JP4111478B2 - Method for producing silicon carbide microspheres - Google Patents

Method for producing silicon carbide microspheres Download PDF

Info

Publication number
JP4111478B2
JP4111478B2 JP2000053151A JP2000053151A JP4111478B2 JP 4111478 B2 JP4111478 B2 JP 4111478B2 JP 2000053151 A JP2000053151 A JP 2000053151A JP 2000053151 A JP2000053151 A JP 2000053151A JP 4111478 B2 JP4111478 B2 JP 4111478B2
Authority
JP
Japan
Prior art keywords
silicon carbide
glassy carbon
sphericity
microspheres
sphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000053151A
Other languages
Japanese (ja)
Other versions
JP2001240408A (en
Inventor
健一 金井
裕次 牛嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP2000053151A priority Critical patent/JP4111478B2/en
Publication of JP2001240408A publication Critical patent/JP2001240408A/en
Application granted granted Critical
Publication of JP4111478B2 publication Critical patent/JP4111478B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は、真球性が高く、高純度の炭化珪素(SiC)からなる微小球の製造方法に関する。
【0002】
【従来の技術】
炭化珪素は耐熱性、耐蝕性、強度特性等が優れており、従来から各種構造部材として広く使用されている。また近年では、炭化珪素粉体がファインセラミックス用原料として有用されており、更に半導体材料、電子材料あるいは先端複合材料等の分野において原材料やフィラー等として注目されている。
【0003】
炭化珪素粉体は、珪素酸化物を炭材とともに熱処理する還元炭化法(アチソン法)により製造したバルク状炭化珪素を粉砕し、分級する方法が古くから確立されているが、球形の粉体を得ることが困難であり、また粉砕、分級工程において不純物が混入し易く、高純度のものが製造できない欠点がある。
【0004】
そこで、SiCl4 等のハロゲン化珪素化合物とCH4 等の炭化水素との混合ガスを気相で反応させる方法やポリカルボシラン等の有機珪素化合物を気相で熱分解する方法等の気相プロセスによる炭化珪素粉体を製造する方法が開発されている。
【0005】
これらの気相プロセスによれば、サブミクロン級の微細な炭化珪素粉体を製造することができ、また原料系が純粋な化学物質であるから高純度の炭化珪素粉体の製造が可能である。例えば、特開昭59−102809号公報にはハロゲン化シランを熱分解して得た炭化珪素粉末の平均粒径が0.2〜0.7μm の範囲内であって、かつ各粒子の最大粒径と最小粒径との比率の平均が1.1〜1.4であることを特徴とする易焼結性β型炭化珪素粉末が、特開昭60−96517号公報には結晶子が50オングストローム以下のβ型炭化珪素の集合体であり、平均粒径が0.01〜1μm である球状形状をもつ超微粒子状β型多結晶炭化珪素が開示されている。
【0006】
しかしながら、原料となるハロゲン化珪素化合物や有機珪素化合物は高価であるばかりでなく取扱い難い物質であり、更に生成収率が低く、工業的生産手段としては適さない難点がある。更に、得られる炭化珪素粉体はサブミクロン級の微細なものであり、これらサブミクロン級の炭化珪素粉体は凝集し易いため、単一球状粒子として得ることが困難である。
【0007】
また、本出願人は炭化珪素粉体の製造法として、密閉円筒炉内を流通する高温燃焼ガス流に珪素含有溶液と炭化水素を同一もしくは別の位置から噴霧して熱分解反応により二酸化珪素とカーボンブラックが混在する組成の複合系原料を調製し、該複合系原料を非酸化雰囲気中で1300〜2000℃の温度域で加熱反応させることを特徴とする微粒子状β型炭化珪素の製造方法(特開平4−362009号公報)を開発、提案した。
【0008】
上記、特開平4−362009号公報は、ミクロな状態で均質分散した二酸化珪素とカーボンブラックが混在する組成の複合系原料を用いて、還元炭化プロセスにより、粒径0.6μm 以下のサブミクロン級の炭化珪素の均質粉末を製造するものである。
【0009】
【発明が解決しようとする課題】
しかしながら、上記したようにサブミクロン級の微細な炭化珪素粉体は、凝集し易いために単一球状粒子として取り扱うことが困難であり、例えばファインセラミックス、半導体材料、電子材料、先端複合材料、等の用途分野によってはハンドリング上の問題もあって、サブミクロン級以上の炭化珪素粉体が望まれている。
【0010】
そこで、本発明者らはミクロン以上の粒径を有し、真球性に優れた炭化珪素微小球の開発について鋭意研究を行った結果、球状ガラス状カーボンを原料として用い、これをSiOガスで珪化することにより球状の炭化珪素が得られることを見出した。すなわち、本発明はこの知見に基づいて開発に至ったもので、その目的は凝集することなく単一球としてミクロン以上の粒径を有し、かつ真球性に優れた炭化珪素微小球の製造方法を提供することにある。
【0012】
【課題を解決するための手段】
上記の目的を達成するための本発明による炭化珪素微小球の製造方法は、平均粒径が1〜500μmの範囲にあり、真球度が1.0〜1.2のガラス状カーボン球とSiOガスとを1750〜1900℃の温度で接触させてガラス状カーボン球を珪化することを構成上の特徴とする。
【0016】
【発明の実施の形態】
本発明の炭化珪素微小球の製造方法は、平均粒径が1〜500μmの範囲にあり、真球度が1.0〜1.2のガラス状カーボン球とSiOガスとを1750〜1900℃の温度で接触させてガラス状カーボン球を珪化することを構成上の特徴とする。
【0017】
基材となるガラス状カーボン球は、ポリビニルアルコールなどの分散安定剤を添加した酸性水溶液(塩酸、硫酸など)中にフェノール樹脂やフラン樹脂等の熱硬化性樹脂の初期縮合物を入れ、ホモジナイザーなどにより高速回転させて樹脂を懸濁させた後、比較的緩やかに攪拌して穏やかな攪拌状態を維持しながら、温度を上げて所定の温度に所定時間保持して重合させ、液滴の融着、変形がなくなるまで硬化させる。その後、濾過、水洗、乾燥して熱硬化性樹脂球を調製する。この際、酸性水溶液中に入れる熱硬化性樹脂量、ホモジナイザーの回転速度、保持時間などの条件を設定することにより、粒子径及び真球度等を制御する。
【0018】
次いで、熱硬化性樹脂球を黒鉛ルツボ等に詰めて窒素やアルゴン等の非酸化性雰囲気中で熱処理し、焼成炭化することによりガラス状カーボン球が得られる。具体的には、例えば本出願人が先に提案した特開平5−163007号公報に開示した方法により、平均粒径が1〜500μm 、真球度が1.0〜1.2のガラス状カーボン球を得ることができる。なお、炭化珪素微小球に高純度が要求される場合には、ガラス状カーボン球をハロゲンガス雰囲気中1000〜2000℃程度の温度で熱処理して、ガラス状カーボン球中の灰分が10ppm 以下となるように純化処理される。
【0019】
ガラス状カーボン球の平均粒径を1〜500μm の範囲に設定するのは、平均粒径が1μm 未満では粒子相互が凝集し易くなり、一方500μm を越えるとガラス状カーボン球の内部まで珪化することが困難となり、また残存したガラス状カーボンと珪化生成した炭化珪素との熱膨張係数の差により、冷却過程において亀裂が生じ、熱応力割れが生じる場合があるからである。
【0020】
またガラス状カーボン球の真球度を1.0〜1.2の範囲に設定するのは、珪化して製造される炭化珪素微小球の球形性状がガラス状カーボン球の球形性状に依存するためであり、真球性に優れた炭化珪素微小球、例えば真球度を1.0〜1.3の範囲に制御するためにガラス状カーボン球の真球度は1.0〜1.2の範囲に設定される。
【0021】
ガラス状カーボン球(C)とSiOガスとは、
2C(s) +SiO(g) →SiC(s) +CO(g)
の反応によりガラス状カーボン球が珪化されてSiCに転化し、炭素2原子のうちの1原子分が珪素原子1原子分と置換した反応形態であるから、ガラス状カーボン球は珪化反応が進行しても、ほぼ原型が維持されて球形を保持することができる。すなわち、珪化により形成された炭化珪素微小球は、基材となったガラス状カーボン球の形状に依存する要素が大であり、理想的には、ほぼガラス状カーボン球の形状と同一となる。したがって、ガラス状カーボン球の平均粒径を1〜500μm 、真球度を1.0〜1.2の範囲に設定することにより、炭化珪素微小球の平均粒径を1〜500μm 、真球度を1.0〜1.3の範囲に制御することが可能となる。
【0022】
この性状を備えたガラス状カーボン球にSiOガスを接触させて、1750〜1900℃の温度域で反応、珪化することにより本発明の炭化珪素微小球が製造される。
【0023】
ガラス状カーボン球を珪化するSiOガスの発生は、公知の種々の方法が適用される。例えば、二酸化珪素(SiO2 )等の珪素源粉末に、炭素(C)、金属Si、SiC等の還元用粉末を混合して、加熱反応させてSiOガスを発生する方法、あるいは粉末SiOを用いて1500℃以上に加熱して気化させてSiOガスを発生する方法、等適宜な方法を用いることができる。
【0024】
ガラス状カーボン球にSiOガスを接触させて珪化反応を行う方法としては、例えば、上記の珪素源粉末と還元用粉末とを所定の量比で混合して坩堝に入れ、坩堝上の通気性板を介して円筒容器を載せ、円筒容器内には所定量のガラス状カーボン球を装填する。加熱して発生したSiOガスは通気性板を通ってガラス状カーボン球に接触して珪化する。あるいは、坩堝内にSiO粉末を入れて、その中にガラス状カーボン球を埋没させて加熱し、気化したSiOガスにより珪化する方法で炭化珪素微小球を製造することもできる。なお、珪化時に生成するCOガスを排出除去するために、望ましくは円筒容器内に少量のアルゴンガスを流したり、減圧雰囲気に設定する。
【0025】
この場合、珪化する温度は1750〜1900℃の範囲に設定される。反応温度が1750℃未満では珪化反応が充分に進行しないために未反応の炭素の残留量が多くなり、残留炭素を焼却除去する酸化処理時に割れが生じて球形状を維持できない。一方、1900℃を越える温度域では珪化反応は充分に進行するために残留炭素分は僅少となるが、炭化珪素の再結晶化が起こり、球状を保持することができなくなる。更に再結晶化の進行により炭化珪素粒子が互いに結合し、粗大粒子へと成長する。
【0026】
ガラス状カーボン球を珪化したのち、後処理として大気中500〜800℃の温度で酸化して残留する炭素分を焼却除去する。500℃未満の温度では酸化反応が充分に進まず、800℃を越えるとSiCの一部がSiO2 に酸化されるためである。なお、得られた炭化珪素微小球は篩い分けして粒度調整し、所望の粒度特性の微小球とすることもできる。
【0027】
このようにして、平均粒径1〜500μm、真球度1.0〜1.2のガラス状カーボン球を1750〜1900℃の温度域でSiOガスにより珪化することにより、珪化時における僅かな形状変化があっても、例えば平均粒径が1〜500μm、理論密度に対する相対密度が95%以上、真球度が1.0〜1.3の性状を備え、単一球として凝集することなく、真球性に優れた炭化珪素微小球を製造することが可能となる。
【0028】
【実施例】
以下、本発明の実施例を比較例と対比して具体的に説明する。
【0029】
実施例1〜8、比較例1〜6
粒径10〜50μm の高純度SiO2 粉末と高純度コークス粉末とをSiO2 :C=5:1の重量比で混合し、混合粉末300g をSiC製坩堝内に入れて、その上にSiC製の多孔板及び円筒を置き、円筒内に平均粒径及び真球度の異なるガラス状カーボン球100g を装填した。なお、ガラス状カーボン球は、特開平5−163007号公報に記載の方法に準じて作製した。これらを加熱炉内にセットして、アルゴンガスを0.5m3/hの流量で流通させながら加熱温度及び時間を変えて熱処理して、ガラス状カーボン球を珪化した。次いで、大気中700℃の温度で24時間酸化処理して、未反応の残存ガラス状カーボンを酸化除去した。
【0030】
このようにして製造した炭化珪素微小球の平均粒径、密度及び真球度を測定した。なお、平均粒径は島津レーザー回折式粒度分布測定装置SALD−2000を用いて測定し、密度はアルキメデス法により測定した。また、SEM観察により真球度の計測ならびに球形状の観察、評価を行った。得られた結果をガラス状カーボン球の粒子性状、珪化反応条件等と対比して表1に示した。
【0031】
【表1】

Figure 0004111478
【0032】
表1より、実施例1〜8の炭化珪素微小球は、基材となるガラス状カーボン球の粒形状が略そのまま反映した球状を示し、また相対密度も高く球体内部にまでSiC化されていることが判る。一方、比較例1、2のように珪化反応温度が低い場合にはSiC化が進行し難いために、珪化反応後の球体はガラス状カーボンとSiCの複合球となり、大気中における酸化処理により破砕や割損が生じて球形状の保持ができない。また、珪化反応温度が高い比較例3、4ではガラス状カーボン球の珪化反応は充分に進行するが、SiCの昇華、再結晶化も進むため球形状を保持できず、更に粒子の粗大化が起こることが認められる。
【0033】
また、比較例5ではガラス状カーボン球の粒径が小さく表面積が大きいため、SiOガスとの接触面積が大きく、珪化反応は充分に進行するもののガラス状カーボン球の粒径が小さいため凝集し易く、得られるSiC球も凝集形態をとる。比較例6ではガラス状カーボン球の粒径が752μm と大きいためSiOガスとガラス状カーボン球との反応が中心部まで進行し難く、ガラス状カーボン球の中心部には未反応の炭素が残存してしまう。そのために、珪化反応後の冷却過程でSiCとガラス状カーボンとの熱膨張率の差により熱応力が発生し、炭化珪素球が割れてしまう。
【0034】
なお、これらの炭化珪素微小球のうち、図1に実施例3、図2に比較例2、図3に比較例4で得られた炭化珪素微小球の粒子構造の顕微鏡写真を示した。
【0035】
【発明の効果】
以上のとおり、本発明によれば、平均粒径が1〜500μm、真球度が1.0〜1.2のガラス状カーボン球を基材として1750〜1900℃の温度範囲でSiOガスと接触させ、珪化反応させることにより、例えば、平均粒径が1〜500μm、理論密度に対する相対密度が95%以上、真球度が1.0〜1.3の性状を備えた、真球性に優れ、高純度のSiCからなる炭化珪素微小球が製造される。したがって、ファインセラミックス用原料をはじめとして、半導体材料、電子材料あるいは先端複合材料等の分野における原材料やフィラー等として用いられる炭化珪素微小球の製造方法として、産業上極めて有用である。
【図面の簡単な説明】
【図1】実施例3の炭化珪素微小球の粒子構造を示した顕微鏡写真である。
【図2】比較例2の炭化珪素微小球の粒子構造を示した顕微鏡写真である。
【図3】比較例4の炭化珪素微小球の粒子構造を示した顕微鏡写真である。[0001]
[Technical field to which the invention belongs]
The present invention relates to a method for producing microspheres made of silicon carbide (SiC) with high sphericity and high purity.
[0002]
[Prior art]
Silicon carbide has excellent heat resistance, corrosion resistance, strength characteristics, and the like, and has been widely used as various structural members. In recent years, silicon carbide powder has been useful as a raw material for fine ceramics, and has attracted attention as a raw material, a filler, and the like in the fields of semiconductor materials, electronic materials, advanced composite materials, and the like.
[0003]
As for silicon carbide powder, a method of pulverizing and classifying bulk silicon carbide produced by a reduction carbonization method (Achison method) in which silicon oxide is heat-treated with a carbonaceous material has been established for a long time. There are drawbacks that it is difficult to obtain, and impurities are likely to be mixed in the pulverization and classification processes, so that high-purity products cannot be produced.
[0004]
Therefore, a gas phase process such as a method of reacting a mixed gas of a silicon halide compound such as SiCl 4 and a hydrocarbon such as CH 4 in the gas phase or a method of thermally decomposing an organosilicon compound such as polycarbosilane in the gas phase. A method for producing silicon carbide powders by the use of has been developed.
[0005]
According to these gas phase processes, fine silicon carbide powder of submicron grade can be produced, and high purity silicon carbide powder can be produced because the raw material system is a pure chemical substance. . For example, JP-A-59-102809 discloses that the average particle size of silicon carbide powder obtained by thermally decomposing halogenated silane is in the range of 0.2 to 0.7 μm and the maximum particle size of each particle. An easily sinterable β-type silicon carbide powder characterized in that the average ratio of the diameter to the minimum particle diameter is 1.1 to 1.4. Japanese Patent Application Laid-Open No. 60-96517 discloses a crystallite of 50 An ultrafine particle β-type polycrystalline silicon carbide having a spherical shape with an average particle diameter of 0.01 to 1 μm, which is an aggregate of β-type silicon carbide of angstroms or less, is disclosed.
[0006]
However, the silicon halide compounds and organosilicon compounds used as raw materials are not only expensive but also difficult to handle, and the production yield is low, which makes them unsuitable as industrial production means. Furthermore, the silicon carbide powder obtained is a fine one of submicron grade, and these submicron grade silicon carbide powders are likely to aggregate, making it difficult to obtain single spherical particles.
[0007]
In addition, as a method for producing silicon carbide powder, the present applicant sprayed silicon-containing solution and hydrocarbon from the same or different positions on a high-temperature combustion gas stream circulating in a closed cylindrical furnace, A composite raw material having a composition in which carbon black is mixed is prepared, and the composite raw material is heated and reacted in a temperature range of 1300 to 2000 ° C. in a non-oxidizing atmosphere. JP-A-4-362009) was developed and proposed.
[0008]
JP-A-4-362009 discloses a sub-micron class having a particle size of 0.6 μm or less by a reduction carbonization process using a composite raw material having a composition in which silicon dioxide and carbon black homogeneously dispersed in a microscopic state are mixed. To produce a uniform powder of silicon carbide.
[0009]
[Problems to be solved by the invention]
However, as described above, submicron-class fine silicon carbide powder is difficult to handle as a single spherical particle because it easily aggregates. For example, fine ceramics, semiconductor materials, electronic materials, advanced composite materials, etc. Depending on the application field, there is a problem in handling, and silicon carbide powder of submicron grade or more is desired.
[0010]
Therefore, as a result of intensive studies on the development of silicon carbide microspheres having a particle size of micron or larger and excellent in sphericity, the present inventors have used spherical glassy carbon as a raw material, and this is made of SiO gas. It has been found that spherical silicon carbide can be obtained by silicidation. That is, the present invention has been developed based on this knowledge, and its purpose is to produce silicon carbide microspheres having a particle size of micron or more as a single sphere without agglomeration and having excellent sphericity. It is to provide a method.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, the method for producing silicon carbide microspheres according to the present invention comprises glassy carbon spheres having an average particle size in the range of 1 to 500 μm and a sphericity of 1.0 to 1.2 and SiO 2. A structural feature is that the glassy carbon sphere is silicified by contacting the gas at a temperature of 1750 to 1900 ° C.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The method for producing silicon carbide microspheres of the present invention comprises a glassy carbon sphere having an average particle diameter in the range of 1 to 500 μm and a sphericity of 1.0 to 1.2 and SiO gas at 1750 to 1900 ° C. It is a structural feature that the glassy carbon spheres are silicified by contact at a temperature.
[0017]
Glass-like carbon spheres used as a base material are prepared by placing an initial condensate of a thermosetting resin such as phenol resin or furan resin in an acidic aqueous solution (hydrochloric acid, sulfuric acid, etc.) to which a dispersion stabilizer such as polyvinyl alcohol is added. Rotate the resin at a high speed to suspend the resin, and while maintaining a gentle stirring state by relatively gently stirring, the temperature is raised and held at a predetermined temperature for a predetermined time to polymerize the droplets. Cure until no deformation occurs. Thereafter, filtration, washing with water, and drying are performed to prepare thermosetting resin balls. At this time, the particle diameter, sphericity, etc. are controlled by setting the conditions such as the amount of the thermosetting resin put into the acidic aqueous solution, the rotation speed of the homogenizer, and the holding time.
[0018]
Next, glassy carbon spheres are obtained by packing thermosetting resin spheres in a graphite crucible, etc., heat-treating in a non-oxidizing atmosphere such as nitrogen or argon, and calcination. Specifically, glassy carbon having an average particle size of 1 to 500 μm and a sphericity of 1.0 to 1.2, for example, by the method disclosed in Japanese Patent Application Laid-Open No. 5-163007 previously proposed by the present applicant. You can get a sphere. When high purity is required for the silicon carbide microspheres, the glassy carbon spheres are heat-treated at a temperature of about 1000 to 2000 ° C. in a halogen gas atmosphere, and the ash content in the glassy carbon spheres becomes 10 ppm or less. So as to be purified.
[0019]
The average particle diameter of the glassy carbon spheres is set in the range of 1 to 500 μm because when the average particle diameter is less than 1 μm, the particles tend to aggregate each other, while when the average particle diameter exceeds 500 μm, the glassy carbon spheres are silicified to the inside. This is because, due to the difference in thermal expansion coefficient between the remaining glassy carbon and silicified silicon carbide, cracks may occur in the cooling process, and thermal stress cracks may occur.
[0020]
The sphericity of the glassy carbon sphere is set in the range of 1.0 to 1.2 because the spherical property of silicon carbide microspheres produced by silicidation depends on the spherical property of the glassy carbon sphere. , and the sphericity of sphericity excellent silicon carbide microspheres, for example glassy carbon spheres in order to control the sphericity in the range of 1.0 to 1.3 is 1.0 to 1.2 Set to range.
[0021]
Glassy carbon sphere (C) and SiO gas
2C (s) + SiO (g) → SiC (s) + CO (g)
In this reaction, the glassy carbon sphere is silicified and converted to SiC, and one of the two carbon atoms is replaced with one silicon atom. Therefore, the glassy carbon sphere undergoes a silicidation reaction. Even so, the original shape can be maintained and the spherical shape can be maintained. That is, the silicon carbide microspheres formed by silicidation have a large number of elements depending on the shape of the glassy carbon sphere used as the base material, and ideally have substantially the same shape as the glassy carbon sphere. Therefore, by setting the average particle diameter of the glassy carbon spheres to 1 to 500 μm and the sphericity to a range of 1.0 to 1.2, the average particle diameter of the silicon carbide microspheres is 1 to 500 μm and the sphericity. Can be controlled in the range of 1.0 to 1.3.
[0022]
The silicon carbide microspheres of the present invention are produced by bringing SiO gas into contact with glassy carbon spheres having this property, and reacting and silicifying in a temperature range of 1750 to 1900 ° C.
[0023]
Various known methods are applied to generate SiO gas for siliciding the glassy carbon spheres. For example, a method of generating a SiO gas by mixing a reducing powder such as carbon (C), metal Si, SiC, etc. with a silicon source powder such as silicon dioxide (SiO 2 ) and reacting by heating, or using powdered SiO Any appropriate method can be used, such as heating to 1500 ° C. or higher to vaporize and generate SiO gas.
[0024]
As a method for performing a silicification reaction by bringing SiO gas into contact with glassy carbon spheres, for example, the above-mentioned silicon source powder and reducing powder are mixed in a predetermined quantity ratio and put in a crucible, and a breathable plate on the crucible A cylindrical container is placed on the cylindrical container, and a predetermined amount of glassy carbon sphere is loaded into the cylindrical container. The SiO gas generated by heating passes through the breathable plate and comes into contact with the glassy carbon sphere to silicify. Alternatively, silicon carbide microspheres can be produced by putting SiO powder in a crucible, burying glassy carbon spheres in the crucible, heating, and silicifying with vaporized SiO gas. In order to discharge and remove the CO gas generated during silicidation, a small amount of argon gas is desirably flowed into the cylindrical container or a reduced pressure atmosphere is set.
[0025]
In this case, the silicidation temperature is set in the range of 1750 to 1900 ° C. If the reaction temperature is less than 1750 ° C., the silicidation reaction does not proceed sufficiently, so that the amount of unreacted carbon increases, and cracking occurs during the oxidation treatment for removing the residual carbon by incineration, so that the spherical shape cannot be maintained. On the other hand, in the temperature range exceeding 1900 ° C., the silicidation reaction proceeds sufficiently so that the residual carbon content becomes small. However, silicon carbide recrystallizes, and the spherical shape cannot be maintained. Further, as the recrystallization proceeds, the silicon carbide particles are bonded to each other and grow into coarse particles.
[0026]
After silicifying the glassy carbon sphere, as a post-treatment, the remaining carbon is oxidized and removed by incineration at a temperature of 500 to 800 ° C. in the atmosphere. This is because the oxidation reaction does not proceed sufficiently at temperatures below 500 ° C., and part of SiC is oxidized to SiO 2 at temperatures above 800 ° C. The obtained silicon carbide microspheres can be sieved to adjust the particle size to obtain microspheres having desired particle size characteristics.
[0027]
In this way, the glassy carbon sphere having an average particle diameter of 1 to 500 μm and a sphericity of 1.0 to 1.2 is silicified with SiO gas in a temperature range of 1750 to 1900 ° C., thereby forming a slight shape during silicidation. Even if there is a change, for example, the average particle diameter is 1 to 500 μm, the relative density with respect to the theoretical density is 95% or more, and the sphericity is 1.0 to 1.3, without aggregation as a single sphere, It becomes possible to produce silicon carbide microspheres having excellent sphericity.
[0028]
【Example】
Examples of the present invention will be specifically described below in comparison with comparative examples.
[0029]
Examples 1-8, Comparative Examples 1-6
A high-purity SiO 2 powder having a particle size of 10 to 50 μm and a high-purity coke powder are mixed at a weight ratio of SiO 2 : C = 5: 1, and 300 g of the mixed powder is put in a SiC crucible, and then made of SiC. A glass-like carbon sphere having a different average particle diameter and sphericity was charged in the cylinder. The glassy carbon sphere was produced according to the method described in JP-A-5-163007. These were set in a heating furnace and subjected to heat treatment while changing the heating temperature and time while flowing argon gas at a flow rate of 0.5 m 3 / h, thereby siliciding the glassy carbon spheres. Subsequently, oxidation treatment was performed in the atmosphere at a temperature of 700 ° C. for 24 hours to remove the unreacted residual glassy carbon by oxidation.
[0030]
The average particle diameter, density and sphericity of the silicon carbide microspheres thus produced were measured. The average particle size was measured using a Shimadzu laser diffraction particle size distribution analyzer SALD-2000, and the density was measured by the Archimedes method. Further, the sphericity was measured by SEM observation, and the spherical shape was observed and evaluated. The obtained results are shown in Table 1 in comparison with the particle properties of the glassy carbon spheres, silicidation reaction conditions, and the like.
[0031]
[Table 1]
Figure 0004111478
[0032]
From Table 1, the silicon carbide microspheres of Examples 1 to 8 show a spherical shape in which the particle shape of the glassy carbon sphere serving as the base material is reflected as it is, and the relative density is also high and SiC is formed inside the sphere. I understand that. On the other hand, when the silicidation reaction temperature is low as in Comparative Examples 1 and 2, the SiC formation is difficult to proceed, so the sphere after the silicidation reaction becomes a composite sphere of glassy carbon and SiC, and is crushed by oxidation treatment in the atmosphere. Or breakage occurs and the spherical shape cannot be maintained. Further, in Comparative Examples 3 and 4 where the silicidation reaction temperature is high, the silicidation reaction of the glassy carbon spheres proceeds sufficiently, but since the sublimation and recrystallization of SiC also proceed, the spherical shape cannot be maintained, and further the coarsening of the particles Allowed to happen.
[0033]
In Comparative Example 5, the glassy carbon sphere has a small particle size and a large surface area, so that the contact area with the SiO gas is large and the silicification reaction proceeds sufficiently, but the glassy carbon sphere has a small particle size and is likely to aggregate. The obtained SiC spheres also take an agglomerated form. In Comparative Example 6, since the glassy carbon sphere has a large particle size of 752 μm, the reaction between the SiO gas and the glassy carbon sphere hardly proceeds to the center, and unreacted carbon remains in the center of the glassy carbon sphere. End up. Therefore, thermal stress is generated due to the difference in thermal expansion coefficient between SiC and glassy carbon in the cooling process after the silicidation reaction, and the silicon carbide sphere is broken.
[0034]
Of these silicon carbide microspheres, FIG. 1 shows a micrograph of the particle structure of the silicon carbide microspheres obtained in Example 3, FIG. 2 in Comparative Example 2, and FIG. 3 in Comparative Example 4.
[0035]
【The invention's effect】
As described above, according to the present invention, a glassy carbon sphere having an average particle diameter of 1 to 500 μm and a sphericity of 1.0 to 1.2 is used as a base material and is brought into contact with SiO gas in a temperature range of 1750 to 1900 ° C. And having a silicidation reaction , for example, having an average particle size of 1 to 500 μm, a relative density to the theoretical density of 95% or more, and a sphericity of 1.0 to 1.3 and having excellent sphericity Then, silicon carbide microspheres made of high-purity SiC are produced. Therefore, the present invention is extremely useful industrially as a method for producing silicon carbide microspheres used as raw materials, fillers, and the like in fields such as fine ceramic raw materials, semiconductor materials, electronic materials, and advanced composite materials.
[Brief description of the drawings]
1 is a photomicrograph showing the particle structure of silicon carbide microspheres of Example 3. FIG.
2 is a photomicrograph showing the particle structure of silicon carbide microspheres of Comparative Example 2. FIG.
3 is a photomicrograph showing the particle structure of silicon carbide microspheres of Comparative Example 4. FIG.

Claims (1)

平均粒径が1〜500μmの範囲にあり、真球度が1.0〜1.2のガラス状カーボン球とSiOガスとを1750〜1900℃の温度で接触させてガラス状カーボン球を珪化することを特徴とする炭化珪素微小球の製造方法。Glassy carbon spheres are silicified by bringing glassy carbon spheres having an average particle diameter in the range of 1 to 500 μm and a sphericity of 1.0 to 1.2 into contact with SiO gas at a temperature of 1750 to 1900 ° C. A method for producing silicon carbide microspheres.
JP2000053151A 2000-02-29 2000-02-29 Method for producing silicon carbide microspheres Expired - Fee Related JP4111478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000053151A JP4111478B2 (en) 2000-02-29 2000-02-29 Method for producing silicon carbide microspheres

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000053151A JP4111478B2 (en) 2000-02-29 2000-02-29 Method for producing silicon carbide microspheres

Publications (2)

Publication Number Publication Date
JP2001240408A JP2001240408A (en) 2001-09-04
JP4111478B2 true JP4111478B2 (en) 2008-07-02

Family

ID=18574569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000053151A Expired - Fee Related JP4111478B2 (en) 2000-02-29 2000-02-29 Method for producing silicon carbide microspheres

Country Status (1)

Country Link
JP (1) JP4111478B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100477949B1 (en) * 2001-09-14 2005-03-18 주식회사 엘지화학 SPHERICAL SiC-BASED PARTICLES AND METHODS FOR PREPARING THE SAME
JP5217097B2 (en) * 2005-09-20 2013-06-19 宇部興産株式会社 Method for producing spherical silicon carbide fine particles
KR101413653B1 (en) * 2012-03-14 2014-07-01 엘지이노텍 주식회사 A method for manufacturing SiC powders with high purity
CN113677648A (en) * 2019-03-22 2021-11-19 福吉米株式会社 Filler, molded body, and heat dissipating material

Also Published As

Publication number Publication date
JP2001240408A (en) 2001-09-04

Similar Documents

Publication Publication Date Title
US5340417A (en) Process for preparing silicon carbide by carbothermal reduction
JPS5850929B2 (en) Method for manufacturing silicon carbide powder
Simonenko et al. Preparation of MB 2/SiC and MB 2/SiC-MC (M= Zr or Hf) powder composites which are promising materials for design of ultra-high-temperature ceramics
Simonenko et al. Preparation of HfB 2/SiC composite powders by sol–gel technology
KR101627371B1 (en) Preparing method of size-controlled silicon carbide powder
JP2009269797A (en) Method for producing silicon carbide powder
JP2008150263A (en) Method of manufacturing silicon carbide powder
JP4111478B2 (en) Method for producing silicon carbide microspheres
JP4930915B2 (en) Manufacturing method of high purity SiC fine powder
JP2000178013A (en) Silicon nitride powder and its production
JP2841862B2 (en) Method for producing silicon carbide
Ishihara et al. Synthesis of silicon carbide powders from fumed silica powder and phenolic resin
JP4683195B2 (en) Method for producing silicon carbide powder
JP4844709B2 (en) Method for producing silicon nitride powder
US5080879A (en) Process for producing silicon carbide platelets and the platelets so produced
Qiu et al. Novel way to synthesize nanocrystalline aluminum nitride from coarse aluminum powder
JP3154773B2 (en) Method for producing particulate silicon carbide
JP2009269798A (en) Silicon carbide particles and method for producing the same
JP2002338366A (en) High purity silicon carbide heating element and method of producing the same
JPS61132509A (en) Production of silicon carbide
JP5033948B2 (en) Method for producing aluminum nitride powder and method for producing aluminum nitride sintered body
JPH0421605B2 (en)
JP4958353B2 (en) Aluminum nitride powder and method for producing the same
JPH0313166B2 (en)
KR20170107736A (en) Synthetic method for graphene composites and nonomethal using graphene oxide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080407

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees