JP3738784B2 - Method for producing interface control ceramics - Google Patents

Method for producing interface control ceramics Download PDF

Info

Publication number
JP3738784B2
JP3738784B2 JP16028595A JP16028595A JP3738784B2 JP 3738784 B2 JP3738784 B2 JP 3738784B2 JP 16028595 A JP16028595 A JP 16028595A JP 16028595 A JP16028595 A JP 16028595A JP 3738784 B2 JP3738784 B2 JP 3738784B2
Authority
JP
Japan
Prior art keywords
ceramic
interface
raw material
coating
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16028595A
Other languages
Japanese (ja)
Other versions
JPH0912373A (en
Inventor
薫 宮原
伸雄 二宮
正 佐々
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP16028595A priority Critical patent/JP3738784B2/en
Publication of JPH0912373A publication Critical patent/JPH0912373A/en
Application granted granted Critical
Publication of JP3738784B2 publication Critical patent/JP3738784B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は強度が大きく靱性の高いセラミックスの製造方法に関する。
【0002】
【従来の技術】
高温ガスタービン、ロケットをはじめエネルギ関連の機器の分野で高温に曝される部分の材料としてセラミックスが採用される。しかしセラミックスは一般に靱性が低く割れやすいので、靱性を高め、かつ強度を大きくするために結晶粒界面の特性を制御することが必要で、こうした界面に異種粒子を分散させる等の手法が用いられる。従来はかかる界面制御のための添加物を原料粉体に焼結助剤といった他の成分と同時に混合している。
【0003】
【発明が解決しようとする課題】
しかし原料粉体に焼結助剤と共に界面制御のための添加成分を混合した場合、焼成時にそれらの間での反応が起ったり、物質移動が起ったりして、界面制御のための添加成分を目的とする界面部分に配置することができないので、界面の特性を十分制御することができず、セラミックスの性能向上は限られたものにならざるを得ない。
【0004】
本発明は上記問題点に鑑み案出されたもので、界面制御のための添加物をセラミックスの結晶の界面に局在化させることにより確実に界面制御を行い靱性が高く強度の大きいセラミックスを製造することを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するため本発明の界面制御セラミックスの製造方法は、核となるセラミック粒子の表面に焼結助剤を被覆する工程と、焼結助剤を被覆した表面に核となるセラミック粒子と同材質のセラミック原料を被覆する工程と、さらにその表面に界面制御のためのセラミック粒子を付着させ、または界面制御のためのセラミック原料を被覆する工程と、これを成形後焼結する工程とからなる。
【0006】
セラミックスを焼結した後固溶または析出のための熱処理を行うのが好ましい。セラミックスの材質としては窒化けい素または炭化けい素を採用してもよい。焼結助剤、核となるセラミックスと同材質のセラミックス、および界面制御のためのセラミック原料を被覆する工程はCVD等の気相反応、ゾルゲル法またはセラミック前駆体樹脂等の液相原料を含浸する方法を採用してもよい。また界面制御のためのセラミック粒子を付着させる工程は固体粉末の凝集を利用してもよい。
【0007】
以下本発明の製造方法について図面を参照しつつ詳細に説明する。図1は本発明の各工程を示す説明図である。
【0008】
図1(A)に示すように核となるセラミック粒子1の表面に焼結助剤2の被覆を行う。核となる耐熱性のセラミックスとしては炭化けい素や窒化けい素が対象となり粒子、ウイスカ等の短繊維を核として用いる。それらの表面に焼結助剤となるセラミックスを被覆するが、核となるセラミックスが窒化けい素の場合にはアルミナ、イットリアをはじめとする酸化物系セラミックスを用い、核となるセラミックスが炭化けい素の場合にはアルミナ、イットリア、ボロン、炭素、アルミニウム等を用いる。被覆する方法としてはCVD等の気相反応を用いてもよいし、ゾルゲル法のように液相反応を利用してもよい。
【0009】
次に図1(B)を示すように原料粒子相3を焼結助剤2の表面に成形する。原料粒子相3とは核1と同材質のセラミックスである。原料粒子相3を形成する方法としては、ポリカルボシランやポリシラザンのような炭化けい素、窒化けい素の前駆体樹脂の溶液中に図1(A)の工程で製造した核1に焼結助剤2を被覆した粒子を分散させ、これを乾燥、焼成する方法がある。
【0010】
原料粒子相3を形成する方法は上記以外の方法でもよく、例えば図1(A)の工程で製造した核となる粒子1に焼成助剤2を被覆した粒子と原料粉粒子を溶液中に分散させた後PHを制御する等の方法で、被覆した粒子の表面電荷をコントロールし、被覆粒子の表面に原料粉粒子を凝集させてもよいし、乾燥時に凝集させてもよい。
【0011】
次に図1(C)で示すように原料粒子3の表面に界面制御のための添加成分を付着させるかまたは被覆する。添加成分が粉体である場合には原料粒子3の表面に付着させるが、その方法は上記(B)の工程と同様凝集を利用するのがよい。あるいはCVD等の気相反応によって行ってもよいし、ゾルゲル法などの液相反応や前駆体樹脂を利用してもよい。
【0012】
次に図1(D)に示すように成形を行う。工程(D)で得られた粉体を溶液中に投入して混合した塑性物を通常の方法、例えば押出し成形、CIP等を適用して成形する。
【0013】
次に図1(E)で示すように(D)の工程で得られた成形体の焼結を行う。材料に応じて通常用いられる焼結方法を適用する。例えば常圧焼結でもよいし、ホットプレス、HIPといった加圧焼結を用いることもできる。図1(E)で示すようにセラミックスの粒子5の界面に界面制御成分4が配置される。その後界面相の制御として必要に応じて固溶や析出の制御のための熱処理を行う。
【0014】
【作用】
以上のような製造方法による界面制御セラミックスの製造は次のような作用により行われる。核となる粒子1の表面に焼結助剤2、原料粉3、界面制御成分4の順に被覆がなされるため、焼結時に焼結助剤近傍から順次緻密化が進行し、焼結の終期にそれが界面制御成分4に達する。このため従来のようにこれらの成分を均一に混合した際に起こる界面制御成分と焼結助剤との反応が防止され、界面に確実に界面制御成分4を配置することができる。これにより目的とする界面制御が的確に行われ、破壊靱性や強度の向上といった材料の特性の向上の発現が可能になる。
【0015】
【実施例1】
平均径2μmのα型炭化けい素粉末を硝酸アルミニウムと尿素を含む水溶液に分散させ、これを損拌しながら90°Cに加熱し、6時間保持することにより炭化けい素粉末表面に水酸化アルミニウムを析出させて被覆した。この反応は次のように起る。
【0016】
これを1300°Cで焼成し水酸化アルミニウムをアルミナ(焼結助剤)とした。
【0017】
次にポリカルボシランを溶解させたテトラヒドロフラン溶液にこの粉体を分散させ、炉過後、乾燥および不融化を行い表面にポリカルボシランの被覆を行った。これを1300°Cのアルゴンガス中で焼成し、ポリカルボシランを炭化けい素に転化させた、この処理を10回繰り返し原料粒子相とした。
【0018】
得られた粉末とほう化チタン粉末を水系スラリとした後スプレードライ乾燥を行い原料粒子相粉末の表面にほう化チタン粉末を付着させた。これをCIPにより成形し、HIP焼結を用い、1900°C、200MPa、1時間の焼成を行い焼結体とした。
【0019】
得られた焼結体の強度は500MPa(JIS R1601「ファインセラミックスの曲げ強さ試験方法」の中の3点曲げ強度)であり、破壊靱性は7MPa√m(JIS R1601「ファインセラミックスの破壊靱性試験方法」の中のSEPB法)であるという優れた値を示した。
【0020】
【実施例2】
平均径2μmのα型炭化けい素粉末と水溶性フェノール樹脂、ほう酸を含むスラリをスプレードライ処理し、炭化けい素粉末表面にフェノール樹脂とほう酸の混合物を被覆した。これを1500°Cのアルゴンガス中で焼成し、炭化けい素粉末の表面に炭化ほう素(焼結助剤)の被覆をした。次に炭化けい素原料相の被覆を行った後、実施例1と同様の方法でアルミナの被覆を行った。この粉末をピッチのキノリン溶液と混合し、乾燥後1350°C N2 ガス中で3時間処理しアルミナを窒化アルミ(界面制御のための添加成分)に転化した。その後空気中500°Cで3時間焼成し、余剰の炭素を除去した。
【0021】
得られた粉末をCIP成形し、1500°C真空中で仮焼した後HIP法により1900°C、200MPaで1時間焼成した。その後窒化アルミを固溶させるため2100°Cで5時間熱処理を行い、その後1750°Cで10時間の熱処理を行った。得られた焼結体の強度は590MPa、破壊靱性は7.4MPa√mと優れた値を示した。尚強度、靱性の測定方法は実施例1と同じである。
【0022】
【比較例1】
市販の炭化けい素粉末に焼結助剤のアルミナおよびほう化チタンを添加した成形体を実施例1と同様の焼成条件で緻密化した結果、強度は450MPa、破壊靱性は5.5MPa√mであった。
【0023】
【比較例2】
市販の炭化けい素粉末に同量の炭化ほう素および窒化アルミニウムを添加した材料を実施例2と同様の焼成条件で緻密化した結果、強度は400MPa、破壊靱性は4.5MPa√mであった。
【0024】
以上実施例とそれに対応する比較例を比べれば明らかなように本発明の製造方法により得られたセラミックスは高い靱性と大きな強度を有することが明らかである。
【0025】
【発明の効果】
以上述べたように本発明の製造方法により得られた界面制御セラミックスは核となる原料セラミックス、焼結助剤、核と同質のセラミック原料、界面制御のための添加成分を順次被覆した粉末を成形し、それを焼結して緻密化するようにしたので焼結時に界面制御成分が、焼結助剤等の他の成分と反応したり、拡散したりしないでセラミック結晶界面に局在化している。従って目的とする界面制御が確実に行われ破壊靱性や強度など特性の優れたセラミックスを得ることができる。
【図面の簡単な説明】
【図1】本発明の界面制御セラミックスの製造方法を工程順に示した説明図である。
【符号の説明】
1 核となるセラミック粒子
2 焼結助剤の被覆
3 核となるセラミック粒子と同材質のセラミックスの原料粒子相
4 界面制御のための添加成分
5 界面制御セラミックスの組成粒子
[0001]
[Industrial application fields]
The present invention relates to a method for producing ceramics having high strength and high toughness.
[0002]
[Prior art]
Ceramics are used as a material for parts exposed to high temperatures in the field of energy-related equipment such as high-temperature gas turbines and rockets. However, since ceramics generally have low toughness and are easily cracked, it is necessary to control the characteristics of the crystal grain interface in order to increase the toughness and increase the strength, and techniques such as dispersing different kinds of particles at such an interface are used. Conventionally, such an additive for controlling the interface is mixed with the raw material powder simultaneously with other components such as a sintering aid.
[0003]
[Problems to be solved by the invention]
However, when additive ingredients for interfacial control are mixed with the raw material powder together with the sintering aid, reaction between them or mass transfer may occur during firing, adding for interfacial control. Since the components cannot be arranged at the target interface portion, the interface characteristics cannot be sufficiently controlled, and the performance improvement of the ceramics must be limited.
[0004]
The present invention has been devised in view of the above problems, and it is possible to manufacture a ceramic with high toughness and high strength by reliably controlling the interface by localizing additives for interface control at the interface of the ceramic crystal. The purpose is to do.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, a method for producing an interface-controlling ceramic according to the present invention comprises a step of coating a surface of a ceramic particle serving as a core with a sintering aid, and a ceramic particle serving as a core on the surface coated with the sintering aid From the step of coating a ceramic raw material of the same material, the step of attaching ceramic particles for interface control to the surface, or the step of coating the ceramic raw material for interface control, and the step of sintering after molding Become.
[0006]
It is preferable to perform heat treatment for solid solution or precipitation after sintering the ceramic. Silicon nitride or silicon carbide may be adopted as the ceramic material. The process of coating the sintering aid, the same ceramic material as the core ceramic, and the ceramic raw material for interface control is impregnated with a liquid phase raw material such as a vapor phase reaction such as CVD, a sol-gel method or a ceramic precursor resin. A method may be adopted. The step of attaching ceramic particles for interface control may utilize agglomeration of solid powder.
[0007]
Hereinafter, the production method of the present invention will be described in detail with reference to the drawings. FIG. 1 is an explanatory view showing each step of the present invention.
[0008]
As shown in FIG. 1 (A), the surface of the ceramic particles 1 serving as the core is coated with the sintering aid 2. As the heat-resistant ceramic as a core, silicon carbide and silicon nitride are targeted, and short fibers such as particles and whiskers are used as the core. These surfaces are coated with ceramics as a sintering aid. When the core ceramics are silicon nitride, oxide ceramics such as alumina and yttria are used, and the core ceramics are silicon carbide. In this case, alumina, yttria, boron, carbon, aluminum or the like is used. As a coating method, a gas phase reaction such as CVD may be used, or a liquid phase reaction may be used as in the sol-gel method.
[0009]
Next, the raw material particle phase 3 is formed on the surface of the sintering aid 2 as shown in FIG. The raw material particle phase 3 is a ceramic made of the same material as the core 1. As a method for forming the raw material particle phase 3, a sintering aid is applied to the core 1 produced in the step of FIG. 1A in a solution of a silicon carbide or silicon nitride precursor resin such as polycarbosilane or polysilazane. There is a method in which particles coated with the agent 2 are dispersed and dried and fired.
[0010]
The raw material particle phase 3 may be formed by a method other than those described above. For example, the core particle 1 produced in the step of FIG. 1A and the powder particles coated with the firing aid 2 and the raw material powder particles are dispersed in the solution. Then, the surface charge of the coated particles may be controlled by a method such as controlling PH, and the raw material powder particles may be aggregated on the surface of the coated particles, or may be aggregated during drying.
[0011]
Next, as shown in FIG. 1C, an additive component for controlling the interface is attached to or coated on the surface of the raw material particles 3. When the additive component is a powder, it is adhered to the surface of the raw material particles 3, and the method is preferably to use agglomeration as in the step (B). Alternatively, it may be performed by a gas phase reaction such as CVD, or a liquid phase reaction such as a sol-gel method or a precursor resin may be used.
[0012]
Next, molding is performed as shown in FIG. A plastic material obtained by adding the powder obtained in the step (D) into the solution and mixing is molded by applying a usual method such as extrusion molding or CIP.
[0013]
Next, as shown in FIG. 1 (E), the molded body obtained in the step (D) is sintered. A commonly used sintering method is applied depending on the material. For example, normal pressure sintering may be used, or pressure sintering such as hot pressing or HIP may be used. As shown in FIG. 1E, an interface control component 4 is arranged at the interface of the ceramic particles 5. Thereafter, heat treatment for controlling solid solution and precipitation is performed as necessary for controlling the interface phase.
[0014]
[Action]
Manufacture of interface control ceramics by the above manufacturing method is performed by the following operation. Since the surface of the core particle 1 is coated in the order of the sintering aid 2, the raw material powder 3, and the interface control component 4, densification progresses sequentially from the vicinity of the sintering aid during sintering, and the final stage of sintering. It reaches the interface control component 4. For this reason, the reaction between the interface control component and the sintering aid that occurs when these components are uniformly mixed as in the prior art is prevented, and the interface control component 4 can be reliably disposed at the interface. As a result, the desired interface control is accurately performed, and the improvement of the material properties such as the fracture toughness and the strength can be expressed.
[0015]
[Example 1]
An α-type silicon carbide powder having an average diameter of 2 μm is dispersed in an aqueous solution containing aluminum nitrate and urea, heated to 90 ° C. with stirring, and maintained for 6 hours to thereby form aluminum hydroxide on the surface of the silicon carbide powder. Was deposited and coated. This reaction occurs as follows.
[0016]
This was fired at 1300 ° C., and aluminum hydroxide was used as alumina (sintering aid).
[0017]
Next, this powder was dispersed in a tetrahydrofuran solution in which polycarbosilane was dissolved. After passing through a furnace, the powder was dried and infusible to coat the surface with polycarbosilane. This was baked in an argon gas at 1300 ° C., and polycarbosilane was converted to silicon carbide. This treatment was repeated 10 times to obtain a raw material particle phase.
[0018]
The obtained powder and titanium boride powder were made into an aqueous slurry and then spray-dried to adhere the titanium boride powder to the surface of the raw material particle phase powder. This was molded by CIP and fired at 1900 ° C., 200 MPa for 1 hour using HIP sintering to obtain a sintered body.
[0019]
The strength of the obtained sintered body is 500 MPa (3-point bending strength in JIS R1601 “Bending strength test method of fine ceramics”), and the fracture toughness is 7 MPa√m (JIS R1601 “Fracture toughness test of fine ceramics”). An excellent value of SEPB method in “Method” was shown.
[0020]
[Example 2]
A slurry containing an α-type silicon carbide powder having an average diameter of 2 μm, a water-soluble phenolic resin and boric acid was spray-dried to coat the surface of the silicon carbide powder with a mixture of the phenolic resin and boric acid. This was fired in an argon gas at 1500 ° C., and the surface of the silicon carbide powder was coated with boron carbide (sintering aid). Next, after the silicon carbide raw material phase was coated, alumina was coated in the same manner as in Example 1. This powder was mixed with pitch quinoline solution, dried and then treated in 1350 ° C. N 2 gas for 3 hours to convert alumina to aluminum nitride (additional component for interface control). Then, it was calcined at 500 ° C. in air for 3 hours to remove excess carbon.
[0021]
The obtained powder was CIP-molded, calcined in a 1500 ° C. vacuum, and then calcined at 1900 ° C. and 200 MPa for 1 hour by the HIP method. Thereafter, heat treatment was performed at 2100 ° C. for 5 hours in order to dissolve aluminum nitride, and then heat treatment was performed at 1750 ° C. for 10 hours. The obtained sintered body had excellent strength of 590 MPa and fracture toughness of 7.4 MPa√m. The method for measuring strength and toughness is the same as in Example 1.
[0022]
[Comparative Example 1]
A compact obtained by adding alumina and titanium boride as sintering aids to commercially available silicon carbide powder was densified under the same firing conditions as in Example 1. As a result, the strength was 450 MPa and the fracture toughness was 5.5 MPa√m. there were.
[0023]
[Comparative Example 2]
A material obtained by adding the same amount of boron carbide and aluminum nitride to commercially available silicon carbide powder was densified under the same firing conditions as in Example 2. As a result, the strength was 400 MPa and the fracture toughness was 4.5 MPa√m. .
[0024]
As is clear from the comparison of the examples and the comparative examples corresponding thereto, it is clear that the ceramic obtained by the production method of the present invention has high toughness and large strength.
[0025]
【The invention's effect】
As described above, the interface control ceramic obtained by the production method of the present invention is formed by sequentially forming a raw material ceramic as a core, a sintering aid, a ceramic raw material of the same quality as the core, and a powder coated with additive components for interface control in order. Since it is sintered and densified, the interface control component is localized at the ceramic crystal interface without reacting or diffusing with other components such as a sintering aid during sintering. Yes. Therefore, it is possible to obtain a ceramic having excellent properties such as fracture toughness and strength by reliably performing the desired interface control.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing a method of manufacturing an interface control ceramic according to the present invention in the order of steps.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Ceramic particle | grains used as nucleus 2 Coating | covering of sintering auxiliary agent 3 Raw material particle phase of ceramic same material as ceramic particle used as nucleus 4 Additive component for interface control 5 Composition particle of interface control ceramics

Claims (5)

核となるセラミック粒子の表面に焼結助剤を被覆する工程と、焼結助剤を被覆した表面に核となるセラミック粒子と同材質のセラミック原料を被覆する工程と、さらにその表面に界面制御のためのセラミック粒子を付着させ、または界面制御のためのセラミック原料を被覆する工程と、これを成形後焼結する工程とからなることを特徴とする界面制御セラミックスの製造方法。The step of coating the surface of the ceramic particles that are the core with the sintering aid, the step of coating the surface coated with the sintering aid with the ceramic raw material of the same material as the core ceramic particles, and the interface control on the surface A method for producing interface-controlling ceramics comprising the steps of adhering ceramic particles for coating or coating a ceramic raw material for interface control and sintering after molding. セラミックスを焼結した後固溶または析出のための熱処理を行う請求項1記載の界面制御セラミックスの製造方法。The method for producing an interface-controlled ceramic according to claim 1, wherein after the ceramic is sintered, heat treatment for solid solution or precipitation is performed. 核粒子および原料セラミックスは窒化けい素または炭化けい素である請求項1または請求項2記載の界面制御セラミックスの製造方法The method for producing an interface-controlled ceramic according to claim 1 or 2, wherein the core particles and the raw material ceramics are silicon nitride or silicon carbide. 核となるセラミック粒子の表面に焼結助剤を被覆する工程、焼結助剤を被覆した表面に核となるセラミック粒子と同材質のセラミック原料を被覆する工程およびその表面に界面制御のためのセラミック原料を被覆する工程がCVD等の気相反応またはゾルゲン法もしくはセラミック前駆体樹脂等の液相原料を含浸する方法である請求項1ないし請求項3の界面制御セラミックスの製造方法。The step of coating the surface of the ceramic particles as the core with the sintering aid, the step of coating the surface coated with the sintering aid with the ceramic raw material of the same material as the core ceramic particles, and the surface for controlling the interface 4. The method for producing an interface-controlled ceramic according to claim 1, wherein the step of coating the ceramic raw material is a method of impregnating a liquid phase raw material such as a vapor phase reaction such as CVD or a solgen method or a ceramic precursor resin. 界面制御のためのセラミック粒子を付着させる工程が固体粉末の凝集を利用した方法である請求項1ないし請求項3記載の界面制御セラミックスの製造方法。4. The method for producing an interface-controlling ceramic according to claim 1, wherein the step of attaching ceramic particles for controlling the interface is a method utilizing agglomeration of solid powder.
JP16028595A 1995-06-27 1995-06-27 Method for producing interface control ceramics Expired - Fee Related JP3738784B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16028595A JP3738784B2 (en) 1995-06-27 1995-06-27 Method for producing interface control ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16028595A JP3738784B2 (en) 1995-06-27 1995-06-27 Method for producing interface control ceramics

Publications (2)

Publication Number Publication Date
JPH0912373A JPH0912373A (en) 1997-01-14
JP3738784B2 true JP3738784B2 (en) 2006-01-25

Family

ID=15711687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16028595A Expired - Fee Related JP3738784B2 (en) 1995-06-27 1995-06-27 Method for producing interface control ceramics

Country Status (1)

Country Link
JP (1) JP3738784B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106892663A (en) * 2017-01-20 2017-06-27 西南交通大学 A kind of sheet powder metallurgy and preparation method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5217097B2 (en) * 2005-09-20 2013-06-19 宇部興産株式会社 Method for producing spherical silicon carbide fine particles
US20210380813A1 (en) * 2018-09-28 2021-12-09 Fujimi Incorporated Coated silicon carbide particle powder
JP7145773B2 (en) * 2019-01-29 2022-10-03 株式会社フジミインコーポレーテッド coated particles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106892663A (en) * 2017-01-20 2017-06-27 西南交通大学 A kind of sheet powder metallurgy and preparation method thereof

Also Published As

Publication number Publication date
JPH0912373A (en) 1997-01-14

Similar Documents

Publication Publication Date Title
JP4261130B2 (en) Silicon / silicon carbide composite material
CN107074667A (en) A kind of method that composite material component is manufactured by SHS process
JP3738784B2 (en) Method for producing interface control ceramics
US6221942B1 (en) Zircon-carbon for ceramic composite fiber coatings and fine-grained zircon powder
US6074699A (en) Surface hardness of articles by reactive phosphate treatment
US4929472A (en) Surface-coated SiC whiskers, processes for preparing the same, ceramic reinforced with the same, and process for preparing said reinforced ceramic
CN115073195B (en) Silicon nitride whisker reinforced nitride composite material for 3D printing radar antenna housing and preparation and printing methods
JPH0212893B2 (en)
JP4416946B2 (en) Ceramic composite
JP2570739B2 (en) Fiber reinforced silicon carbide ceramics and method for producing the same
JP2001089254A (en) Composite ceramic material and its production process
JP2508511B2 (en) Alumina composite
JP3734100B2 (en) Method for producing high-density columnar grain oriented ceramics
JP3966911B2 (en) In-furnace members and jigs
US4975302A (en) Surface-coated SiC whiskers, processes for preparing the same, ceramic reinforced with the same, and process for preparing said reinforced ceramic
JP3216236B2 (en) Manufacturing method of low thermal conductive ceramics
JP2688980B2 (en) Method for manufacturing silicon nitride composite structure
JPS60255672A (en) Manufacture of silicon carbide sintered body
JPS6360165A (en) Manufacture of fiber reinforced ceramics
JPS6374962A (en) Porous reaction sintered si3n4 sic base composite ceramic material,manufacture and joining method
JPH03109269A (en) Sialon-based ceramics composite material reinforced with carbon fiber
JPH1160323A (en) Inorganic fibered molded body and its production
JP2512942B2 (en) Manufacturing method of tough ceramic material for gas turbine
JP2002362985A (en) Member coated with ceramic and method of manufacturing the same
JPH03242400A (en) Method for modifying surface of sic whisker

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051025

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081111

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees