JP5217097B2 - Method for producing spherical silicon carbide fine particles - Google Patents

Method for producing spherical silicon carbide fine particles Download PDF

Info

Publication number
JP5217097B2
JP5217097B2 JP2006042733A JP2006042733A JP5217097B2 JP 5217097 B2 JP5217097 B2 JP 5217097B2 JP 2006042733 A JP2006042733 A JP 2006042733A JP 2006042733 A JP2006042733 A JP 2006042733A JP 5217097 B2 JP5217097 B2 JP 5217097B2
Authority
JP
Japan
Prior art keywords
fine particles
precursor polymer
silicon carbide
polycarbosilane
spherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006042733A
Other languages
Japanese (ja)
Other versions
JP2007112693A (en
Inventor
耕司 柴田
毅 北
晃司 斯波
貴史 城野
滋 八尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2006042733A priority Critical patent/JP5217097B2/en
Publication of JP2007112693A publication Critical patent/JP2007112693A/en
Application granted granted Critical
Publication of JP5217097B2 publication Critical patent/JP5217097B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/571Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained from Si-containing polymer precursors or organosilicon monomers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/0016Granular materials, e.g. microballoons
    • C04B20/002Hollow or porous granular materials
    • C04B20/0036Microsized or nanosized
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00844Uses not provided for elsewhere in C04B2111/00 for electronic applications
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00948Uses not provided for elsewhere in C04B2111/00 for the fabrication of containers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3895Non-oxides with a defined oxygen content, e.g. SiOC, TiON
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • C04B2235/483Si-containing organic compounds, e.g. silicone resins, (poly)silanes, (poly)siloxanes or (poly)silazanes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

本発明は、半導体封止材用のフィラー、或いは機械部品や電子部品製造のための焼結用原料等に有用な、高純度で単分散の球状炭化ケイ素質微粒子と、結晶質の炭化ケイ素よりも低温で焼結可能であり、耐環境性、耐熱性、耐酸化性に優れた非晶質の炭化ケイ素質セラミックス、及びそれらの製造方法に関する。   The present invention comprises a high-purity monodispersed spherical silicon carbide fine particle useful for a filler for semiconductor encapsulant or a raw material for sintering for manufacturing mechanical parts and electronic parts, and crystalline silicon carbide. The present invention also relates to amorphous silicon carbide ceramics that can be sintered at a low temperature and are excellent in environmental resistance, heat resistance, and oxidation resistance, and methods for producing the same.

セラミックス粉末を半導体封止材のフィラー、或いは機械部品や電子部品製造のための焼結用原料等に用いる場合、出発原料であるセラミックス粉末の純度が製品の性能に影響を与えることは周知の通りである。しかし、純度のみではなく原料粉末の粒子形状、粒度分布、凝集の程度といった物性もセラミックスを使用する製品の性能に大きな影響を与える。   As is well known, when ceramic powder is used as a filler for semiconductor encapsulants, or as a raw material for sintering for manufacturing machine parts and electronic parts, the purity of the ceramic powder as the starting material affects the performance of the product. It is. However, not only the purity but also physical properties such as the particle shape, particle size distribution, and degree of aggregation of the raw material powder have a great influence on the performance of products using ceramics.

近年、電子機器の小型軽量化、高性能化の動向に対応して、デバイスの複雑化、半導体パッケージの小型化、薄型化、狭ピッチ化がますます加速している。また、その実装方法も配線基板等への高密度実装に好適な表面実装が主流になりつつある。このように半導体封止材料においても高性能化、特に耐半田耐熱性、耐湿性、低熱膨張性、機械的特性、電気絶縁性等の機能向上が要求されている。これらの要求を満たすために、エポキシ樹脂に上記の特性を有する無機質粉末をフィラーとして充填した半導体封止材料が一般的に使用されている。この半導体封止材料に充填される無機質粉末は半田耐熱性、耐湿性、低熱膨張、機械的強度向上の観点から、エポキシ樹脂に高充填されることが望ましい。より小型化、薄型化していく電子部品の半導体封止材料には、フィラーを高充填しても流動性、成形性を損なわないことが求められる。このためには、フィラーは球形で適当な粒度分布を持ち、且つ凝集が少ないことが好ましい。   In recent years, in response to the trend toward smaller and lighter electronic devices and higher performance, device complexity, semiconductor package miniaturization, thinning, and narrow pitch are increasingly accelerating. As the mounting method, surface mounting suitable for high-density mounting on a wiring board or the like is becoming mainstream. As described above, semiconductor sealing materials are also required to have high performance, in particular, improvement of functions such as solder heat resistance, moisture resistance, low thermal expansion, mechanical characteristics, and electrical insulation. In order to satisfy these requirements, a semiconductor sealing material in which an epoxy resin is filled with an inorganic powder having the above properties as a filler is generally used. The inorganic powder filled in the semiconductor sealing material is desirably highly filled in an epoxy resin from the viewpoints of soldering heat resistance, moisture resistance, low thermal expansion, and improvement in mechanical strength. Semiconductor component sealing materials for electronic components that are becoming smaller and thinner are required not to impair fluidity and moldability even when highly filled with a filler. For this purpose, the filler is preferably spherical, has an appropriate particle size distribution, and has little aggregation.

セラミックス粉末を成形、焼結してセラミックス焼結体を得るに際して、出発原料であるセラミックス粉末の純度が、セラミックス焼結体の特性に大きな影響を与えることは周知の通りである。しかし、純度のみではなくセラミックス粉末の粒子形状、粒子サイズ、比表面積、凝集の程度といった物性もセラミックス焼結体の特性に大きな影響を与える。例えば、粒子形状については、一般に球形であることが望ましい。即ち、インゴットの粉砕等で調製された粉末は粒子形状に異方性があるので、一般的には球形から形がずれてくると成形体の相対密度が低くなるとともに、密度の不均質が生じる。このような成形体を焼結しても、焼結体の密度が上がらないばかりか、焼結時の収縮に異方性が生じ、反りや割れが起こる。   It is well known that the purity of the ceramic powder as a starting material has a great influence on the properties of the ceramic sintered body when the ceramic powder is formed and sintered to obtain a ceramic sintered body. However, not only the purity but also the physical properties such as the particle shape, particle size, specific surface area, and degree of aggregation of the ceramic powder have a great influence on the properties of the ceramic sintered body. For example, the particle shape is generally preferably spherical. That is, since the powder prepared by pulverizing the ingot has anisotropy in the particle shape, generally, when the shape deviates from the spherical shape, the relative density of the molded body is lowered and the density is inhomogeneous. . Sintering such a molded body does not increase the density of the sintered body, but also causes anisotropy in shrinkage during sintering, causing warping and cracking.

真球度の高いセラミックス微粒子を得る方法は、転動造粒法、噴霧乾燥法、火炎溶融法等がある。転動造粒法とは、回転皿・回転円筒・回転円錐形状のドラムに、液体バインダーを混ぜて回転運動をさせ、大きな造粒物を排出させ、小さな造粒物を得る方法である。転動造粒法は比較的多量に粉末を得ることができるが、焼結に適したミクロンサイズ以下の微粒子を得ることは難しい。また、壁面からの不純物の混入やバインダーの残留等の問題もあり、高純度のミクロンサイズの粉末を得るのには適さない。   Methods for obtaining ceramic particles with high sphericity include rolling granulation method, spray drying method, flame melting method and the like. The rolling granulation method is a method of obtaining a small granulated product by mixing a liquid binder with a rotating dish, a rotating cylinder, or a rotating cone-shaped drum and rotating it to discharge a large granulated product. The rolling granulation method can obtain a relatively large amount of powder, but it is difficult to obtain fine particles of micron size or less suitable for sintering. Also, there are problems such as contamination of impurities from the wall surface and residual binder, which is not suitable for obtaining high-purity micron-sized powder.

噴霧乾燥法は、一般に高温気流中にスラリー等の液状物を噴霧して高速で乾燥させて微粒子を得る方法である。多量の微粒子を製造することができるが、焼結に適したミクロンサイズ以下の微粒子を得ることが難しいことと、粒子が多孔質になりやすいこと、凝集が起こりやすいこと等の問題がある。   The spray drying method is generally a method of obtaining fine particles by spraying a liquid material such as slurry in a high-temperature air stream and drying at high speed. Although a large amount of fine particles can be produced, there are problems that it is difficult to obtain fine particles of micron size or less suitable for sintering, that the particles are likely to be porous, and that aggregation is likely to occur.

火炎溶融法は、原料粉末を高温の火炎中に供給し、溶融した液滴を冷却して捕集して微粒子を得る方法であり、球状の微粒子を得るのには適しているといえる。しかしながら、高温の火炎を使用することから火炎温度が上がりすぎると溶融塊ができる、或いはバーナーの閉塞が起こるという問題があり、安定製造が難しい。さらに、壁面からの不純物の混入や低沸点組成物の揮発による組成ズレが起こることがあり、高純度の粉末を得る上で最適であるとはいえない。また、溶融火炎法はシリカ、アルミナ、ムライトのような酸化物セラミックスを得るためには好適であるが、非酸化物セラミックスを得るには適さないし、炭化ケイ素セラミックスのように明確な融点を示さない材料に適用することは難しい。   The flame melting method is a method in which raw material powder is supplied into a high-temperature flame, and the molten droplets are cooled and collected to obtain fine particles, and can be said to be suitable for obtaining spherical fine particles. However, since a high-temperature flame is used, there is a problem that if the flame temperature is too high, a molten mass is formed or the burner is clogged, so that stable production is difficult. Furthermore, composition deviation due to contamination of impurities from the wall surface or volatilization of the low boiling point composition may occur, and it cannot be said that it is optimal for obtaining a high-purity powder. In addition, the melt flame method is suitable for obtaining oxide ceramics such as silica, alumina, and mullite, but is not suitable for obtaining non-oxide ceramics and does not exhibit a clear melting point like silicon carbide ceramics. It is difficult to apply to materials.

従って、本発明は、第1の側面において、半導体封止材用のフィラー、或いは機械部品や電子部品製造のための焼結用原料等に有用な、高純度で単分散の球状炭化ケイ素質微粒子とその製造方法を提供することを目的とする。   Accordingly, in the first aspect, the present invention provides a high-purity, monodispersed spherical silicon carbide fine particle that is useful as a filler for a semiconductor encapsulant or a raw material for sintering for manufacturing mechanical parts and electronic parts. And its manufacturing method.

また、Si、M、C及びOを主成分とする非晶質の炭化ケイ素質セラミックス(Mはホウ素、ハフニウム、モリブデン、ニオブ、タンタル、チタン、バナジウム、タングステン、ジルコニウム、クロム、鉄、イリジウム、オスミウム、プラチナ、レニウム、ロジウム、ルテニウムから選択される少なくとも一種の金属元素)は、1000℃以上の高温での耐環境性、耐熱性、耐摩耗性に優れ、且つ高剛性、高熱伝導、低熱膨張、低比重と優れた特性をもつ材料である。   Amorphous silicon carbide ceramics mainly composed of Si, M, C and O (M is boron, hafnium, molybdenum, niobium, tantalum, titanium, vanadium, tungsten, zirconium, chromium, iron, iridium, osmium) , Platinum, rhenium, rhodium, ruthenium) is excellent in environmental resistance, heat resistance and wear resistance at a high temperature of 1000 ° C. or higher, and has high rigidity, high thermal conductivity, low thermal expansion, It is a material with low specific gravity and excellent properties.

