JP2678213B2 - Manufacturing method of aluminum nitride sintered body - Google Patents

Manufacturing method of aluminum nitride sintered body

Info

Publication number
JP2678213B2
JP2678213B2 JP63130972A JP13097288A JP2678213B2 JP 2678213 B2 JP2678213 B2 JP 2678213B2 JP 63130972 A JP63130972 A JP 63130972A JP 13097288 A JP13097288 A JP 13097288A JP 2678213 B2 JP2678213 B2 JP 2678213B2
Authority
JP
Japan
Prior art keywords
aluminum nitride
sintered body
nitride sintered
thermal conductivity
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63130972A
Other languages
Japanese (ja)
Other versions
JPH01298071A (en
Inventor
晃 山川
仁之 坂上
浩一 曽我部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP63130972A priority Critical patent/JP2678213B2/en
Publication of JPH01298071A publication Critical patent/JPH01298071A/en
Application granted granted Critical
Publication of JP2678213B2 publication Critical patent/JP2678213B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は窒化アルミニウム焼結体の製造方法に関
し、特に絶縁回路基板、半導体集積回路装置用パッケー
ジ等に用いられ、高熱伝導性を有し、微粒からなる窒化
アルミニウム焼結体の製造方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a method for manufacturing an aluminum nitride sintered body, which is particularly used for an insulating circuit board, a package for a semiconductor integrated circuit device, etc., and has high thermal conductivity. The present invention relates to a method for producing an aluminum nitride sintered body made of fine particles.

[従来の技術] 最近、大規模集積回路装置(LSI)に関する技術の進
歩は目覚しく、特に集積度の向上は著しいものである。
この集積度の向上に対しては、半導体集積回路装置(I
C)のチップサイズの大型化も寄与しており、ICチップ
サイズの大型化に伴なってパッケージあたりの発熱量が
増大している。このため、半導体装置用パッケージ等に
用いられる絶縁体基板の材料の放熱性が重要視されるよ
うになってきた。この絶縁体基板の材料としては、従来
よりアルミナ(Al2O3)が一般的である。しかし、アル
ミナは電気絶縁性および機械強度に優れている半面、熱
伝導率が30W/mKと小さいために熱放散性が悪いので、た
とえば、高発熱量の電界効果トランジスタ(FET)等を
アルミナ基板の上に搭載することは不適当である。その
上に高発熱量の半導体素子を搭載するために、高い熱伝
導率を有するベリリア(BeO)を用いた絶縁体基板も存
在するが、ベリリアは毒性があり、使用上の安全対策が
煩雑である。
[Prior Art] In recent years, the technology of large-scale integrated circuit devices (LSIs) has made remarkable progress, and in particular, the degree of integration has been remarkably improved.
In order to improve the degree of integration, semiconductor integrated circuit devices (I
The larger chip size of C) also contributes to the increase in the heat generation amount per package as the IC chip size increases. For this reason, importance has been placed on the heat dissipation of the material of the insulator substrate used for the package for semiconductor devices and the like. As a material for the insulating substrate, alumina (Al 2 O 3 ) has been generally used. However, while alumina has excellent electrical insulation and mechanical strength, it has poor heat dissipation due to its small thermal conductivity of 30 W / mK. For example, a field effect transistor (FET) with a high heat generation amount can be used on an alumina substrate. It is unsuitable to mount on top of. There is also an insulating substrate using beryllium (BeO), which has high thermal conductivity, for mounting a semiconductor element with a high calorific value, but beryllia is toxic and safety measures for use are complicated. is there.

そこで、最近では、高発熱量の半導体素子搭載用の絶
縁体基板として、高い熱伝導率を有し、毒性がなく、ま
た、アルミナと同等の電気絶縁性や機械強度を有する窒
化アルミニウム(AlN)が半導体装置用の絶縁材料ある
いはパッケージ材料として有望視されている。
Therefore, recently, as an insulating substrate for mounting a semiconductor element having a high heat generation amount, aluminum nitride (AlN), which has high thermal conductivity, is not toxic, and has the same electrical insulation and mechanical strength as alumina. Are promising as insulating materials or package materials for semiconductor devices.

[発明が解決しようとする課題] 上述のように窒化アルミニウムは理論的には単結晶と
しては高熱伝導性、高絶縁性を有する材料である。しか
しながら、窒化アルミニウム粉末から焼結体を製造する
場合、窒化アルミニウム粉末自体の焼結性がよくないた
め、粉末成形後、焼結することによって得られる窒化ア
ルミニウム焼結体の相対密度(窒化アルミニウムの理論
密度3.26g/cm3を基準とする)は、結晶条件にもよる
が、たかだか70〜80%した示さず、多量の気孔を包含す
る。そのため、窒化アルミニウム粉末を単独に用いるこ
とにより、窒化アルミニウム焼結体を緻密化することは
困難である。
[Problems to be Solved by the Invention] As described above, aluminum nitride is theoretically a material having high thermal conductivity and high insulation as a single crystal. However, when a sintered body is manufactured from aluminum nitride powder, since the sinterability of the aluminum nitride powder itself is not good, the relative density of the aluminum nitride sintered body (aluminum nitride The theoretical density is 3.26 g / cm 3 ), but depending on the crystallization conditions, it does not show at most 70-80%, and contains a large amount of pores. Therefore, it is difficult to densify the aluminum nitride sintered body by using the aluminum nitride powder alone.

一方、窒化アルミニウム焼結体のような絶縁性セラミ
ックスの熱伝導機構はフォノン伝導を主体とするため、
焼結体中の気孔、不純物等の欠陥がフォノン散乱の原因
となり、その熱伝導率は低レベルのものした得られな
い。これからの状況に対し、高熱伝導性を有するAlN焼
結体を得るためには種々の提案がなされている。たとえ
ば、AlNの焼結助剤、脱酸剤としてY2Oを添加し、高密
度、高熱伝導性のAlN焼結体を得る方法等が提案されて
いる。しかしながら、これらの方法では、平均粒径10μ
m程度以上の粗粒からなる窒化アルミニウム焼結体が得
られる。そのため、熱伝導率の高い窒化アルミニウム焼
結体が得られるものの、その焼結体の表面粗さが大きい
という問題点があった。したがって、窒化アルミニウム
焼結体が絶縁回路基板に用いられる場合、その上に形成
される薄膜からなる回路パターンに不具合が生じるなど
の問題点があった。
On the other hand, the heat conduction mechanism of insulating ceramics such as aluminum nitride sintered body is mainly phonon conduction,
Defects such as pores and impurities in the sintered body cause phonon scattering, and the thermal conductivity thereof is of a low level. For the future situation, various proposals have been made to obtain an AlN sintered body having high thermal conductivity. For example, a method has been proposed in which Y 2 O is added as a sintering aid of AlN and a deoxidizer to obtain an AlN sintered body having high density and high thermal conductivity. However, with these methods, the average particle size is 10 μm.
An aluminum nitride sintered body having coarse particles of about m or more is obtained. Therefore, although an aluminum nitride sintered body having a high thermal conductivity can be obtained, there is a problem that the surface roughness of the sintered body is large. Therefore, when the aluminum nitride sintered body is used for an insulating circuit board, there is a problem that a circuit pattern made of a thin film formed thereon has a problem.

そこで、この発明は上記のような問題点を解消するた
めになされたもので、高密度でしかも高熱伝導性を有す
る窒化アルミニウム焼結体を得ることができるととも
に、微粒からなる窒化アルミニウム焼結体を製造する方
法を提供することを目的とする。
Therefore, the present invention has been made to solve the above problems, and it is possible to obtain an aluminum nitride sintered body having a high density and high thermal conductivity, and at the same time, an aluminum nitride sintered body composed of fine particles. It aims at providing the method of manufacturing.

[課題を解決するための手段] この発明は上記の技術問題を解決するために種々検討
した結果、微粒からなる窒化アルミニウム焼結体を得る
ために、窒化アルミニウム粉末にある種の元素の酸化物
を少量添加した後、焼結することにより、微粒からな
り、かつ高熱伝導性を有する窒化アルミニウム焼結体が
得られることを見出したことに基づくものである。すな
わち、V,Nb,Taのうちの少なくとも1種の元素の酸化物
を少量、窒化アルミニウム粉末に添加すれば、得られる
窒化アルミニウム焼結体の熱伝導率を阻害せず、その粒
成長を防止する効果があることを見出したことに基づく
ものである。
[Means for Solving the Problems] As a result of various investigations for solving the above technical problems, the present invention provides an oxide of a certain element in an aluminum nitride powder in order to obtain an aluminum nitride sintered body composed of fine particles. It is based on the finding that an aluminum nitride sintered body composed of fine particles and having high thermal conductivity can be obtained by sintering after adding a small amount of. That is, if a small amount of an oxide of at least one element of V, Nb, and Ta is added to the aluminum nitride powder, the thermal conductivity of the obtained aluminum nitride sintered body is not hindered and its grain growth is prevented. It is based on the finding that there is an effect.

この発明に従った窒化アルミニウム焼結体の製造方法
は、V,Nb,Taからなる群より選ばれた少なくとも1種の
元素を0.01〜1.0重量%含有し、その平均粒径が5μm
以下であり、かつ、100W/mK以上の熱伝導率を有する窒
化アルミニウム焼結体の製造方法において、窒化アルミ
ニウム粉末にV,Nb,Taからなる群より選ばれた少なくと
も1種の元素の酸化物を添加することを特徴とするもの
である。
The method for producing an aluminum nitride sintered body according to the present invention contains 0.01 to 1.0% by weight of at least one element selected from the group consisting of V, Nb and Ta, and has an average particle size of 5 μm.
In the method for producing an aluminum nitride sintered body having the following thermal conductivity of 100 W / mK or more, the aluminum nitride powder is an oxide of at least one element selected from the group consisting of V, Nb, and Ta. Is added.

[作用] この発明に従った窒化アルミニウム焼結体の製造方法
においては、高純度の窒化アルミニウム粉末に少量のV,
Nb,Taの酸化物を添加した後、温度1700〜2100℃の窒素
を含む非酸化性雰囲気中で加熱し、焼成する。原料とし
て用いられる窒化アルミニウム粉末は高純度で微粒のも
のが好ましい。たとえば、金属不純物の含有量が500ppm
以下、酸素含有量が1.0重量%、比表面積が4.0m2/g程度
の窒化アルミニウム粉末が望ましい。
[Operation] In the method for producing an aluminum nitride sintered body according to the present invention, a small amount of V,
After the oxide of Nb and Ta is added, it is heated and baked in a non-oxidizing atmosphere containing nitrogen at a temperature of 1700 to 2100 ° C. The aluminum nitride powder used as a raw material is preferably highly pure and fine particles. For example, the content of metal impurities is 500ppm
Hereafter, an aluminum nitride powder having an oxygen content of 1.0% by weight and a specific surface area of about 4.0 m 2 / g is desirable.

窒化アルミニウム粉末に含まれる金属不純物の量が過
大であると、窒化アルミニウム中への固溶、粒界への析
出により、得られる窒化アルミニウム焼結体の熱伝導率
を低下させるように作用する。また、金属不純物の含有
量が過大であると、窒化アルミニウム粒子の粒成長が促
進され、得られる窒化アルミニウム焼結体の特性を劣化
させる。
If the amount of metal impurities contained in the aluminum nitride powder is too large, the solid solution in aluminum nitride and the precipitation at grain boundaries act to reduce the thermal conductivity of the obtained aluminum nitride sintered body. Further, if the content of metal impurities is too large, the grain growth of aluminum nitride particles is promoted and the characteristics of the obtained aluminum nitride sintered body are deteriorated.

窒化アルミニウム粒子の粒成長を抑制し、焼結を促進
させ、その熱伝導率を向上させる添加材としてのV,Nb,T
aの酸化物は、それらの少なくとも1種以上の元素量と
して0.01〜1.0重量%添加される。0.01重量%以下で
は、添加によってもたらされる粒成長抑制等の効果を発
揮し得ない。また、1.0重量%以上添加すると、得られ
る窒化アルミニウム焼結体の熱伝導率をかえって低下さ
せてしまう。
V, Nb, T as an additive that suppresses the grain growth of aluminum nitride particles, promotes sintering, and improves its thermal conductivity.
The oxide of a is added in an amount of 0.01 to 1.0% by weight as the amount of at least one of these elements. If it is less than 0.01% by weight, the effect of suppressing grain growth brought about by the addition cannot be exhibited. Further, if 1.0% by weight or more is added, the thermal conductivity of the obtained aluminum nitride sintered body is rather lowered.

本願発明によれば、窒化アルミニウム焼結体はその平
均粒径から5μm以下であり、かつ100W/mK以上の熱伝
導率を有するものが得られる。しかしながら、焼結工程
において、焼結温度を過剰に高く、あるいは焼結時間を
長時間に設定すると、窒化アルミニウム粒子の粒成長が
著しく促進される。そのため、たとえば、温度1900℃に
おいて10時間程度以下の焼結時間で焼結されるのが好ま
しい。
According to the present invention, an aluminum nitride sintered body having an average grain size of 5 μm or less and a thermal conductivity of 100 W / mK or more can be obtained. However, in the sintering process, if the sintering temperature is set excessively high or the sintering time is set to be long, the grain growth of the aluminum nitride particles is significantly promoted. Therefore, for example, it is preferable to sinter at a temperature of 1900 ° C. for a sintering time of about 10 hours or less.

また、窒化アルミニウム粉末への添加物としては、上
記の元素以外に少量の周期律表II a,III a族元素をたと
えば、酸化物として添加することによって、得られる窒
化アルミニウム焼結体の緻密化を促進することも可能で
ある。周期律表II a族元素としてはBe,Mg,Ca,Sr,Ba,Ra
が挙げられる。周期律表III a族元素としてはSc,Y,La,C
e,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,Acが挙げ
られる。
Further, as an additive to the aluminum nitride powder, in addition to the above-mentioned elements, a small amount of periodic table IIa, IIIa group element, for example, is added as an oxide to densify the aluminum nitride sintered body obtained. It is also possible to promote. Periodic table II Be, Mg, Ca, Sr, Ba, Ra as group a elements
Is mentioned. Group IIIa elements of the Periodic Table are Sc, Y, La, C
Examples include e, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and Ac.

この発明の製造方法においてはV,Nb,Taは酸化物とし
て添加される。金属元素単体や他の化合物の形態でこれ
らの元素を添加すると、窒化等が生じ、液相形成温度、
すなわちAINの表面のAl2O3との液相形成温度が上昇し、
焼結性が低下する。このため、上記の元素は窒化アルミ
ニウム粉末に酸化物の形態で添加される。
In the manufacturing method of the present invention, V, Nb and Ta are added as oxides. When these elements are added in the form of a simple metal element or other compound, nitriding occurs, the liquid phase formation temperature,
That is, the liquid phase formation temperature with Al 2 O 3 on the surface of AIN rises,
Sinterability is reduced. Therefore, the above elements are added to the aluminum nitride powder in the form of oxide.

なお、得られる焼結体の表面粗さとしてRaが0.2μm
以下であれば、その窒化アルミニウム焼結体は回路基板
に用いられるのに望ましいものとなる。
The surface roughness Ra of the obtained sintered body was 0.2 μm.
If the following conditions are satisfied, the aluminum nitride sintered body will be desirable for use in a circuit board.

[発明の実施例] 比表面積3.0m2/g、金属不純物含有量80ppm、酸素含有
量0.7重量%である窒化アルミニウム粉末に、添加元素
として第1図に示される元素の酸化物をそれぞれ別々に
2000ppm添加したものが準備された。これら元素が添加
された窒化アルミニウム粉末はアルコール中で十分混合
された後、乾燥された。このようにして得られた窒化ア
ルミニウム粉末はプレス成形が施され、直径φ12mm×5m
mt(厚み)の成形体の圧縮成形された。それぞれ添加元
素の種類ごとに得られた成形体は窒素ガス雰囲気中にお
いて温度1950℃で5時間加熱され、焼結された。このよ
うにして作製されたそれぞれの窒化アルミニウム焼結体
の熱伝導率、粒径は測定結果として第1図に示されてい
る。なお、粒径の測定方法としては、窒化アルミニウム
焼結体の破面を走査型電子顕微鏡を用いて5000倍の倍率
で観察することによってその粒径が測定された。
[Examples of the Invention] Aluminum nitride powder having a specific surface area of 3.0 m 2 / g, a metal impurity content of 80 ppm, and an oxygen content of 0.7 wt% was separately added with oxides of the elements shown in FIG. 1 as additive elements.
The one with 2000 ppm added was prepared. The aluminum nitride powder to which these elements were added was thoroughly mixed in alcohol and then dried. The aluminum nitride powder thus obtained was press-molded and had a diameter of 12 mm x 5 m
A mt (thickness) compact was compression molded. The molded body obtained for each type of additive element was heated at 1950 ° C. for 5 hours in a nitrogen gas atmosphere and sintered. The thermal conductivity and grain size of each aluminum nitride sintered body produced in this manner are shown in FIG. 1 as the measurement results. As a method for measuring the particle size, the particle size was measured by observing the fracture surface of the aluminum nitride sintered body with a scanning electron microscope at a magnification of 5000 times.

この測定結果によれば、本発明の製造方法によって得
られた窒化アルミニウム焼結体は、100W/mK以上の熱伝
導率を有し、平均粒径が5μm以下であることが理解さ
れる。したがって、微粒でかつ高熱伝導性を有する窒化
アルミニウム焼結体を得るためには、V,Nb,Taの酸化物
の添加が有効であることが理解される。
From these measurement results, it is understood that the aluminum nitride sintered body obtained by the manufacturing method of the present invention has a thermal conductivity of 100 W / mK or more and an average particle diameter of 5 μm or less. Therefore, it is understood that the addition of oxides of V, Nb, and Ta is effective in order to obtain an aluminum nitride sintered body having fine particles and high thermal conductivity.

[発明の効果] 以上説明したように、本発明の製造方法によれば微粒
でかつ熱伝導率の高い窒化アルミニウム焼結体を得るこ
とができ、面精度の良好な表面を有する焼結体を得るこ
とができる。したがって、この発明の製造方法によって
得られた窒化アルミニウム焼結体は、IC用絶縁体基板、
IC用パッケージ等に用いられる絶縁性セラミックスとし
て広く適用されるだけでなく、種々の放熱部品として幅
広く適用されることが可能である。
[Effects of the Invention] As described above, according to the manufacturing method of the present invention, it is possible to obtain an aluminum nitride sintered body having a fine grain size and a high thermal conductivity, and to obtain a sintered body having a surface with good surface accuracy. Obtainable. Therefore, the aluminum nitride sintered body obtained by the manufacturing method of the present invention is an insulator substrate for IC,
Not only is it widely applied as insulating ceramics used in IC packages, etc., but it can also be widely applied as various heat dissipation components.

【図面の簡単な説明】[Brief description of the drawings]

第1図は窒化アルミニウム焼結体の平均粒径と熱伝導率
とを、含有する元素の種類との関係で示した図である。
FIG. 1 is a diagram showing the average grain size and thermal conductivity of an aluminum nitride sintered body in relation to the type of contained element.

フロントページの続き (56)参考文献 特開 昭62−223070(JP,A) 特開 昭61−281074(JP,A) 特開 昭56−98434(JP,A)Continuation of the front page (56) References JP-A-62-223070 (JP, A) JP-A-61-281074 (JP, A) JP-A-56-98434 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】V,Nb,Taからなる群より選ばれた少なくと
も1種の元素を0.01〜1.0重量%含有し、その平均粒径
が5μm以下であり、かつ、100W/mK以上の熱伝導率を
有する窒化アルミニウム焼結体の製造方法において、 窒化アルミニウム粉末にV,Nb,Taからなる群より選ばれ
た少なくとも1種の元素の酸化物を添加することを特徴
とする、窒化アルミニウム焼結体の製造方法。
1. A heat transfer material containing 0.01 to 1.0% by weight of at least one element selected from the group consisting of V, Nb, and Ta, having an average particle size of 5 μm or less, and 100 W / mK or more. In a method for producing an aluminum nitride sintered body having a specific ratio, an aluminum nitride sintered body, characterized in that an oxide of at least one element selected from the group consisting of V, Nb and Ta is added to aluminum nitride powder. Body manufacturing method.
JP63130972A 1988-05-27 1988-05-27 Manufacturing method of aluminum nitride sintered body Expired - Lifetime JP2678213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63130972A JP2678213B2 (en) 1988-05-27 1988-05-27 Manufacturing method of aluminum nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63130972A JP2678213B2 (en) 1988-05-27 1988-05-27 Manufacturing method of aluminum nitride sintered body

Publications (2)

Publication Number Publication Date
JPH01298071A JPH01298071A (en) 1989-12-01
JP2678213B2 true JP2678213B2 (en) 1997-11-17

Family

ID=15046911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63130972A Expired - Lifetime JP2678213B2 (en) 1988-05-27 1988-05-27 Manufacturing method of aluminum nitride sintered body

Country Status (1)

Country Link
JP (1) JP2678213B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2773416B2 (en) * 1990-09-25 1998-07-09 住友電気工業株式会社 Aluminum nitride sintered body and method for producing the same
JP6107503B2 (en) * 2013-07-22 2017-04-05 住友電気工業株式会社 Aluminum nitride sintered body and method for producing the same
TWI757518B (en) 2017-07-07 2022-03-11 美商天工方案公司 Substituted aluminum nitride for improved acoustic wave filters

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4268314A (en) * 1979-12-21 1981-05-19 Union Carbide Corporation High density refractory composites and method of making
JPS61281074A (en) * 1985-06-05 1986-12-11 日本特殊陶業株式会社 High heat conductivity aluminum nitride sintered body
DE3608326A1 (en) * 1986-03-13 1987-09-17 Kempten Elektroschmelz Gmbh PRACTICAL, PORE-FREE SHAPED BODIES MADE OF POLYCRISTALLINE ALUMINUM NITRIDE AND METHOD FOR THE PRODUCTION THEREOF WITHOUT THE USE OF SINTER AUXILIARIES

Also Published As

Publication number Publication date
JPH01298071A (en) 1989-12-01

Similar Documents

Publication Publication Date Title
US5034357A (en) Heat-conductive aluminum nitride sintered body and method of manufacturing the same
US6242374B1 (en) High thermal conductive silicon nitride sintered body and method of producing the same
JP2678213B2 (en) Manufacturing method of aluminum nitride sintered body
JP3561153B2 (en) Silicon nitride heat dissipation member and method of manufacturing the same
JP2899893B2 (en) Aluminum nitride sintered body and method for producing the same
JP2742600B2 (en) Aluminum nitride sintered body and method for producing the same
JP2664063B2 (en) Aluminum nitride pre-sintered body, aluminum nitride sintered body, and method for producing them
JPH01179765A (en) Aluminum nitride sintered body and production thereof
JP2578114B2 (en) Method for producing high thermal conductive aluminum nitride sintered body
JP2752227B2 (en) AlN-BN composite sintered body and method for producing the same
JP2677748B2 (en) Ceramics copper circuit board
JP2620260B2 (en) Manufacturing method of aluminum nitride sintered body
KR100310549B1 (en) Ceramic bodies, methods for manufacturing the same, and electrical members comprising the same
JP3606923B2 (en) Aluminum nitride sintered body and method for producing the same
JPH04144967A (en) Aluminum nitride sintered compact and production thereof
JPS63277569A (en) Production of sintered aluminum nitride having high thermal conductivity
JPS63218585A (en) High heat-conductive aluminum nitride sintered body and manufacture
JP2784551B2 (en) Aluminum nitride substrate
JP2698014B2 (en) Manufacturing method of aluminum nitride sintered body
JPH01179764A (en) Aluminum nitride sintered body and production thereof
JPS62275069A (en) Manufacture of aln ceramics
JPH0566339B2 (en)
JPS62235262A (en) Manufacture of aluminum nitride sintered body
JP2704194B2 (en) Black aluminum nitride sintered body
JPH11180774A (en) Silicon nitride-base heat radiating member and its production

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080801

Year of fee payment: 11

EXPY Cancellation because of completion of term