JPH0313166B2 - - Google Patents

Info

Publication number
JPH0313166B2
JPH0313166B2 JP56188847A JP18884781A JPH0313166B2 JP H0313166 B2 JPH0313166 B2 JP H0313166B2 JP 56188847 A JP56188847 A JP 56188847A JP 18884781 A JP18884781 A JP 18884781A JP H0313166 B2 JPH0313166 B2 JP H0313166B2
Authority
JP
Japan
Prior art keywords
silicon carbide
powder
particle size
type silicon
carbide powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56188847A
Other languages
Japanese (ja)
Other versions
JPS5891028A (en
Inventor
Katsutoshi Yoneya
Akihiko Tsuge
Hiroshi Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP56188847A priority Critical patent/JPS5891028A/en
Publication of JPS5891028A publication Critical patent/JPS5891028A/en
Publication of JPH0313166B2 publication Critical patent/JPH0313166B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の目的] (産業上の利用分野) 本発明は、β型炭化ケイ素粉末の製造方法に関
し、特にシリカ粉末、炭素粉末及び炭化ケイ素粉
末の混合粉末によりβ型炭化ケイ素粉末を製造す
る方法の改良に係わる。 (従来の技術) 炭化ケイ素は、高温安定性、高強度、高熱伝導
性等の諸特性を有する材料であり、原子力エネル
ギー材料、化学装置、高温ガス処理、電気加熱要
素及び電子抵抗器等に広く用いられている。これ
らのうち、特に高温構造材料として有用であり、
また省エネルギー、省資源の目的に重要な役割を
果たす材料として開発が進められている。より優
れた特性を有する材料を得るためには、原料とな
る炭化ケイ素は粒径が小さく、しかも粒形及び粒
径のばらつきが少ないことが必要である。 従来、炭化ケイ素粉末はシリカの炭素還元、ま
たは他の方法により製造されているが、いずれも
粒径が小さくすることが困難であり、粒子の径や
形状がばらついているため、優れた特性を得るこ
とができなかつた。 前記点を改善するため、本発明者らは先にシリ
カ粉末又は焼成過程でシリカ粉末を生成する化合
物と、炭素粉末との混合粉末に炭化ケイ素粉末を
添加して非酸化性雰囲気中で焼成する炭化ケイ素
粉末の製造方法を開発し提案した。 しかしながら、得られた炭化ケイ素粉末の粒形
が多角形状になり易く、また粒径の微細化、ばら
つきの広がりなどの均一化も十分でなく、その上
原料としての炭化ケイ素粉末の使用量も多く、改
善すべき問題が残されていた。 (発明が解決しようとする課題) 本発明は、特にβ型炭化ケイ素粉末の場合、添
加成分である炭化ケイ素粉末の性状によりその特
性が大きく影響を受けることを見出し、結晶質で
所定の平均粒径を有するβ型炭化ケイ素粉末を添
加することによつて、β型の純度の高い球形で粒
径が微細かつばらつきの少なく、更に炭化ケイ素
の添加量を抑えて経済性を高めたβ型炭化ケイ素
粉末の製造方法を提供しようとするものである。 [発明の構成] (課題を解決するための手段) 本発明は、平均粒径が0.5μm以下のシリカ粉末
又は焼成過程で同平均粒径のシリカ粉末を生成す
る化合物と、平均粒径が0.5μm以下の炭素粉末又
は高温で炭素を生成する化合物との混合粉末に平
均粒径が0.5μm以下の結晶質のβ型炭化ケイ素粉
末を添加して非酸化性雰囲気中で焼成することを
特徴とするβ型炭化ケイ素粉末の製造方法であ
る。 前記焼成過程でシリカ粉末を生成する化合物と
しては、例えばトリメチルシラン(CH3SiCl4)、
テトラメトキシシラン(Si(C2H5O)4)、又はケイ
酸ナトリウム(NaO−SiO2)等が挙げられる。 前記炭素粉末としては、カーボンブラツク、グ
ラフアイト等が挙げられ、高温で炭素粉末を生成
する化合物としては、例えば各種樹脂系物質が挙
げられる。 前記シリカ粉末、炭素粉末及び結晶質のβ型炭
化ケイ素粉末は、純度が99%以上のものを用いる
ことが望ましい。 前記シリカ粉末、炭素粉末及び結晶質のβ型炭
化ケイ素粉末の平均粒径を限定した理由は、
0.5μmを越えると微細なβ型炭化ケイ素粉末を製
造することができなくなるからである。 前記原料粉末の組成は、シリカ粉末1重量部に
対して、炭素粉末を0.5〜4.0重量部、より好まし
くは0.6〜2.0重量部、結晶質のβ型炭化ケイ素粉
末を0.01〜0.2重量部、より好ましくは0.01〜0.05
重量部とすることが望ましい。このような組成範
囲に限定したのは、次のような理由によるもので
ある。前記炭素粉末を0.5重量部未満にすると、
シリカが未反応のままβ型炭化ケイ素粉末中に残
留し易くなり、一方その量が4.0重量部を越える
とβ型炭化ケイ素粉末の収率が低下する恐れがあ
る。前記結晶質のβ型炭化ケイ素粉末を0.01重量
部未満にすると、添加効果を十分に達成すること
が困難となり、一方その量が0.2重量部を越えて
も添加効果が変化せず、経済性が損なわれる。特
に、β型炭化ケイ素粉末として結晶質のものを用
いることによつて0.2重量部と少ない添加量で十
分な効果を図ることができる。なお、焼成過程で
シリカ粉末を生成する化合物及び炭素粉末を生成
する化合物の添加量は、生成物が上記範囲となる
ように定められる。 前記焼成は、非酸化性雰囲気、例えば窒素、炭
化水素、一酸化炭素、アルゴン、アンモニアガ
ス、水素等の雰囲気中で行い、好ましくは一酸化
炭素、アルゴンの雰囲気中で1350〜1850℃(但
し、窒素、アンモニアガスは1550〜1850℃)、よ
り好ましくは1400〜1700℃で行なう。焼成温度を
1350℃未満にすると、β型炭化ケイ素粉末の生成
が困難となり、一方焼成温度が1850℃を越えると
粒が成長し過ぎて微細なβ型炭化ケイ素粉末を製
造することが困難となる。また、非酸化性雰囲気
が窒素、アンモニアガスの場合には、1550℃未満
にすると窒素ケイ素が生成されるため、その温度
以上で焼成することが必要である。 (作用) 本発明方法における反応は、シリカの炭素還元
により生成した炭化ケイ素が予め添加した平均粒
径が0.5μm以下の結晶質のβ型炭化ケイ素を核と
して進行するため、β型の純度が高く、形状が球
形化して、粒径も1μm以下で粒径のばらつきの少
ない均一なβ型炭化ケイ素粉末を製造することが
できる。 前記反応において、添加する炭化ケイ素として
無定形の炭化ケイ素粉末を用いると、それ自体が
高温で不安定であるため、ガスの放出が起こつた
り、分解が生じたりする。その結果、詳細なメカ
ニズムは明らかではないが、得られた炭化ケイ素
粉末の粒の粗大化、変形化及び粒径のばらつきを
招くと共に、添加した炭化ケイ素粉末の有効利用
を図ることができない。 これに対し、本発明では特定の平均粒径を有
し、結晶質でβ型の炭化ケイ素粉末を添加するた
め、反応過程でのガスの放出や分解を防止して安
定した核状態を維持できる。その結果、成長した
炭化ケイ素粉末が粗大化せずに球形化すると共
に、粒径が微細でばらつきも少なく、かつβ型の
炭化ケイ素粉末を製造でき、しかも添加した結晶
質のβ型炭化ケイ素粉末の有効利用が図られ、従
来法に比べて添加量を大幅に低減できる。 なお、前記反応においてシリカの還元反応の始
まる1350℃までの温度域で結晶性の炭化ケイ素粉
末を生成するものを炭化ケイ素源として用いても
ある程度の効果を発揮できるものの、予め所定の
