JPH082961A - Sintered compact of metal particle-dispersed aluminum oxide base and its production - Google Patents

Sintered compact of metal particle-dispersed aluminum oxide base and its production

Info

Publication number
JPH082961A
JPH082961A JP6155475A JP15547594A JPH082961A JP H082961 A JPH082961 A JP H082961A JP 6155475 A JP6155475 A JP 6155475A JP 15547594 A JP15547594 A JP 15547594A JP H082961 A JPH082961 A JP H082961A
Authority
JP
Japan
Prior art keywords
aluminum oxide
dispersed
metal
sintered compact
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6155475A
Other languages
Japanese (ja)
Inventor
Tetsuo Nose
哲郎 野瀬
Jiro Kondo
次郎 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6155475A priority Critical patent/JPH082961A/en
Publication of JPH082961A publication Critical patent/JPH082961A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a sintered comapact of metal particle-dispersed aluminum oxide base having high mechanical strength and toughness at a high temperature and to provide a method for producing the sintered compact. CONSTITUTION:This sintered compact of metal particle-dispersed aluminum oxide base comprises a matrix phase substantially composed of aluminum oxide and 0.5-40wt.% of metal niobium particles having 0.05-30mum average particle diameter are dispersed in the matrix phase. The sintered compact is produced by molding mixed powder comprising 0.5-40wt.% of metal niobium powder having 0.05-30mum average particle diameter and the rest substantially composed of aluminum oxide powder and sintering the molded article in vacuum or a hydrogen gas atmosphere at 1,300-1,700 deg.C. Consequently, the sintered compact showing texture of metal niobium particles having high toughness, a low modulus of elasticity and a high melting point dispersed into the parent phase substantially constituted of aluminum oxide is obtained and has >=600MPa traverse strength at room temperature and >=550MPa at 1,200 deg.C and 26MPam<1/2> high toughness and high reliability as a structural material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高温における機械的強
度および靭性の優れた金属粒子分散酸化アルミニウム基
焼結体に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a metal particle-dispersed aluminum oxide-based sintered body having excellent mechanical strength and toughness at high temperatures.

【0002】[0002]

【従来の技術】酸化アルミニウムは、その化学的安定
性、耐摩耗性、高剛性等の優れた性質から、代表的なセ
ラミックスとして広く利用されている。
2. Description of the Related Art Aluminum oxide is widely used as a representative ceramic because of its excellent properties such as chemical stability, wear resistance and high rigidity.

【0003】しかし、靭性が低いため脆く、機械構造用
部材として利用するには信頼性に欠ける場合があった。
However, since it has a low toughness, it is brittle, and in some cases, it is unreliable for use as a member for mechanical structures.

【0004】この低靭性を克服する目的で炭化チタン等
の各種遷移金属炭窒硼化物粒子の添加が試みられてお
り、靭性の向上等が認められている。
For the purpose of overcoming this low toughness, addition of various transition metal carbonitride boride particles such as titanium carbide has been attempted, and improvement in toughness has been recognized.

【0005】また、タングステン、モリブデン等の高融
点金属粒子を添加した材料系においても強度・靭性の向
上が認められている。
Further, improvement in strength and toughness is also recognized in a material system in which refractory metal particles such as tungsten and molybdenum are added.

【0006】しかし、これら粒子分散材料においては、
機械構造部材として利用するに当たって十分な信頼性が
得られる程には高い靭性が得られていない、また分散粒
子が高価等の問題点があった。
However, in these particle dispersion materials,
When used as a mechanical structural member, there was a problem in that high toughness was not obtained to obtain sufficient reliability and dispersed particles were expensive.

【0007】[0007]

【発明が解決しようとする課題】本発明は上記の如き課
題を解決するために行われたものである。本発明の目的
は、高温における高い機械的強度及び高い靭性を有する
金属粒子分散酸化アルミニウム基焼結体及びその製造方
法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems. An object of the present invention is to provide a metal particle-dispersed aluminum oxide-based sintered body having high mechanical strength and high toughness at high temperatures, and a method for producing the same.

【0008】[0008]

【課題を解決するための手段】本発明の金属粒子分散酸
化アルミニウム基焼結体は、実質的に酸化アルミニウム
がマトリックス相であり、該マトリックス相中に、平均
粒径0.05〜30μmの金属ニオブ粒子が0.5〜4
0重量%の範囲で分散していることを特徴とするもので
ある。
The metal particle-dispersed aluminum oxide-based sintered body of the present invention comprises substantially aluminum oxide as a matrix phase, and a metal having an average particle diameter of 0.05 to 30 μm in the matrix phase. Niobium particles are 0.5-4
It is characterized by being dispersed in the range of 0% by weight.

【0009】本発明の焼結体の母相は実質的に酸化アル
ミニウムからなるものであるが、酸化アルミニウムの焼
結助剤としての酸化マグネシウム、酸化ジルコニウム、
酸化カルシウム、酸化珪素等の酸化物をその助剤として
の必要量含んでいてもかまわない。
The mother phase of the sintered body of the present invention consists essentially of aluminum oxide. Magnesium oxide, zirconium oxide, or aluminum oxide as a sintering aid for aluminum oxide,
An oxide such as calcium oxide or silicon oxide may be contained in a necessary amount as its auxiliary agent.

【0010】酸化マグネシウム、酸化ジルコニウムは焼
結過程で酸化アルミニウムの異常粒成長を抑制する効果
を持ち、酸化カルシウム、酸化珪素は焼結過程にて粒界
に液相を形成し、酸化アルミニウムの焼結温度を下げる
働きがある。
Magnesium oxide and zirconium oxide have the effect of suppressing the abnormal grain growth of aluminum oxide during the sintering process, and calcium oxide and silicon oxide form a liquid phase at the grain boundaries during the sintering process and burn the aluminum oxide. It has the function of lowering the freezing temperature.

【0011】それぞれの焼結助剤の添加量としては、酸
化アルミニウムの優れた耐食性を損なわないために合計
で5重量%以下、望ましくは1重量%以下であることが
望ましい。
The addition amount of each sintering aid is preferably 5% by weight or less, and more preferably 1% by weight or less, in order not to impair the excellent corrosion resistance of aluminum oxide.

【0012】本発明の分散粒子に用いる金属ニオブは、
酸化アルミニウムに比べて著しく高靭性であり、かつヤ
ング率が室温で100GPaと他の代表的な高融点金属
である金属タングステンの400GPa、金属モリブデ
ンの330GPaと比べて低く、酸化アルミニウムの3
90GPaと比べて約1/4と小さいため、金属ニオブ
を酸化アルミニウム中の分散粒子として用いる場合、分
散粒子を含まない場合と比べて破壊の際の破壊エネルギ
ーが向上し、靭性を向上させる作用をもつ。
The niobium metal used in the dispersed particles of the present invention is
It has significantly higher toughness than aluminum oxide, and has a Young's modulus of 100 GPa at room temperature, which is lower than 400 GPa of other typical refractory metals such as metal tungsten of 400 GPa and metal molybdenum of 330 GPa.
Since it is as small as about 1/4 compared to 90 GPa, when metal niobium is used as dispersed particles in aluminum oxide, the fracture energy at the time of fracture is improved and the toughness is improved as compared with the case where dispersed particles are not contained. Hold.

【0013】また、金属ニオブの融点は2520℃と酸
化アルミニウムの融点2053℃より高く、酸化アルミ
ニウムの焼結時に融化することがないため容易に高密度
の焼結体を得ることができ、かつ得られる焼結体の高温
強度特性も、酸化アルミニウム結晶粒中の高融点金属ニ
オブ粒子が転位の移動を抑制するとともに酸化アルミニ
ウム結晶粒界に金属ニオブが存在する場合は酸化アルミ
ニウム結晶粒の粒界すべりを抑制することが期待される
ため、室温強度に比べて大きく劣化することはない。従
って、高い高温強度と靭性を兼ね備えた焼結体を得るこ
とができる。
Further, the melting point of niobium metal is 2520 ° C., which is higher than the melting point of 2053 ° C. of aluminum oxide, and since it does not melt during sintering of aluminum oxide, a high-density sintered body can be easily obtained and obtained. The high-temperature strength characteristics of the sintered body are also such that the refractory metal niobium particles in the aluminum oxide crystal grains suppress the movement of dislocations, and when the metal niobium exists in the aluminum oxide crystal grain boundaries, the grain boundary slip of the aluminum oxide crystal grains occurs. Is expected to be suppressed, so that it does not significantly deteriorate as compared with room temperature strength. Therefore, a sintered body having both high temperature strength and toughness can be obtained.

【0014】本願発明における分散金属ニオブ粒子の平
均粒径としては0.05〜30μmであるが、粒径が
0.05μm未満の場合は靭性の向上に寄与が小さく、
また30μmを超える場合は得られる焼結体の強度が著
しく劣化する。
The average particle size of the dispersed metal niobium particles in the present invention is 0.05 to 30 μm, but if the particle size is less than 0.05 μm, the contribution to the improvement of toughness is small,
On the other hand, if it exceeds 30 μm, the strength of the obtained sintered body is significantly deteriorated.

【0015】高い強度と靭性を両立するためには0.0
5〜10μmの範囲の粒径の金属ニオブ粒子を用いるこ
とがさらに望ましい。
To achieve both high strength and toughness, 0.0
It is more desirable to use metal niobium particles having a particle size in the range of 5 to 10 μm.

【0016】また、本発明の焼結体には分散金属粒子が
0.5〜40重量%含まれるが、0.5重量%未満では
強度・靭性の向上に十分な寄与が認められず、40重量
%を超えると十分緻密な焼結体が得られない。
Further, the sintered body of the present invention contains dispersed metal particles in an amount of 0.5 to 40% by weight, but if it is less than 0.5% by weight, sufficient contribution to the improvement of strength and toughness is not recognized, and If the amount exceeds 5% by weight, a sufficiently dense sintered body cannot be obtained.

【0017】本発明の金属粒子分散酸化アルミニウム基
焼結体の製造方法としては、平均粒径0.05〜30μ
mの金属ニオブ粉末0.5〜40重量%及び残部が実質
的に酸化アルミニウム粉末からなる混合粉末を成形し、
真空中もしくは水素ガス雰囲気中にて1300〜170
0℃の温度範囲にて焼結することを特徴とするものであ
る。
The method for producing the aluminum oxide-based sintered body in which the metal particles are dispersed according to the present invention includes an average particle diameter of 0.05 to 30 μm.
a mixed powder of 0.5 to 40% by weight of niobium metal of m and the balance substantially consisting of aluminum oxide powder,
1300 to 170 in vacuum or hydrogen gas atmosphere
It is characterized in that it is sintered in a temperature range of 0 ° C.

【0018】本発明において使用される金属ニオブ粉末
としては、アトマイズ法、回転電極法、プラズマ法等に
よって所望の平均粒径0.05〜30μmの粉末として
得たものを用いることができる。
The metal niobium powder used in the present invention may be a powder obtained by an atomizing method, a rotating electrode method, a plasma method or the like as a powder having a desired average particle diameter of 0.05 to 30 μm.

【0019】1μm以下の微粒子を得るためにはプラズ
マ法を用いることが特に好ましい。粉末の形状としては
焼結時の緻密化の容易さから球状が好ましいが、針状等
の不規則形状であってもかまわない。
In order to obtain fine particles of 1 μm or less, it is particularly preferable to use the plasma method. The shape of the powder is preferably spherical because it is easily densified during sintering, but it may be irregular such as needle-like.

【0020】本発明において使用される酸化アルミニウ
ム粉末としては、焼結性の点からα型の結晶構造をもつ
粉末で、純度99.5%以上、平均粒径1μm以下の微
粒子であることが望ましい。
The aluminum oxide powder used in the present invention is preferably a powder having an α-type crystal structure from the viewpoint of sinterability, and is fine particles having a purity of 99.5% or more and an average particle diameter of 1 μm or less. .

【0021】純度99.5%未満、粒径1μm超の場
合、焼結時に十分に高い嵩密度とすることができない。
If the purity is less than 99.5% and the particle size exceeds 1 μm, a sufficiently high bulk density cannot be obtained during sintering.

【0022】酸化アルミニウムの焼結助剤は、酸化アル
ミニウム粉末が微細でかつ高純度な場合、必ずしも用い
る必要はないが、酸化マグネシウム、酸化ジルコニウ
ム、酸化カルシウム、酸化珪素等を合計で5重量%以下
添加してもかまわない。
The aluminum oxide sintering aid is not necessarily used when the aluminum oxide powder is fine and of high purity, but magnesium oxide, zirconium oxide, calcium oxide, silicon oxide and the like are not more than 5% by weight in total. You may add it.

【0023】5重量%を超えると酸化アルミニウムの優
れた耐食性を損なう。望ましくは1重量%以下の添加が
好ましい。
If it exceeds 5% by weight, the excellent corrosion resistance of aluminum oxide is impaired. Desirably, addition of 1% by weight or less is preferable.

【0024】焼結助剤としてこれらの酸化物粉末を用い
る場合、均質かつ高密度の焼結体を得るためには平均粒
径が1μm以下の微粒子であることが好ましい。
When these oxide powders are used as the sintering aid, fine particles having an average particle diameter of 1 μm or less are preferable in order to obtain a homogeneous and high density sintered body.

【0025】本発明方法においては、これらの各成分の
混合は、精製水、アセトンもしくはエタノール等の溶媒
を用い、酸化アルミニウム製、ナイロン製等のポット及
びボールを用いた遊星型ボールミル、アトライタ等の混
合機にて、金属ニオブ粒子が酸化アルミニウム粉末中に
均一に分散するように十分混合する。
In the method of the present invention, these components are mixed using purified water, a solvent such as acetone or ethanol, and a planetary ball mill using an aluminum oxide or nylon pot and balls, an attritor, or the like. In a mixer, the niobium metal particles are sufficiently mixed so as to be uniformly dispersed in the aluminum oxide powder.

【0026】このように調整された混合粉末を加圧成形
し所定の形状の成形体とする。成形法としては、公知の
成形法により行ない、プレス成形法、鋳込み成形法、射
出成形法等を用いることができる。
The mixed powder thus prepared is pressure-molded to obtain a molded product having a predetermined shape. As a molding method, a known molding method can be used, and a press molding method, a casting molding method, an injection molding method, or the like can be used.

【0027】この成形体を真空中もしくは水素ガス雰囲
気中にて1300〜1700℃で加熱焼結し、焼結体を
得る。
The compact is heated and sintered at 1300 to 1700 ° C. in a vacuum or hydrogen gas atmosphere to obtain a sintered compact.

【0028】焼結方法としては、無加圧焼結法もしくは
ホットプレス法を用いることが可能である。1700℃
超で焼結すると酸化アルミニウム結晶粒の異常粒成長が
生じ、焼結体の強度が著しく劣化するため、1700℃
以下での焼結が好ましく、一方1300℃未満では十分
高い嵩密度の焼結体が得られない。
As a sintering method, a pressureless sintering method or a hot pressing method can be used. 1700 ° C
If sintered above 1700 ° C, abnormal grain growth of aluminum oxide crystal grains will occur and the strength of the sintered body will deteriorate significantly.
Sintering below is preferable, while if it is less than 1300 ° C., a sintered body having a sufficiently high bulk density cannot be obtained.

【0029】また、焼結の際には十分高い嵩密度とする
ために、焼結温度にて1時間以上保持することが好まし
い。
In order to obtain a sufficiently high bulk density at the time of sintering, it is preferable to hold at the sintering temperature for 1 hour or more.

【0030】複雑形状の焼結体を安価に製造するには無
加圧焼結法を用いることが好ましい。
In order to inexpensively manufacture a sintered body having a complicated shape, it is preferable to use the pressureless sintering method.

【0031】また、焼結は、真空中、水素ガス雰囲気中
にて行う。真空中、水素ガス中で焼結する理由は、焼結
過程中での分散金属ニオブ粒子の酸化を抑制し、かつ高
い嵩密度の焼結体を得るためである。
Sintering is carried out in a hydrogen gas atmosphere in vacuum. The reason for sintering in a hydrogen gas in a vacuum is to suppress the oxidation of dispersed metal niobium particles during the sintering process and to obtain a sintered body having a high bulk density.

【0032】真空中で焼結する場合は、真空度10-2
orr以上の高真空、水素ガス雰囲気中にて焼結する場
合は、純度99%以上のガスを用いることが望ましい。
When sintering in vacuum, the degree of vacuum is 10 -2 t.
When sintering is performed in a high vacuum of orr or higher in a hydrogen gas atmosphere, it is desirable to use a gas having a purity of 99% or higher.

【0033】10-2torrより低真空、純度99%未
満の低純度水素ガスを用いた場合は、高い嵩密度が得ら
れず、十分な強度・靭性が得られない。
When a low-purity hydrogen gas having a vacuum of less than 10 -2 torr and a purity of less than 99% is used, high bulk density cannot be obtained and sufficient strength and toughness cannot be obtained.

【0034】特に高い嵩密度を有する焼結体が必要な場
合は、1次焼結として真空中あるいは水素ガス雰囲気中
にて開気孔の無くなる相対密度95%以上に緻密化した
のち、2次焼結としてアルゴンガスあるいは窒素ガス雰
囲気下でガス圧焼結、もしくは熱間静水圧プレス焼結を
行ってもかまわない。
When a sintered body having a particularly high bulk density is required, as a primary sintering, it is densified to a relative density of 95% or more which eliminates open pores in a vacuum or a hydrogen gas atmosphere, and then secondary firing. As a result, gas pressure sintering or hot isostatic pressing sintering may be performed in an atmosphere of argon gas or nitrogen gas.

【0035】[0035]

【作用】本発明の金属粒子分散酸化アルミニウム基焼結
体には、高靭性、低弾性率、かつ高融点を有する金属ニ
オブ粒子が含まれ、実質的に酸化アルミニウムからなる
焼結体中に該金属粒子が分散している組織を呈し、抗折
強さが室温にて600MPa以上、1200℃にて55
0MPa以上の高強度、靭性が6MPam1/2以上の高
靭性を有し、構造材料としての信頼性が高い。
The metal particle-dispersed aluminum oxide-based sintered body of the present invention contains metal niobium particles having high toughness, a low elastic modulus, and a high melting point, and is contained in a sintered body substantially made of aluminum oxide. It exhibits a structure in which metal particles are dispersed, and the bending strength is 600 MPa or more at room temperature and 55 at 1200 ° C.
It has a high strength of 0 MPa or more and a toughness of 6 MPam 1/2 or more, and is highly reliable as a structural material.

【0036】次に本発明の実施例を比較例と共に説明す
る。
Next, examples of the present invention will be described together with comparative examples.

【0037】[0037]

【実施例】酸化アルミニウム(Al23)粉末(α―A
23、純度99.9%、平均粒径0.3μm)に、各
種方法により作製された金属ニオブ粉末(平均粒径0.
03〜40μmの範囲)、酸化マグネシウム(MgO)
粉末(平均粒径0.05μm)を第1表に示す所定量
(重量%)添加し、溶媒として精製水を用いて酸化アル
ミニウム製ボールミルで24時間混練した。
EXAMPLE Aluminum oxide (Al 2 O 3 ) powder (α-A
L 2 O 3 , purity 99.9%, average particle size 0.3 μm), and metal niobium powder (average particle size 0.
03-40 μm), magnesium oxide (MgO)
The powder (average particle size: 0.05 μm) was added in a predetermined amount (% by weight) shown in Table 1, and the mixture was kneaded for 24 hours in a ball mill made of aluminum oxide using purified water as a solvent.

【0038】次いで得られた混合粉末を乾燥、成形後焼
結した。成形条件としては金型1軸成形圧100MP
a、冷間静水圧による加圧150MPaとし、60mm
×60mm×10mmの板状体を得た。
Next, the obtained mixed powder was dried, molded and sintered. Molding conditions include uniaxial mold pressure of 100MP
a, pressure of 150 MPa by cold hydrostatic pressure, 60 mm
A plate-like body of x60 mm x 10 mm was obtained.

【0039】焼結としては、第1表中に示す焼結方法、
温度、保持時間、雰囲気にて行った。
As the sintering, the sintering method shown in Table 1,
The temperature, holding time, and atmosphere were used.

【0040】ホットプレス焼結法を用いた場合は、カー
ボンダイス中にて圧力30MPaの条件で、90mm×
60mm×10mmの焼結体を得た。
When the hot press sintering method is used, the pressure is 30 MPa and the pressure is 90 mm × in a carbon die.
A 60 mm × 10 mm sintered body was obtained.

【0041】真空中で焼結した場合は真空度10-5to
rr、また水素ガス雰囲気中で焼結した場合は純度9
9.9%のガスを用いた。
When sintered in vacuum, the degree of vacuum is 10 −5 to
rr, purity 9 when sintered in hydrogen gas atmosphere
A gas of 9.9% was used.

【0042】本発明により得られた各焼結体の特性を金
属ニオブ粒子の添加量、焼結助剤の添加量、焼結条件と
共に第1表に示す。
The characteristics of each sintered body obtained according to the present invention are shown in Table 1 together with the amount of metallic niobium particles added, the amount of sintering aid added, and the sintering conditions.

【0043】比較例として、TiC,Wを分散粒子とし
て用いた例、窒素ガス雰囲気下にて焼結した例を併せて
第1表に示す。
Table 1 shows, as comparative examples, an example using TiC and W as dispersed particles and an example sintering in a nitrogen gas atmosphere.

【0044】密度としてはアルキメデス法にて相対密度
を測定した。機械的強度については、JIS R160
1に準拠し室温4点曲げ試験を、JIS R1604に
準拠し1200℃高温大気中4点曲げ試験を行い坑折強
さとして測定した。
As the density, the relative density was measured by the Archimedes method. Regarding mechanical strength, JIS R160
In accordance with JIS No. 1, a room temperature four-point bending test was carried out, and in accordance with JIS R1604, a four-point bending test was carried out at 1200 ° C. in a high temperature atmosphere, and the bending strength was measured.

【0045】靭性についてはJIS R1607のSE
PB法により室温にて破壊靭性値KICを測定した。
Regarding toughness, SE of JIS R1607
The fracture toughness value K IC was measured at room temperature by the PB method.

【0046】第1表に示すように、本発明の実施例によ
るものは、いずれの試料においても、室温強度600M
Pa以上、1200℃強度550MPa以上の高い坑折
強さ、6.0MPam1/2以上の高靭性といずれも優れ
るが、比較例に該当する試料では本発明の実施例と比べ
て特に靭性が劣ることが確認された。
As shown in Table 1, in any of the samples according to the present invention, the room temperature strength is 600M.
It is excellent in all of Pa or higher, 1200 ° C. strength, high 550 MPa or higher fold strength, and 6.0 MPam 1/2 or higher toughness, but the samples corresponding to Comparative Examples are particularly inferior in toughness as compared with the Examples of the present invention. It was confirmed.

【0047】[0047]

【表1】 [Table 1]

【0048】[0048]

【発明の効果】本発明によれば、上記の如く金属粒子分
散酸化アルミニウム基焼結体において、高温にて高い機
械的強度と靭性を併せ持った信頼性の非常に優れた焼結
体の製造が可能となり、その工業的有用性は非常に大き
い。
EFFECTS OF THE INVENTION According to the present invention, in the metal particle-dispersed aluminum oxide-based sintered body as described above, it is possible to produce a highly reliable sintered body having both high mechanical strength and toughness at high temperature. It becomes possible and its industrial utility is very large.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 実質的に酸化アルミニウムがマトリック
ス相であり、該マトリックス相中に平均粒径0.05〜
30μmの金属ニオブ粒子が0.5〜40重量%の範囲
で分散していることを特徴とする金属粒子分散酸化アル
ミニウム基焼結体。
1. An aluminum oxide is substantially a matrix phase, and the matrix phase has an average particle size of 0.05 to 0.05.
A metal particle-dispersed aluminum oxide-based sintered body, wherein 30 μm of metal niobium particles are dispersed in a range of 0.5 to 40% by weight.
【請求項2】 平均粒径0.05〜30μmの金属ニオ
ブ粉末0.5〜40重量%及び残部が実質的に酸化アル
ミニウム粉末からなる混合粉末を成形し、真空中もしく
は水素ガス雰囲気中にて1300〜1700℃の温度範
囲にて焼結することを特徴とする金属粒子分散酸化アル
ミニウム基焼結体の製造方法。
2. A mixed powder comprising 0.5 to 40% by weight of niobium metal powder having an average particle size of 0.05 to 30 μm and the balance substantially consisting of aluminum oxide powder is molded, and the mixture is vacuumed or in a hydrogen gas atmosphere. A method for producing a metal particle-dispersed aluminum oxide-based sintered body, which comprises sintering in a temperature range of 1300 to 1700 ° C.
JP6155475A 1994-06-15 1994-06-15 Sintered compact of metal particle-dispersed aluminum oxide base and its production Pending JPH082961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6155475A JPH082961A (en) 1994-06-15 1994-06-15 Sintered compact of metal particle-dispersed aluminum oxide base and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6155475A JPH082961A (en) 1994-06-15 1994-06-15 Sintered compact of metal particle-dispersed aluminum oxide base and its production

Publications (1)

Publication Number Publication Date
JPH082961A true JPH082961A (en) 1996-01-09

Family

ID=15606867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6155475A Pending JPH082961A (en) 1994-06-15 1994-06-15 Sintered compact of metal particle-dispersed aluminum oxide base and its production

Country Status (1)

Country Link
JP (1) JPH082961A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010261106A (en) * 2010-06-11 2010-11-18 Showa Denko Kk Production method of niobium sintered body for capacitor
JP2010265549A (en) * 2010-06-11 2010-11-25 Showa Denko Kk Niobium powder for capacitor
JP2019011247A (en) * 2016-01-12 2019-01-24 住友大阪セメント株式会社 Manufacturing method of electrostatic chuck device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010261106A (en) * 2010-06-11 2010-11-18 Showa Denko Kk Production method of niobium sintered body for capacitor
JP2010265549A (en) * 2010-06-11 2010-11-25 Showa Denko Kk Niobium powder for capacitor
JP2019011247A (en) * 2016-01-12 2019-01-24 住友大阪セメント株式会社 Manufacturing method of electrostatic chuck device
US11107719B2 (en) 2016-01-12 2021-08-31 Sumitomo Osaka Cement Co., Ltd. Electrostatic chuck device and method for manufacturing electrostatic chuck device

Similar Documents

Publication Publication Date Title
JP2524201B2 (en) Silicon nitride sintered body and method for manufacturing the same
JP2829229B2 (en) Silicon nitride ceramic sintered body
JPH082961A (en) Sintered compact of metal particle-dispersed aluminum oxide base and its production
JP3414835B2 (en) Metal particle-dispersed aluminum oxide-based sintered body and method for producing the same
JP3426823B2 (en) Silicon nitride sintered body and method for producing the same
JP3290685B2 (en) Silicon nitride based sintered body
JPH0259471A (en) Silicon nitride-based sintered body having high strength at high temperature and production thereof
JPH05279121A (en) Sintered compact of tungsten carbide-alumina and its production
JPH04270173A (en) Sintered sic
JPS63218584A (en) Ceramic sintered body
JP2746761B2 (en) Method for producing silicon nitride-silicon carbide composite sintered body
JP3414834B2 (en) Metal particle-dispersed aluminum oxide-based sintered body and method for producing the same
JP2534213B2 (en) Method for producing silicon nitride based sintered body
JPH01145380A (en) Production of silicon nitride sintered form
JPH05139840A (en) Siliceous nitride sintered compact and its production
JP3241215B2 (en) Method for producing silicon nitride based sintered body
JP2534214B2 (en) Silicon nitride sintered body and method for manufacturing the same
JP2947718B2 (en) Method for producing silicon nitride based sintered body
JP2890849B2 (en) Method for producing silicon nitride sintered body
JPH03164472A (en) Production of silicon nitride sintered body
JP3207065B2 (en) Silicon nitride sintered body
JPH07267734A (en) Particle dispersed silicon nitride sintered compact and its production
JPH0952768A (en) Silicon carbide based sintered compact and production therefore
JPH10167833A (en) Boride ceramics and its production
JPH07138064A (en) Production of high-strength alumina sintered compact

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040302