JPH09221367A - Conductive silicon carbide material composite material and its production - Google Patents

Conductive silicon carbide material composite material and its production

Info

Publication number
JPH09221367A
JPH09221367A JP8052311A JP5231196A JPH09221367A JP H09221367 A JPH09221367 A JP H09221367A JP 8052311 A JP8052311 A JP 8052311A JP 5231196 A JP5231196 A JP 5231196A JP H09221367 A JPH09221367 A JP H09221367A
Authority
JP
Japan
Prior art keywords
carbon
silicon carbide
composite material
boride
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8052311A
Other languages
Japanese (ja)
Inventor
Masami Uzawa
正美 鵜澤
Koichi Osono
浩一 大園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chichibu Onoda Cement Corp
Original Assignee
Chichibu Onoda Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chichibu Onoda Cement Corp filed Critical Chichibu Onoda Cement Corp
Priority to JP8052311A priority Critical patent/JPH09221367A/en
Publication of JPH09221367A publication Critical patent/JPH09221367A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a SiC material composite material high in tenacity by mixing carbon or a carbon-containing compd. to a powdery mixture of the SiC and the one of more than one kind among a boride of Ti, Zr, Nb, Ta, Cr and Mo and burning the mixture. SOLUTION: 0.5-10 pts.wt. (expressed in terms of carbon in weight) carbon or carbon-containing compd. such as phenol is added and mixed to 100 pts.wt. powdery mixture of 60-95vol% SiC powder having about <=3μm grain size and 5-40vol% boride more than one kind among TiB2 , ZrB2 , NbB2 , TaB2 , CrB and MoB and having about <=30μm grain size. This mixture is compacted, burned at about 1900-2300 deg.C for about 15-60min in an inert gas atmosphere such as argon, then, the burned mater is cooled to room temp. by a speed of about 50 deg.C/min, and a conductive SiC material composite material being a sintered body in which the boride is dispersed in a continuous SiC substrate and the carbon having a graphite structure is present in an intercrystalline phase is obtained. And the material is subjected to HIP treatment at about 1800-2000 deg.C and about 100-2000atm pressure in an Ar gas atmosphere and the sintered body having about >=95% relative denseness is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明は高靱性及び高強度を
有し、かつ抵抗値を可変できる導電性炭化珪素質複合材
料及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a conductive silicon carbide based composite material having high toughness and high strength and capable of varying resistance, and a method for producing the same.

【0002】[0002]

【従来の技術】炭化珪素はセラミックス系の材料の中で
も特に高温下で優れた強度と耐酸化性を示すため、自動
車エンジン、ガスタービンなどの比較的過酷な環境下で
用いる高温構造材料として注目されてきた。しかし、そ
の電気抵抗は104Ω・cmオーダーと高く、通電性が
殆ど無い為、安価で生産性が高い放電加工を行うことが
出来ず、加工部品としての生産コストはかなり高いもの
となり、更にはセラミックス系材料の中では靭性がかな
り低く、この脆さも加わって、実用部材適応への大きな
障害となっている。一方、金属材料は導電性があるので
放電加工はできるものの、高温強度や耐酸化性の点では
炭化珪素などのセラミックス材料に比べるとかなり劣
り、また材料が発現できる電気抵抗値の選定も極めて限
られた範囲でしか実現できなかった。この為、例えば1
000℃を越えるような高温の酸化性雰囲気でも安定し
て使用できる機械的特性を有する導電性材料が望まれて
いた。
2. Description of the Related Art Silicon carbide, which has excellent strength and oxidation resistance especially at high temperature among ceramic materials, has attracted attention as a high temperature structural material used in relatively harsh environments such as automobile engines and gas turbines. Came. However, its electrical resistance is as high as 10 4 Ω · cm, and since it has almost no electrical conductivity, it is not possible to perform electrical discharge machining that is inexpensive and highly productive, and the production cost as a machined part is considerably high. Among the ceramic-based materials, the toughness is considerably low, and this brittleness is a major obstacle to practical application. On the other hand, although metal materials have electrical conductivity, they can be subjected to electrical discharge machining, but they are considerably inferior to ceramic materials such as silicon carbide in terms of high temperature strength and oxidation resistance, and the selection of the electrical resistance value that the material can develop is extremely limited. It could only be realized within the specified range. Therefore, for example, 1
There has been a demand for a conductive material having mechanical characteristics that can be stably used even in an oxidizing atmosphere at a high temperature exceeding 000 ° C.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、金属
材料では得ることの出来ない高温強度と耐酸化性を有す
ると共に炭化珪素焼結体よりも高い靭性値を示し、且つ
通常の金属材料よりも広い範囲の電気伝導度から任意の
電気伝導度を付与できる導電性材料及びその製造方法を
提供することである。
SUMMARY OF THE INVENTION An object of the present invention is to have a high temperature strength and an oxidation resistance which cannot be obtained with a metal material, and to show a toughness value higher than that of a silicon carbide sintered body, and a normal metal material. An object of the present invention is to provide a conductive material capable of giving arbitrary electric conductivity from a wider range of electric conductivity and a method for producing the same.

【0004】[0004]

【課題を解決するための手段】そこで本発明者らは種々
研究を行った結果、炭化珪素に導電性を有しまた化学的
にも安定なチタン、ジルコニウム、ニオブ、タンタル、
クロム、モリブデンの硼化物の群より選ばれた1種また
は2種以上からなる粒子を分散させ、且つ粒界部に少な
くともグラファイト構造を示す炭素を析出させた複合焼
結体とすることで、優れた靭性や高温強度を示し、且つ
高い電気伝導性を有することができ、更にその電気伝導
度は一般の金属材料よりも広い抵抗値の範囲から比較的
微細なオーダーで変化させることができることを見出
し、本発明を完成するに至った。
Therefore, as a result of various researches conducted by the present inventors, titanium, zirconium, niobium, tantalum, which has conductivity in silicon carbide and is chemically stable,
Excellent by forming particles of one or more selected from the group of borides of chromium and molybdenum and dispersing at least carbon having a graphite structure at the grain boundary to obtain a composite sintered body. It has been found that it has high toughness and high temperature strength and has high electrical conductivity, and its electrical conductivity can be changed in a relatively fine order from a wider resistance value range than general metal materials. The present invention has been completed.

【0005】即ち本発明は、炭化珪素60〜95体積%
と、チタン、ジルコニウム、ニオブ、タンタル、クロ
ム、モリブデンの硼化物の何れか1種以上を5〜40体
積%含む混合粉末100重量部に、炭素若しくは炭素を
含む化合物を炭素重量換算で0.5〜10重量部加えて
なる混合物を焼結したものであって、連続する炭化珪素
基材相中に前記硼化物相が分散し、且つ粒界相に少なく
ともグラファイト構造の炭素が存在する焼結体であるこ
とを特徴とする導電性炭化珪素質複合材料である。
That is, according to the present invention, 60 to 95% by volume of silicon carbide is used.
And 100 parts by weight of a mixed powder containing 5 to 40% by volume of any one or more of boride of titanium, zirconium, niobium, tantalum, chromium, and molybdenum, carbon or a compound containing carbon is 0.5 in terms of carbon weight. Sintered mixture of 10 to 10 parts by weight, wherein the boride phase is dispersed in a continuous silicon carbide base phase, and at least carbon having a graphite structure is present in the grain boundary phase. Is a conductive silicon carbide composite material.

【0006】また本発明は、炭化珪素60〜95体積%
と、チタン、ジルコニウム、ニオブ、タンタル、クロ
ム、モリブデンの硼化物の何れか1種以上を5〜40体
積%含む混合粉末100重量部に、炭素若しくは炭素を
含む化合物を炭素重量換算で0.5〜10重量部加えて
なる混合物を1900〜2300℃で焼結し、これを該
焼結温度から約50℃/分以下の冷却速度で冷却したも
のであって、連続する炭化珪素基材相中に前記硼化物相
が分散し、且つ粒界相にグラファイト構造の炭素が存在
する焼結体であることを特徴とする導電性炭化珪素質複
合材料の製造方法である。
The present invention also provides a silicon carbide of 60 to 95% by volume.
And 100 parts by weight of a mixed powder containing 5 to 40% by volume of any one or more of boride of titanium, zirconium, niobium, tantalum, chromium, and molybdenum, carbon or a compound containing carbon is 0.5 in terms of carbon weight. A mixture obtained by adding 10 parts by weight to 10 parts by weight is sintered at 1900 to 2300 ° C. and cooled at a cooling rate of about 50 ° C./min or less from the sintering temperature in a continuous silicon carbide base phase. Is a sintered body in which the boride phase is dispersed in and a carbon having a graphite structure is present in the grain boundary phase.

【0007】また本発明は、前記焼結が加圧焼結である
ことを特徴とする導電性炭化珪素質複合材料の製造方法
である。
Further, the present invention is a method for producing a conductive silicon carbide based composite material, wherein the sintering is pressure sintering.

【0008】また本発明は、前記何れかの製造方法に於
いて作製した導電性炭化珪素質複合材料を、カプセル封
入せずに、不活性ガスを圧力媒体とし、圧力1000気
圧以上、温度1800〜2000℃でHIP処理するこ
とを特徴とする導電性炭化珪素質複合材料の製造方法で
ある。
In the present invention, the conductive silicon carbide composite material produced by any one of the above production methods is not encapsulated but an inert gas is used as a pressure medium, the pressure is 1000 atm or more, and the temperature is 1800 to 8000. It is a method for producing a conductive silicon carbide based composite material, which is characterized in that HIP treatment is performed at 2000 ° C.

【0009】[0009]

【発明の実施の形態】本発明で原料として用いる炭化珪
素は、粒径3μm以下の粉末が焼結性や焼結体の強度向
上の点から望ましく、その結晶構造はα型、β型の何れ
でも良いが、望ましくはβ型が比較的焼結しやすいので
良い。また更に、焼結性を向上させる目的で、公知の焼
結助剤である金属アルミニウムや酸化アルミニウムを約
0.5〜3重量%添加した炭化珪素粉末を用いることも
できるが、他の不純物は高温時の性状低下に繋がった
り、電気抵抗に影響を及ぼすことがある為、混入を避け
るのが望ましい。特に、粉末状の炭化珪素は空気中で表
面に二酸化珪素が生成し易い為、事前に弗化水素酸など
で洗浄し、粉末表面の二酸化珪素を除去したものを使用
するのが望ましい。この炭化珪素の原料粉末混合物に対
する配合量は60〜95体積%とする。尚、金属アルミ
ニウムや酸化アルミニウムの焼結助剤を添加した炭化珪
素を用いる場合は該助剤を含んだ炭化珪素の配合量とす
る。
BEST MODE FOR CARRYING OUT THE INVENTION Silicon carbide used as a raw material in the present invention is preferably a powder having a particle size of 3 μm or less from the viewpoints of sinterability and improvement of the strength of a sintered body, and its crystal structure is either α type or β type. However, it is preferable that the β type is relatively easy to sinter. Further, for the purpose of improving the sinterability, it is also possible to use a silicon carbide powder to which metal aluminum or aluminum oxide, which is a known sintering aid, is added in an amount of about 0.5 to 3% by weight. It is desirable to avoid mixing because it may lead to deterioration of properties at high temperature and may affect electric resistance. In particular, since powdery silicon carbide easily forms silicon dioxide on the surface in the air, it is desirable to use one that has been cleaned with hydrofluoric acid or the like in advance to remove the silicon dioxide on the powder surface. The blending amount of this silicon carbide with respect to the raw material powder mixture is 60 to 95% by volume. When using silicon carbide added with a sintering aid of metallic aluminum or aluminum oxide, the content of silicon carbide containing the aid is set.

【0010】本発明で原料として用いるチタン、ジルコ
ニウム、ニオブ、タンタル、クロム、モリブデンの硼化
物は、概ね純度が95%程度以上であれば良く、その粒
径は最大30μm以下とするのがより高い強度、靭性を
焼結体に付与させる上で望ましい。その粉末混合物に対
する配合量は前記硼化物の何れか1種以上を5〜40体
積%とする。配合量が5体積%未満では、複合化の効果
が乏しくなり靭性の向上が殆ど見込まれないので好まし
くなく、また40体積%を越えると高温での耐酸化性が
低下するので好ましくない。
The borides of titanium, zirconium, niobium, tantalum, chromium and molybdenum used as raw materials in the present invention may have a purity of approximately 95% or more, and the particle size thereof is more preferably 30 μm or less at the maximum. It is desirable for imparting strength and toughness to the sintered body. The compounding amount of the powder mixture is 5 to 40% by volume of any one or more of the above boride. If the blending amount is less than 5% by volume, the compounding effect becomes poor and the toughness is hardly expected to be improved, and if it exceeds 40% by volume, the oxidation resistance at high temperature is deteriorated, which is not preferable.

【0011】本発明はこのようなチタン、ジルコニウ
ム、ニオブ、タンタル、クロム、モリブデンの硼化物の
何れか1種以上と炭化珪素を含む原料混合粉末100重
量部に、更に炭素若しくは炭素を含む化合物を炭素重量
換算で0.5〜10重量部加えたものである。ここで加
えるべき炭素としては、望ましくは結晶質グラファイト
構造の炭素粉末が良いが、例えばカーボンブラックなど
の炭素粉末を使用することもできる。更には直接炭素粉
末を使用せずに炭素源として、加熱段階で炭素以外の成
分が分解離脱可能な炭素を含む化合物を用いても良い。
このような炭素を含む化合物としては、例えばフェノー
ル又はその樹脂、タール、フラン樹脂等を挙げることが
できる。その添加量は、0.5重量部未満では細かい電
気抵抗の調整が困難となると共に緻密化もし難くなる
為、また10重量部以上では、機械的性状が低下する
為、何れも好ましくない。
In the present invention, carbon or a compound containing carbon is further added to 100 parts by weight of a raw material mixed powder containing silicon carbide and one or more kinds of borides of titanium, zirconium, niobium, tantalum, chromium and molybdenum. It is added in an amount of 0.5 to 10 parts by weight in terms of carbon weight. The carbon to be added here is preferably carbon powder having a crystalline graphite structure, but carbon powder such as carbon black can also be used. Further, instead of directly using the carbon powder, a compound containing carbon capable of decomposing / decomposing components other than carbon in the heating stage may be used as a carbon source.
Examples of such a compound containing carbon include phenol or its resin, tar, and furan resin. If the addition amount is less than 0.5 parts by weight, it becomes difficult to finely adjust the electric resistance and it becomes difficult to densify it, and if it is 10 parts by weight or more, the mechanical properties are deteriorated.

【0012】本発明の導電性炭化珪素質複合材料は、前
記のような炭化珪素と、チタン、ジルコニウム、ニオ
ブ、タンタル、クロム、モリブデンの硼化物の何れか1
種以上、及び炭素若しくは炭素を含む化合物を混合し、
該混合物を焼結したものである。この焼結体は緻密質で
あって、チタン、ジルコニウム、ニオブ、タンタル、ク
ロム、モリブデンの硼化物の何れか1種以上の粒子が概
ね均一かつ非連続に分散された状態で、炭化珪素から成
る連続した基材相中に強固に保持され、更に炭化珪素と
導電性物質である金属硼化物との粒界相にはグラファイ
ト構造の炭素が一般に約数十〜百nmの粒径で析出し、
特に粒界の3重点部分では炭化珪素に対し溶解再析出し
た炭素が数μmオーダーで存在しているものである。こ
のような粒界部には少なくともグラファイト構造の結晶
質炭素の他に、アモルファス状態の炭素が含まれていて
も良い。この複合材料の導電特性は金属硼化物と炭素の
配合量によって所望の抵抗値となるよう調整でき、その
範囲は概ね1×103〜106Ω・cmである。
The conductive silicon carbide-based composite material of the present invention is any one of the above-mentioned silicon carbide and titanium, zirconium, niobium, tantalum, chromium or molybdenum boride.
Mixing one or more species and carbon or a compound containing carbon,
The mixture is sintered. This sintered body is dense and is made of silicon carbide in a state in which particles of at least one kind of boride of titanium, zirconium, niobium, tantalum, chromium, and molybdenum are dispersed substantially uniformly and discontinuously. It is firmly held in a continuous base material phase, and further carbon of a graphite structure is generally precipitated in a grain size of about several tens to 100 nm in a grain boundary phase between silicon carbide and a metal boride which is a conductive substance.
In particular, at the triple points of the grain boundaries, carbon re-precipitated by dissolution in silicon carbide is present in the order of several μm. Such a grain boundary portion may contain at least amorphous carbon in addition to crystalline carbon having a graphite structure. The conductive property of this composite material can be adjusted to a desired resistance value by the blending amount of metal boride and carbon, and the range is approximately 1 × 10 3 to 10 6 Ω · cm.

【0013】次に本発明による製造方法の詳細を記す。
原料及びその配合量を前記のごとく定めた混合物を、例
えばボールミル中で低級アルコールや水、アセトン等の
溶媒を用いた湿式混合により調整し、必要に応じて噴霧
乾燥等で乾燥顆粒にした後、所望の形状に成形する。成
形は、例えば金型成形や冷間等方加圧成形(CIP)な
ど比較的高密度の成形体が得られる方法であれば何れの
成形手法でも良い。次いで該成形体を焼結する。焼結
は、雰囲気調整可能な加熱装置を用いて、アルゴン、ヘ
リウムなどの不活性ガス雰囲気中で温度約1900℃〜
2300℃で約15〜60分間加熱する。加熱後炉内放
冷、若しくは約50℃/分以下の冷却速度で少なくとも
1500℃、より望ましくは室温近傍まで冷却すること
によって緻密質の導電性炭化珪素質複合材料を得ること
ができる。ここで炭素原料源として炭素を含む化合物を
用いた場合は、炭素外成分の分解除去を円滑に進める為
に不活性ガスフローとするのが望ましい。尚、温度19
00℃未満では焼結が進行し難く、グラファイト構造の
炭素が生成しないので好ましくない。また2300℃を
越えると過焼結となり機械的性質が劣化するので好まし
くない。また、焼結体の加熱後の冷却が約50℃/分を
越える冷却速度では、グラファイト構造の炭素が析出し
難くなるので好ましくない。
Next, details of the manufacturing method according to the present invention will be described.
A mixture of the raw materials and the amount thereof is determined as described above, for example, by wet mixing using a solvent such as lower alcohol or water, acetone in a ball mill, and after dried granules by spray drying or the like, if necessary, Mold into the desired shape. The molding may be carried out by any molding method as long as it is a method capable of obtaining a relatively high-density molded body such as mold molding or cold isostatic pressing (CIP). Next, the compact is sintered. Sintering is performed at a temperature of about 1900 ° C. in an inert gas atmosphere such as argon or helium using a heating device capable of adjusting the atmosphere.
Heat at 2300 ° C for about 15-60 minutes. A dense conductive silicon carbide composite material can be obtained by cooling in the furnace after heating or cooling at least 1500 ° C. at a cooling rate of about 50 ° C./min or less, more preferably near room temperature. When a compound containing carbon is used as the carbon source, it is preferable to use an inert gas flow in order to smoothly decompose and remove the non-carbon component. The temperature is 19
If it is less than 00 ° C., it is not preferable because sintering is difficult to proceed and carbon having a graphite structure is not generated. On the other hand, if the temperature exceeds 2300 ° C., it will be over-sintered and the mechanical properties will deteriorate, which is not preferable. If the cooling rate after heating the sintered body exceeds about 50 ° C./minute, carbon having a graphite structure is less likely to deposit, which is not preferable.

【0014】本発明の製造方法に於いては、前記焼結時
の圧力は、常圧、即ち1気圧前後でも対応できるが、よ
り高強度、高緻密を有する導電性炭化珪素質複合材料を
得るには、好ましくは加圧焼結を行うのが良い。このよ
うな加圧焼結の方法としては、例えば公知のホットプレ
ス法やガラス等のカプセルに封入した被焼成物を熱間等
方加圧により焼結する方法(カプセルHIP法)を挙げ
ることができる。
In the production method of the present invention, the pressure during sintering can be atmospheric pressure, that is, about 1 atm, but a conductive silicon carbide composite material having higher strength and higher density can be obtained. For this, pressure sintering is preferably performed. Examples of such a pressure sintering method include a known hot pressing method and a method of sintering a material to be fired enclosed in a capsule such as glass by hot isostatic pressing (capsule HIP method). it can.

【0015】また、前記の如く一端常圧若しくは加圧焼
結させた相対密度が約95%以上の焼結体については、
より高緻密かつより均質な性状のものとする為に、ガラ
スなどのカプセル内に封入せずに素体を直接、アルゴン
圧力媒体中で温度約1800℃〜2000℃、圧力10
00〜2000気圧にてHIP処理する、即ちカプセル
フリーHIP処理することもできる。尚、HIP処理の
温度が2000℃を越えると強度低下に結びつく粒成長
が見られ、1800℃未満ではHIP処理の効果が殆ど
見られないので好ましくない。同様に圧力1000気圧
未満でもHIP処理の効果が殆ど見られないので好まし
くない。
As for the sintered body having a relative density of about 95% or more, which has been subjected to normal pressure or pressure sintering as described above,
In order to obtain a more dense and more uniform property, the element body is directly enclosed in an argon pressure medium at a temperature of about 1800 ° C to 2000 ° C and a pressure of 10 without being enclosed in a capsule such as glass.
It is also possible to perform HIP processing at 00 to 2000 atm, that is, capsule-free HIP processing. If the HIP treatment temperature exceeds 2000 ° C., grain growth leading to a decrease in strength is observed, and if the HIP treatment temperature is less than 1800 ° C., the effect of the HIP treatment is hardly seen, which is not preferable. Similarly, if the pressure is less than 1000 atm, the effect of HIP treatment is hardly seen, which is not preferable.

【0016】[0016]

【作用】本導電性炭化珪素質複合材料を構成する硼化ジ
ルコニウムなどの金属硼化物粒子は、炭化珪素マトリッ
クス中に均一に分散し、一般の金属材料よりも高い電気
伝導度を付与すると共に、粒子分散強化の原理により材
料の靱性値を大幅に向上することができる。また、本導
電性炭化珪素質複合材料中の炭素は、主としていわゆる
アモルファス状態とグラファイト結晶構造の2形態で存
在し、前者は焼結助剤的作用を示し炭化珪素基材の焼結
に寄与する。一方後者は、金属硼化物がその配合量の微
量の変化に応じて抵抗値が大幅に変化するのに対し、そ
の配合量の変化に応じての抵抗値の変化はかなり緩やか
である。このように炭素は金属硼化物とは抵抗値調整機
能が異なり、それ故、本導電性炭化珪素質複合材料硼化
物は、金属よりも幅の広い抵抗範囲から所望の抵抗値を
有するものを作製することができるにも拘わらず、その
値は細かいオーダー迄比較的厳密に調整したものを作製
することが可能である。
The metal boride particles such as zirconium boride constituting the present conductive silicon carbide composite material are uniformly dispersed in the silicon carbide matrix to give higher electric conductivity than general metal materials and The toughness value of the material can be significantly improved by the principle of particle dispersion strengthening. Further, carbon in the conductive silicon carbide composite material of the present invention exists mainly in two forms, a so-called amorphous state and a graphite crystal structure, and the former acts as a sintering aid and contributes to the sintering of the silicon carbide base material. . On the other hand, in the latter, the resistance value of the metal boride greatly changes in accordance with a slight change in the compounding amount thereof, whereas the change in the resistance value in accordance with the change of the compounding amount is fairly gradual. As described above, carbon has a resistance adjusting function different from that of the metal boride, and therefore, the conductive silicon carbide composite material boride of the present invention has a desired resistance value in a resistance range wider than that of the metal. Although it can be done, it is possible to manufacture a product in which the value is relatively strictly adjusted to a fine order.

【0017】[0017]

【実施例】【Example】

[実施例1] 弗化水素酸で予め洗浄処理した平均粒径
0.5μmのβ型炭化珪素(SiC)、粒径4μm以下
で中心粒径が2.8μmの硼化チタン(TiB2)、粒
径5μm以下で中心粒径が2.1μmの硼化ジルコニウ
ム(ZrB2)、粒径5μm以下で中心粒径が2.3μ
mの硼化ニオブ(NbB2)、粒径5μm以下で中心粒
径が2.2μmの硼化タンタル(TaB2)、粒径4μ
m以下で中心粒径が3.0μmの硼化モリブデン(Mo
B)、粒径4μm以下で中心粒径が2.9μmの硼化ク
ロム(CrB)、及びフェノール(C65OH)を用い
て、表1に記す配合割合の混合物をボールミル混合によ
り作製した。該混合物は、それぞれ金型成形により成形
し、各成形体は、電気炉を用い、約1.0〜1.1気圧
になるよう調整したアルゴン気流中2200℃で20分
焼結を行い、約15℃/分の冷却速度で約300℃迄冷
却し、その後は約25℃まで炉内放冷することにより緻
密質の焼結体(本発明品1〜12)を作製した。
Example 1 β-type silicon carbide (SiC) having an average particle size of 0.5 μm, which was previously washed with hydrofluoric acid, titanium boride (TiB 2 ) having a particle size of 4 μm or less and a central particle size of 2.8 μm, Zirconium boride (ZrB 2 ) with a particle size of 5 μm or less and a center particle size of 2.1 μm, and center particle size of 2.3 μ with a particle size of 5 μm or less
m niobium boride (NbB 2 ), tantalum boride (TaB 2 ) having a central particle size of 2.2 μm and a particle size of 5 μm or less, and a particle size of 4 μm
Molybdenum boride (Mo having a central particle diameter of 3.0 μm or less
B), chromium boride (CrB) having a particle size of 4 μm or less and a central particle size of 2.9 μm, and phenol (C 6 H 5 OH) were prepared by ball mill mixing at a compounding ratio shown in Table 1. . The mixture was molded by die molding, and each molded body was sintered at 2200 ° C. for 20 minutes in an argon stream adjusted to about 1.0 to 1.1 atm using an electric furnace, It was cooled to about 300 ° C. at a cooling rate of 15 ° C./minute, and then allowed to cool to about 25 ° C. in the furnace to produce dense sintered bodies (invention products 1 to 12).

【0018】[0018]

【表1】 [Table 1]

【0019】得られた焼結体は、常温(約25℃)及び
1000℃での大気中での曲げ強度(MPa)、常温で
の破壊靭性(MPa・m1/2)、相対密度(%)、及び
常温での電気抵抗(Ω・cm)を測定した。その値を表
1に合わせて記す。尚、曲げ強度はJIS−R1601
に準拠した方法による三点曲げ強度を、破壊靭性はJI
S−R1607に準拠したSEPB法で、相対密度はア
ルキメデス法で、電気抵抗は4端子法によりそれぞれ測
定した。また結晶相をX線回折及びラマン分光分析で調
べたところ、何れの焼結体もTiB2、ZrB2、NbB
2、TaB2、MoB、CrBの何れか1種とβ型SiC
とグラファイト型炭素の存在を確認した。
The obtained sintered body had a bending strength (MPa) in the atmosphere at room temperature (about 25 ° C.) and 1000 ° C., a fracture toughness at room temperature (MPa · m 1/2 ), and a relative density (%). ), And the electrical resistance (Ω · cm) at room temperature were measured. The values are shown together in Table 1. The bending strength is JIS-R1601.
The three-point bending strength and fracture toughness according to
SEPB method based on S-R1607, relative density was measured by Archimedes method, and electrical resistance was measured by four-terminal method. Further, when the crystal phase was examined by X-ray diffraction and Raman spectroscopic analysis, it was found that any of the sintered bodies was TiB 2 , ZrB 2 , NbB.
Any one of 2 , TaB 2 , MoB, CrB and β-type SiC
And confirmed the presence of graphite-type carbon.

【0020】[実施例2] 弗化水素酸で予め洗浄処理
した平均粒径0.5μmのβ型炭化珪素1.29Kg、
粒径5μm以下で中心粒径が2.1μmの硼化ジルコニ
ウム0.40Kg、カーボンブラック0.063Kgか
らなる混合物をボールミル混合により調整し、これを金
型成形することで成形体を作製した。該成形体を前記実
施例1と同様のアルゴン気流雰囲気の電気炉、又はアル
ゴン雰囲気下でのホットプレス炉、又はアルゴン圧力媒
体を用いたHIP装置によるカプセルHIP法により表
2に記した条件で焼結し、各焼結最高温度から50℃/
分の冷却速度で約300℃迄冷却し、その後は常温まで
炉内放冷することで緻密質の焼結体(本発明品13〜1
6)を作製した。得られた焼結体は、前記実施例1と同
様の方法で、常温(約25℃)及び1000℃での大気
中での曲げ強度、常温での破壊靭性、相対密度、及び常
温での電気抵抗を測定した。その値を表2に合わせて記
す。また結晶相をX線回折及びラマン分光分析で調べた
ところ、何れの焼結体もZrB2とβ型SiCとグラフ
ァイト型炭素の存在を確認した。
Example 2 1.29 kg of β-type silicon carbide having an average particle size of 0.5 μm, which had been preliminarily washed with hydrofluoric acid,
A mixture of 0.40 Kg of zirconium boride and 0.063 Kg of carbon black having a particle size of 5 μm or less and a central particle size of 2.1 μm was prepared by ball mill mixing, and this was die-molded to produce a molded body. The molded body was fired under the conditions shown in Table 2 by an electric furnace in the same argon stream atmosphere as in Example 1 above, a hot press furnace in an argon atmosphere, or a capsule HIP method using a HIP device using an argon pressure medium. Tied, 50 ℃ / from the maximum sintering temperature
It is cooled to about 300 ° C. at a cooling rate of 1 minute and then left to cool to room temperature in the furnace to obtain a dense sintered body (invention products 13 to 1).
6) was produced. The obtained sintered body was bent in the same manner as in Example 1 at room temperature (about 25 ° C.) and 1000 ° C. in air, the fracture toughness at room temperature, the relative density, and the electrical conductivity at room temperature. The resistance was measured. The values are shown in Table 2 together. When the crystal phase was examined by X-ray diffraction and Raman spectroscopic analysis, the presence of ZrB 2 , β-type SiC and graphite-type carbon was confirmed in all the sintered bodies.

【0021】[0021]

【表2】 [Table 2]

【0022】[実施例3] 前記実施例2で作製した本
発明品13なる焼結体を、HIP装置中にカプセル封入
せずに直接設置し、カプセルフリーHIP法によりアル
ゴン圧力媒体により1000気圧、1800℃で30分
HIP処理し、前記実施例1と同様の条件で冷却した。
得られた焼結体の実施例1と同様の方法で測定した各特
性値は、常温大気中での曲げ強度が、680MPa、1
000℃での大気中での曲げ強度は660MPa、相対
密度99%、常温での破壊靭性4.7MPa・m1/2
温での電気抵抗3.1×102Ω・cmであり、優れた
靭性と導電性を示した。またこの焼結体の結晶相をX線
回折及びラマン分光分析で調べたところ、ZrB2とβ
型SiCとグラファイト型炭素の存在を確認した。
[Example 3] The sintered body of the product 13 of the present invention produced in Example 2 was directly placed in a HIP device without encapsulation, and 1000 atm with an argon pressure medium by a capsule-free HIP method. HIP treatment was performed at 1800 ° C. for 30 minutes, and cooling was performed under the same conditions as in Example 1 above.
The respective characteristic values of the obtained sintered body measured by the same method as in Example 1 were as follows: bending strength in normal temperature air was 680 MPa, and 1
The bending strength in the atmosphere at 000 ° C was 660 MPa, the relative density was 99%, the fracture toughness at room temperature was 4.7 MPa · m 1/2 , the electric resistance at room temperature was 3.1 × 10 2 Ω · cm, which was excellent. It showed toughness and conductivity. The Examination of the crystal phase of the sintered body by X-ray diffraction and Raman spectroscopy, and ZrB 2 beta
The existence of type SiC and graphite type carbon was confirmed.

【0023】[比較例1] 弗化水素酸で予め洗浄処理
した平均粒径0.5μmのβ型炭化珪素3.08Kg、
粒径5μm以下で中心粒径が2.1μmの硼化ジルコニ
ウム0.24Kg、カーボンブラック0.06Kgから
なる混合物をボールミル混合により調整し、これを金型
成形することで成形体を作製した。該成形体を前記実施
例1と同様と同様の焼結及び冷却条件で焼結体を作製し
た。得られた焼結体の実施例1と同様の方法で測定した
各特性値は、常温大気中での曲げ強度420MPa、1
000℃での大気中での曲げ強度400MPa、相対密
度96%、常温での破壊靭性3.9MPa・m1/2、常温
での電気抵抗20000Ω・cmとなり、電気抵抗が高
く、導電性に乏しいものとなった。
[Comparative Example 1] 3.08 kg of β-type silicon carbide having an average particle size of 0.5 μm, which was previously washed with hydrofluoric acid,
A mixture of 0.24 Kg of zirconium boride and 0.06 Kg of carbon black having a particle size of 5 μm or less and a central particle size of 2.1 μm was prepared by ball mill mixing, and this was die-molded to prepare a molded body. A sintered body was produced from the molded body under the same sintering and cooling conditions as in Example 1. The respective characteristic values of the obtained sintered body measured by the same method as in Example 1 were as follows: bending strength of 420 MPa in normal temperature air, 1
Bending strength in atmospheric air at 000 ° C 400 MPa, relative density 96%, fracture toughness at room temperature 3.9 MPa · m 1/2, electrical resistance at room temperature 20000 Ω · cm, high electrical resistance, poor conductivity. It became a thing.

【0024】[比較例2] 弗化水素酸で予め洗浄処理
した平均粒径0.5μmのβ型炭化珪素2.56Kg、
粒径5μm以下で中心粒径が2.1μmの硼化ジルコニ
ウム1.21Kg、カーボンブラック0.004Kgか
らなる混合物をボールミル混合により調整し、これを金
型成形することで成形体を作製した。該成形体を前記実
施例1と同様と同様の焼結及び冷却条件で焼結体を作製
した。得られた焼結体の実施例1と同様の方法で測定し
た特性値は、常温大気中での曲げ強度210MPa、相
対密度91%となり、著しく緻密性に欠けるものとなっ
た。
[Comparative Example 2] 2.56 kg of β-type silicon carbide having an average particle size of 0.5 μm, which was previously washed with hydrofluoric acid,
A mixture of 1.21 kg of zirconium boride and 0.004 kg of carbon black having a particle diameter of 5 μm or less and a central particle diameter of 2.1 μm was prepared by ball mill mixing, and this was molded into a mold to prepare a molded body. A sintered body was produced from the molded body under the same sintering and cooling conditions as in Example 1. The characteristic values of the obtained sintered body, which were measured by the same method as in Example 1, were 210 MPa in bending strength in a normal temperature atmosphere and 91% in relative density, and were extremely poor in compactness.

【0025】[0025]

【発明の効果】本発明の導電性炭化珪素質複合材料は、
炭化珪素の靭性を大幅に向上させたものであり、高温で
も比較的優れた機械的性状を安定して示すことができ、
また良好な電気伝導性を有する。この電気伝導度は、本
発明の製法によって、金属材料よりも広い電気伝導度の
範囲から任意の電気伝導度を有するものを高精度で作製
することができる。このような特徴から、本発明の複合
材料は構造用部材としての活用の他に、比較的高熱とな
るような抵抗器、電気ヒューズ、温度センサーなどの機
能材としても十分活用できる可能性がある。
The conductive silicon carbide composite material of the present invention is
The toughness of silicon carbide is greatly improved, and it is possible to stably exhibit relatively excellent mechanical properties even at high temperatures.
It also has good electrical conductivity. This electric conductivity can be produced with high accuracy by the manufacturing method of the present invention, which has an arbitrary electric conductivity within a wider electric conductivity range than a metal material. Due to such characteristics, the composite material of the present invention may be sufficiently used not only as a structural member but also as a functional material such as a resistor, an electric fuse, and a temperature sensor that generate relatively high heat. .

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 炭化珪素60〜95体積%と、チタン、
ジルコニウム、ニオブ、タンタル、クロム、モリブデン
の硼化物の何れか1種以上を5〜40体積%含む混合粉
末100重量部に、炭素若しくは炭素を含む化合物を炭
素重量換算で0.5〜10重量部加えてなる混合物を焼
結したものであって、連続する炭化珪素基材相中に前記
硼化物相が分散し、且つ粒界相にグラファイト構造の炭
素が存在する焼結体であることを特徴とする導電性炭化
珪素質複合材料。
1. 60 to 95% by volume of silicon carbide and titanium,
0.5 to 10 parts by weight of carbon or a compound containing carbon in terms of carbon weight in 100 parts by weight of mixed powder containing 5 to 40% by volume of any one or more of borides of zirconium, niobium, tantalum, chromium and molybdenum. A sintered body obtained by sintering the mixture to be added, wherein the boride phase is dispersed in a continuous silicon carbide base phase, and carbon having a graphite structure is present in the grain boundary phase. And a conductive silicon carbide composite material.
【請求項2】 炭化珪素60〜95体積%と、チタン、
ジルコニウム、ニオブ、タンタル、クロム、モリブデン
の硼化物の何れか1種以上を5〜40体積%含む混合粉
末100重量部に、炭素若しくは炭素を含む化合物を炭
素重量換算で0.5〜10重量部加えてなる混合物を1
900〜2300℃で焼結し、これを該焼結温度から約
50℃/分以下の冷却速度で冷却したものであって、連
続する炭化珪素基材相中に前記硼化物相が分散し、且つ
粒界相にグラファイト構造の炭素が存在する焼結体であ
ることを特徴とする導電性炭化珪素質複合材料の製造方
法。
2. 60 to 95% by volume of silicon carbide and titanium,
0.5 to 10 parts by weight of carbon or a compound containing carbon in terms of carbon weight in 100 parts by weight of mixed powder containing 5 to 40% by volume of any one or more of borides of zirconium, niobium, tantalum, chromium and molybdenum. Add 1 mixture
What is obtained by sintering at 900 to 2300 ° C., and cooling it from the sintering temperature at a cooling rate of about 50 ° C./minute or less, wherein the boride phase is dispersed in a continuous silicon carbide base phase, A method for producing a conductive silicon carbide based composite material, which is a sintered body having graphite structure carbon in the grain boundary phase.
【請求項3】 焼結が加圧焼結であることを特徴とする
請求項2記載の導電性炭化珪素質複合材料の製造方法。
3. The method for producing a conductive silicon carbide based composite material according to claim 2, wherein the sintering is pressure sintering.
【請求項4】 請求項2又は3の何れかの製造方法で作
製した導電性炭化珪素質複合材料を、カプセル封入せず
に、不活性ガスを圧力媒体とし、圧力1000気圧以
上、温度1800〜2000℃でHIP処理することを
特徴とする導電性炭化珪素質複合材料の製造方法。
4. The conductive silicon carbide composite material produced by the method according to claim 2 or 3, without encapsulation, using an inert gas as a pressure medium, a pressure of 1000 atm or more, and a temperature of 1800 to 8000. A method for producing a conductive silicon carbide based composite material, which comprises performing HIP treatment at 2000 ° C.
JP8052311A 1996-02-15 1996-02-15 Conductive silicon carbide material composite material and its production Withdrawn JPH09221367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8052311A JPH09221367A (en) 1996-02-15 1996-02-15 Conductive silicon carbide material composite material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8052311A JPH09221367A (en) 1996-02-15 1996-02-15 Conductive silicon carbide material composite material and its production

Publications (1)

Publication Number Publication Date
JPH09221367A true JPH09221367A (en) 1997-08-26

Family

ID=12911246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8052311A Withdrawn JPH09221367A (en) 1996-02-15 1996-02-15 Conductive silicon carbide material composite material and its production

Country Status (1)

Country Link
JP (1) JPH09221367A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004060593A1 (en) * 2002-12-27 2004-07-22 National Institute Of Advanced Industrial Science And Technology Centrifugal sintering system
CN105523763A (en) * 2016-03-03 2016-04-27 刘佩佩 Silicon carbide-chromium boride composite ceramic material and preparation method thereof
CN105777135A (en) * 2016-03-03 2016-07-20 刘佩佩 Silicon carbide-molybdenum boride composite ceramic material and preparation method thereof
JP2017031036A (en) * 2015-08-06 2017-02-09 信越化学工業株式会社 SiC CRUCIBLE AND SiC SINTERED BODY, AND MANUFACTURING METHOD OF SiC SINGLE CRYSTALS
JP2019064226A (en) * 2017-10-04 2019-04-25 キヤノン株式会社 Molding method and powder material for molding
CN114933484A (en) * 2022-06-14 2022-08-23 武汉科技大学 Toughened SiC-based high-temperature ceramic composite material and preparation method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004060593A1 (en) * 2002-12-27 2004-07-22 National Institute Of Advanced Industrial Science And Technology Centrifugal sintering system
CN100389914C (en) * 2002-12-27 2008-05-28 独立行政法人产业技术综合研究所 Centrifugal sintering system
JP2017031036A (en) * 2015-08-06 2017-02-09 信越化学工業株式会社 SiC CRUCIBLE AND SiC SINTERED BODY, AND MANUFACTURING METHOD OF SiC SINGLE CRYSTALS
US11440849B2 (en) 2015-08-06 2022-09-13 Shin-Etsu Chemical Co., Ltd. SiC crucible, SiC sintered body, and method of producing SiC single crystal
CN105523763A (en) * 2016-03-03 2016-04-27 刘佩佩 Silicon carbide-chromium boride composite ceramic material and preparation method thereof
CN105777135A (en) * 2016-03-03 2016-07-20 刘佩佩 Silicon carbide-molybdenum boride composite ceramic material and preparation method thereof
JP2019064226A (en) * 2017-10-04 2019-04-25 キヤノン株式会社 Molding method and powder material for molding
CN114933484A (en) * 2022-06-14 2022-08-23 武汉科技大学 Toughened SiC-based high-temperature ceramic composite material and preparation method thereof
CN114933484B (en) * 2022-06-14 2023-08-18 武汉科技大学 Toughened SiC-based high-temperature ceramic composite material and preparation method thereof

Similar Documents

Publication Publication Date Title
JPS6228109B2 (en)
JPS63185864A (en) Composite ceramics and manufacture
JPH01301508A (en) Production of silicon carbide material and raw material composition therefor
US5773733A (en) Alumina-aluminum nitride-nickel composites
JP3607939B2 (en) Reaction synthesis of silicon carbide-boron nitride composites
JP2535768B2 (en) High heat resistant composite material
JPH09221367A (en) Conductive silicon carbide material composite material and its production
JPH02239156A (en) Metal diboride-based sintered body and production thereof
CN111732436A (en) Easy-to-sinter titanium and tungsten co-doped zirconium carbide powder and preparation method thereof
JP2711875B2 (en) Method for producing composite material and raw material composition
JP3023435B2 (en) High purity silicon carbide sintered body and method for producing the same
JP3570676B2 (en) Porous ceramic body and method for producing the same
JP2008297188A (en) Method of manufacturing tungsten-addition zirconium boride
JPS6144768A (en) High strength boride sintered body
JP3543105B2 (en) Highly processable composite material for high temperature and method for producing the same
JP3414835B2 (en) Metal particle-dispersed aluminum oxide-based sintered body and method for producing the same
JPH09100167A (en) Ceramic nano composite crystalline substance
JPH082961A (en) Sintered compact of metal particle-dispersed aluminum oxide base and its production
JPH10167807A (en) Mgo-base composite ceramics and its production
JP2006076858A (en) Compound ceramic
JPS6126570A (en) Boride sintered body and manufacture
JPH09157031A (en) Silicon nitride ceramic and its production
JPH05286765A (en) Silicon carbide-based composite material and its production
JPH09249456A (en) Boride complex ceramic and its production
JPH1050462A (en) Resistant heater and manufacture thereof

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20041202