平均粒径で結晶質のβ型炭化ケイ素粉末を添加し
た方が前記特性を有し、かつβ型の炭化ケイ素粉
末を製造することができる。 また、炭素粉末を過剰に添加した場合には反応
過程で炭素粉末が残留するが、焼成後に酸化性雰
囲気中、600〜850℃で炭素を酸化して除去するこ
ともできる。 (実施例) 以下、本発明の実施例を詳細に説明する。 実施例 1 平均粒径0.01μmのシリカ粉末1重量部、平均
粒径0.05μmの炭素粉末2重量部、平均粒径0.1μm
以下の微細な結晶質のβ型炭化ケイ素粉末0.04重
量部からなる混合粉末100gをカーボン容器にい
れ、アルゴン気流下(流量:2/min)、1600
℃で5時間反応させた。この生成物を700℃で2
時間空気酸化して残留炭素を除き、炭化ケイ素粉
末を得た。 得られた炭化ケイ素粉末をX線回折したとこ
ろ、β型の結晶性を有することが確認された。ま
た、電子顕微鏡写真により観察したところ、ほぼ
球形であり、また平均粒径は0.2μmで、粒径のば
らつきも平均±10%以内の粒子の割合が91%と均
一であつた。 実施例 2〜8 平均粒径0.01μmのシリカ粉末、平均粒径
0.03μmα炭素粉末及び平均粒径0.2μmの結晶質の
β型炭化ケイ素粉末を用いて下記第1表に示す条
件で実施例1と同様に反応させた後、空気中で
700℃、5時間加熱して残留した炭素を酸化除去
した。 得られた炭化ケイ素粉末の特性を下記第1表に
併記した。第1表中の生成粉の特性において粒径
のばらつきは平均粒径±10%以内の粒子の割合を
示した。 なお、実施例7ではシリカ源としてテトラエト
キシシランを使用し、そのシリカ分を1として原
料成分比を定めた。
[Objective of the invention] (Industrial application field) The present invention relates to a method for producing β-type silicon carbide powder, and in particular to a method for producing β-type silicon carbide powder using a mixed powder of silica powder, carbon powder, and silicon carbide powder. Involved in improvements. (Prior Art) Silicon carbide is a material with various properties such as high temperature stability, high strength, and high thermal conductivity, and is widely used in nuclear energy materials, chemical equipment, high temperature gas processing, electric heating elements, electronic resistors, etc. It is used. Among these, it is particularly useful as a high-temperature structural material;
Further, it is being developed as a material that plays an important role in energy and resource conservation. In order to obtain a material with better properties, silicon carbide as a raw material needs to have a small particle size and less variation in particle shape and particle size. Conventionally, silicon carbide powder has been produced by carbon reduction of silica or other methods, but in both cases it is difficult to reduce the particle size and the particle size and shape vary, making it difficult to obtain excellent properties. I couldn't get it. In order to improve the above point, the present inventors first added silicon carbide powder to a mixed powder of silica powder or a compound that generates silica powder during the firing process and carbon powder, and fired the mixture in a non-oxidizing atmosphere. A method for producing silicon carbide powder was developed and proposed. However, the grain shape of the obtained silicon carbide powder tends to be polygonal, and it is not possible to make the grain size fine or spread the variation sufficiently, and in addition, the amount of silicon carbide powder used as a raw material is large. However, there were still issues that needed to be improved. (Problems to be Solved by the Invention) The present invention has discovered that, especially in the case of β-type silicon carbide powder, its properties are greatly affected by the properties of the silicon carbide powder that is an additive component, and By adding β-type silicon carbide powder that has a diameter, β-type carbide has a highly pure spherical shape with a fine particle size and less variation, and also reduces the amount of silicon carbide added and improves economic efficiency. The present invention aims to provide a method for producing silicon powder. [Structure of the Invention] (Means for Solving the Problems) The present invention provides silica powder with an average particle size of 0.5 μm or less, or a compound that produces silica powder with the same average particle size in a firing process, and a compound with an average particle size of 0.5 μm or less. It is characterized by adding crystalline β-type silicon carbide powder with an average particle size of 0.5 μm or less to carbon powder of μm or less or a mixed powder with a compound that generates carbon at high temperatures, and firing the mixture in a non-oxidizing atmosphere. This is a method for producing β-type silicon carbide powder. Examples of compounds that generate silica powder during the firing process include trimethylsilane (CH 3 SiCl 4 ),
Examples include tetramethoxysilane (Si( C2H5O ) 4 ) and sodium silicate (NaO- SiO2 ). Examples of the carbon powder include carbon black and graphite, and examples of compounds that produce carbon powder at high temperatures include various resin-based substances. The silica powder, carbon powder, and crystalline β-type silicon carbide powder preferably have a purity of 99% or more. The reason for limiting the average particle size of the silica powder, carbon powder, and crystalline β-type silicon carbide powder is as follows:
This is because if it exceeds 0.5 μm, it becomes impossible to produce fine β-type silicon carbide powder. The composition of the raw material powder is 1 part by weight of silica powder, 0.5 to 4.0 parts by weight of carbon powder, more preferably 0.6 to 2.0 parts by weight, and 0.01 to 0.2 parts by weight of crystalline β-type silicon carbide powder. Preferably 0.01-0.05
It is preferable to use parts by weight. The reason for limiting the composition to this range is as follows. When the carbon powder is less than 0.5 parts by weight,
Silica tends to remain unreacted in the β-type silicon carbide powder, and on the other hand, if the amount exceeds 4.0 parts by weight, the yield of the β-type silicon carbide powder may decrease. If the amount of the crystalline β-type silicon carbide powder is less than 0.01 part by weight, it will be difficult to fully achieve the effect of addition, while if the amount exceeds 0.2 part by weight, the effect of addition will not change and the economy will be poor. be damaged. In particular, by using a crystalline β-type silicon carbide powder, a sufficient effect can be achieved with a small addition amount of 0.2 parts by weight. The amounts of the compound that generates silica powder and the compound that generates carbon powder in the firing process are determined so that the product falls within the above range. The firing is performed in a non-oxidizing atmosphere, such as an atmosphere of nitrogen, hydrocarbon, carbon monoxide, argon, ammonia gas, hydrogen, etc., preferably in an atmosphere of carbon monoxide or argon at 1350 to 1850 °C (however, For nitrogen and ammonia gas, the temperature is 1550 to 1850°C), more preferably 1400 to 1700°C. Firing temperature
If the firing temperature is lower than 1350°C, it will be difficult to produce β-type silicon carbide powder, while if the firing temperature exceeds 1850°C, grains will grow too much and it will be difficult to produce fine β-type silicon carbide powder. Furthermore, when the non-oxidizing atmosphere is nitrogen or ammonia gas, silicon nitrogen is generated if the temperature is lower than 1550°C, so it is necessary to perform firing at a temperature higher than that temperature. (Function) The reaction in the method of the present invention proceeds with silicon carbide produced by carbon reduction of silica using crystalline β-type silicon carbide with an average particle size of 0.5 μm or less as a nucleus, which has been added in advance. It is possible to produce uniform β-type silicon carbide powder with a high particle size, a spherical shape, and a particle