Si、M、C及びOを主成分とする非晶質の炭化ケイ素質セラミックスと同等の高温特性を示す材料として、炭素とケイ素を主成分とする結晶質の炭化ケイ素セラミックスがある。結晶質炭化ケイ素セラミックスは、焼結助剤を用いた常圧焼結法、雰囲気加圧焼結法、ホットプレス法(HP法)、熱間等方プレス法(HIP法)、化学気相蒸着法(CVD法)、反応焼結法等で製造される。炭化ケイ素は共有結合性の安定した結晶で、上記のように高温での耐熱性に優れている半面、焼結温度が高いことが欠点である。例えば、炭化ホウ素化合物BC系助剤の常圧焼結では2000〜2200℃が必要であり、HP法やHIP法によっても2000℃以上となる。一方、CVD法は低温で炭化ケイ素セラミックスを製造することができるが、薄膜形状に限られることが欠点である。反応焼結法はケイ素と炭素を反応させながら緻密化させる方法で焼結温度は約1500℃と比較的低温であるが、どうしても焼結体内部に未反応の遊離ケイ素が残ってしまうため、機械的強度や耐熱性に劣ってしまう。 As a material exhibiting high temperature characteristics equivalent to amorphous silicon carbide ceramics mainly composed of Si, M, C, and O, there is crystalline silicon carbide ceramics mainly composed of carbon and silicon. Crystalline silicon carbide ceramics are atmospheric pressure sintering method using sintering aid, atmospheric pressure sintering method, hot pressing method (HP method), hot isostatic pressing method (HIP method), chemical vapor deposition It is manufactured by the method (CVD method), reaction sintering method or the like. Silicon carbide is a crystal having a stable covalent bond, and has excellent heat resistance at high temperatures as described above, but has a disadvantage of high sintering temperature. For example, atmospheric pressure sintering of boron carbide compound B 4 C-based auxiliary requires 2000 to 2200 ° C., and it is 2000 ° C. or higher even by the HP method or HIP method. On the other hand, the CVD method can produce silicon carbide ceramics at a low temperature, but has a drawback in that it is limited to a thin film shape. The reaction sintering method is a method in which silicon and carbon are densified while reacting, and the sintering temperature is about 1500 ° C., which is relatively low. However, unreacted free silicon remains in the sintered body. It will be inferior in mechanical strength and heat resistance.

上述のように炭化ケイ素セラミックスは高温構造材料として優れた特性を有する反面、焼結温度が高いことで特別な焼結設備が必要となり、それが原因でコスト高となり、その適用範囲が限られているのが現状である。炭化ケイ素の高温特性を保持したまま焼結温度を下げることができれば、製造コストを下げることができ、適用範囲を大幅に広げることができる。   As described above, silicon carbide ceramics have excellent characteristics as high-temperature structural materials, but high sintering temperatures necessitate special sintering equipment, leading to high costs and limited application range. The current situation is. If the sintering temperature can be lowered while maintaining the high temperature characteristics of silicon carbide, the production cost can be lowered and the application range can be greatly expanded.

これに対し、Si、M、C及びOを主成分とする非晶質の炭化ケイ素質セラミックスは、室温からそれ自身の分解温度に至るまでの範囲での耐環境性、耐熱性、耐酸化性は結晶質の炭化ケイ素セラミックスと同等である。さらに、非晶質の炭化ケイ素質セラミックスを得るための焼結温度は、結晶質の炭化ケイ素セラミックスの焼結温度よりも大幅に低くすることが可能である。   In contrast, amorphous silicon carbide ceramics mainly composed of Si, M, C, and O have environmental resistance, heat resistance, and oxidation resistance ranging from room temperature to their own decomposition temperature. Is equivalent to crystalline silicon carbide ceramics. Furthermore, the sintering temperature for obtaining amorphous silicon carbide ceramics can be significantly lower than the sintering temperature of crystalline silicon carbide ceramics.

Si、M、C及びOを主成分とする非晶質の炭化ケイ素質セラミックスは、非晶質の炭化ケイ素質微粒子を原料粉末として、それを成形し、結晶化温度以下の温度で加熱焼結することで得られる。原料粉末である非晶質の炭化ケイ素質微粒子を得る方法としては、トリメチルシランの気相熱分解等の気相反応法が挙げられる。しかしながら、気相反応法の微粒子は粒子径が小さく比較的粒子径分布も小さいのであるが嵩密度が低く、十分に成形体の相対密度を上げることが難しい。このような成形体を焼結しても、焼結時に割れや反りが起こりやすく、良質の焼結体を得ることが困難である。高品質の炭化珪素質セラミックス焼結体を得るためには、十分に粒子径が小さく且つ分散性、充填性、流動性に優れた非晶質の炭化珪素質微粒子が不可欠である。   Amorphous silicon carbide ceramics mainly composed of Si, M, C and O are formed by using amorphous silicon carbide fine particles as raw material powder, and then heated and sintered at a temperature below the crystallization temperature. It is obtained by doing. Examples of a method for obtaining amorphous silicon carbide fine particles as a raw material powder include gas phase reaction methods such as gas phase thermal decomposition of trimethylsilane. However, fine particles of the gas phase reaction method have a small particle size and a relatively small particle size distribution, but have a low bulk density, and it is difficult to sufficiently increase the relative density of the compact. Even if such a molded body is sintered, cracking and warping are likely to occur during sintering, and it is difficult to obtain a high-quality sintered body. In order to obtain a high-quality silicon carbide ceramic sintered body, amorphous silicon carbide fine particles having a sufficiently small particle diameter and excellent dispersibility, filling property, and fluidity are indispensable.

本発明の第2の側面は、結晶質の炭化ケイ素よりも低温で焼結可能であり、且つ高温での優れた耐環境性、耐熱性、耐酸化性を有する高温構造材料或いは高温耐熱フィルター等として有用なSi、M、C及びOを主成分とする非晶質の炭化ケイ素質セラミックスとその製造方法を提供することを目的とする。   The second aspect of the present invention is a high-temperature structural material or high-temperature heat-resistant filter that can be sintered at a lower temperature than crystalline silicon carbide and has excellent environmental resistance, heat resistance, and oxidation resistance at high temperatures. It is an object of the present invention to provide an amorphous silicon carbide ceramic mainly containing Si, M, C and O, and a method for producing the same.

本発明は、上記課題を解決するために下記を提供する。
〔1〕平均粒径が50〜100,000nmの範囲で、且つ真球度が0.9〜1.0の範囲にあることを特徴とする球状炭化ケイ素質微粒子。
The present invention provides the following to solve the above problems.
[1] Spherical silicon carbide fine particles having an average particle size in the range of 50 to 100,000 nm and a sphericity in the range of 0.9 to 1.0.

〔2〕粒子径変動係数(CV値)が20%以下であることを特徴とする上記〔1〕に記載の球状炭化ケイ素質微粒子。 [2] The spherical silicon carbide fine particles as described in [1] above, wherein the particle diameter variation coefficient (CV value) is 20% or less.

〔3〕平均粒径が50〜2,000nmの範囲であることを特徴とする上記〔2〕記載の球状炭化ケイ素質微粒子。 [3] The spherical silicon carbide fine particles as described in [2] above, wherein the average particle diameter is in the range of 50 to 2,000 nm.

〔4〕(a)主として一般式 [4] (a) Mainly general formula

Figure 0005217097
Figure 0005217097

(但し、式中のRは水素原子、低級アルキル基又はフェニル基を示す。)
で表される主鎖骨格を有する数平均分子量が200〜10,000のポリカルボシラン、又は前記ポリカルボシランを有機金属化合物で修飾した構造を有する変性ポリカルボシランからなる有機ケイ素前駆体高分子を提供する工程と、
(b)前記有機ケイ素前駆体高分子を貧溶媒と混合し加熱することで溶解させた後、該溶液を冷却することで前駆体高分子を析出させ、析出物を濾別することで球状前駆体高分子の微粒子を得る工程と、
(c)前記球状前駆体高分子微粒子を、酸素を含む雰囲気中で予備加熱を行い、不融化処理を行う工程と、
(d)前記不融化処理した球状前駆体高分子微粒子を真空中或いは不活性ガス雰囲気中で焼成する工程を有することを特徴とする球状炭化ケイ素質微粒子の製造方法。
(However, R in the formula represents a hydrogen atom, a lower alkyl group or a phenyl group.)
An organosilicon precursor polymer comprising a polycarbosilane having a main chain skeleton represented by the formula: a polycarbosilane having a number average molecular weight of 200 to 10,000, or a modified polycarbosilane having a structure obtained by modifying the polycarbosilane with an organometallic compound. Providing a process;
(B) After the organosilicon precursor polymer is mixed with a poor solvent and heated to dissolve, the precursor polymer is precipitated by cooling the solution, and the precipitate is filtered to obtain a spherical precursor polymer. Obtaining a fine particle of
(C) a step of preheating the spherical precursor polymer fine particles in an atmosphere containing oxygen and performing an infusibilization treatment;
(D) A method for producing spherical silicon carbide fine particles, comprising a step of firing the infusible spherical precursor polymer fine particles in a vacuum or in an inert gas atmosphere.

〔5〕(a)主として一般式 [5] (a) Mainly general formula

Figure 0005217097
Figure 0005217097

(但し、式中のRは水素原子、低級アルキル基又はフェニル基を示す。)
で表される主鎖骨格を有する数平均分子量が200〜10,000のポリカルボシラン、又は前記ポリカルボシランを有機金属化合物で修飾した構造を有する変性ポリカルボシランからなる有機ケイ素前駆体高分子を提供する工程と、
(b)前記有機ケイ素前駆体高分子を良溶媒に溶解させた溶液と、前記有機ケイ素前駆体高分子の貧溶媒とを混合することで前駆体高分子を析出させ、析出物を濾別することで球状前駆体高分子の微粒子を得る工程と、
(c)前記球状前駆体高分子微粒子を、酸素を含む雰囲気中で予備加熱を行い、不融化処理を行う工程と、
(d)前記不融化処理した球状前駆体高分子微粒子を真空中或いは不活性ガス雰囲気中で焼成する工程を有することを特徴とする球状炭化ケイ素質微粒子の製造方法。
(However, R in the formula represents a hydrogen atom, a lower alkyl group or a phenyl group.)
An organosilicon precursor polymer comprising a polycarbosilane having a main chain skeleton represented by the formula: a polycarbosilane having a number average molecular weight of 200 to 10,000, or a modified polycarbosilane having a structure obtained by modifying the polycarbosilane with an organometallic compound. Providing a process;
(B) A precursor polymer is precipitated by mixing a solution in which the organosilicon precursor polymer is dissolved in a good solvent and a poor solvent for the organosilicon precursor polymer, and the precipitate is separated by filtration. Obtaining precursor polymer fine particles; and
(C) a step of preheating the spherical precursor polymer fine particles in an atmosphere containing oxygen and performing an infusibilization treatment;
(D) A method for producing spherical silicon carbide fine particles, comprising a step of firing the infusible spherical precursor polymer fine particles in a vacuum or in an inert gas atmosphere.

〔6〕前記変性ポリカルボシランがポリメタロカルボシランである上記〔4〕又は〔5〕に記載の球状炭化ケイ素質微粒子の製造方法。 [6] The method for producing spherical silicon carbide fine particles according to the above [4] or [5], wherein the modified polycarbosilane is polymetallocarbosilane.

〔7〕上記〔3〕記載の球状炭化ケイ素質微粒子を原料として、不活性ガス雰囲気下1400〜1600℃で加熱焼結することを特徴とする非晶質炭化ケイ素質セラミックス焼結体の製造方法。 [7] A method for producing an amorphous silicon carbide ceramic sintered body characterized by heat-sintering at 1400 to 1600 ° C. in an inert gas atmosphere using the spherical silicon carbide fine particles according to [3] above as a raw material .

〔8〕上記〔7〕記載の方法で得られ、相対密度が98%以上であることを特徴とする非晶質炭化ケイ素質セラミックス焼結体。 [8] An amorphous silicon carbide ceramic sintered body obtained by the method described in [7] above and having a relative density of 98% or more.

〔9〕上記〔7〕記載の方法で得られ、平均気孔径が50〜500nmの範囲であり、且つ気孔率が30〜60%を有することを特徴とする炭化珪素質セラミックス多孔体。 [9] A silicon carbide based ceramic porous body obtained by the method described in [7] above, having an average pore diameter in the range of 50 to 500 nm and a porosity of 30 to 60%.

〔10〕原料球状炭化ケイ素質微粒子が実質的にSi、M、C及びOからなる非晶質の球形炭化ケイ素質微粒子(Mはホウ素、ハフニウム、モリブデン、ニオブ、タンタル、チタン、バナジウム、タングステン、ジルコニウム、クロム、鉄、イリジウム、オスミウム、プラチナ、レニウム、ロジウム、ルテニウムから選択される少なくとも一種の金属元素)であり、炭化ケイ素質セラミックス焼結体がSi、M、C及びOを主成分とする非晶質の炭化ケイ素質セラミックス焼結体である上記〔8〕又は〔9〕に記載の非晶質炭化ケイ素質セラミックス焼結体。 [10] Amorphous spherical silicon carbide fine particles in which the spherical silicon carbide fine particles are substantially composed of Si, M, C and O (M is boron, hafnium, molybdenum, niobium, tantalum, titanium, vanadium, tungsten, Zirconium, chromium, iron, iridium, osmium, platinum, rhenium, rhodium, ruthenium), and a silicon carbide ceramic sintered body containing Si, M, C, and O as main components. The amorphous silicon carbide ceramic sintered body according to the above [8] or [9], which is an amorphous silicon carbide ceramic sintered body.

本発明の第1の側面によれば、半導体封止材用のフィラー、或いは機械部品や電子部品製造のための焼結用原料等に有用な、高純度で単分散の球状炭化ケイ素質微粒子を大量に製造することができる。   According to the first aspect of the present invention, high-purity, monodispersed spherical silicon carbide fine particles useful as a filler for semiconductor encapsulating materials, or as a raw material for sintering for manufacturing mechanical parts and electronic parts, etc. Can be manufactured in large quantities.

また、本発明の第2の側面によれば、平均粒径が50〜2,000nmの範囲で、且つ真球度が0.9〜1.0の範囲にあり、粒子径変動係数(CV値)が20%以下であることを特徴とする分散性、充填性、流動性の高い非晶質の球状炭化ケイ素質微粒子を原料粉末にすることにより、十分に成形体密度を上げることができ、結晶質炭化ケイ素よりも低い焼結温度で高温特性に優れたSi、M、C及びOを主成分とする非晶質の炭化ケイ素質セラミックスを得ることができる。また、結晶質炭化ケイ素よりも低温で焼結可能であり、耐環境性、耐熱性、耐酸化性に優れ、高温構造材料或いは高温耐熱フィルター等として有用な非晶質の炭化ケイ素質セラミックスを低コストで得ることができ、さらに、その適用範囲を大幅に広げることができる。   According to the second aspect of the present invention, the average particle size is in the range of 50 to 2,000 nm, the sphericity is in the range of 0.9 to 1.0, and the particle size variation coefficient (CV value). ) Is 20% or less, and by using the amorphous spherical silicon carbide fine particles having high dispersibility, filling properties, and fluidity as raw material powder, the density of the compact can be sufficiently increased, Amorphous silicon carbide ceramics mainly composed of Si, M, C, and O having excellent high temperature characteristics at a sintering temperature lower than that of crystalline silicon carbide can be obtained. In addition, it can sinter at lower temperatures than crystalline silicon carbide, has superior environmental resistance, heat resistance, and oxidation resistance, and is low in amorphous silicon carbide ceramics that are useful as high-temperature structural materials or high-temperature heat-resistant filters. It can be obtained at a low cost, and the application range can be greatly expanded.

(炭化ケイ素質微粒子とその製造方法)
本発明の第1の側面で製造される炭化ケイ素質微粒子は、SiC、SiCxy、SiMxyz(Mは金属元素)等であるが、ケイ素と炭素を含むものであれば、これらに限定されるものではない。
(Silicon carbide fine particles and production method thereof)
The silicon carbide fine particles produced in the first aspect of the present invention are SiC, SiC x O y , SiM x C y O z (M is a metal element), etc., as long as they contain silicon and carbon. However, it is not limited to these.

(a)主として一般式   (A) Mainly general formula

Figure 0005217097
Figure 0005217097

(但し、式中のRは好ましくは水素原子、低級アルキル基又はフェニル基を示す。)
で表される主鎖骨格を有する数平均分子量が200〜10,000のポリカルボシラン、又は前記ポリカルボシランを有機金属化合物で修飾した構造を有する変性ポリカルボシランからなる有機ケイ素前駆体高分子を提供する工程。
(b)前駆体高分子を貧溶媒と混合し加熱することで溶解させた後、この溶液を冷却することで前駆体高分子を析出させ、析出物を濾別することで球状前駆体高分子の微粒子を得る工程。
(c)球状前駆体高分子微粒子を、酸素を含む雰囲気中で予備加熱を行い、不融化処理を行う工程。
(d)球状前駆体高分子の微粒子を真空中或いは不活性ガス雰囲気中で焼成する工程。
(However, R in the formula is preferably a hydrogen atom, a lower alkyl group or a phenyl group.)
An organosilicon precursor polymer comprising a polycarbosilane having a main chain skeleton represented by the formula: a polycarbosilane having a number average molecular weight of 200 to 10,000, or a modified polycarbosilane having a structure obtained by modifying the polycarbosilane with an organometallic compound. Step to provide.
(B) After the precursor polymer is mixed with a poor solvent and dissolved by heating, the precursor polymer is precipitated by cooling this solution, and the precipitate is filtered to obtain fine particles of the spherical precursor polymer. Obtaining step.
(C) A step of pre-heating the spherical precursor polymer fine particles in an oxygen-containing atmosphere to perform infusibilization treatment.
(D) A step of firing spherical precursor polymer fine particles in a vacuum or in an inert gas atmosphere.

本発明の炭化ケイ素質微粒子は、あるいは、下記の工程から製造される。
(a)主として一般式
Alternatively, the silicon carbide fine particles of the present invention are produced from the following steps.
(A) Mainly general formula

Figure 0005217097
Figure 0005217097

(但し、式中のRは水素原子、低級アルキル基又はフェニル基を示す。)
で表される主鎖骨格を有する数平均分子量が200〜10,000のポリカルボシラン、又は前記ポリカルボシランを有機金属化合物で修飾した構造を有する変性ポリカルボシランからなる有機ケイ素前駆体高分子を提供する工程と、
(b)前記有機ケイ素前駆体高分子を良溶媒に溶解させた溶液と、前記有機ケイ素前駆体高分子の貧溶媒とを混合することで前駆体高分子を析出させ、析出物を濾別することで球状前駆体高分子の微粒子を得る工程と、
(c)前記球状前駆体高分子微粒子を、酸素を含む雰囲気中で予備加熱を行い、不融化処理を行う工程と、
(d)前記不融化処理した球状前駆体高分子微粒子を真空中或いは不活性ガス雰囲気中で焼成する工程とを有することを特徴とする球状炭化ケイ素質微粒子の製造方法。
(However, R in the formula represents a hydrogen atom, a lower alkyl group or a phenyl group.)
An organosilicon precursor polymer comprising a polycarbosilane having a main chain skeleton represented by the formula: a polycarbosilane having a number average molecular weight of 200 to 10,000, or a modified polycarbosilane having a structure obtained by modifying the polycarbosilane with an organometallic compound. Providing a process;
(B) A precursor polymer is precipitated by mixing a solution in which the organosilicon precursor polymer is dissolved in a good solvent and a poor solvent for the organosilicon precursor polymer, and the precipitate is separated by filtration. Obtaining precursor polymer fine particles; and
(C) a step of preheating the spherical precursor polymer fine particles in an atmosphere containing oxygen and performing an infusibilization treatment;
(D) A method for producing spherical silicon carbide fine particles, comprising a step of firing the infusible spherical precursor polymer fine particles in a vacuum or in an inert gas atmosphere.

以下に、さらに詳しく説明する。   This will be described in more detail below.

微粒子製造第1工程(a)は最終製品である球状炭化ケイ素質微粒子の前駆体となる高分子を製造する工程である。   The fine particle production first step (a) is a step of producing a polymer which is a precursor of spherical silicon carbide fine particles which is the final product.

目的とする球状微粒子がSiCxy(式中、xは1以上の数、yは0以上2未満の数)の場合、主として一般式 When the target spherical fine particles are SiC x O y (wherein x is a number of 1 or more and y is a number of 0 or more and less than 2), the general formula is mainly used.

Figure 0005217097
Figure 0005217097

(但し、式中のRは好ましくは水素原子、低級アルキル基又はフェニル基を示す。)
で表される主鎖骨格を有する数平均分子量が200〜10,000のポリカルボシランを前駆体高分子として用いることができる。低級アルキル基の炭素原子数は1〜4が好ましい。数平均分子量は1000〜5000が好ましい。
(However, R in the formula is preferably a hydrogen atom, a lower alkyl group or a phenyl group.)
A polycarbosilane having a main chain skeleton represented by the formula and having a number average molecular weight of 200 to 10,000 can be used as the precursor polymer. The lower alkyl group preferably has 1 to 4 carbon atoms. The number average molecular weight is preferably 1000 to 5000.

目的とする球状微粒子がSiMxyz(Mはホウ素、ハフニウム、モリブデン、ニオブ、タンタル、チタン、バナジウム、タングステン、ジルコニウム、クロム、鉄、イリジウム、オスミウム、プラチナ、レニウム、ロジウム、ルテニウムから選択される少なくとも一種の金属元素であり、xは0より大きく1未満の数、yは1以上の数、zは0以上2未満の数)なる組成の場合、前記ポリカルボシランの有機金属化合物で修飾した構造を有する変性ポリカルボシランを前駆体高分子に採用することができる。 The target spherical fine particles are SiM x C y O z (M is selected from boron, hafnium, molybdenum, niobium, tantalum, titanium, vanadium, tungsten, zirconium, chromium, iron, iridium, osmium, platinum, rhenium, rhodium, ruthenium. In the case of a composition in which x is a number greater than 0 and less than 1, y is a number greater than or equal to 1 and z is a number greater than or equal to 0 and less than 2, the organometallic compound of polycarbosilane Modified polycarbosilane having a modified structure can be used as the precursor polymer.

ポリカルボシランを修飾する有機金属化合物としては、特に限定されないが、例えば、特公昭61−49335号公報に開示してある手法によるポリメタロカルボシランを前駆体高分子に採用することができる。この手法で得られるポリメタロカルボシランは、上記一般式で表されるポリカルボシランと、チタンアルコキシドまたはジルコニウムアルコキシドとを不活性雰囲気下に加熱反応させて、ポリカルボシランのケイ素原子の少なくとも一部を上記アルコキシドのチタンまたはジルコニウムと酸素原子を介して結合させることにより生成される、数平均分子量が1,000〜50,000のポリチタノカルボシラン或いはポリジルコノカルボシランである。   The organometallic compound for modifying polycarbosilane is not particularly limited. For example, polymetallocarbosilane obtained by the technique disclosed in Japanese Patent Publication No. 61-49335 can be used as the precursor polymer. The polymetallocarbosilane obtained by this method is obtained by reacting a polycarbosilane represented by the above general formula with a titanium alkoxide or a zirconium alkoxide in an inert atmosphere to at least part of the silicon atoms of the polycarbosilane. Is a polytitanocarbosilane or polyzirconocarbosilane having a number average molecular weight of 1,000 to 50,000, which is produced by bonding the alkoxide with titanium or zirconium through an oxygen atom.

チタンアルコキシドTi(OR)4またはジルコニウムアルコキシドZr(OR)3の有機基Rは第3工程で分解除去されるものであれば特に限定されないが、それぞれ独立に水素原子、アルキル基(炭素数1〜20、より好ましくは1〜4であるが、少なくとも1つのRは水素原子ではない。)が好ましい。生成するポリチタノカルボシラン或いはポリジルコノカルボシランは、上記一般式のポリカルボシランのSi原子にチタンアルコキシドまたはジルコニウムアルコキシドの酸素原子を介してチタンあるいはジルコニウム原子が結合した構造を有する。このSi原子に酸素原子を介して結合したチタンあるいはジルコニウム原子の残りの結合手はアルコキシド基のままであるか、一部又は全部が再び酸素原子を介して他のSi原子に結合してポリカルボシランの架橋構造を形成することができる。ポリカルボシランとチタンアルコキシドまたはジルコニウムアルコキシドの間の上記反応は公知であり、特開昭56−74126号公報に記載されている。また、特開昭56−74126号公報では金属アルコキシドとしてチタンおよびジルコニニウムのアルコキシドだけを記載しているが他の金属(例えばホウ素、ハフニウム、モリブデン、ニオブ、タンタル、チタン、バナジウム、タングステン、ジルコニウム、クロム、鉄、イリジウム、オスミウム、プラチナ、レニウム、ロジウム、ルテニウムから選択される少なくとも一種の金属元素)のアルコキシドでも同様に用いることができることは明らかである。 The organic group R of the titanium alkoxide Ti (OR) 4 or zirconium alkoxide Zr (OR) 3 is not particularly limited as long as it is decomposed and removed in the third step, but each independently represents a hydrogen atom, an alkyl group (having 1 to 3 carbon atoms). 20, more preferably 1-4, but at least one R is not a hydrogen atom). The resulting polytitanocarbosilane or polyzirconocarbosilane has a structure in which titanium or zirconium atoms are bonded to Si atoms of the polycarbosilane of the above general formula via oxygen atoms of titanium alkoxide or zirconium alkoxide. The remaining bond of the titanium or zirconium atom bonded to the Si atom via an oxygen atom remains as an alkoxide group, or a part or all of them are bonded to another Si atom via an oxygen atom to form a polycarbohydrate. A crosslinked structure of silane can be formed. The above reaction between polycarbosilane and titanium alkoxide or zirconium alkoxide is known and described in JP-A-56-74126. JP-A 56-74126 describes only titanium and zirconium alkoxides as metal alkoxides, but other metals (for example, boron, hafnium, molybdenum, niobium, tantalum, titanium, vanadium, tungsten, zirconium, It is clear that alkoxides of at least one metal element selected from chromium, iron, iridium, osmium, platinum, rhenium, rhodium and ruthenium can be used as well.

ポリカルボシランを修飾するその他の有機金属化合物としては、一般式MRx(Mはホウ素、ハフニウム、モリブデン、ニオブ、タンタル、チタン、バナジウム、タングステン、ジルコニウム、クロム、鉄、イリジウム、オスミウム、プラチナ、レニウム、ロジウム、ルテニウムから選択される少なくとも一種の金属元素、Rはアセチルアセトナート基、xは1より大きい整数)を基本構造とする金属アセチルアセトナートを用いることもできる。この場合も、特公昭61−49335号公報に開示してある手法と同様に、上記一般式で表されるポリカルボシランと金属アセチルアセトナートを不活性雰囲気下で加熱反応させることにより、ポリカルボシランのケイ素原子の少なくとも一部を上記金属アセチルアセトナートの金属原子と酸素を介して結合した数平均分子量1,000〜50,000のポリメタロカルボシランを製造することができる。 Other organometallic compounds that modify polycarbosilane include general formula MR x (M is boron, hafnium, molybdenum, niobium, tantalum, titanium, vanadium, tungsten, zirconium, chromium, iron, iridium, osmium, platinum, rhenium) Further, metal acetylacetonate having a basic structure of at least one metal element selected from rhodium and ruthenium, R is an acetylacetonate group, and x is an integer greater than 1 can also be used. In this case as well, in the same manner as the method disclosed in Japanese Patent Publication No. 61-49335, polycarbosilane represented by the above general formula and metal acetylacetonate are heated and reacted in an inert atmosphere to obtain polycarbosilane. A polymetallocarbosilane having a number average molecular weight of 1,000 to 50,000 in which at least part of silicon atoms of silane is bonded to the metal atoms of the metal acetylacetonate via oxygen can be produced.

微粒子製造の第2工程(b)は、前駆体高分子を貧溶媒と混合し加熱することで溶解させた後、この溶液を冷却することで前駆体高分子を析出させ、析出物を濾別することで球状前駆体高分子の微粒子を得る工程であり、いわゆる冷却晶析による微粒子析出現象を利用する。   In the second step (b) of fine particle production, the precursor polymer is mixed with a poor solvent and dissolved by heating, and then the precursor polymer is precipitated by cooling the solution, and the precipitate is filtered off. In this process, fine particles of spherical precursor polymer are obtained, and a so-called fine particle precipitation phenomenon due to cooling crystallization is utilized.

本発明で使用できる貧溶媒は、室温付近では前駆体高分子を溶解できないが、貧溶媒の沸点付近に加熱することによって溶解することができるという特性をもつ溶媒である。つまり、加熱−冷却を繰り返すことにより、前駆体高分子を溶解−析出できる溶媒であれば良い。使用可能な溶媒としては、n−ブタノール、N−メチルピロリドン、1,3−ジメチル−2−イミダゾリジノン、N,N−ジメチルアセトアミド、酢酸エチル、メチルエチルケトン、炭酸ジエチル、メタノール、n−プロパノール、イソプロピルアルコール、メタノール、N,N−ジメチルホルムアミド、酢酸ブチル、アセトン、イソプロピルエーテル、アセトニトリル、炭酸ジメチル等がある。または、これらの2種以上を組み合わせたものも使用できる。しかし、本発明で使用される溶媒は、ここの列挙した溶媒に限定されるものではない。   The poor solvent that can be used in the present invention is a solvent having a characteristic that the precursor polymer cannot be dissolved around room temperature, but can be dissolved by heating near the boiling point of the poor solvent. That is, any solvent that can dissolve and precipitate the precursor polymer by repeating heating and cooling may be used. Usable solvents include n-butanol, N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidinone, N, N-dimethylacetamide, ethyl acetate, methyl ethyl ketone, diethyl carbonate, methanol, n-propanol, isopropyl There are alcohol, methanol, N, N-dimethylformamide, butyl acetate, acetone, isopropyl ether, acetonitrile, dimethyl carbonate and the like. Or what combined these 2 or more types can also be used. However, the solvent used in the present invention is not limited to the solvents listed here.

本発明で使用する晶析装置は特に限定されるものではないが、効率的に微粒子を形成し濾過操作で効率的に微粒子を回収することが可能な攪拌型の晶析装置が好ましい。本発明では冷却操作により前駆体高分子微粒子を析出させるのであるが、冷却方法は自己蒸発、外部循環冷却、ジャケット冷却を採用することができるが、攪拌条件や微粒子の付着などを考慮するとジャケット冷却が好ましい。   The crystallizer used in the present invention is not particularly limited, but a stirring type crystallizer capable of efficiently forming fine particles and efficiently collecting the fine particles by a filtration operation is preferable. In the present invention, the precursor polymer fine particles are precipitated by a cooling operation. As a cooling method, self-evaporation, external circulation cooling, and jacket cooling can be adopted. preferable.

晶析槽の攪拌翼はパドル翼、プロペラ翼、タービン翼、マックスブレンド翼、フルゾーン翼、カネカ翼、H翼、アンカー翼などを使用することができる。晶析で得られる前駆体高分子の粒度分布は前駆体高分子溶液の温度や濃度の均質性に依存する。また、晶析した前駆体高分子微粒子の形状は界面張力により球形になる。粒径分布を小さくするためには強く攪拌した方が良いが、攪拌のせん断応力が大きくなりすぎると析出した前駆体高分子の合体や破壊が起こり、真球度が低下してしまう。高い真球度を保ちつつ効率よく溶液を攪拌するためには、マックスブレンド翼やフルゾーン翼で攪拌することが好ましい。   As the stirring blade of the crystallization tank, a paddle blade, a propeller blade, a turbine blade, a max blend blade, a full zone blade, a Kaneka blade, an H blade, an anchor blade, or the like can be used. The particle size distribution of the precursor polymer obtained by crystallization depends on the temperature and concentration homogeneity of the precursor polymer solution. Further, the crystallized precursor polymer fine particles have a spherical shape due to the interfacial tension. In order to reduce the particle size distribution, it is better to stir strongly. However, when the shearing stress of stirring is excessively large, coalescence and destruction of the precipitated precursor polymer occur, and the sphericity is lowered. In order to efficiently stir the solution while maintaining high sphericity, it is preferable to stir with a Max Blend blade or a full zone blade.

冷却晶析により得られる前駆体高分子微粒子の粒径は、前駆体高分子溶液の冷却速度により制御することができる。晶析現象は極簡単に言えば、過飽和溶液中での核発生現象と核成長現象の組合せである。小さな微粒子を得る場合には、冷却速度を速くすると過飽和度が大きくなり核発生数が大きくなって粒子の成長が抑制されることで小粒子が得られる。一方、大粒径の微粒子を得る場合には、冷却速度を小さくすることで過飽和度が小さくなり核発生数が小さくなって粒子の成長が促進されることで大粒子が得られる。また、核が発生する時点において溶液の温度を一定に保つ操作を加えることにより、過飽和度を小さくする方法も有効である。温度を一定にする保持する時間は通常1〜100分間である。保持時間は1分程度でも効果があるが、より効果的に粒子径を大きくするためには保持時間を30分以上にすることが好ましい。冷却晶析法では50〜10,000nmの前駆体高分子微粒子を得ることができる。   The particle diameter of the precursor polymer fine particles obtained by cooling crystallization can be controlled by the cooling rate of the precursor polymer solution. The crystallization phenomenon is a combination of nucleation and growth in a supersaturated solution. In the case of obtaining small fine particles, when the cooling rate is increased, the degree of supersaturation is increased, the number of nuclei generated is increased, and the growth of the particles is suppressed to obtain small particles. On the other hand, when obtaining fine particles having a large particle size, the supersaturation degree is decreased by decreasing the cooling rate, the number of nuclei is decreased, and the particle growth is promoted to obtain large particles. It is also effective to reduce the degree of supersaturation by adding an operation to keep the temperature of the solution constant at the time when nuclei are generated. The time for keeping the temperature constant is usually 1 to 100 minutes. Even if the holding time is about 1 minute, it is effective, but in order to increase the particle diameter more effectively, the holding time is preferably 30 minutes or more. In the cooling crystallization method, precursor polymer fine particles of 50 to 10,000 nm can be obtained.

また、本発明で使用できるもうひとつの晶析装置の例として、マイクロリアクタ法も採用することができる。マイクロリアクタにも種々のタイプがあるが、ここでは一例として二重管マイクロリアクタ法について説明する。   Moreover, a microreactor method can also be employed as another example of a crystallizer that can be used in the present invention. There are various types of microreactors. Here, a double tube microreactor method will be described as an example.

二重管マイクロリアクタとは内径2mm程度の外管の内部に内径0.5mm程度の内管を挿入したもので、内管から前駆体高分子の良溶媒溶液を外管から貧溶媒を流すことにより、両液の混合部分で前駆体高分子の微粒子を析出させるものである。両液の混合部分を層流混合状態に保つことにより、単分散で真球状の微粒子を得ることができる。前駆体溶液と貧溶媒の比で制御することにより、50〜100,000nmの前駆体高分子微粒子を得ることができる。   A double-tube microreactor is one in which an inner tube with an inner diameter of about 0.5 mm is inserted inside an outer tube with an inner diameter of about 2 mm. By flowing a poor solvent solution of a precursor polymer from the inner tube through the outer tube, Precursor polymer fine particles are deposited in the mixed portion of both liquids. By maintaining the mixed portion of both liquids in a laminar mixed state, monodisperse and spherical particles can be obtained. By controlling the ratio of the precursor solution to the poor solvent, precursor polymer fine particles of 50 to 100,000 nm can be obtained.

前駆体高分子微粒子の濾過は、公知の手法を採用することができる。例えば、濾過膜を使用する方法では濾過膜の公称孔径は0.1〜1μm、好ましくは0.2〜0.5μmであり、濾過膜の材質は、特に制限されるものではないが、例えばコロジオン、セロファン、アセチルセルロース、ポリアクリロニトリル、ポリスルホン、ポリオレフィン、ポリアミド、ポリイミド、ポリビニリデンフロライド等の有機系の膜、あるいは黒鉛、セラミックス、多孔質ガラス等の無機系の膜が挙げられる。また、実験室規模であればPTFEメンブランフィルター等の濾過材が使用できる。この濾過操作は、減圧または加圧下でおこなうこともできるが、特に制限されるものではない。   A known method can be adopted for filtering the precursor polymer fine particles. For example, in the method using a filtration membrane, the nominal pore size of the filtration membrane is 0.1 to 1 μm, preferably 0.2 to 0.5 μm, and the material of the filtration membrane is not particularly limited. And organic films such as cellophane, acetylcellulose, polyacrylonitrile, polysulfone, polyolefin, polyamide, polyimide, and polyvinylidene fluoride, and inorganic films such as graphite, ceramics, and porous glass. Moreover, if it is a laboratory scale, filter media, such as a PTFE membrane filter, can be used. This filtration operation can be performed under reduced pressure or increased pressure, but is not particularly limited.

濾過操作で回収された前駆体高分子微粒子は乾燥することで残留溶媒を除去するが、乾燥方法は特に限定されるものではない。例えば、自然乾燥、熱風乾燥、減圧乾燥、凍結乾燥、超臨界乾燥等を採用することができる。   The precursor polymer fine particles recovered by the filtration operation are dried to remove the residual solvent, but the drying method is not particularly limited. For example, natural drying, hot air drying, reduced pressure drying, freeze drying, supercritical drying and the like can be employed.

微粒子製造第3工程(c)は、球状前駆体高分子微粒子を、酸素を含む雰囲気中で予備加熱を行い、不融化処理を行う。この工程は、後工程の焼成の際に微粒子が溶融せず、且つ隣接の微粒子と接着しないこと目的として行うものである。処理温度並びに処理時間は組成により異なり、特に規定しないが、一般に50〜400℃の範囲で数時間〜30時間の処理条件が選択される。また、上記酸化雰囲気中には、水分、窒素酸化物、オゾン等微粒子の酸化力を高めるものが含まれていてもよく、酸素分圧を意図的に変えても良い。   In the third step (c) for producing fine particles, the spherical precursor polymer fine particles are preheated in an atmosphere containing oxygen to perform an infusible treatment. This step is performed for the purpose of preventing the fine particles from melting and adhering to the adjacent fine particles during the subsequent baking. The treatment temperature and treatment time vary depending on the composition and are not particularly defined, but generally treatment conditions of several hours to 30 hours are selected in the range of 50 to 400 ° C. Further, the oxidizing atmosphere may contain moisture, nitrogen oxides, ozone, etc. that enhance the oxidizing power of fine particles, and the oxygen partial pressure may be changed intentionally.

微粒子製造の第4工程(d)は、球状前駆体高分子微粒子を真空或いは不活性ガス中で焼成する工程である。   The fourth step (d) for producing the fine particles is a step of firing the spherical precursor polymer fine particles in vacuum or in an inert gas.

球状炭化ケイ素質微粒子は、500〜2000℃の範囲で不活性ガス中或いは酸素を含む雰囲気中で焼成することにより得ることができ、球状炭化ケイ素質微粒子の組成は焼成温度と焼成雰囲気により制御することができる。   Spherical silicon carbide fine particles can be obtained by firing in an atmosphere containing an inert gas or oxygen in the range of 500 to 2000 ° C., and the composition of the spherical silicon carbide fine particles is controlled by the firing temperature and firing atmosphere. be able to.

原料前駆体高分子がポリカルボシランの場合、真空或いは不活性ガス中で500〜1600℃の範囲で焼成すると、SiCxy微粒子(式中、xは1以上の数、yは0より大きく2以下の数)が得られる。一方、1600℃以上で焼成するとSiOガスとCOガスの分解脱離で酸素が脱離することによりSiC微粒子が得られる。 When the raw material precursor polymer is polycarbosilane, when calcined in a range of 500 to 1600 ° C. in a vacuum or an inert gas, SiC x O y fine particles (wherein x is a number of 1 or more, y is greater than 0 and 2 The following number) is obtained: On the other hand, when calcined at 1600 ° C. or higher, SiC fine particles are obtained by desorbing oxygen by decomposition and desorption of SiO gas and CO gas.

原料前駆体高分子がポリメタロカルボシランの場合、真空或いは不活性ガス中で500〜1600℃の範囲で焼成するとSiMxyz微粒子(式中、Mはホウ素、ハフニウム、モリブデン、ニオブ、タンタル、チタン、バナジウム、タングステン、ジルコニウム、クロム、鉄、イリジウム、オスミウム、プラチナ、レニウム、ロジウム、ルテニウムから選択される少なくとも一種の金属元素、xは0より大きく1未満の数、yは1以上の数、zは0より大きく2以下の数)が得られる。一方、1600℃以上で焼成するとSiOガスとCOガスの分解脱離で酸素が脱離することによりSixyC微粒子(式中、Mはホウ素、ハフニウム、モリブデン、ニオブ、タンタル、チタン、バナジウム、タングステン、ジルコニウム、クロム、鉄、イリジウム、オスミウム、プラチナ、レニウム、ロジウム、ルテニウムから選択される少なくとも一種の金属元素、x、yはx+y=1を満たす正の数)が得られる。焼成装置は特に限定されるものではなく、焼成雰囲気を制御できるものであれば良い。 If the raw material precursor polymer is polymetallocarbosilane, vacuum or SiM x C y O z particles (wherein the firing in the range of 500 to 1600 ° C. in an inert gas, M is boron, hafnium, molybdenum, niobium, tantalum , Titanium, vanadium, tungsten, zirconium, chromium, iron, iridium, osmium, platinum, rhenium, rhodium, ruthenium, x is a number greater than 0 and less than 1, y is a number greater than or equal to 1 , Z is a number greater than 0 and less than or equal to 2). On the other hand, in Si x M y C particles (formula by oxygen decomposed by elimination of the firing SiO gas and CO gas is desorbed at 1600 ° C. or more, M is boron, hafnium, molybdenum, niobium, tantalum, titanium, vanadium , Tungsten, zirconium, chromium, iron, iridium, osmium, platinum, rhenium, rhodium, ruthenium, and x and y are positive numbers satisfying x + y = 1. The firing apparatus is not particularly limited as long as the firing atmosphere can be controlled.

本発明では、炭化ケイ素質微粒子の真球度を、粒子の最大径(DL)と、これと直交する短径(DS)との比(DS/DL)とした。このような真球度は、まず微粒子の電界放射型走査電子顕微鏡(日立製作所(株)製:S−4200)写真を撮影し、非球状の微粒子が存在しないことを確認した後、任意の微粒子10個についてそれぞれ短径(DS)と最大径(DL)を求め、その比(DS/DL)の平均値を真球度とした。   In the present invention, the sphericity of the silicon carbide fine particles is defined as the ratio (DS / DL) between the maximum diameter (DL) of the particles and the short diameter (DS) orthogonal thereto. For such sphericity, first, a field emission scanning electron microscope (manufactured by Hitachi, Ltd .: S-4200) is photographed to confirm that there are no non-spherical fine particles. The short diameter (DS) and the maximum diameter (DL) were determined for each of the 10 pieces, and the average value of the ratio (DS / DL) was defined as the sphericity.

炭化ケイ素質微粒子の平均粒径と粒径変動は以下のようにして求めた。まず、微粒子の電界放射型走査電子顕微鏡写真(日立製作所(株)製:S−4200)写真を撮影し、この画像の200個についてフェレー径を測定し、この値から平均粒径を求めた。粒径の変動係数(CV値)は、200個の粒子の粒径を用いて次式により求めた。   The average particle size and particle size variation of the silicon carbide fine particles were determined as follows. First, a field emission scanning electron micrograph of fine particles (manufactured by Hitachi, Ltd .: S-4200) was taken, and the ferret diameter was measured for 200 of these images, and the average particle diameter was determined from this value. The coefficient of variation (CV value) of the particle size was obtained by the following equation using the particle size of 200 particles.

CV値(%)=(粒径標準偏差(σ)/平均粒径(Dn))×100   CV value (%) = (particle diameter standard deviation (σ) / average particle diameter (Dn)) × 100

Figure 0005217097
Figure 0005217097

本発明に係る球状炭化ケイ素質微粒子では、平均粒径が50〜100,000nmの範囲で、且つ真球度が0.9〜1.0の範囲にあることが好ましい。また、粒子径変動係数(CV値)が20%以下であることが好ましい。平均粒径は50〜5,000nm、さらに好ましくは50〜2,000nmの範囲がより好ましい。真球度は0.95〜1.0の範囲にあることがより好ましい。粒子径変動係数(CV値)は18%以下であることがより好ましい。   The spherical silicon carbide fine particles according to the present invention preferably have an average particle size in the range of 50 to 100,000 nm and a sphericity in the range of 0.9 to 1.0. Moreover, it is preferable that a particle diameter variation coefficient (CV value) is 20% or less. The average particle size is more preferably in the range of 50 to 5,000 nm, more preferably 50 to 2,000 nm. The sphericity is more preferably in the range of 0.95 to 1.0. The particle diameter variation coefficient (CV value) is more preferably 18% or less.

本発明の球状炭化ケイ素質微粒子の平均粒径は、微粒子製造第2工程(b)の条件により制御されるが、球状炭化ケイ素質微粒子の平均粒径が50〜50,000nmの範囲であると真球度が高く単分散で凝集のない微粒子を得ることができる。一方、平均粒径が50nm未満の場合は粒径が小さすぎて凝集が起こり、単分散の球状微粒子としての特徴を活かすことができなくなる。また、濾過膜の目詰まりなどから濾過が難しくなる。   The average particle size of the spherical silicon carbide fine particles of the present invention is controlled by the conditions of the fine particle production second step (b), but the average particle size of the spherical silicon carbide fine particles is in the range of 50 to 50,000 nm. Fine particles with high sphericity and monodisperse and no aggregation can be obtained. On the other hand, when the average particle size is less than 50 nm, the particle size is too small and aggregation occurs, making it impossible to utilize the characteristics of monodispersed spherical fine particles. Further, filtration becomes difficult due to clogging of the filtration membrane.

本発明の球状セラミックス微粒子の真球度が0.9より小さい場合、あるいは粒子径変動係数(CV値)が20%を超える場合、小型、薄膜の電子部品等に用いる半導体封止材として使用するときにおける高充填性、流動性や成形性に劣る。また、セラミックス焼結体の原料として使用するときには、成形体の相対密度の低下や密度の不均質が起こり良質の焼結体を得ることができなくなる。   When the sphericity of the spherical ceramic fine particles of the present invention is less than 0.9, or when the particle diameter variation coefficient (CV value) exceeds 20%, it is used as a semiconductor sealing material used for small-sized, thin-film electronic components and the like. In some cases, it is inferior in high filling property, fluidity and moldability. Further, when used as a raw material for a ceramic sintered body, the relative density of the molded body is lowered and the density is inhomogeneous, so that a high-quality sintered body cannot be obtained.

(非晶質炭化ケイ素質セラミックス及びその製造方法)
本発明の第2の側面で製造するSi、M、C及びOを主成分とする非晶質の炭化ケイ素質セラミックスを構成する各元素の割合は、通常、Si:30〜60重量%、M:0.5〜35重量%、好ましくは1〜10重量%、C:25〜40重量%、O:0.01〜30重量%である。
(Amorphous silicon carbide ceramics and manufacturing method thereof)
The ratio of each element constituting the amorphous silicon carbide ceramics mainly composed of Si, M, C and O produced in the second aspect of the present invention is usually Si: 30 to 60% by weight, M : 0.5-35 wt%, preferably 1-10 wt%, C: 25-40 wt%, O: 0.01-30 wt%.

本発明のSi、M、C及びOを主成分とする非晶質の炭化ケイ素質セラミックスは、平均粒径が50〜2,000nmの範囲で、且つ真球度が0.9〜1.0の範囲にあり、粒子径変動係数(CV値)が20%以下である非晶質の球状炭化ケイ素質微粒子を1400〜1600℃の範囲で焼結させることで得られる。   The amorphous silicon carbide ceramics mainly comprising Si, M, C and O of the present invention has an average particle size in the range of 50 to 2,000 nm and a sphericity of 0.9 to 1.0. The amorphous spherical silicon carbide fine particles having a particle diameter variation coefficient (CV value) of 20% or less are sintered in the range of 1400 to 1600 ° C.

とりわけ、この原料である非晶質の球状炭化ケイ素質微粒子は、実質的にSi、M、C及びOからなる非晶質の球形炭化ケイ素質微粒子(Mはホウ素、ハフニウム、モリブデン、ニオブ、タンタル、チタン、バナジウム、タングステン、ジルコニウム、クロム、鉄、イリジウム、オスミウム、プラチナ、レニウム、ロジウム、ルテニウムから選択される少なくとも一種の金属元素)であることが好ましい。この原料を用いることで、Si、M、C及びOを主成分とする非晶質の炭化ケイ素質セラミックス焼結体を得ることができる。   In particular, the amorphous spherical silicon carbide fine particles as the raw material are amorphous spherical silicon carbide fine particles substantially composed of Si, M, C and O (M is boron, hafnium, molybdenum, niobium, tantalum). And at least one metal element selected from titanium, vanadium, tungsten, zirconium, chromium, iron, iridium, osmium, platinum, rhenium, rhodium and ruthenium). By using this raw material, an amorphous silicon carbide ceramic sintered body containing Si, M, C and O as main components can be obtained.

本発明の原料粉末として好適な非晶質の炭化ケイ素質微粒子は、上記の本発明の第1の側面で記載した炭化ケイ素質微粒子の製造方法により得ることができるが、特に下記の如くすることで好適に得ることができる。   Amorphous silicon carbide fine particles suitable as the raw material powder of the present invention can be obtained by the method for producing silicon carbide fine particles described in the first aspect of the present invention, and particularly as described below. Can be suitably obtained.

本発明の第1の側面で記載した炭化ケイ素質微粒子の製造方法において、微粒子製造の第4工程(d)は、球状前駆体高分子微粒子を真空或いは不活性ガス中で焼成する工程であるが、非晶質の球状炭化ケイ素質微粒子は、第4工程(d)において、500〜1600℃の範囲で不活性ガス中或いは酸素を含む雰囲気中で焼成することにより好ましく得ることができ、球状炭化ケイ素質微粒子の組成は焼成温度と焼成雰囲気により制御することができる。   In the method for producing silicon carbide fine particles described in the first aspect of the present invention, the fourth step (d) of fine particle production is a step of firing the spherical precursor polymer fine particles in vacuum or in an inert gas, Amorphous spherical silicon carbide fine particles can be preferably obtained by firing in an inert gas or an atmosphere containing oxygen in the range of 500 to 1600 ° C. in the fourth step (d). The composition of the elementary fine particles can be controlled by the firing temperature and firing atmosphere.

原料前駆体高分子がポリカルボシランの場合、真空或いは不活性ガス中で500〜1600℃の範囲で焼成すると、SiCxOy微粒子(式中、xは1以上の数、yは0より大きく2以下の数)が得られる。一方、1600℃以上で焼成するとSiOガスとCOガスの分解脱離で酸素が脱離することにより結晶質のSiC微粒子となり、本発明の原料粉末として好適ではなくなる。   When the raw material precursor polymer is polycarbosilane, when calcined in vacuum or in an inert gas in the range of 500 to 1600 ° C., SiCxOy fine particles (wherein x is a number of 1 or more, y is a number of 0 to 2 ) Is obtained. On the other hand, when calcined at 1600 ° C. or higher, oxygen is desorbed due to decomposition and desorption of SiO gas and CO gas, resulting in crystalline SiC fine particles, which are not suitable as the raw material powder of the present invention.

原料前駆体高分子がポリメタロカルボシランの場合、真空或いは不活性ガス中で500〜1600℃の範囲で焼成するとSiMxCyOz微粒子(式中、Mはホウ素、ハフニウム、モリブデン、ニオブ、タンタル、チタン、バナジウム、タングステン、ジルコニウム、クロム、鉄、イリジウム、オスミウム、プラチナ、レニウム、ロジウム、ルテニウムから選択される少なくとも一種の金属元素、xは0より大きく1未満の数、yは1以上の数、zは0より大きく2以下の数)が得られる。一方、1600℃以上で焼成するとSiOガスとCOガスの分解脱離で酸素が脱離することにより結晶質のSixMyC微粒子(式中、Mはホウ素、ハフニウム、モリブデン、ニオブ、タンタル、チタン、バナジウム、タングステン、ジルコニウム、クロム、鉄、イリジウム、オスミウム、プラチナ、レニウム、ロジウム、ルテニウムから選択される少なくとも一種の金属元素、x、yはx+y=1を満たす正の数)となり、本発明の原料粉末として好適でなくなる。焼成装置は特に限定されるものではなく、焼成雰囲気を制御できるものであれば良い。   When the raw material precursor polymer is polymetallocarbosilane, SiMxCyOz fine particles (wherein M is boron, hafnium, molybdenum, niobium, tantalum, titanium, vanadium, when fired in the range of 500 to 1600 ° C. in vacuum or inert gas) At least one metal element selected from tungsten, zirconium, chromium, iron, iridium, osmium, platinum, rhenium, rhodium, ruthenium, x is a number greater than 0 and less than 1, y is a number greater than 1, and z is greater than 0 A number of 2 or less). On the other hand, when calcined at 1600 ° C. or higher, oxygen is desorbed by decomposition and desorption of SiO gas and CO gas, so that crystalline SixMyC fine particles (wherein M is boron, hafnium, molybdenum, niobium, tantalum, titanium, vanadium, And at least one metal element selected from tungsten, zirconium, chromium, iron, iridium, osmium, platinum, rhenium, rhodium, and ruthenium, and x and y are positive numbers satisfying x + y = 1). Not suitable. The firing apparatus is not particularly limited as long as the firing atmosphere can be controlled.

本発明の第2の側面においては、原料粉末である上述の非晶質球状炭化ケイ素質微粒子をプレス成形法等の公知の成形法によって所要の形状に成形する。   In the second aspect of the present invention, the above-mentioned amorphous spherical silicon carbide fine particles, which are raw material powders, are molded into a required shape by a known molding method such as a press molding method.

本発明に好適な原料粉末である非晶質球状炭化ケイ素質微粒子は、平均粒径が50〜2,000nmの範囲で、且つ真球度が0.9〜1.0の範囲にあることが好ましい。平均粒径は50〜1,000nm、さらに好ましくは50〜500nmの範囲がより好ましい。真球度は0.95〜1.0の範囲にあることがより好ましい。また、粒子径変動係数(CV値)が20%以下であることが好ましい。粒子径変動係数(CV値)は18%以下であることがより好ましい。   The amorphous spherical silicon carbide fine particles, which are raw material powders suitable for the present invention, may have an average particle diameter in the range of 50 to 2,000 nm and a sphericity in the range of 0.9 to 1.0. preferable. The average particle size is 50 to 1,000 nm, more preferably 50 to 500 nm. The sphericity is more preferably in the range of 0.95 to 1.0. Moreover, it is preferable that a particle diameter variation coefficient (CV value) is 20% or less. The particle diameter variation coefficient (CV value) is more preferably 18% or less.

本発明の原料粉末となる非晶質の球状炭化ケイ素質微粒子の平均粒径は、微粒子製造第2工程(b)の条件により制御されるが、球状炭化ケイ素質微粒子の平均粒径が50〜2,000nmの範囲であると真球度が高く単分散で凝集のない微粒子を得ることができる。一方、平均粒径が50nm未満の場合は粒径が小さすぎて粒子の凝集が起こり、成形体の相対密度が十分に上げることができなくなり、良質の焼結体を得ることができない。また、平均粒径が2,000nmを超える場合は、粒子が大きすぎて焼結が進行しなくなり、十分な強度を持った焼結体を得ることができない。   The average particle diameter of the amorphous spherical silicon carbide fine particles used as the raw material powder of the present invention is controlled by the conditions of the fine particle production second step (b), but the average particle diameter of the spherical silicon carbide fine particles is 50 to 50. When the thickness is in the range of 2,000 nm, fine particles with high sphericity and monodisperse and no aggregation can be obtained. On the other hand, when the average particle size is less than 50 nm, the particle size is too small and the particles are aggregated, so that the relative density of the molded body cannot be sufficiently increased, and a high-quality sintered body cannot be obtained. On the other hand, when the average particle size exceeds 2,000 nm, the particles are too large and sintering does not proceed, so that a sintered body having sufficient strength cannot be obtained.

本発明の球状セラミックス微粒子の真球度が0.9より小さい場合、あるいは粒子径変動係数(CV値)が20%を超える場合も、成形時における充填性、流動性に劣り、成形体の相対密度を十分に上げることができなくなり、良質の焼結体を得ることができない。   Even when the sphericity of the spherical ceramic fine particles of the present invention is less than 0.9 or when the particle diameter variation coefficient (CV value) exceeds 20%, the filling property and fluidity at the time of molding are inferior, The density cannot be increased sufficiently, and a high-quality sintered body cannot be obtained.

本発明においては、原料粉末である上述の非晶質球状炭化ケイ素質微粒子をプレス成形法等の公知の成形法によって所要の形状に成形する。   In the present invention, the above-mentioned amorphous spherical silicon carbide fine particles, which are raw material powders, are molded into a required shape by a known molding method such as a press molding method.

その後、上記成形体を不活性ガスの非加圧雰囲気中にて、1400℃〜1600℃の温度で焼結させることにより、目的とする炭化ケイ素質セラミックスが得られる。   Thereafter, the molded body is sintered at a temperature of 1400 ° C. to 1600 ° C. in a non-pressurized atmosphere of an inert gas, whereby the intended silicon carbide ceramic is obtained.

焼結温度が1400℃付近の場合には、原料粉末がネッキングした多孔質の炭化ケイ素質焼結体が得られるが、これは耐熱フィルターや環境触媒などの用途に適用することができる。多孔質の炭化ケイ素質焼結体の平均気孔径は50〜500nm、気孔率は30〜60%が好ましい。多孔質炭化ケイ素質焼結体の平均気孔径が50nmより小さいと、連通気孔の割合が小さくなり、セラミックス多孔体中における流体透過特性等が低下し、多孔体としての機能を果たすことができなくなる。一方、平均気孔径が0.5μmより大きいと、使用上求められる十分な強度を得ることができない。同様に、気孔率が30%より小さいと、連通気孔の割合が小さくなり、セラミックス多孔体中における流体透過特性等が低下し、多孔体としての機能を果たすことができなくなる。一方、気孔率が60%より大きいと、使用上求められる十分な機械的強度を得ることができない。
多孔質の炭化ケイ素質焼結体は高温でも使用できるガスフィルタ、気体の分離膜、バクテリアなどの微粒子を除去する液体のフィルタなどに有用である。
When the sintering temperature is around 1400 ° C., a porous silicon carbide sintered body in which the raw material powder is necked is obtained, and this can be applied to uses such as a heat-resistant filter and an environmental catalyst. The porous silicon carbide sintered body preferably has an average pore diameter of 50 to 500 nm and a porosity of 30 to 60%. When the average pore diameter of the porous silicon carbide sintered body is smaller than 50 nm, the ratio of the continuous air holes becomes small, the fluid permeation characteristics and the like in the ceramic porous body are lowered, and the function as the porous body cannot be achieved. . On the other hand, if the average pore diameter is larger than 0.5 μm, sufficient strength required for use cannot be obtained. Similarly, when the porosity is less than 30%, the proportion of the continuous air holes becomes small, the fluid permeation characteristics and the like in the ceramic porous body are lowered, and the function as the porous body cannot be achieved. On the other hand, if the porosity is larger than 60%, sufficient mechanical strength required for use cannot be obtained.
The porous silicon carbide sintered body is useful for gas filters that can be used at high temperatures, gas separation membranes, and liquid filters that remove microparticles such as bacteria.

焼結温度を1600℃付近まで上げると緻密な焼結体が得られる。より緻密な焼結体を得るために、その他の焼成法、例えば雰囲気加圧焼結法、ホットプレス法、熱間静水圧焼結法(HIP)等の適用をすることもできる。
緻密な炭化ケイ素質焼結体は、高温で使用する構造材料、耐腐食材料、摺動材料など、例えば、半導体製造装置用部材、真空装置部材、発熱体などに有用である。
When the sintering temperature is raised to around 1600 ° C., a dense sintered body can be obtained. In order to obtain a denser sintered body, other firing methods such as an atmospheric pressure sintering method, a hot press method, a hot isostatic pressing (HIP) method, and the like can be applied.
The dense silicon carbide-based sintered body is useful for structural materials, corrosion-resistant materials, sliding materials and the like used at high temperatures, for example, semiconductor manufacturing device members, vacuum device members, heating elements, and the like.

以下に、本発明の実施例を示す。 Examples of the present invention are shown below.

参考例1
数平均分子量1200のポリカルボシラン16gにトルエン100gとテトラブトキシジルコニウム64gを加え、100℃で1時間予備加熱させた後、150℃までゆっくり昇温してトルエンを留去させてそのまま5時間反応させ、さらに340℃まで昇温して5時間反応して変性ポリカルボシランを合成した。この変性ポリカルボシランをキシレンに溶解させ固形分濃度50重量%のキシレン溶液を調製した。
Reference example 1
To 100 g of polycarbosilane having a number average molecular weight of 1200, 100 g of toluene and 64 g of tetrabutoxyzirconium were added, preheated at 100 ° C. for 1 hour, and then slowly heated to 150 ° C. to distill off the toluene and allowed to react for 5 hours. Further, the temperature was raised to 340 ° C. and reacted for 5 hours to synthesize modified polycarbosilane. This modified polycarbosilane was dissolved in xylene to prepare a xylene solution having a solid concentration of 50% by weight.

実施例1
参考例1の変性ポリカルボシランのキシレン溶液60gを125℃に加熱した400gの1,3−ジメチル−2−イミダゾリジノンに滴下し、静置した状態にて0.5時間で25℃まで冷却し、さらに攪拌しながら0.5時間で5℃まで冷却した。生成した懸濁液を濾過し、約30gの変性ポリカルボシラン微粒子を得た。変性ポリカルボシラン微粒子を空気中で段階的に150℃まで加熱し不融化させた後、1300℃のアルゴンガス中で1時間焼成し、原料粉末である平均粒径50nmの炭化ケイ素質微粒子を得た。この微粒子の真球度は0.97で、CV値は16%であった。
Example 1
60 g of the modified polycarbosilane xylene solution of Reference Example 1 was added dropwise to 400 g of 1,3-dimethyl-2-imidazolidinone heated to 125 ° C. and allowed to cool to 25 ° C. in 0.5 hours. The mixture was then cooled to 5 ° C. over 0.5 hours with further stirring. The resulting suspension was filtered to obtain about 30 g of modified polycarbosilane fine particles. The modified polycarbosilane fine particles are heated to 150 ° C. stepwise in air and then infusible, and then fired in argon gas at 1300 ° C. for 1 hour to obtain silicon carbide fine particles having an average particle size of 50 nm as a raw material powder. It was. The sphericity of the fine particles was 0.97, and the CV value was 16%.

実施例2
参考例1の変性ポリカルボシランのキシレン溶液60gを125℃に加熱した300gの1,3−ジメチル−2−イミダゾリジノンに滴下し、静置した状態にて24時間で5℃まで冷却した。生成した懸濁液を濾過し、約30gの変性ポリカルボシラン微粒子を得た。変性ポリカルボシラン微粒子を空気中で段階的に150℃まで加熱し不融化させた後、1300℃のアルゴンガス中で1時間焼成し、原料粉末である平均粒径4,500nmの炭化ケイ素質微粒子を得た。この微粒子の真球度は0.96で、CV値は19%であった。
Example 2
60 g of the modified polycarbosilane xylene solution of Reference Example 1 was added dropwise to 300 g of 1,3-dimethyl-2-imidazolidinone heated to 125 ° C., and allowed to cool to 5 ° C. in 24 hours. The resulting suspension was filtered to obtain about 30 g of modified polycarbosilane fine particles. The modified polycarbosilane fine particles are heated to 150 ° C. in air stepwise to be infusible, then fired in argon gas at 1300 ° C. for 1 hour, and the raw material powder is silicon carbide fine particles having an average particle diameter of 4,500 nm Got. The sphericity of the fine particles was 0.96, and the CV value was 19%.

実施例3
実施例1で得られた炭化ケイ素質微粒子100重量部にバインダー約5重量部を添加して造粒した後、 1ton/cmの成形圧で成形体を作製した。この後、上記成形体に対してアルゴンガス雰囲気中で脱脂を施した後、1600℃×3時間の条件で焼結を行い、緻密質の炭化ケイ素質焼結体を得た。この炭化ケイ素質セラミックスの相対密度は98.8%であった。また、この炭化ケイ素質セラミックスのX線回折測定を行ったが、β−SiC、或いはZrCに相当する明確な回折ピークは観察されず、実質的に非晶質であることが確認された。
Example 3
After granulating by adding about 5 parts by weight of a binder to 100 parts by weight of the silicon carbide fine particles obtained in Example 1, a molded body was produced at a molding pressure of 1 ton / cm 2 . Then, after degreasing | defatting in the argon gas atmosphere with respect to the said molded object, sintering was performed on the conditions of 1600 degreeC x 3 hours, and the dense silicon carbide sintered body was obtained. The relative density of this silicon carbide ceramic was 98.8%. Further, X-ray diffraction measurement of the silicon carbide ceramic was performed, but no clear diffraction peak corresponding to β-SiC or ZrC was observed, and it was confirmed that the silicon carbide ceramic was substantially amorphous.

実施例4
実施例1で得られた炭化ケイ素質微粒子100重量部にバインダー約5重量部を添加して造粒した後、 1ton/cmの成形圧で成形体を作製した。この後、上記成形体に対してアルゴンガス雰囲気中で脱脂を施した後、1400℃×3時間の条件で焼結を行い、多孔質の炭化ケイ素質焼結体を得た。この多孔質の炭化ケイ素質セラミックスは平均気孔径が50nmで、気孔率が34%を有するものであった。また、この炭化ケイ素質セラミックスのX線回折測定を行ったが、β−SiC、或いはZrCに相当する明確な回折ピークは観察されず、実質的に非晶質であることが確認された。
Example 4
After granulating by adding about 5 parts by weight of a binder to 100 parts by weight of the silicon carbide fine particles obtained in Example 1, a molded body was produced at a molding pressure of 1 ton / cm 2 . Then, after performing degreasing | defatting in the argon gas atmosphere with respect to the said molded object, sintering was performed on the conditions of 1400 degreeC * 3 hours, and the porous silicon carbide sintered body was obtained. This porous silicon carbide ceramic had an average pore diameter of 50 nm and a porosity of 34%. Further, X-ray diffraction measurement of the silicon carbide ceramic was performed, but no clear diffraction peak corresponding to β-SiC or ZrC was observed, and it was confirmed that the silicon carbide ceramic was substantially amorphous.

参考例1
実施例2で得られた炭化ケイ素質微粒子100重量部にバインダー約5重量部を添加して造粒した後、 1ton/cmの成形圧で成形体を作製した。この後、上記成形体に対してアルゴンガス雰囲気中で脱脂を施した後、1600℃×3時間の条件で焼結をおこなったが、緻密化が進行せず形状を保持する焼結体は得られなかった。
Reference example 1
After granulating by adding about 5 parts by weight of a binder to 100 parts by weight of the silicon carbide fine particles obtained in Example 2, a molded body was produced with a molding pressure of 1 ton / cm 2 . Then, after degreasing | defatting in the argon gas atmosphere with respect to the said molded object, sintering was performed on the conditions of 1600 degreeC x 3 hours, However, Densification does not advance but the sintered compact which hold | maintains a shape is obtained. I couldn't.

比較例1
トリメチルシランを気相熱分解させた気相反応法の炭化珪素質微粒子(平均粒径0.03μm)100重量部にバインダー約5重量部を添加して造粒した後、 1ton/cmの成形圧で成形体を作製した。この後、上記成形体に対してアルゴンガス雰囲気中で脱脂を施した後、1600℃×3時間の条件で焼結を行ったが、形状を保持する焼結体は得られなかった。
Comparative Example 1
After adding and granulating about 5 parts by weight of binder to 100 parts by weight of silicon carbide fine particles (average particle size: 0.03 μm) obtained by vapor phase thermal decomposition of trimethylsilane, forming 1 ton / cm 2 A molded body was produced under pressure. Then, after degreasing | defatting in the argon gas atmosphere with respect to the said molded object, sintering was performed on the conditions of 1600 degreeC x 3 hours, but the sintered compact which hold | maintains a shape was not obtained.

Claims (3)

(a)主として一般式
Figure 0005217097
(但し、式中のRは水素原子、低級アルキル基又はフェニル基を示す。)
で表される主鎖骨格を有する数平均分子量が200〜10,000のポリカルボシラン、又は前記ポリカルボシランを有機金属化合物で修飾した構造を有する変性ポリカルボシランからなる有機ケイ素前駆体高分子を提供する工程と、
(b)前記有機ケイ素前駆体高分子を貧溶媒と混合し加熱することで溶解させた後、該溶液を冷却することで前駆体高分子を析出させ、析出物を濾別することで球状前駆体高分子の微粒子を得る工程と、
(c)前記球状前駆体高分子微粒子を、酸素を含む雰囲気中で予備加熱を行い、不融化処理を行う工程と、
(d)前記不融化処理した球状前駆体高分子微粒子を真空中或いは不活性ガス雰囲気中で焼成する工程とを有することを特徴とする球状炭化ケイ素質微粒子の製造方法。
(A) Mainly general formula
Figure 0005217097
(However, R in the formula represents a hydrogen atom, a lower alkyl group or a phenyl group.)
An organosilicon precursor polymer comprising a polycarbosilane having a main chain skeleton represented by the formula: a polycarbosilane having a number average molecular weight of 200 to 10,000, or a modified polycarbosilane having a structure obtained by modifying the polycarbosilane with an organometallic compound. Providing a process;
(B) After the organosilicon precursor polymer is mixed with a poor solvent and heated to dissolve, the precursor polymer is precipitated by cooling the solution, and the precipitate is filtered to obtain a spherical precursor polymer. Obtaining a fine particle of
(C) a step of preheating the spherical precursor polymer fine particles in an atmosphere containing oxygen and performing an infusibilization treatment;
(D) A method for producing spherical silicon carbide fine particles, comprising a step of firing the infusible spherical precursor polymer fine particles in a vacuum or in an inert gas atmosphere.
(a)主として一般式
Figure 0005217097
(但し、式中のRは水素原子、低級アルキル基又はフェニル基を示す。)
で表される主鎖骨格を有する数平均分子量が200〜10,000のポリカルボシラン、又は前記ポリカルボシランを有機金属化合物で修飾した構造を有する変性ポリカルボシランからなる有機ケイ素前駆体高分子を提供する工程と、
(b)前記有機ケイ素前駆体高分子を良溶媒に溶解させた溶液と、前記有機ケイ素前駆体高分子の貧溶媒とを混合することで前駆体高分子を析出させ、析出物を濾別することで球状前駆体高分子の微粒子を得る工程と、
(c)前記球状前駆体高分子微粒子を、酸素を含む雰囲気中で予備加熱を行い、不融化処理を行う工程と、
(d)前記不融化処理した球状前駆体高分子微粒子を真空中或いは不活性ガス雰囲気中で焼成する工程を有することを特徴とする球状炭化ケイ素質微粒子の製造方法。
(A) Mainly general formula
Figure 0005217097
(However, R in the formula represents a hydrogen atom, a lower alkyl group or a phenyl group.)
An organosilicon precursor polymer comprising a polycarbosilane having a main chain skeleton represented by the formula: a polycarbosilane having a number average molecular weight of 200 to 10,000, or a modified polycarbosilane having a structure obtained by modifying the polycarbosilane with an organometallic compound. Providing a process;
(B) A precursor polymer is precipitated by mixing a solution in which the organosilicon precursor polymer is dissolved in a good solvent and a poor solvent for the organosilicon precursor polymer, and the precipitate is separated by filtration. Obtaining precursor polymer fine particles; and
(C) a step of preheating the spherical precursor polymer fine particles in an atmosphere containing oxygen and performing an infusibilization treatment;
(D) A method for producing spherical silicon carbide fine particles, comprising a step of firing the infusible spherical precursor polymer fine particles in a vacuum or in an inert gas atmosphere.
前記変性ポリカルボシランがポリメタロカルボシランである請求項1又は2に記載の球状炭化ケイ素質微粒子の製造方法。   The method for producing spherical silicon carbide fine particles according to claim 1 or 2, wherein the modified polycarbosilane is polymetallocarbosilane.
JP2006042733A 2005-09-20 2006-02-20 Method for producing spherical silicon carbide fine particles Expired - Fee Related JP5217097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006042733A JP5217097B2 (en) 2005-09-20 2006-02-20 Method for producing spherical silicon carbide fine particles

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005272329 2005-09-20
JP2005272329 2005-09-20
JP2006042733A JP5217097B2 (en) 2005-09-20 2006-02-20 Method for producing spherical silicon carbide fine particles

Publications (2)

Publication Number Publication Date
JP2007112693A JP2007112693A (en) 2007-05-10
JP5217097B2 true JP5217097B2 (en) 2013-06-19

Family

ID=38095210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006042733A Expired - Fee Related JP5217097B2 (en) 2005-09-20 2006-02-20 Method for producing spherical silicon carbide fine particles

Country Status (1)

Country Link
JP (1) JP5217097B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4951908B2 (en) * 2005-09-20 2012-06-13 宇部興産株式会社 Method for producing spherical zinc oxide or acid carbide fine particles
EP2271702A2 (en) * 2008-04-30 2011-01-12 Dow Corning Toray Co., Ltd. Silicon-containing particles, method for manufacturing thereof, oil composition, ceramic material, and method for manufacturing thereof
JP5371525B2 (en) * 2009-04-14 2013-12-18 株式会社ブリヂストン Method for producing silicon carbide powder
JP2013095637A (en) 2011-11-01 2013-05-20 Shinano Denki Seiren Kk SPHERICAL α-TYPE SILICON CARBIDE, PRODUCTION METHOD THEREOF, AND SINTERED BODY OR ORGANIC RESIN COMPOSITE USING THE SILICON CARBIDE AS RAW MATERIAL
JP6485244B2 (en) 2015-06-18 2019-03-20 Jnc株式会社 Spherical silicon oxycarbide powder and method for producing the same
EP3597597A1 (en) 2018-07-17 2020-01-22 Commissariat à l'Energie Atomique et aux Energies Alternatives Spherical sioc particulate electrode material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04222662A (en) * 1990-12-25 1992-08-12 Nippon Steel Chem Co Ltd Method for forming polymer film to surface of solid
JP3738784B2 (en) * 1995-06-27 2006-01-25 石川島播磨重工業株式会社 Method for producing interface control ceramics
JP4111478B2 (en) * 2000-02-29 2008-07-02 東海カーボン株式会社 Method for producing silicon carbide microspheres

Also Published As

Publication number Publication date
JP2007112693A (en) 2007-05-10

Similar Documents

Publication Publication Date Title
JP5217097B2 (en) Method for producing spherical silicon carbide fine particles
DK2597075T3 (en) Porous alpha-SiC-containing shaped body with a continuous open pore structure
KR100952341B1 (en) Method for manufacturing porous SiC and porous SiC manufactured thereby
TWI692452B (en) Ceramic composite beads and methods for making the same
PL209724B1 (en) Silicon carbide based porous article and method for preparation thereof
JPS5850929B2 (en) Method for manufacturing silicon carbide powder
JP2010143771A (en) METHOD FOR PRODUCING alpha-SILICON CARBIDE PARTICLE
JP3971546B2 (en) Porous ceramic laminate and method for producing the same
JPS61151006A (en) Production of aluminum nitride powder
JP4951908B2 (en) Method for producing spherical zinc oxide or acid carbide fine particles
JP3698143B2 (en) Porous Si3N4 for filter and manufacturing method thereof
WO2005049525A1 (en) High thermally conductive aluminum nitride sintered product
Chen et al. Dense and crack-free mullite films obtained from a hybrid sol–gel/dip-coating approach
JP2008105937A (en) Method for producing carbide powder-coated oxide powder
JP4348429B2 (en) Porous silicon nitride and method for producing the same
JP2008105936A (en) Carbide powder
JP2006327846A (en) Barium titanate powder, method of preparing the same and barium titanate sintered compact
TW200902474A (en) Ceramic member and corrosion-resistant member
Sun et al. Synthesis and microstructure evolution of β‐Sialon fibers/barium aluminosilicate (BAS) glass‐ceramic matrix composite with enhanced mechanical properties
JPH09221367A (en) Conductive silicon carbide material composite material and its production
JP5152654B2 (en) Aluminum silicon carbide powder and method for producing the same
JPS59207812A (en) Production of silicon nitride
JP2007131528A (en) Method for manufacturing non-oxide porous ceramic material
JP3900589B2 (en) Magnesium siliconitride powder and method for producing the same
KR20170093478A (en) Manufacturing Method of Silicon Carbide Nano Powder using Polycarbosilane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5217097

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees