長さをXとする。前記Yを縦軸、前記Xを横軸とし、各Xに対応するYの値をプロットすることによりX-Y曲線を描き、このX-Y曲線の極大値の個数を計ることができる。
Preferred embodiment 6
Non-spherical shape in which the average particle size measured by the dynamic light scattering method is in the range of 3 to 200 nm, the minor axis / major axis ratio is in the range of 0.01 to 0.8, and the specific surface area is in the range of 10 to 800 m 2 / g. In a non-spherical silica sol in which silica fine particles are dispersed in a dispersion medium, a point on the outer edge of the non-spherical silica fine particle passes through a point on the outer edge on a plane including the long axis of the non-spherical silica fine particle. The distance from the straight line perpendicular to the major axis to the intersection B of the major axis is Y, and the distance from one intersection A of the outer edge of the non-spherical silica fine particle to the major axis is X, X When a -Y curve is drawn, the XY curve has a plurality of maximum values, and further on the outer edge of the non-spherical silica fine particle on a plane including the major axis of the non-spherical silica fine particle. From any point, passing through a point on the outer edge A non-spherical silica sol characterized in that the coefficient of variation of Y is in the range of 5 to 50%, where Y is the distance to the intersection B between the straight line perpendicular to the long axis and the long axis, The non-spherical silica fine particles are made of polysiloxane composed of [SiO 4/2 ] units obtained by hydrolysis of tetraethoxysilane, and the sodium content is 100 mass ppm or less. Spherical silica sol.

[Analysis methods used in Examples and Comparative Examples]
[1] Method for Measuring Average Particle Diameter (D1) by Dynamic Light Scattering Method Regarding the average particle diameter measured by the dynamic light scattering method, a particle size distribution measuring device (Particle) is obtained by a dynamic light scattering method using laser light. The average particle size was measured by using a NICOMP MODEL 380 (manufactured by Sizing Systems).
[2] Method for measuring the maximum number of distances Y from the outer edge of the particle to the long axis The length of the non-spherical silica fine particles in the image of a scanning electron micrograph (250,000 to 500,000 times) of the non-spherical silica fine particles Set the axis, divide the entire length of the major axis into 40 equal parts, and draw the distance between each point (point B) for the time being and the point intersecting the outer edge of the fine particle by extending a straight line perpendicular to that point to one side of the fine particle Record as Y. Further, let X be the length of one point (point A) of the two intersections between the outer edge of the non-spherical silica fine particle and the long axis, and the corresponding point (point B). By plotting the Y value corresponding to each X with Y as the vertical axis and X as the horizontal axis, the XY curve can be drawn, and the number of local maximum values of this XY curve can be measured.
  本出願においては、非球状シリカ微粒子について、この様な測定を粒子50個について実施し、その極大値の個数の平均をとり、粒子の外縁から長軸までの距離Yの極大値個数とした。
[3]粒子の外縁から長軸までの距離Yの変動係数(CV値)の算定方法
  本発明における前記微粒子の外縁から長軸までの距離Yの変動係数の測定については、以下の方法により算定した。
1) 長軸の中心点から片方の微粒子外縁までの距離(長軸半径M)を計測し、長軸上に、中心点から長軸半径Mについて5%刻みで0~50%までプロットした。
2) 前記各プロットにおいて長軸と直交する直線を引き、この直線が片側の微粒子外縁と交差する点から前記プロットまでの距離Yをそれぞれ測定した。
3) 微粒子の外縁から長軸までの距離Yについての変動係数(CV値)については、長軸上において、前記中心点から前記長軸半径Mの0~10%の範囲、0~20%の範囲、0~30%の範囲、0~40%の範囲、0~50%の範囲でそれぞれの変動係数(CV値)を算出して5種類の変動係数(CV値)を得て、そのうちの最大の変動係数(CV値)を、その粒子における距離Yについての変動係数(CV値)とした。
4) 上記1)~3)の測定を50個の粒子について実施し、その平均値を、非球状シリカ微粒子における距離Yについての変動係数(CV値)として採用した。
[4]シアーズ法による比表面積測定および平均粒子径測定
1)SiO2として15gに相当する試料をビーカーに採取してから、恒温反応槽(25℃)に移し、純水を加えて液量を90mlにした。(以下の操作は、25℃に保持した恒温反応槽中にて行った。)
2)pH3.6になるように0.1モル/L塩酸水溶液を加えた。
3)塩化ナトリウムを30g加え、純水で150mlに希釈し、10分間攪拌した。
4)pH電極をセットし、攪拌しながら0.1モル/L水酸化ナトリウム溶液を滴下して、pH4.0に調整した。
5)pH4.0に調整した試料を0.1モル/L水酸化ナトリウム溶液で滴定し、pH8.7~9.3の範囲での滴定量とpH値を4点以上記録して、0.1モル/L水酸化ナトリウム溶液の滴定量をX、その時のpH値をYとして、検量線を作った。
6)次の式(2)からSiO215g当たりのpH4.0~9.0までに要する0.1モル/L水酸化ナトリウム溶液の消費量V(ml)を求め、後記式(3)に従って比表面積SA[m2/g]を求めた。
In the present application, such a measurement was performed for 50 particles of non-spherical silica fine particles, and the average of the number of local maximum values was taken as the maximum number of distances Y from the outer edge of the particle to the major axis.
[3] Method for calculating the coefficient of variation (CV value) of the distance Y from the outer edge of the particle to the long axis The measurement of the coefficient of variation of the distance Y from the outer edge of the fine particle to the long axis in the present invention is calculated by the following method. did.
1) The distance from the center point of the major axis to the outer edge of one fine particle (major axis radius M) was measured and plotted on the major axis from 0 to 50% in 5% increments from the center point to the major axis radius M.
2) A straight line perpendicular to the major axis was drawn in each plot, and the distance Y from the point where the straight line intersected the outer edge of the fine particle on one side to the plot was measured.
3) Regarding the coefficient of variation (CV value) for the distance Y from the outer edge of the fine particle to the long axis, on the long axis, the range from 0 to 10% of the long axis radius M from the center point is 0 to 20%. Calculate each coefficient of variation (CV value) in the range, 0-30% range, 0-40% range, 0-50% range to obtain 5 types of variation coefficients (CV value), of which The maximum coefficient of variation (CV value) was defined as the coefficient of variation (CV value) for the distance Y in the particle.
4) The above measurements 1) to 3) were performed on 50 particles, and the average value was adopted as the coefficient of variation (CV value) for the distance Y in the non-spherical silica fine particles.
[4] Specific surface area measurement and average particle diameter measurement by Sears method 1) A sample corresponding to 15 g as SiO 2 was collected in a beaker, transferred to a constant temperature reaction tank (25 ° C.), and pure water was added to adjust the liquid volume. 90 ml. (The following operations were performed in a constant temperature reaction tank maintained at 25 ° C.)
2) 0.1 mol / L hydrochloric acid aqueous solution was added so that pH might be 3.6.
3) 30 g of sodium chloride was added, diluted to 150 ml with pure water, and stirred for 10 minutes.
4) A pH electrode was set, and a 0.1 mol / L sodium hydroxide solution was added dropwise with stirring to adjust the pH to 4.0.
5) Titrate the sample adjusted to pH 4.0 with 0.1 mol / L sodium hydroxide solution, record titration amount in the range of pH 8.7 to 9.3 and 4 or more pH values. A calibration curve was prepared with X as the titer of 1 mol / L sodium hydroxide solution and Y as the pH value at that time.
6) The consumption amount V (ml) of 0.1 mol / L sodium hydroxide solution required for pH 4.0 to 9.0 per 15 g of SiO 2 is obtained from the following formula (2), and the following formula (3) is obtained. The specific surface area SA [m 2 / g] was determined.
 また、平均粒子径D1(nm)は、式(4)から求めた。 Further, the average particle diameter D1 (nm) was obtained from the formula (4).
 V=(A×f×100×15)/(W×C) ・・・ (2)
 SA=29.0V-28 ・・・ (3)
 D1=6000/(ρ×SA) ・・・ (4)
(ここで、ρは粒子の密度(g/cm3)を表す。 シリカの場合は2.2を代入する。)
 但し、上記式(2)における記号の意味は次の通りである。
A:SiO215g当たりpH4.0~9.0までに要する0.1モル/L水酸化ナトリウム溶液の滴定量(ml)
f :0.1モル/L水酸化ナトリウム溶液の力価
C :試料のSiO2濃度(%)
W :試料採取量(g)
[5]BET法(窒素吸着法)による比表面積測定
 非球状シリカゾル50mlをHNO3でpH3.5に調整し、1-プロパノール40mlを加え、110℃で16時間乾燥した試料について、乳鉢で粉砕後、マッフル炉にて500℃、1時間焼成し、測定用試料とした。そして、比表面積測定装置(ユアサアイオニクス製、型番マルチソーブ12)を用いて窒素吸着法(BET法)を用いて、窒素の吸着量から、BET1点法により比表面積を算出した。具体的には、試料0.5gを測定セルに取り、窒素30v%/ヘリウム70v%混合ガス気流中、300℃で20分間脱ガス処理を行い、その上で試料を上記混合ガス気流中で液体窒素温度に保ち、窒素を試料に平衡吸着させた。次に、上記混合ガスを流しながら試料温度を徐々に室温まで上昇させ、その間に脱離した窒素の量を検出し、予め作成した検量線により、非球状シリカゾルの比表面積を算出した。また、得られた比表面積(SA)を前記式(4)に代入して平均粒子径D1を求めた。
[6]短径/長径比の測定方法
 走査型電子顕微鏡(株式会社日立製作所製、H-800)により、試料非球状シリカゾルを倍率25万倍(ないしは50万倍)で写真撮影して得られる写真投影図において、粒子の最大径を長軸とし、その長さを測定して、その値を長径(DL)とした。また、長軸上にて長軸を2等分する点を定め、それに直交する直線が粒子の外縁と交わる2点を求め、同2点間の距離を測定し短径(DS)とした。そして、比(DS/DL)を求めた。この測定を任意の50個の粒子について行い、その平均値を短径/長径比とした。なお、1つの粒子について、長軸を複数設定可能な場合は、対応する複数の短径長さの平均値を求め、短径の長さ(DS)とした。
[7]非球状シリカ微粒子の割合の測定
「[6]短径/長径比の測定方法」にて短径/長径比の測定対象とした50個の粒子において、下記(i)に該当する粒子と(ii)に該当する粒子との合計数(n)を測定し、[(50-n)/50]×100の値を、分散質である全シリカ微粒子の個数に対する疣状突起を有する非球状シリカ微粒子の個数の割合(%)とした。
(i)短径/長径比が0.01~0.8の範囲を外れる粒子
(ii)短径/長径比の範囲が0.01~0.8の範囲であって、疣状突起を有さない粒子
[8]アルミニウム基板に対する研磨特性の評価方法
研磨用スラリーの調製
 試料シリカゾルをシリカ濃度20質量%に調整し、H22、HEDP(1-ヒドロキシエチリデン-1,1-ジスルホン酸)および超純水を加えて、シリカ9重量%、H20.5重量%、1-ヒドロキシエチリデン-1,1-ジスルホン酸0.5重量%の研磨用スラリーを調製し、さらに必要に応じてHNO3を加えて、pH2の研磨用スラリーを調製した。
被研磨基板
 被研磨基板として、アルミニウムデイスク用基板を使用した。このアルミニウムデイスク用基板は、アルミニウム基板にNi-Pを10μmの厚さに無電解メッキ(Ni88%とP12%の組成の硬質Ni-Pメッキ層)をした基板(95mmΦ/25mmΦ-1.27mmt)を使用した。なお、この基板は一次研磨済みで、表面粗さ(Ra)は0.17nmであった。
研磨試験
 上記被研磨基板を、研磨装置(ナノファクター(株)製:NF300)にセットし、研磨パッド(ロデール社製「アポロン」)を使用し、基板荷重0.05MPa、テーブル回転速度30rpmで研磨用スラリーを20g/分の速度で5分間供給して研磨を行った。
V = (A × f × 100 × 15) / (W × C) (2)
SA = 29.0V-28 (3)
D1 = 6000 / (ρ × SA) (4)
(Here, ρ represents the density (g / cm 3 ) of particles. In the case of silica, 2.2 is substituted.)
However, the meanings of the symbols in the above formula (2) are as follows.
A: Titration of 0.1 mol / L sodium hydroxide solution required for pH 4.0 to 9.0 per 15 g of SiO 2 (ml)
f: Potency of 0.1 mol / L sodium hydroxide solution C: SiO 2 concentration of sample (%)
W: Sampling amount (g)
[5] Specific surface area measurement by BET method (nitrogen adsorption method) A sample obtained by adjusting 50 ml of non-spherical silica sol to pH 3.5 with HNO 3 , adding 40 ml of 1-propanol, and drying at 110 ° C. for 16 hours is crushed in a mortar. The sample for measurement was baked at 500 ° C. for 1 hour in a muffle furnace. And the specific surface area was computed by the BET 1 point method from the adsorption amount of nitrogen using the nitrogen adsorption method (BET method) using the specific surface area measuring apparatus (The product made from Yuasa Ionics, model number multisorb 12). Specifically, 0.5 g of a sample is taken in a measurement cell, degassed for 20 minutes at 300 ° C. in a mixed gas stream of nitrogen 30 v% / helium 70 v%, and then the sample is liquidized in the mixed gas stream. The nitrogen temperature was maintained and nitrogen was adsorbed on the sample by equilibrium. Next, the sample temperature was gradually raised to room temperature while flowing the above mixed gas, the amount of nitrogen desorbed during that time was detected, and the specific surface area of the non-spherical silica sol was calculated using a calibration curve prepared in advance. Further, the obtained specific surface area (SA) was substituted into the formula (4) to determine the average particle diameter D1.
[6] Measuring method of ratio of minor axis / major axis Obtained by photographing a sample non-spherical silica sol at a magnification of 250,000 times (or 500,000 times) with a scanning electron microscope (H-800, manufactured by Hitachi, Ltd.) In the photograph projection view, the maximum diameter of the particles was taken as the major axis, the length was measured, and the value was taken as the major diameter (DL). Further, a point that bisects the major axis on the major axis was determined, two points where a straight line perpendicular to the major axis intersected with the outer edge of the particle were determined, and a distance between the two points was measured to obtain a minor axis (DS). And ratio (DS / DL) was calculated | required. This measurement was performed on any 50 particles, and the average value was defined as the minor axis / major axis ratio. When a plurality of major axes can be set for one particle, an average value of a plurality of corresponding minor axis lengths was obtained and used as the minor axis length (DS).
[7] Measurement of ratio of non-spherical silica fine particles Among the 50 particles whose short diameter / long diameter ratio were measured in “[6] Measuring method of short diameter / long diameter ratio”, particles corresponding to the following (i) And the total number (n) of the particles corresponding to (ii) is measured, and the value of [(50−n) / 50] × 100 is determined as the number of non-protruding protrusions with respect to the number of all silica fine particles as a dispersoid. The ratio (%) was the number of spherical silica fine particles.
(I) Particles whose minor axis / major axis ratio is out of the range of 0.01 to 0.8 (ii) The minor axis / major axis ratio is in the range of 0.01 to 0.8 and has hook-shaped protrusions. Particle [8] Evaluation Method for Polishing Characteristics for Aluminum Substrate
Preparation of polishing slurry Sample silica sol was adjusted to a silica concentration of 20% by mass, H 2 O 2 , HEDP (1-hydroxyethylidene-1,1-disulfonic acid) and ultrapure water were added to obtain 9% silica by weight, H 2) A polishing slurry of 0.5% by weight of O 2 and 0.5% by weight of 1-hydroxyethylidene-1,1-disulfonic acid was prepared. Further, HNO 3 was added as necessary to prepare a polishing slurry having a pH of 2. Prepared.
Polishing substrate An aluminum disk substrate was used as the polishing substrate. This aluminum disk substrate is a substrate (95 mmΦ / 25 mmΦ-1.27 mmt) in which Ni—P is electrolessly plated (a hard Ni—P plating layer having a composition of Ni 88% and P12%) on an aluminum substrate. It was used. This substrate was first polished and the surface roughness (Ra) was 0.17 nm.
Polishing test The above substrate to be polished is set in a polishing apparatus (manufactured by Nano Factor Co., Ltd .: NF300), and a polishing pad (“Apollon” manufactured by Rodel) is used and polished at a substrate load of 0.05 MPa and a table rotation speed of 30 rpm. Polishing was performed by supplying the slurry for 5 minutes at a rate of 20 g / min.
 研磨前後の被研磨基材の重量変化を求めて研磨速度〔nm/分〕を計算した。
スクラッチ(線状痕)の測定
 スクラッチの発生状況については、アルミニウムディスク用基板を上記と同様に研磨処理した後、超微細欠陥・可視化マクロ装置(VISION PSYTEC社製、製品名:Micro-MAX)を使用し、Zoom15にて全面観察し、65.97cm2に相当する研磨処理された基板表面のスクラッチ(線状痕)の個数を数えて合計した。
[9]ガラス基板に対する研磨特性の評価方法
研磨用スラリーの調製
 試料シリカゾルをシリカ濃度20質量%に調整し、さらに超純水および5質量%水酸化ナトリウム水溶液を加えて、シリカ9重量%、pH10.5の研磨用スラリーを調製した。
被研磨基板
  被研磨基板として、65mmφの強化ガラス製のハードディスク用ガラス基板を使用した。このハードディスク用ガラス基板は、一次研磨済みであり、表面粗さは最大で0.21μmである。
研磨試験
 上記被研磨基板を、研磨装置(ナノファクター(株)製:NF300)にセットし、研磨パッド(ロデール社製「アポロン」)を使用し、基板荷重0.18MPa、テーブル回転速度30rpmで研磨用スラリーを20g/分の速度で10分間供給して研磨を行った。
The change in weight of the substrate to be polished before and after polishing was determined to calculate the polishing rate [nm / min].
Measurement of scratches (line marks) Regarding the occurrence of scratches, after polishing a substrate for an aluminum disk in the same manner as described above, an ultra-fine defect / visualization macro device (product name: Micro-MAX, manufactured by VISION PSYTEC) was used. The entire surface was observed with a Zoom 15, and the number of scratches (linear traces) on the polished substrate surface corresponding to 65.97 cm 2 was counted and totaled.
[9] Evaluation method of polishing characteristics for glass substrate
Preparation of Polishing Slurry The sample silica sol was adjusted to a silica concentration of 20% by mass, and ultrapure water and a 5% by mass aqueous sodium hydroxide solution were added to prepare a polishing slurry of 9% silica by weight and pH 10.5.
Polished substrate A glass substrate for hard disk made of 65 mmφ tempered glass was used as the substrate to be polished. This glass substrate for hard disk has been subjected to primary polishing and has a maximum surface roughness of 0.21 μm.
Polishing test The above substrate to be polished was set in a polishing apparatus (manufactured by Nano Factor Co., Ltd .: NF300), and a polishing pad (“Apollon” manufactured by Rodel) was used and polished at a substrate load of 0.18 MPa and a table rotation speed of 30 rpm. Polishing was performed by supplying the slurry for 10 minutes at a rate of 20 g / min.
 研磨前後の被研磨基材の重量変化を求めて研磨速度〔nm/分〕を計算した。
スクラッチ(線状痕)の測定
 スクラッチの発生状況については、ガラス基板を上記と同様に研磨処理した後、超微細欠陥・可視化マクロ装置(VISION PSYTEC社製、製品名:Micro-MAX)を使用し、Zoom1にて全面観察し、65.97cm2に相当する研磨処理された基板表面のスクラッチ(線状痕)の個数を数えて合計した。
[10]熱酸化膜に対する研磨特性の評価方法
研磨スラリーの調製
 各実施例および各比較例で得たシリカ濃度12.6質量%のシリカゾルに、KOHを添加して、pHを10に調整した。 
被研磨基板 
 被研磨基板として、シリコンウェーハを1050℃でウエット熱酸化させた熱酸化膜基板を使用した。
研磨試験
 上記被研磨基板を、研磨装置(ナノファクター(株)製:NF330)にセットし、研磨パッド(ロデール社製「IC-1000」)を使用し、基板荷重0.05MPa、テーブル回転速度30rpmで研磨用研磨スラリーを20g/分の速度で5分間供給して研磨を行った。研磨前後の膜厚を短波長エリプソメーターで測定し、研磨速度を計算した。

 [11]ナトリウムの定量方法
 次の手順によりナトリウムの含有量を測定した。
1)試料シリカゾル約10gを白金皿に採取し、0.1mgまで秤量した。
2)硝酸5mlと弗化水素酸20mlを加えて、サンドバス上で加熱し、蒸発乾固した。
3)液量が少なくなったら、さらに弗化水素酸20mlを加えてサンドバス上で加熱し、蒸発乾固した。
4)室温まで冷却後、硝酸2mlと水を約50ml加えて、サンドバス上で加熱溶解した。
5)室温まで冷却後、フラスコ(100ml)に入れ、水で100mlに希釈して試料溶液とした。
6)原子吸光分光光度計(株式会社日立製作所製、Z-5300、測定モード:原子吸光、測定波長:190~900nm、シリカ試料の場合におけるNaの検出波長は589.0nm)にて、試料溶液中に存在するナトリウム金属の含有量を測定した。この原子吸光分光光度計は、フレームにより試料を原子蒸気化し、その原子蒸気層に適当な波長の光を照射し、その際の原子によって吸収された光の強さを測定し、これにより試料中の元素濃度を定量した。
7)試料シリカゾル10gに50%硫酸水溶液2mlを加え、白金皿上にて蒸発乾固し、得られた固形物を1000℃にて1時間焼成後、冷却して秤量した。次に、秤量した固形物を微量の50%硫酸水溶液に溶かし、さらにフッ化水素酸20mlを加えてから、白金皿上にて蒸発乾固し、1000℃にて15分焼成後、冷却して秤量した。これらの重量差よりシリカ含有量を求めた。
8)上記6)と7)の結果からSiO2分に対するNaの割合を算出した。

[合成例1]
 還流器および攪拌機付セパラブルフラスコにSiO2濃度24重量%の珪酸ナトリウム水溶液(SiO2/Na2Oモル比3)18.7g入れ、さらに水837gを添加して、珪酸ナトリウム水溶液855gを調製した。 次に、この珪酸ナトリウム水溶液に、SiO2濃度4.82重量%の珪酸ナトリウム(SiO2/Na2Oモル比3)を陽イオン交換樹脂塔に通すことにより得られたSiO2濃度4.82重量%の珪酸液(pH2.3、SiO2/Na2Oモル比=1200)を1,067g添加することにより珪酸液と珪酸ナトリウム水溶液からなる混合液(SiO2/Na2Oモル比35)を得た。
The change in weight of the substrate to be polished before and after polishing was determined to calculate the polishing rate [nm / min].
Measurement of scratches (line marks) Regarding the occurrence of scratches, after polishing the glass substrate in the same manner as described above, an ultra-fine defect / visualization macro device (product name: Micro-MAX, manufactured by VISION PSYTEC) was used. The entire surface was observed with Zoom 1, and the number of scratches (linear traces) on the polished substrate surface corresponding to 65.97 cm 2 was counted and totaled.
[10] Evaluation method of polishing characteristics for thermal oxide film
Preparation of Polishing Slurry KOH was added to silica sol having a silica concentration of 12.6% by mass obtained in each Example and each Comparative Example, and the pH was adjusted to 10.
Polished substrate
As the substrate to be polished, a thermal oxide film substrate obtained by wet-oxidizing a silicon wafer at 1050 ° C. was used.
Polishing test The substrate to be polished was set in a polishing apparatus (manufactured by Nano Factor Co., Ltd .: NF330), a polishing pad (“IC-1000” manufactured by Rodel) was used, the substrate load was 0.05 MPa, and the table rotation speed was 30 rpm. Polishing was performed by supplying a polishing slurry for polishing at a rate of 20 g / min for 5 minutes. The film thickness before and after polishing was measured with a short wavelength ellipsometer, and the polishing rate was calculated.

[11] Sodium determination method The sodium content was measured by the following procedure.
1) About 10 g of sample silica sol was collected in a platinum dish and weighed to 0.1 mg.
2) 5 ml of nitric acid and 20 ml of hydrofluoric acid were added, heated on a sand bath, and evaporated to dryness.
3) When the amount of liquid decreased, 20 ml of hydrofluoric acid was further added and heated on a sand bath to evaporate to dryness.
4) After cooling to room temperature, 2 ml of nitric acid and about 50 ml of water were added and dissolved by heating on a sand bath.
5) After cooling to room temperature, it was put into a flask (100 ml) and diluted to 100 ml with water to obtain a sample solution.
6) Atomic absorption spectrophotometer (manufactured by Hitachi, Ltd., Z-5300, measurement mode: atomic absorption, measurement wavelength: 190 to 900 nm, Na detection wavelength in the case of silica sample is 589.0 nm), sample solution The content of sodium metal present therein was measured. This atomic absorption spectrophotometer vaporizes a sample with a frame, irradiates the atomic vapor layer with light of an appropriate wavelength, and measures the intensity of light absorbed by the atoms at that time. The elemental concentration of was quantified.
7) 2 ml of 50% sulfuric acid aqueous solution was added to 10 g of sample silica sol and evaporated to dryness on a platinum pan. The obtained solid was fired at 1000 ° C. for 1 hour, cooled and weighed. Next, dissolve the weighed solid in a small amount of 50% aqueous sulfuric acid, add 20 ml of hydrofluoric acid, evaporate to dryness on a platinum pan, bake at 1000 ° C. for 15 minutes, and cool. Weighed. The silica content was determined from these weight differences.
8) The ratio of Na to SiO 2 was calculated from the results of 6) and 7) above.

[Synthesis Example 1]
18.7 g of a sodium silicate aqueous solution (SiO 2 / Na 2 O molar ratio 3) having a SiO 2 concentration of 24 wt% was placed in a separable flask equipped with a reflux condenser and a stirrer, and 837 g of water was further added to prepare 855 g of an aqueous sodium silicate solution. . Next, sodium silicate (SiO 2 / Na 2 O molar ratio: 3) having a SiO 2 concentration of 4.82% by weight was passed through the cation exchange resin tower through this sodium silicate aqueous solution to obtain a SiO 2 concentration of 4.82. By adding 1,067 g of a weight percent silicic acid solution (pH 2.3, SiO 2 / Na 2 O molar ratio = 1200), a mixed liquid consisting of a silicic acid solution and an aqueous sodium silicate solution (SiO 2 / Na 2 O molar ratio 35) Got.
 得られた液を加温し、98℃の温度で30分間熟成した。その後、さら98℃に保持した状態で、この液に前記珪酸液と同じ組成の珪酸液1,162gを4時間かけて添加して、pH8.9の非球状シリカゾルを得た。この非球状シリカゾルのSiO2/Na2Oモル比は76だった。 The resulting liquid was heated and aged at 98 ° C. for 30 minutes. Thereafter, 1,162 g of a silicic acid solution having the same composition as that of the silicic acid solution was added to this solution over a period of 4 hours, and a non-spherical silica sol having a pH of 8.9 was obtained. This non-spherical silica sol had a SiO 2 / Na 2 O molar ratio of 76.
  この非球状シリカゾルのpHが8.5になるように2.5%硫酸水溶液を加え、90℃にて8時間加熱した後、エバポレーターにて、SiO2濃度が20重量%になるまで濃縮して非球状シリカゾルを調製した。 After adding 2.5% sulfuric acid aqueous solution so that the pH of this non-spherical silica sol becomes 8.5 and heating at 90 ° C. for 8 hours, it is concentrated with an evaporator until the SiO 2 concentration becomes 20% by weight. A non-spherical silica sol was prepared.
 この非球状シリカゾルに含まれる非球状シリカ微粒子についてのBET法により測定される比表面積から算定される平均粒子径は12nm、動的光散乱法による平均粒子径は34nmだった。また、この非球状シリカ微粒子の短径/長径比は0.45、比表面積は220m2/gとなった。
[合成例2]
 シリカゾル(BET法により測定された平均粒子径:35nm、比表面積:182m2/g、SiO2濃度:30重量%)の100gについて、pHが2.3になるまで、強酸性陽イオン交換樹脂SK1BH(三菱化学社製)0.4Lに空間速度3.1で通液を繰り返した。次に、強塩基性イオン交換樹脂SANUPC(三菱化学社製)0.4Lに空間速度3.1で通液させ、pHを5.6とした後、pHが7.8になるようにアルカリ性水溶液として5%アンモニア水溶液5.4gを添加した。そして、90℃にて30時間加熱を行った。この非球状シリカゾルをエバポレーターにて、SiO2濃度が20重量%になるまで濃縮して非球状シリカゾルを調製した。
The average particle size calculated from the specific surface area measured by the BET method for the non-spherical silica fine particles contained in this non-spherical silica sol was 12 nm, and the average particle size by the dynamic light scattering method was 34 nm. Further, the minor diameter / major diameter ratio of the non-spherical silica fine particles was 0.45, and the specific surface area was 220 m 2 / g.
[Synthesis Example 2]
With respect to 100 g of silica sol (average particle diameter measured by BET method: 35 nm, specific surface area: 182 m 2 / g, SiO 2 concentration: 30 wt%), a strongly acidic cation exchange resin SK1BH until pH becomes 2.3 (Mitsubishi Chemical Co., Ltd.) 0.4 L was repeatedly passed at a space velocity of 3.1. Next, a strong basic ion exchange resin SANUPC (manufactured by Mitsubishi Chemical Corporation) was passed through 0.4 L at a space velocity of 3.1 to adjust the pH to 5.6, and then an alkaline aqueous solution so that the pH became 7.8. As a result, 5.4 g of a 5% aqueous ammonia solution was added. And it heated at 90 degreeC for 30 hours. This non-spherical silica sol was concentrated with an evaporator until the SiO 2 concentration became 20% by weight to prepare a non-spherical silica sol.
 この非球状シリカゾルのBET法により測定された平均粒子径は35nm、動的光散乱法による平均粒子径は70nmとなった。また、この非球状シリカゾルの短径/長径比は0.4、比表面積は180m2/gとなった。
[合成例3]
 SiO2濃度が24重量%の珪酸ナトリウム水溶液(SiO2/Na2Oモル比が3.1)をイオン交換水で希釈して、SiO2濃度が5重量%の珪酸ナトリウム水溶液(pH11.3)を1Kg調製した。
The average particle size of this non-spherical silica sol measured by the BET method was 35 nm, and the average particle size by the dynamic light scattering method was 70 nm. Further, the non-spherical silica sol had a minor axis / major axis ratio of 0.4 and a specific surface area of 180 m 2 / g.
[Synthesis Example 3]
A sodium silicate aqueous solution (SiO 2 / Na 2 O molar ratio: 3.1) having a SiO 2 concentration of 24% by weight was diluted with ion-exchanged water, and a sodium silicate aqueous solution (pH 11.3) having a SiO 2 concentration of 5% by weight. 1 kg was prepared.
 この珪酸ソーダ水溶液のpHが6.5になるように、硫酸を加えて中和し、常温で1時間保持して、シリカヒドロゲルを調製した。このシリカヒドロゲルをオリバーフィルターにて28%アンモニア水溶液(SiO2固形分の約120倍相当量)で充分に洗浄し、塩類を除去した。洗浄後の硫酸ナトリウム濃度は、SiO2固形分に対して、0.01%未満だった。 Sulfuric acid was added to neutralize this sodium silicate aqueous solution so that the pH was 6.5, and the mixture was kept at room temperature for 1 hour to prepare a silica hydrogel. This silica hydrogel was thoroughly washed with an Oliver filter with a 28% aqueous ammonia solution (corresponding to about 120 times the SiO 2 solid content) to remove salts. The sodium sulfate concentration after washing was less than 0.01% based on the SiO 2 solid content.
 得られたシリカヒドロゲルを純水に分散し(シリカ濃度3重量%)、強力攪拌機にて流動性のあるスラリー状態としたシリカヒドロゲル分散液とし、これに濃度5重量%のNaOH水溶液と28%アンモニア水の1:1混合物をSiO2/Na2Oモル比が75となるように添加し、160℃で1時間加熱した。 The obtained silica hydrogel was dispersed in pure water (silica concentration: 3% by weight) to prepare a silica hydrogel dispersion in a fluid slurry state with a strong stirrer. This was added to a 5% by weight NaOH aqueous solution and 28% ammonia. A 1: 1 mixture of water was added so that the SiO 2 / Na 2 O molar ratio was 75 and heated at 160 ° C. for 1 hour.
 次に、上記非球状シリカゾル2.09kgに、24%珪酸ナトリウムを0.81kgおよび純水10.93kgを加えて、シードゾル13.83kg(pH11.2)を調製した。このシードゾルの動的光散乱法により測定される平均粒子径は17nmであった。 Next, 0.81 kg of 24% sodium silicate and 10.93 kg of pure water were added to 2.09 kg of the above non-spherical silica sol to prepare 13.83 kg (pH 11.2) of seed sol. The average particle size of the seed sol measured by the dynamic light scattering method was 17 nm.
 次にこのシードゾルを90℃に維持しながら、これに後記するSiO2濃度4.5重量%の珪酸液117.2Kgを10時間かけて添加した。添加終了後、室温まで冷却させ、得られた非球状シリカゾルを限外濾過膜で、SiO2濃度が20重量%になるまで濃縮した。 Next, while maintaining the seed sol at 90 ° C., 117.2 kg of a silicic acid solution having a SiO 2 concentration of 4.5% by weight described later was added thereto over 10 hours. After completion of the addition, the mixture was cooled to room temperature, and the obtained non-spherical silica sol was concentrated with an ultrafiltration membrane until the SiO 2 concentration became 20% by weight.
 この非球状シリカゾルのBET法により測定された平均粒子径は50nm、動的光散乱法による平均粒子径ば100nmとなった。また、この非球状シリカゾルの短径/長径比は0.3、比表面積は50m2/gとなった。
[合成例4]
 還流器および攪拌機付セパラブルフラスコに、SiO2濃度が24重量%でNa2O濃度が8.16重量%の珪酸ナトリウム水溶液(SiO2/Na2Oモル比3)を18.7g入れ、さらに水895gを添加して、珪酸ナトリウム水溶液914gを調製した。
The average particle diameter of this non-spherical silica sol measured by the BET method was 50 nm, and the average particle diameter by the dynamic light scattering method was 100 nm. Further, the non-spherical silica sol had a minor axis / major axis ratio of 0.3 and a specific surface area of 50 m 2 / g.
[Synthesis Example 4]
18.7 g of a sodium silicate aqueous solution (SiO 2 / Na 2 O molar ratio 3) having a SiO 2 concentration of 24% by weight and a Na 2 O concentration of 8.16% by weight is placed in a separable flask equipped with a reflux and a stirrer. 895 g of water was added to prepare 914 g of an aqueous sodium silicate solution.
 次に、この珪酸ナトリウム水溶液に、SiO2濃度4.82重量%の珪酸ナトリウム(SiO2/Na2Oモル比3)を陽イオン交換樹脂塔に通すことにより得られたSiO2濃度4.82重量%の珪酸液(pH2.3、SiO2/Na2Oモル比=1,200)を、35℃の温度条件下、1,900g添加することにより、珪酸液と珪酸ナトリウム水溶液からなる混合液(SiO2/Na2Oモル比60)を得た。 Next, sodium silicate (SiO 2 / Na 2 O molar ratio: 3) having a SiO 2 concentration of 4.82% by weight was passed through the cation exchange resin tower through this sodium silicate aqueous solution to obtain a SiO 2 concentration of 4.82. By adding 1,900 g of a weight percent silicic acid solution (pH 2.3, SiO 2 / Na 2 O molar ratio = 1,200) under a temperature condition of 35 ° C., a mixed solution comprising a silicic acid solution and an aqueous sodium silicate solution (SiO 2 / Na 2 O molar ratio 60) was obtained.
 得られた混合液を加温し、80℃の温度で30分間熟成した。80℃に保持した状態で、この液に前記珪酸液と同じ組成の珪酸液329gを2時間かけて添加して、pH8.7の非球状シリカゾルを得た。この非球状シリカゾルのSiO2/Na2Oモル比は、76だった。 The resulting mixture was warmed and aged at 80 ° C. for 30 minutes. While maintaining the temperature at 80 ° C., 329 g of a silicic acid solution having the same composition as that of the silicic acid solution was added to this solution over 2 hours to obtain a non-spherical silica sol having a pH of 8.7. The non-spherical silica sol had a SiO 2 / Na 2 O molar ratio of 76.
 この非球状シリカゾルを70℃にて12時間加熱した後、エバポレーターにて、SiO2濃度が20重量%になるまで濃縮した。この非球状シリカゾルのBET法により測定された比表面積から換算された平均粒子径は6nm、動的光散乱法による平均粒子径は12nmだった。また、短径/長径比の値は0.15、比表面積は455m2/gとなった。 This non-spherical silica sol was heated at 70 ° C. for 12 hours, and then concentrated by an evaporator until the SiO 2 concentration became 20% by weight. The average particle diameter of this non-spherical silica sol converted from the specific surface area measured by the BET method was 6 nm, and the average particle diameter by the dynamic light scattering method was 12 nm. Further, the value of the ratio of minor axis / major axis was 0.15, and the specific surface area was 455 m 2 / g.
  以下の実施例は、全て本願特許請求の範囲の条件を満たすものである。 The following examples all satisfy the conditions of the claims of the present application.
[実施例1]
核粒子分散液の調製
 合成例1と同様な方法で調製した非球状シリカゾル(動的光散乱法により測定された平均粒子径24nm、短径/長径比0.45、SiO濃度20質量%)を純水で希釈して4170g(SiO濃度1質量%)とし、さらにシリカゾルのpHが11となるように濃度5質量%の水酸化ナトリウム水溶液を添加した。ついで、シリカゾルの温度を80℃に昇温し、30分間80℃に維持して核粒子分散液(A液)とした。
核粒子の成長
 水硝子(洞海化学(株)製:JIS3号水硝子、SiO濃度24質量%)575gを水2185gで希釈して、珪酸アルカリ水溶液(B液)2760gを調製した。また、電解質としての硫酸アンモニウム(三菱化学株式会社製)98.0gに水2352gを加えて、電解質水溶液2450gを調製した。そして、温度を80℃に維持した前記核粒子分散液(A液)全量に対して、前記珪酸アルカリ水溶液(B液)および前記電解質水溶液を、それぞれ80℃にて1時間かけて全量添加することにより粒子成長を行った。
[Example 1]
Preparation of core particle dispersion Non-spherical silica sol prepared by the same method as in Synthesis Example 1 (average particle diameter measured by dynamic light scattering method 24 nm, minor diameter / major diameter ratio 0.45, SiO 2 concentration 20 mass%) Was diluted with pure water to 4170 g (SiO 2 concentration 1% by mass), and a 5% by mass sodium hydroxide aqueous solution was added so that the silica sol had a pH of 11. Next, the temperature of the silica sol was raised to 80 ° C. and maintained at 80 ° C. for 30 minutes to obtain a core particle dispersion (liquid A).
575 g of core particle growth water glass (manufactured by Dokai Chemical Co., Ltd .: JIS No. 3 water glass, SiO 2 concentration 24 mass%) was diluted with 2185 g of water to prepare 2760 g of an aqueous alkali silicate solution (liquid B). Moreover, 2352 g of water was added to 98.0 g of ammonium sulfate (made by Mitsubishi Chemical Corporation) as an electrolyte to prepare 2450 g of an aqueous electrolyte solution. Then, with respect to the total amount of the core particle dispersion (liquid A) maintained at 80 ° C., the alkali silicate aqueous solution (liquid B) and the electrolyte aqueous solution are each added at 80 ° C. over 1 hour. The particle growth was carried out.
  ここで、B液のアルカリと電解質の当量比EA/EEは1.0であった。ついで、80℃で1時間熟成を行った後、粒子成長した核粒子分散液のpHが9.1になるまで限外濾過膜により洗浄を行った。ついで、濃縮してSiO濃度20質量%の非球状シリカゾルを得た。得られた非球状シリカゾルの特徴を表3に記す。また、この非球状シリカゾルについて、前記[8]アルミニウム基板に対する研磨特性の評価方法に従って、評価した結果を表3に記す。(以下、実施例2、3および比較例1、2についても同様に[8]アルミニウム基板に対する研磨特性の評価方法による、評価結果を表3に記した。)なお、非球状シリカゾルの製造条件を表1および2に記す。
[実施例2]
核粒子分散液の調製
 合成例4と同様な方法で調製した非球状シリカゾル(動的光散乱法により測定された平均粒子径12nm、短径/長径比0.15、SiO濃度20質量%)を純水で希釈し、4170g(SiO濃度1質量%)とし、さらにシリカゾルのpHが11となるように濃度5質量%の水酸化ナトリウム水溶液を添加した。ついで、シリカゾルの温度を65℃に昇温し、30分間65℃に維持して核粒子分散液(A液)とした。
核粒子の成長
 水硝子(洞海化学(株)製:JIS3号水硝子、SiO濃度24質量%)575gを水2185gで希釈して、珪酸アルカリ水溶液(B液)2760gを調製した。また、電解質としての硫酸アンモニウム(三菱化学株式会社製)98.0gに水2352gを加えて、電解質水溶液2450gを調製した。そして、温度を65℃に維持した前記核粒子分散液(A液)全量に対して、前記珪酸アルカリ水溶液(B液)および前記電解質水溶液を、それぞれ65℃にて1時間かけて全量添加することにより粒子成長を行った。ここで、B液のアルカリと電解質の当量比EA /EE は1.0であった。ついで、65℃で1時間熟成を行った後、粒子成長した核粒子分散液のpHが9.4になるまで限外濾過膜により洗浄を行った。ついで、濃縮してSiO濃度20質量%の非球状シリカゾルを得た。得られた非球状シリカゾルの特徴を表3に記す。なお、非球状シリカゾルの製造条件を表1および2に記す。
[実施例3]
核粒子分散液の調製
  合成例2と同様な方法で調製した非球状シリカゾル(動的光散乱法により測定された平均粒子径70nm、短径/長径比0.4、SiO濃度20質量%)を純水で希釈して4170g(SiO濃度1質量%)とし、さらにシリカゾルのpHが11となるように濃度5質量%の水酸化ナトリウム水溶液を添加した。ついで、シリカゾルの温度を95℃に昇温し、30分間、95℃に維持して核粒子分散液(A液)とした。
核粒子の成長
 水硝子(洞海化学(株)製:JIS3号水硝子、SiO濃度24質量%)575gを水2185gで希釈して、珪酸アルカリ水溶液(B液)2760gを調製した。また、電解質としての硝酸アンモニウム(三菱化学株式会社製)74.2gに水2376gを加えて、電解質水溶液2450.2gを調製した。そして、温度を95℃に維持した前記核粒子分散液(A液)全量に対して、前記珪酸アルカリ水溶液(B液)および前記電解質水溶液を、それぞれ95℃にて1時間かけて全量添加することにより粒子成長を行った。
Here, the equivalent ratio EA / EE of the alkali of B liquid and electrolyte was 1.0. Next, after aging at 80 ° C. for 1 hour, washing was performed with an ultrafiltration membrane until the pH of the core particle dispersion liquid with the grown particles reached 9.1. Subsequently, concentration was performed to obtain a non-spherical silica sol having a SiO 2 concentration of 20% by mass. The characteristics of the obtained non-spherical silica sol are shown in Table 3. In addition, Table 3 shows the evaluation results of this non-spherical silica sol according to the above-mentioned [8] Evaluation method of polishing characteristics for aluminum substrate. (Hereinafter, the evaluation results of Examples 2 and 3 and Comparative Examples 1 and 2 according to [8] Evaluation Method of Polishing Properties for Aluminum Substrate are also shown in Table 3.) Tables 1 and 2 show.
[Example 2]
Preparation of core particle dispersion Non-spherical silica sol prepared by the same method as in Synthesis Example 4 (average particle diameter 12 nm, minor diameter / major diameter ratio 0.15, SiO 2 concentration 20 mass% measured by dynamic light scattering method) Was diluted with pure water to 4170 g (SiO 2 concentration: 1% by mass), and a 5% by mass sodium hydroxide aqueous solution was added so that the silica sol had a pH of 11. Next, the temperature of the silica sol was raised to 65 ° C. and maintained at 65 ° C. for 30 minutes to obtain a core particle dispersion (liquid A).
575 g of core particle growth water glass (manufactured by Dokai Chemical Co., Ltd .: JIS No. 3 water glass, SiO 2 concentration 24 mass%) was diluted with 2185 g of water to prepare 2760 g of an aqueous alkali silicate solution (liquid B). Moreover, 2352 g of water was added to 98.0 g of ammonium sulfate (made by Mitsubishi Chemical Corporation) as an electrolyte to prepare 2450 g of an aqueous electrolyte solution. Then, with respect to the total amount of the core particle dispersion (liquid A) maintained at 65 ° C., the alkali silicate aqueous solution (liquid B) and the electrolyte aqueous solution are respectively added at 65 ° C. over 1 hour. The particle growth was carried out. Here, the equivalent ratio EA / EE of the alkali of B liquid and electrolyte was 1.0. Subsequently, after aging at 65 ° C. for 1 hour, washing was performed with an ultrafiltration membrane until the pH of the core particle dispersion with the grown particles reached 9.4. Subsequently, concentration was performed to obtain a non-spherical silica sol having a SiO 2 concentration of 20% by mass. The characteristics of the obtained non-spherical silica sol are shown in Table 3. The production conditions for the non-spherical silica sol are shown in Tables 1 and 2.
[Example 3]
Preparation of core particle dispersion Non-spherical silica sol prepared by the same method as in Synthesis Example 2 (average particle diameter 70 nm, minor diameter / major diameter ratio 0.4, SiO 2 concentration 20 mass% measured by dynamic light scattering method) Was diluted with pure water to 4170 g (SiO 2 concentration 1% by mass), and a 5% by mass sodium hydroxide aqueous solution was added so that the silica sol had a pH of 11. Next, the temperature of the silica sol was raised to 95 ° C. and maintained at 95 ° C. for 30 minutes to obtain a core particle dispersion (liquid A).
575 g of core particle growth water glass (manufactured by Dokai Chemical Co., Ltd .: JIS No. 3 water glass, SiO 2 concentration 24 mass%) was diluted with 2185 g of water to prepare 2760 g of an aqueous alkali silicate solution (liquid B). Moreover, 2376 g of water was added to 74.2 g of ammonium nitrate (manufactured by Mitsubishi Chemical Corporation) as an electrolyte to prepare 2450.2 g of an aqueous electrolyte solution. Then, the total amount of the alkali silicate aqueous solution (liquid B) and the electrolyte aqueous solution are respectively added at 95 ° C. over 1 hour with respect to the total amount of the core particle dispersion (liquid A) maintained at 95 ° C. The particle growth was carried out.
 ここで、B液のアルカリと電解質の当量比EA /EE は0.8であった。ついで、95℃で1時間熟成を行った後、粒子成長した核粒子分散液のpHが10になるまで限外濾過膜により、で洗浄を行った。ついで、濃縮してSiO濃度20質量%の非球状シリカゾルを得た。得られた非球状シリカゾルの特徴を表3に記す。また、得られた非球状シリカゾルの走査型電子顕微鏡写真(倍率250000倍)を図3に示す。なお、非球状シリカゾルの製造条件を表1および2に記す。
[実施例4]
核粒子分散液の調製
 合成例3と同様な方法で調製した非球状シリカゾル(動的光散乱法により測定された平均粒子径100nm、短径/長径比0.30、SiO濃度20質量%)を純水で希釈し、3890g(SiO濃度1質量%)とし、さらにシリカゾルのpHが11となるように濃度5質量%の水酸化ナトリウム水溶液を添加した。ついで、シリカゾルの温度を80℃に昇温し、30分間80℃に維持して核粒子分散液(A液)とした。
核粒子の成長
 水硝子(洞海化学(株)製:JIS3号水硝子、SiO濃度24質量%)588gを水2232gで希釈して、珪酸アルカリ水溶液(B液)2820gを調製した。また、電解質としての硝酸アンモニウム(三菱化学株式会社製)93.3gに水2412gを加えて、電解質水溶液2505.3gを調製した。そして、温度を80℃に維持した前記核粒子分散液(A液)全量に対して、前記珪酸アルカリ水溶液(B液)および前記電解質水溶液を、それぞれ80℃にて1時間かけて全量添加することにより粒子成長を行った。
Here, the equivalent ratio of the alkali of B liquid to the electrolyte EA / EE   Was 0.8. Next, after aging at 95 ° C. for 1 hour, washing was performed with an ultrafiltration membrane until the pH of the particle-grown core particle dispersion reached 10. Subsequently, concentration was performed to obtain a non-spherical silica sol having a SiO 2 concentration of 20% by mass. The characteristics of the obtained non-spherical silica sol are shown in Table 3. Moreover, the scanning electron micrograph (magnification 250,000 times) of the obtained non-spherical silica sol is shown in FIG. The production conditions for the non-spherical silica sol are shown in Tables 1 and 2.
[Example 4]
Preparation of core particle dispersion Non-spherical silica sol prepared by the same method as in Synthesis Example 3 (average particle diameter 100 nm, minor diameter / major diameter ratio 0.30, SiO 2 concentration 20 mass% measured by dynamic light scattering method) Was diluted with pure water to 3890 g (SiO 2 concentration 1 mass%), and a 5 mass% sodium hydroxide aqueous solution was added so that the silica sol had a pH of 11. Next, the temperature of the silica sol was raised to 80 ° C. and maintained at 80 ° C. for 30 minutes to obtain a core particle dispersion (liquid A).
588 g of core particle growth water glass (manufactured by Dokai Chemical Co., Ltd .: JIS No. 3 water glass, SiO 2 concentration 24 mass%) was diluted with 2232 g of water to prepare 2820 g of an aqueous alkali silicate solution (B liquid). Moreover, 2412 g of water was added to 93.3 g of ammonium nitrate (manufactured by Mitsubishi Chemical Corporation) as an electrolyte to prepare 2505.3 g of an aqueous electrolyte solution. Then, with respect to the total amount of the core particle dispersion (liquid A) maintained at 80 ° C., the alkali silicate aqueous solution (liquid B) and the electrolyte aqueous solution are each added at 80 ° C. over 1 hour. The particle growth was carried out.
 ここで、B液のアルカリと電解質の当量比EA /EE は0.65であった。ついで、80℃で1時間熟成を行った後、限外濾過膜によりpHが9.8になるまで洗浄を行った。ついで、濃縮してSiO濃度20質量%の非球状シリカゾルを得た。得られた非球状シリカゾルの特徴を表3に記す。 Here, the equivalent ratio EA between the alkali of B liquid and the electrolyte   / EE was 0.65. Then, after aging at 80 ° C. for 1 hour, washing was performed with an ultrafiltration membrane until the pH reached 9.8. Subsequently, concentration was performed to obtain a non-spherical silica sol having a SiO 2 concentration of 20% by mass. The characteristics of the obtained non-spherical silica sol are shown in Table 3.
  また、得られた非球状シリカゾルについて、前記[9]ガラス基板に対する研磨特性の評価方法にて研磨特性を評価した結果を表3に記す。(以下、実施例5についても同様に[9]ガラス基板に対する研磨特性の評価方法による、評価結果を表1に記した。)なお、非球状シリカゾルの製造条件を表1および2に記す。
[実施例5]
核粒子分散液の調製
 合成例3と同様な方法で調製した非球状シリカゾル(動的光散乱法により測定された平均粒子径100nm、短径/長径比0.30、SiO濃度20質量%)を純水で希釈し、3890g(SiO濃度1質量%)とし、さらにシリカゾルのpHが11となるように濃度5質量%の水酸化ナトリウム水溶液を添加した。ついで、シリカゾルの温度を80℃に昇温し、30分間80℃に維持して核粒子分散液(A液)とした。
核粒子の成長
 水硝子(洞海化学(株)製:JIS3号水硝子、SiO濃度24質量%)588gを水2232gで希釈して、珪酸アルカリ水溶液(B液)2820gを調製した。また、電解質としての硫酸アンモニウム(三菱化学株式会社製)100.2gに水2405gを加えて、電解質水溶液2505.2gを調製した。そして、温度を80℃に維持した前記核粒子分散液(A液)全量に対して、前記珪酸アルカリ水溶液(B液)および前記電解質水溶液を、それぞれ80℃にて1時間かけて全量添加することにより粒子成長を行った。
Further, Table 3 shows the results of evaluating the polishing characteristics of the obtained non-spherical silica sol by the above-mentioned [9] Evaluation method of polishing characteristics for glass substrate. (Hereinafter, the evaluation results for Example 5 in the same manner as described in [9] Evaluation Method for Polishing Properties of Glass Substrate are shown in Table 1.) The production conditions for the non-spherical silica sol are shown in Tables 1 and 2.
[Example 5]
Preparation of core particle dispersion Non-spherical silica sol prepared by the same method as in Synthesis Example 3 (average particle diameter 100 nm, minor diameter / major diameter ratio 0.30, SiO 2 concentration 20 mass% measured by dynamic light scattering method) Was diluted with pure water to 3890 g (SiO 2 concentration 1 mass%), and a 5 mass% sodium hydroxide aqueous solution was added so that the silica sol had a pH of 11. Next, the temperature of the silica sol was raised to 80 ° C. and maintained at 80 ° C. for 30 minutes to obtain a core particle dispersion (liquid A).
588 g of core particle growth water glass (manufactured by Dokai Chemical Co., Ltd .: JIS No. 3 water glass, SiO 2 concentration 24 mass%) was diluted with 2232 g of water to prepare 2820 g of an aqueous alkali silicate solution (B liquid). Moreover, 2405 g of water was added to 100.2 g of ammonium sulfate (manufactured by Mitsubishi Chemical Corporation) as an electrolyte to prepare 2505.2 g of an aqueous electrolyte solution. Then, with respect to the total amount of the core particle dispersion (liquid A) maintained at 80 ° C., the alkali silicate aqueous solution (liquid B) and the electrolyte aqueous solution are each added at 80 ° C. over 1 hour. The particle growth was carried out.
 ここで、B液のアルカリと電解質の当量比EA /EE は1.0であった。ついで、80℃で1時間熟成を行った後、限外濾過膜によりpHが9.2になるまで洗浄を行った。ついで、濃縮してSiO濃度20質量%の非球状シリカゾルを得た。得られた非球状シリカゾルの特徴を表3に記す。なお、非球状シリカゾルの製造条件を表1および2に記す。
[比較例1]
核粒子分散液の調製
  合成例1と同様な方法で調製した非球状シリカゾル(動的光散乱法により測定された平均粒子径24nm、短径/長径比0.45、SiO濃度20質量%)を純水で希釈し、730g(SiO濃度1質量%)とし、さらにシリカゾルのpHが11となるように濃度5質量%の水酸化ナトリウム水溶液を添加した。ついで、シリカゾルの温度を95℃に昇温し、30分間95℃に維持して核粒子分散液(A液)とした。
核粒子の成長
 水硝子(洞海化学(株)製:JIS3号水硝子、SiO濃度24質量%)888gを水4400gで希釈して、珪酸アルカリ水溶液(B液)5288gを調製した。また、電解質としての硫酸アンモニウム(三菱化学株式会社製)151.3gに水4800gを加えて、電解質水溶液4951.3gを調製した。そして、温度を95℃に維持した前記核粒子分散液(A液)全量に対して、前記珪酸アルカリ水溶液(B液)および前記電解質水溶液を、それぞれ95℃にて9時間かけて全量添加することにより粒子成長を行った。
Here, the equivalent ratio of the alkali of B liquid to the electrolyte EA / EE   Was 1.0. Next, after aging at 80 ° C. for 1 hour, washing was performed with an ultrafiltration membrane until the pH reached 9.2. Subsequently, concentration was performed to obtain a non-spherical silica sol having a SiO 2 concentration of 20% by mass. The characteristics of the obtained non-spherical silica sol are shown in Table 3. The production conditions for the non-spherical silica sol are shown in Tables 1 and 2.
[Comparative Example 1]
Preparation of core particle dispersion Non-spherical silica sol prepared by the same method as in Synthesis Example 1 (average particle diameter measured by dynamic light scattering method 24 nm, minor diameter / major diameter ratio 0.45, SiO 2 concentration 20 mass%) Was diluted with pure water to 730 g (SiO 2 concentration 1% by mass), and a 5% by mass sodium hydroxide aqueous solution was added so that the silica sol had a pH of 11. Next, the temperature of the silica sol was raised to 95 ° C. and maintained at 95 ° C. for 30 minutes to obtain a core particle dispersion (liquid A).
Growing water glass of core particles (manufactured by Dokai Chemical Co., Ltd .: JIS No. 3 water glass, SiO 2 concentration 24 mass%) 888 g was diluted with 4400 g of water to prepare 5288 g of an alkali silicate aqueous solution (liquid B). Moreover, 4800 g of water was added to 151.3 g of ammonium sulfate (manufactured by Mitsubishi Chemical Corporation) as an electrolyte to prepare 4951.3 g of an aqueous electrolyte solution. Then, with respect to the total amount of the core particle dispersion (liquid A) maintained at 95 ° C., the alkali silicate aqueous solution (liquid B) and the electrolyte aqueous solution are respectively added at 95 ° C. over 9 hours. The particle growth was carried out.
  ここで、B液のアルカリと電解質の当量比EA /EE は1.0であった。ついで、95℃で1時間熟成を行った後、限外濾過膜によりpHが9.8になるまで洗浄を行った。ついで、濃縮してSiO濃度20質量%の非球状シリカゾルを得た。得られた非球状シリカゾルの特徴を表3に記す。なお、比較例1については、シリカゾルの比表面積を、窒素吸着法により測定した。
[比較例2]
 シリカゾル(触媒化成工業株式会社製:カタロイドSI-40、画像解析法により測定された平均粒子径21.2nm、SiO濃度40.7質量%)に純水を加えてSiO濃度20質量%とした。
[実施例6]
 エタノール593.1g(敷き水)を65℃に加熱して、これにテトラエトキシシラン(多摩化学製エチルシリケート28、SiO2=28.8重量%)1188gとエタノール2255gを混合したテトラエトキシラン溶液、および超純水237.3gと29.1%アンモニア水40.5gを混合したアンモニア希釈液とを同時に6時間かけて連続的に添加した。添加終了後さらにこの温度で3時間維持し、熟成した。その後限外ろ過膜で固形分濃度15重量%まで濃縮し未反応のテトラエトキシシランを除去した。さらにロータリーエバポレーターでエタノール、アンモニアをほぼ除去し固形分濃度12.6重量%の非球状シリカゾルを得た。得られた非球状シリカゾルは表3に示される物性を有していた。
Here, the equivalent ratio EA / EE of the alkali of B liquid and electrolyte was 1.0. Next, after aging at 95 ° C. for 1 hour, washing was performed with an ultrafiltration membrane until the pH reached 9.8. Subsequently, concentration was performed to obtain a non-spherical silica sol having a SiO 2 concentration of 20% by mass. The characteristics of the obtained non-spherical silica sol are shown in Table 3. In Comparative Example 1, the specific surface area of the silica sol was measured by a nitrogen adsorption method.
[Comparative Example 2]
Pure water was added to silica sol (catalyst chemical industry Co., Ltd .: Cataloid SI-40, average particle diameter measured by image analysis method 21.2 nm, SiO 2 concentration 40.7 mass%) to obtain an SiO 2 concentration of 20 mass%. did.
[Example 6]
A tetraethoxylane solution in which 593.1 g of ethanol (laying water) was heated to 65 ° C. and mixed with 1188 g of tetraethoxysilane (ethyl silicate 28, SiO 2 = 28.8 wt%) manufactured by Tama Chemical Co., Ltd. and 2255 g of ethanol, Further, 237.3 g of ultrapure water and an ammonia diluted solution obtained by mixing 40.5 g of 29.1% ammonia water were continuously added simultaneously over 6 hours. After completion of the addition, the mixture was further maintained at this temperature for 3 hours and aged. Thereafter, it was concentrated with an ultrafiltration membrane to a solid concentration of 15% by weight to remove unreacted tetraethoxysilane. Further, ethanol and ammonia were almost removed by a rotary evaporator to obtain a non-spherical silica sol having a solid content concentration of 12.6% by weight. The obtained non-spherical silica sol had the physical properties shown in Table 3.
 得られた非球状シリカゾルについて、前記「[11]ナトリウムの定量方法」に従って、非球状シリカ微粒子に含まれるナトリウム量を測定したところ、1質量ppm未満だった。 For the obtained non-spherical silica sol, the amount of sodium contained in the non-spherical silica fine particles was measured according to the aforementioned “[11] Sodium quantification method” and found to be less than 1 ppm by mass.
  また、得られた非球状シリカゾルについて、前記[10]熱酸化膜に対する研磨特性の評価方法にて研磨特性を評価した結果を表3に記す。
[実施例7]
 エタノール593.1g(敷き水)を75℃に加熱して、これにテトラエトキシシラン(多摩化学製エチルシリケート28、SiO2=28.8重量%)1188gとエタノール2255gを混合したテトラエトキシラン溶液、および超純水336.6gと29.1%アンモニア水40.5gを混合したアンモニア希釈液とを同時に6時間かけて連続的に添加した。添加終了後さらにこの温度で3時間維持し、熟成した。その後限外ろ過膜で固形分濃度15重量%まで濃縮し未反応のテトラエトキシシランを除去した。さらにロータリーエバポレーターでエタノール、アンモニアをほぼ除去し固形分濃度12.6重量%の非球状シリカゾルを得た。得られた非球状シリカゾルは表3に示される物性を有していた。
Table 3 shows the results of evaluating the polishing characteristics of the obtained non-spherical silica sol by the above-mentioned [10] Evaluation method of polishing characteristics for thermal oxide film.
[Example 7]
A tetraethoxylane solution in which 593.1 g of ethanol (laying water) was heated to 75 ° C. and mixed with 1188 g of tetraethoxysilane (ethyl silicate 28, SiO 2 = 28.8 wt%) manufactured by Tama Chemical and 2255 g of ethanol, In addition, 336.6 g of ultrapure water and an ammonia dilution mixed with 40.5 g of 29.1% ammonia water were continuously added simultaneously over 6 hours. After completion of the addition, the mixture was further maintained at this temperature for 3 hours and aged. Thereafter, it was concentrated with an ultrafiltration membrane to a solid concentration of 15% by weight to remove unreacted tetraethoxysilane. Further, ethanol and ammonia were almost removed by a rotary evaporator to obtain a non-spherical silica sol having a solid content concentration of 12.6% by weight. The obtained non-spherical silica sol had the physical properties shown in Table 3.
 得られた非球状シリカゾルについて、前記「[11]ナトリウムの定量方法」に従って、非球状シリカ微粒子に含まれるナトリウム量を測定したところ、1質量ppm未満だった。 For the obtained non-spherical silica sol, the amount of sodium contained in the non-spherical silica fine particles was measured according to the aforementioned “[11] Sodium quantification method” and found to be less than 1 ppm by mass.
  また、得られた非球状シリカゾルについて、前記[10]熱酸化膜に対する研磨特性の評価方法にて研磨特性を評価した結果を表3に記す。
[実施例8]
 エタノール2372.4g(敷き水)を75℃に加熱して、これにテトラエトキシシラン(多摩化学製エチルシリケート28、SiO2=28.8重量%)1188gとエタノール2255gを混合したテトラエトキシラン溶液、および超純水336.6gと29.1%アンモニア水40.5gを混合したアンモニア希釈液とを同時に6時間かけて連続的に添加した。添加終了後さらにこの温度で3時間維持し、熟成した。その後限外ろ過膜で固形分濃度15重量%まで濃縮し未反応のテトラエトキシシランを除去した。さらにロータリーエバポレーターでエタノール、アンモニアをほぼ除去し固形分濃度12.6重量%の非球状シリカゾルを得た。得られた非球状シリカゾルは表3に示される物性を有していた。
Table 3 shows the results of evaluating the polishing characteristics of the obtained non-spherical silica sol by the above-mentioned [10] Evaluation method of polishing characteristics for thermal oxide film.
[Example 8]
Ethanol 2372.4 g (bed water) was heated to 75 ° C., and tetraethoxysilane solution in which 1188 g of tetraethoxysilane (ethyl silicate 28, SiO 2 = 28.8 wt%) manufactured by Tama Chemical Co., Ltd. and 2255 g of ethanol were mixed, In addition, 336.6 g of ultrapure water and an ammonia dilution mixed with 40.5 g of 29.1% ammonia water were continuously added simultaneously over 6 hours. After completion of the addition, the mixture was further maintained at this temperature for 3 hours and aged. Thereafter, it was concentrated with an ultrafiltration membrane to a solid concentration of 15% by weight to remove unreacted tetraethoxysilane. Further, ethanol and ammonia were almost removed by a rotary evaporator to obtain a non-spherical silica sol having a solid content concentration of 12.6% by weight. The obtained non-spherical silica sol had the physical properties shown in Table 3.
 得られた非球状シリカゾルについて、前記「[11]ナトリウムの定量方法」に従って、非球状シリカ微粒子に含まれるナトリウム量を測定したところ、1質量ppm未満だった。 For the obtained non-spherical silica sol, the amount of sodium contained in the non-spherical silica fine particles was measured according to the aforementioned “[11] Sodium quantification method” and found to be less than 1 ppm by mass.
  また、得られた非球状シリカゾルについて、前記[10]熱酸化膜に対する研磨特性の評価方法にて研磨特性を評価した結果を表3に記す。
[比較例3]
 テトラエトキシシラン(多摩化学株式会社製:エチルシリケート28、SiO2 =28質量%)532.5gを、水-メタノール混合溶媒[水とメタノールの重量比=2:8]2450gに溶解させてなるテトラエトキシシラン溶液2982.5gと、濃度0.25質量%のアンモニア水溶液596. 4gとを、60℃に保持した水-メタノール混合溶媒(純水139.1gとメタノール169.9gからなる)に、同時に20時間かけて添加した。なお、アンモニア/テトラエトキシシラン=0.034(モル比)だった。添加終了後、さらに65℃で、3時間熟成した。
Table 3 shows the results of evaluating the polishing characteristics of the obtained non-spherical silica sol by the above-mentioned [10] Evaluation method of polishing characteristics for thermal oxide film.
[Comparative Example 3]
Tetraethoxysilane (manufactured by Tama Chemical Co., Ltd .: ethyl silicate 28, SiO 2 = 28 mass%) 532.5 g is dissolved in 2450 g of a water-methanol mixed solvent [weight ratio of water to methanol = 2: 8]. 2982.5 g of ethoxysilane solution and 596.% by weight aqueous ammonia solution 596. 4 g was simultaneously added to a water-methanol mixed solvent maintained at 60 ° C. (consisting of 139.1 g of pure water and 169.9 g of methanol) over 20 hours. In addition, it was ammonia / tetraethoxysilane = 0.034 (molar ratio). After completion of the addition, the mixture was further aged at 65 ° C. for 3 hours.
 その後、限外濾過膜で未反応のテトラエトキシシラン、メタノール、アンモニアをほぼ完全に除去し、両イオン交換樹脂で精製し、ついで限外濾過膜で濃縮し、固形分濃度20質量%のシリカゾルを得た。このシリカゾルに関する測定結果を表1に記す。 Thereafter, unreacted tetraethoxysilane, methanol, and ammonia are removed almost completely with an ultrafiltration membrane, purified with both ion exchange resins, and then concentrated with an ultrafiltration membrane to obtain a silica sol having a solid concentration of 20% by mass. Obtained. The measurement results regarding this silica sol are shown in Table 1.
 得られた球状シリカゾルについて、前記「[11]ナトリウムの定量方法」に従って、球状シリカ微粒子に含まれるナトリウム量を測定したところ、1質量ppm未満だった。 For the obtained spherical silica sol, the amount of sodium contained in the spherical silica fine particles was measured according to the above-mentioned “[11] Sodium quantification method” and found to be less than 1 ppm by mass.
  また、得られたシリカゾルについて、前記[10]熱酸化膜に対する研磨特性の評価方法にて研磨特性を評価した結果を表3に記す。 The results of evaluating the polishing characteristics of the obtained silica sol by the above-mentioned [10] Evaluation method of polishing characteristics for thermal oxide film are shown in Table 3.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 本発明の非球状シリカゾルは、研磨材として高い実用性を有するものである。また、優れた充填性、吸油性、電気特性などの物理特性および光学特性を有するが故に、塗料添加剤、樹脂添加剤、インク受容層の成分、化粧料の成分などへの適用が期待される。 The non-spherical silica sol of the present invention has high utility as an abrasive. In addition, it has excellent physical properties such as filling properties, oil absorption properties, electrical properties, and optical properties, so it is expected to be applied to paint additives, resin additives, ink receiving layer components, cosmetic components, etc. .

Claims (13)

  1.  動的光散乱法により測定される平均粒子径が3~200nmの範囲、短径/長径比が0.01~0.8の範囲、比表面積が10~800m2/gの範囲にあり、表面に複数の疣状突起を有する非球状シリカ微粒子が分散媒に分散してなることを特徴とする非球状シリカゾル。 The average particle size measured by the dynamic light scattering method is in the range of 3 to 200 nm, the minor axis / major axis ratio is in the range of 0.01 to 0.8, and the specific surface area is in the range of 10 to 800 m 2 / g. A non-spherical silica sol, wherein non-spherical silica fine particles having a plurality of hook-shaped protrusions are dispersed in a dispersion medium.
  2.  前記疣状突起を有する非球状シリカ微粒子の長軸を含む平面上において、前記非球状シリカ微粒子の外縁上の任意の点から、該外縁上の点を通り前記長軸と直交する直線と前記長軸との交点Bまでの距離をY、前記非球状シリカ微粒子の外縁と前記長軸との一方の交点Aから、前記交点Bまでの距離をXとしてX-Y曲線を描いた場合に、該X-Y曲線が複数の極大値を有することを特徴とする請求項1記載の非球状シリカゾル。 On a plane including the major axis of the non-spherical silica fine particles having the ridge-like projections, from any point on the outer edge of the non-spherical silica fine particles, a straight line passing through the point on the outer edge and orthogonal to the major axis and the length When an XY curve is drawn, where Y is the distance to the intersection B with the axis and X is the distance from one intersection A between the outer edge of the non-spherical silica fine particle and the major axis to the intersection B, The non-spherical silica sol according to claim 1, wherein the XY curve has a plurality of maximum values.
  3. 前記疣状突起を有する非球状シリカ微粒子の長軸を含む平面上において、前記非球状シリカ微粒子の外縁上の任意の点から、該外縁上の点を通り前記長軸と直交する直線と前記長軸との交点Bまでの距離をYとした場合に、前記距離Yの変動係数が5~50%の範囲にあることを特徴とする請求項1または請求項2記載の非球状シリカゾル。 On a plane including the major axis of the non-spherical silica fine particles having the ridge-like projections, from any point on the outer edge of the non-spherical silica fine particles, a straight line passing through the point on the outer edge and orthogonal to the major axis and the length The non-spherical silica sol according to claim 1 or 2, wherein when the distance to the intersection B with the axis is Y, the coefficient of variation of the distance Y is in the range of 5 to 50%.
  4.  前記疣状突起を有する非球状シリカ微粒子の個数が、分散質であるシリカ微粒子の全個数の50%以上であることを特徴とする請求項1~請求項3の何れかに記載の非球状シリカゾル。 The non-spherical silica sol according to any one of claims 1 to 3, wherein the number of non-spherical silica fine particles having ridge-like projections is 50% or more of the total number of silica fine particles as a dispersoid. .
  5.  前記疣状突起を有する非球状シリカ微粒子が、[SiO4/2]単位から構成されるものであることを特徴とする請求項1~請求項4の何れかに記載の非球状シリカゾル。 The non-spherical silica sol according to any one of claims 1 to 4, wherein the non-spherical silica fine particles having ridge-like protrusions are composed of [SiO 4/2 ] units.
  6. 前記疣状突起を有する非球状シリカ微粒子が、テトラエトキシシランの加水分解により得られた[SiO4/2]単位から構成されるポリシロキサンからなることを特徴とする請求項1~請求項4記載の非球状シリカゾル。 5. The non-spherical silica fine particles having ridge-like protrusions are made of polysiloxane composed of [SiO 4/2 ] units obtained by hydrolysis of tetraethoxysilane. Non-spherical silica sol.
  7. 前記疣状突起を有する非球状シリカ微粒子に含まれるナトリウムの割合が、100質量ppm以下であることを特徴とする請求項5または請求項6記載の非球状シリカゾル。 7. The non-spherical silica sol according to claim 5, wherein a ratio of sodium contained in the non-spherical silica fine particles having the hook-shaped protrusions is 100 ppm by mass or less.
  8.  請求項1~請求項7の何れかに記載の非球状シリカゾルからなる研磨材。 An abrasive comprising the non-spherical silica sol according to any one of claims 1 to 7.
  9.  請求項1~請求項7の何れかに記載の非球状シリカゾルを含むことを特徴とする研磨用組成物。 A polishing composition comprising the non-spherical silica sol according to any one of claims 1 to 7.
  10.  強酸の塩からなる電解質の存在下(電解質の当量数を(EE)で表す)、下記A液100質量部(シリカ換算)に対して、B液50~2500質量部(シリカ換算)を添加して非球状シードシリカ微粒子を成長させる際に、アルカリと電解質の当量比(EA/EE)が0.4~8の範囲となるようにB液を添加することを特徴とする請求項1~請求項5の何れかに記載の非球状シリカゾルの製造方法。
    A液:動的光散乱法により測定される平均粒子径が3~200nmの範囲、短径/長径比が0.01~0.8の範囲にある非球状シードシリカ微粒子が分散媒に分散してなる非球状シードシリカゾル
    B液:珪酸アルカリ水溶液(B液に含まれるアルカリの当量数を(EA)で表す。)
    In the presence of an electrolyte composed of a salt of a strong acid (the number of equivalents of the electrolyte is represented by (EE)), 50 to 2500 parts by mass of B solution (silica conversion) is added to 100 parts by mass of A liquid (silica conversion) below. The liquid B is added so that the equivalent ratio of the alkali to the electrolyte (EA / EE) is in the range of 0.4 to 8 when growing the non-spherical seed silica fine particles. Item 6. A method for producing a non-spherical silica sol according to any one of Items 5 to 6.
    Liquid A: Non-spherical seed silica fine particles having an average particle diameter measured by a dynamic light scattering method in the range of 3 to 200 nm and a minor axis / major axis ratio in the range of 0.01 to 0.8 are dispersed in the dispersion medium. Nonspherical seed silica sol B liquid: An aqueous alkali silicate solution (the number of equivalents of alkali contained in B liquid is represented by (EA))
  11.  前記A液に、前記B液および前記電解質を、40~150℃の温度範囲で15分~10時間かけてそれぞれ添加し、熟成することを特徴とする請求項10に記載の非球状シリカゾルの製造方法。 11. The non-spherical silica sol according to claim 10, wherein the liquid B and the electrolyte are added to the liquid A over a period of 15 minutes to 10 hours in a temperature range of 40 to 150 ° C., and are aged. Method.
  12.  水溶性有機溶媒および水を含む混合溶媒の温度範囲を30~150℃に維持し、この混合溶媒に、1)下記一般式(1)で表される4官能性シラン化合物の水溶性有機溶媒溶液および2)アルカリ触媒溶液を同時に、連続的または断続的に添加し、添加終了後、この液状体をさらに30~150℃の温度範囲に維持することにより、該4官能性シラン化合物を加水分解縮合させて非球状シリカゾルを製造するにあたり、前記4官能性シラン化合物に対する水のモル比を2~4の範囲にすることを特徴とする請求項5または請求項6に記載の非球状シリカゾルの製造方法。
    Figure JPOXMLDOC01-appb-C000001
     ((1)式中、Rは炭素数2~4のアルキル基である。)
    The temperature range of the mixed solvent containing a water-soluble organic solvent and water is maintained at 30 to 150 ° C., and 1) a water-soluble organic solvent solution of a tetrafunctional silane compound represented by the following general formula (1) And 2) Add the alkaline catalyst solution simultaneously or intermittently, and after completion of the addition, maintain this liquid in a temperature range of 30 to 150 ° C., thereby hydrolyzing and condensing the tetrafunctional silane compound. The method for producing a non-spherical silica sol according to claim 5 or 6, wherein the molar ratio of water to the tetrafunctional silane compound is in the range of 2 to 4 in producing the non-spherical silica sol. .
    Figure JPOXMLDOC01-appb-C000001
    (In the formula (1), R is an alkyl group having 2 to 4 carbon atoms.)
  13.  前記4官能性シラン化合物が、テトラエトキシシランであることを特徴とする請求項12に記載の非球状シリカゾルの製造方法。 The method for producing a non-spherical silica sol according to claim 12, wherein the tetrafunctional silane compound is tetraethoxysilane.
PCT/JP2009/059810 2007-11-30 2009-05-28 Aspherical silica sol, process for producing the same, and composition for polishing WO2010052945A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/127,634 US9272916B2 (en) 2007-11-30 2009-05-28 Non-spherical silica sol, process for producing the same, and composition for polishing
US14/947,393 US10160894B2 (en) 2007-11-30 2015-11-20 Non-spherical silica sol, process for producing the same, and composition for polishing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-286618 2008-11-07
JP2008286618A JP5602358B2 (en) 2007-11-30 2008-11-07 Non-spherical silica sol, method for producing the same, and polishing composition

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/127,634 A-371-Of-International US9272916B2 (en) 2007-11-30 2009-05-28 Non-spherical silica sol, process for producing the same, and composition for polishing
US14/947,393 Continuation US10160894B2 (en) 2007-11-30 2015-11-20 Non-spherical silica sol, process for producing the same, and composition for polishing

Publications (1)

Publication Number Publication Date
WO2010052945A1 true WO2010052945A1 (en) 2010-05-14

Family

ID=42153757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059810 WO2010052945A1 (en) 2007-11-30 2009-05-28 Aspherical silica sol, process for producing the same, and composition for polishing

Country Status (2)

Country Link
TW (1) TWI483898B (en)
WO (1) WO2010052945A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012006796A (en) * 2010-06-25 2012-01-12 Fuji Xerox Co Ltd Silica particle and method of producing the same
JP2012006789A (en) * 2010-06-24 2012-01-12 Fuji Xerox Co Ltd Silica particles, and method for producing the same
JP2012149169A (en) * 2011-01-19 2012-08-09 Fuji Xerox Co Ltd Resin particle and method for producing the same
US20140342562A1 (en) * 2011-11-25 2014-11-20 Fujimi Incorporated Polishing composition
US8962139B2 (en) 2011-01-20 2015-02-24 Fuji Xerox Co., Ltd. Resin particle and method for producing the same
TWI493612B (en) * 2010-10-12 2015-07-21 Fujimi Inc Polishing composition
US9243145B2 (en) 2013-01-28 2016-01-26 Fuji Xerox Co., Ltd. Silica composite particles and method of preparing the same
US9708191B2 (en) 2011-12-01 2017-07-18 Fuji Xerox Co., Ltd. Silica composite particles and method of preparing the same
JPWO2020179557A1 (en) * 2019-03-06 2020-09-10
WO2020179558A1 (en) * 2019-03-06 2020-09-10 扶桑化学工業株式会社 Colloidal silica and method for producing same
JPWO2020179555A1 (en) * 2019-03-06 2020-09-10
WO2020179556A1 (en) * 2019-03-06 2020-09-10 扶桑化学工業株式会社 Colloidal silica and method for producing same
CN114180581A (en) * 2021-11-29 2022-03-15 江西晨光新材料股份有限公司 Synthetic method of silicon dioxide aerogel
WO2023058745A1 (en) * 2021-10-08 2023-04-13 三菱マテリアル電子化成株式会社 Linear colloidal silica particle dispersion sol and method for producing same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5838083B2 (en) * 2011-12-09 2015-12-24 株式会社フジミインコーポレーテッド Polishing composition, polishing method using the same, and substrate manufacturing method
CN104592895B (en) * 2014-09-26 2017-06-06 深圳市力合材料有限公司 A kind of preparation method of silicon dioxide gel
CN105802511A (en) * 2014-12-29 2016-07-27 安集微电子(上海)有限公司 Chemical mechanical polishing liquid and application thereof
CN107010631A (en) * 2016-01-28 2017-08-04 浙江晶圣美纳米科技有限公司 A kind of aspherical cataloid nanometer grain preparation method
KR20200096487A (en) * 2017-12-04 2020-08-12 도레이 카부시키가이샤 Substrate, resin composition for preventing light diffusion, and image display device
US10822524B2 (en) * 2017-12-14 2020-11-03 Rohm And Haas Electronic Materials Cmp Holdings, I Aqueous compositions of low dishing silica particles for polysilicon polishing
CN113881347B (en) * 2021-10-15 2023-01-31 深圳市科玺化工有限公司 Chemical mechanical precision polishing liquid for silicon wafers

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08253624A (en) * 1995-03-14 1996-10-01 Fuji Photo Film Co Ltd Thermoplastic polymer film
JP2007153732A (en) * 2005-11-10 2007-06-21 Tama Kagaku Kogyo Kk Method for producing neutral colloidal silica
JP2008137822A (en) * 2006-11-30 2008-06-19 Catalysts & Chem Ind Co Ltd Konpeito-like inorganic oxide sol, its production method, and abrasive including the oxide sol
JP2008169099A (en) * 2007-01-15 2008-07-24 Sumitomo Rubber Ind Ltd Confetti-like silica particle and method for manufacturing the same
JP2008169102A (en) * 2006-10-12 2008-07-24 Catalysts & Chem Ind Co Ltd Confetti-like silica-based sol and method for producing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5013732B2 (en) * 2006-04-03 2012-08-29 Jsr株式会社 Chemical mechanical polishing aqueous dispersion, chemical mechanical polishing method, chemical mechanical polishing kit, and kit for preparing chemical mechanical polishing aqueous dispersion

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08253624A (en) * 1995-03-14 1996-10-01 Fuji Photo Film Co Ltd Thermoplastic polymer film
JP2007153732A (en) * 2005-11-10 2007-06-21 Tama Kagaku Kogyo Kk Method for producing neutral colloidal silica
JP2008169102A (en) * 2006-10-12 2008-07-24 Catalysts & Chem Ind Co Ltd Confetti-like silica-based sol and method for producing the same
JP2008137822A (en) * 2006-11-30 2008-06-19 Catalysts & Chem Ind Co Ltd Konpeito-like inorganic oxide sol, its production method, and abrasive including the oxide sol
JP2008169099A (en) * 2007-01-15 2008-07-24 Sumitomo Rubber Ind Ltd Confetti-like silica particle and method for manufacturing the same

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012006789A (en) * 2010-06-24 2012-01-12 Fuji Xerox Co Ltd Silica particles, and method for producing the same
US9187502B2 (en) 2010-06-24 2015-11-17 Fuji Xerox Co., Ltd. Silica particles and method for producing the same
JP2012006796A (en) * 2010-06-25 2012-01-12 Fuji Xerox Co Ltd Silica particle and method of producing the same
US8871344B2 (en) 2010-06-25 2014-10-28 Fuji Xerox Co., Ltd. Hydrophobization treatment of silica particles
TWI493612B (en) * 2010-10-12 2015-07-21 Fujimi Inc Polishing composition
JP2012149169A (en) * 2011-01-19 2012-08-09 Fuji Xerox Co Ltd Resin particle and method for producing the same
US9394413B2 (en) 2011-01-19 2016-07-19 Fuji Xerox Co., Ltd. Resin particle and method for producing the same
US8962139B2 (en) 2011-01-20 2015-02-24 Fuji Xerox Co., Ltd. Resin particle and method for producing the same
US20140342562A1 (en) * 2011-11-25 2014-11-20 Fujimi Incorporated Polishing composition
US9688884B2 (en) * 2011-11-25 2017-06-27 Fujimi Incorporated Polishing composition
US9708191B2 (en) 2011-12-01 2017-07-18 Fuji Xerox Co., Ltd. Silica composite particles and method of preparing the same
US9243145B2 (en) 2013-01-28 2016-01-26 Fuji Xerox Co., Ltd. Silica composite particles and method of preparing the same
JPWO2020179558A1 (en) * 2019-03-06 2020-09-10
JPWO2020179556A1 (en) * 2019-03-06 2020-09-10
JPWO2020179557A1 (en) * 2019-03-06 2020-09-10
JPWO2020179555A1 (en) * 2019-03-06 2020-09-10
WO2020179556A1 (en) * 2019-03-06 2020-09-10 扶桑化学工業株式会社 Colloidal silica and method for producing same
WO2020179557A1 (en) * 2019-03-06 2020-09-10 扶桑化学工業株式会社 Colloidal silica, and method for production thereof
WO2020179555A1 (en) * 2019-03-06 2020-09-10 扶桑化学工業株式会社 Colloidal silica and production method therefor
WO2020179558A1 (en) * 2019-03-06 2020-09-10 扶桑化学工業株式会社 Colloidal silica and method for producing same
JP7457762B2 (en) 2019-03-06 2024-03-28 扶桑化学工業株式会社 Colloidal silica and its manufacturing method
JP7119208B2 (en) 2019-03-06 2022-08-16 扶桑化学工業株式会社 Colloidal silica and method for producing the same
JP7119209B2 (en) 2019-03-06 2022-08-16 扶桑化学工業株式会社 Colloidal silica and method for producing the same
JP7129548B2 (en) 2019-03-06 2022-09-01 扶桑化学工業株式会社 Colloidal silica and method for producing the same
JP7164702B2 (en) 2019-03-06 2022-11-01 扶桑化学工業株式会社 Colloidal silica and method for producing the same
JP7434491B2 (en) 2019-03-06 2024-02-20 扶桑化学工業株式会社 Colloidal silica and its manufacturing method
WO2023058745A1 (en) * 2021-10-08 2023-04-13 三菱マテリアル電子化成株式会社 Linear colloidal silica particle dispersion sol and method for producing same
CN114180581A (en) * 2021-11-29 2022-03-15 江西晨光新材料股份有限公司 Synthetic method of silicon dioxide aerogel

Also Published As

Publication number Publication date
TWI483898B (en) 2015-05-11
TW201018644A (en) 2010-05-16

Similar Documents

Publication Publication Date Title
JP5602358B2 (en) Non-spherical silica sol, method for producing the same, and polishing composition
WO2010052945A1 (en) Aspherical silica sol, process for producing the same, and composition for polishing
JP5587957B2 (en) Konpira sugar-like sol
JP5599440B2 (en) Deformed silica sol
US8187351B2 (en) Sol of spinous inorganic oxide particles, method of producing the sol, and polishing agent containing the sol
JP5084670B2 (en) Silica sol and method for producing the same
JP2009137791A (en) Non-spherical combined silica sol and method for producing the same
KR101890445B1 (en) Polishing composition
JP2018090798A (en) Silica-based particles for polishing and abrasive
JP2009078935A (en) "konpeito" (pointed sugar candy ball)-like composite silica sol
JP6259182B2 (en) Polishing liquid for primary polishing of magnetic disk substrate with nickel phosphorus plating
JP4949209B2 (en) Non-spherical alumina-silica composite sol, method for producing the same, and polishing composition
JP6207345B2 (en) Method for producing silica particles
JP2007153692A (en) Method for manufacturing anisotropic-shape silica sol
JP4979930B2 (en) Method for producing anisotropic silica sol
JP5346167B2 (en) Particle-linked alumina-silica composite sol and method for producing the same
JP5421006B2 (en) Particle-linked silica sol and method for producing the same
JP2010024119A (en) Method for producing confetti-like silica sol
JP2009078936A (en) Method for preparing "konpeito" (pointed sugar candy ball)-like composite silica sol
JP2009091197A (en) Warty-surfaced sphere-form inorganic oxide sol, method for producing same, and abrasive containing the sol
TWI833391B (en) Surface-treated silicon dioxide particle dispersion sol and manufacturing method thereof
JP2022157237A (en) Manufacturing method of confetti-like alumina-silica composite fine particle dispersion
JP5646143B2 (en) Flaky composite silica fine particle dispersion and method for producing the same
TW202330407A (en) Linear colloidal silica particle dispersion sol and method for producing same
JP2021143110A (en) Particle-linked silica microparticle dispersion and method for producing the same, and abrasive particle dispersion for polishing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09824645

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13127634

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09824645

Country of ref document: EP

Kind code of ref document: A1