size of 1 μm or less with little variation in particle size. In the above reaction, if amorphous silicon carbide powder is used as the added silicon carbide, it is unstable at high temperatures and may release gas or decompose. As a result, although the detailed mechanism is not clear, the grains of the obtained silicon carbide powder become coarse, deformed, and vary in particle size, and the added silicon carbide powder cannot be used effectively. In contrast, in the present invention, crystalline β-type silicon carbide powder with a specific average particle size is added, which prevents gas release and decomposition during the reaction process and maintains a stable nuclear state. . As a result, the grown silicon carbide powder becomes spherical without becoming coarse, and the grain size is fine with little variation, and β-type silicon carbide powder can be produced. Moreover, the crystalline β-type silicon carbide powder added The amount added can be significantly reduced compared to conventional methods. In addition, in the above reaction, it is possible to achieve some effect by using a silicon carbide source that produces crystalline silicon carbide powder in the temperature range up to 1350°C where the reduction reaction of silica begins, but if the silicon carbide source has a predetermined average particle size By adding crystalline β-type silicon carbide powder, it is possible to produce a β-type silicon carbide powder that has the above-mentioned properties. Further, if carbon powder is added in excess, the carbon powder remains during the reaction process, but it can also be removed by oxidizing the carbon at 600 to 850° C. in an oxidizing atmosphere after firing. (Example) Examples of the present invention will be described in detail below. Example 1 1 part by weight of silica powder with an average particle size of 0.01 μm, 2 parts by weight of carbon powder with an average particle size of 0.05 μm, average particle size of 0.1 μm
100 g of a mixed powder consisting of 0.04 parts by weight of the following fine crystalline β-type silicon carbide powder was placed in a carbon container, and heated under an argon stream (flow rate: 2/min) at 1600 g.
The reaction was carried out at ℃ for 5 hours. This product was heated to 700℃ for 2
Residual carbon was removed by air oxidation for hours to obtain silicon carbide powder. When the obtained silicon carbide powder was subjected to X-ray diffraction, it was confirmed that it had β-type crystallinity. Further, when observed using an electron micrograph, it was found that the particles were almost spherical in shape, and the average particle size was 0.2 μm, and the particle size variation was uniform, with 91% of the particles falling within ±10% of the average. Examples 2 to 8 Silica powder with an average particle size of 0.01 μm, average particle size
After reacting in the same manner as in Example 1 under the conditions shown in Table 1 below using 0.03 μm α carbon powder and crystalline β-type silicon carbide powder with an average particle size of 0.2 μm, the reaction was carried out in air.
The remaining carbon was oxidized and removed by heating at 700°C for 5 hours. The properties of the obtained silicon carbide powder are also listed in Table 1 below. In the characteristics of the produced powder shown in Table 1, the variation in particle size indicates the proportion of particles within ±10% of the average particle size. In Example 7, tetraethoxysilane was used as the silica source, and the raw material component ratio was determined with the silica content as 1.

【表】【table】

【表】 実施例 9 シリカ源としてトリメチルクロルシラン
(CH3SiCl4)を用い、これを予め加水分解して
CH3SiO3/2とした。 素原料組成としては、CH3SiO3/2をSiO2換算で
1とし、これに平均粒径0.01μm以下の炭素粉末
1重量部、平均粒径0.2μmの結晶質のβ型炭化ケ
イ素粉末0.04重量部を混合した混合粉末を実施例
1と同様な条件で反応させた。 得られた炭化ケイ素粉末をX線回折したとこ
ろ、β型の結晶性を有することが確認された。ま
た、電子顕微鏡写真により観察したところ、ほぼ
球形であり、また平均粒径は0.4μmで、粒経のば
らつきも平均±10%以内の粒子の割合が92%と均
一であつた。 [発明の効果] 以上詳述した如く、本発明によればβ型の純度
が高く、形状が球形化して、粒径も微細で粒径の
ばらつきの少ない均一なβ型炭化ケイ素粉末を製
造でき、しかも添加する結晶質のβ型炭化ケイ素
粉末の使用量を低く抑えて経済性を高めることが
できる等顕著な効果を奏する。
[Table] Example 9 Trimethylchlorosilane (CH 3 SiCl 4 ) was used as a silica source, and it was hydrolyzed in advance.
CH 3 SiO 3/2 was used. As for the raw material composition, CH 3 SiO 3/2 is converted to 1 as SiO 2 , plus 1 part by weight of carbon powder with an average particle size of 0.01 μm or less, and 0.04 parts by weight of crystalline β-type silicon carbide powder with an average particle size of 0.2 μm. A mixed powder obtained by mixing parts by weight was reacted under the same conditions as in Example 1. When the obtained silicon carbide powder was subjected to X-ray diffraction, it was confirmed that it had β-type crystallinity. Further, when observed by electron micrograph, it was found that the particles were almost spherical in shape, and the average particle size was 0.4 μm, and the proportion of particles with variation in particle diameter within ±10% of the average was 92%, which was uniform. [Effects of the Invention] As detailed above, according to the present invention, it is possible to produce uniform β-type silicon carbide powder with high β-type purity, spherical shape, fine particle size, and little variation in particle size. Moreover, it has remarkable effects such as being able to suppress the amount of added crystalline β-type silicon carbide powder to improve economic efficiency.

Claims (1)

【特許請求の範囲】 1 平均粒径が0.5μm以下のシリカ粉末又は焼成
過程で同平均粒径のシリカ粉末を生成する化合物
と、平均粒径が0.5μm以下の炭素粉末又は高温で
炭素を生成する化合物との混合粉末に平均粒径が
0.5μm以下の結晶質のβ型炭化ケイ素粉末を添加
して非酸化性雰囲気中で焼成することを特徴とす
るβ型炭化ケイ素粉末の製造方法。 2 シリカ粉末1重量部に対して炭素粉末が0.5
〜4.0重量部、結晶質のβ型炭化ケイ素粉末が
0.01〜0.2重量部添加されることを特徴とする特
許請求の範囲第1項記載のβ型炭化ケイ素粉末の
製造方法。 3 結晶質のβ型炭化ケイ素粉末がシリカ粉末1
重量部に対して0.01〜0.05重量部添加されること
を特徴とする特許請求の範囲第2項記載のβ型炭
化ケイ素粉末の製造方法。 4 焼成温度が1350〜1850℃であることを特徴と
する特許請求の範囲第1項記載のβ型炭化ケイ素
粉末の製造方法。
[Scope of Claims] 1. Silica powder with an average particle size of 0.5 μm or less, or a compound that produces silica powder with the same average particle size during the firing process, and carbon powder with an average particle size of 0.5 μm or less, or a compound that produces carbon at high temperatures. The average particle size of the mixed powder with the compound
A method for producing β-type silicon carbide powder, which comprises adding crystalline β-type silicon carbide powder of 0.5 μm or less and firing in a non-oxidizing atmosphere. 2 0.5 parts of carbon powder per 1 part by weight of silica powder
~4.0 parts by weight of crystalline β-type silicon carbide powder
The method for producing β-type silicon carbide powder according to claim 1, wherein 0.01 to 0.2 parts by weight is added. 3 Crystalline β-type silicon carbide powder is silica powder 1
3. The method for producing β-type silicon carbide powder according to claim 2, wherein the amount is added in an amount of 0.01 to 0.05 parts by weight. 4. The method for producing β-type silicon carbide powder according to claim 1, wherein the firing temperature is 1350 to 1850°C.
JP56188847A 1981-11-25 1981-11-25 Manufacture of silicon carbide powder Granted JPS5891028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56188847A JPS5891028A (en) 1981-11-25 1981-11-25 Manufacture of silicon carbide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56188847A JPS5891028A (en) 1981-11-25 1981-11-25 Manufacture of silicon carbide powder

Publications (2)

Publication Number Publication Date
JPS5891028A JPS5891028A (en) 1983-05-30
JPH0313166B2 true JPH0313166B2 (en) 1991-02-21

Family

ID=16230876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56188847A Granted JPS5891028A (en) 1981-11-25 1981-11-25 Manufacture of silicon carbide powder

Country Status (1)

Country Link
JP (1) JPS5891028A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100477949B1 (en) * 2001-09-14 2005-03-18 주식회사 엘지화학 SPHERICAL SiC-BASED PARTICLES AND METHODS FOR PREPARING THE SAME
JP2009269797A (en) * 2008-05-08 2009-11-19 Sumitomo Osaka Cement Co Ltd Method for producing silicon carbide powder
CN103553043B (en) * 2013-09-30 2015-04-22 陕西科技大学 Preparation method for SiC nanometer microsphere with high specific surface area

Also Published As

Publication number Publication date
JPS5891028A (en) 1983-05-30

Similar Documents

Publication Publication Date Title
US4226841A (en) Method of producing silicon carbide powder
Koc et al. Synthesis of beta silicon carbide powders using carbon coated fumed silica
US4428916A (en) Method of making α-silicon nitride powder
US4117095A (en) Method of making α type silicon nitride powder
JPH0134925B2 (en)
CA1145919A (en) METHOD FOR PRODUCING POWDER OF .alpha.-SILICON NITRIDE
JPS61151006A (en) Production of aluminum nitride powder
US4572844A (en) Method for preparing coated powder
JPH0313166B2 (en)
JPS5839764B2 (en) Method for producing aluminum nitride powder
EP0131894A2 (en) A method for producing alpha-form silicon nitride fine powders
JP4111478B2 (en) Method for producing silicon carbide microspheres
JP3154773B2 (en) Method for producing particulate silicon carbide
JPS61242905A (en) Production of alpha-silicon nitride powder
JPS6411565B2 (en)
JPH02180710A (en) Preparation of finely powdered alpha- or beta- silicon carbide
JPS6362450B2 (en)
JPH0151443B2 (en)
JPS61201608A (en) Manufacture of high purity aluminum nitride powder
JPS63248798A (en) Production of silicon carbide whisker
JPS606884B2 (en) Method for producing α-type silicon nitride powder
JPS62128913A (en) Production of silicon carbide powder
JP2610156B2 (en) Method for producing silicon nitride powder
JPH0122201B2 (en)
JPS63170207A (en) Production of high-purity silicon carbide powder