JPS63170207A - Production of high-purity silicon carbide powder - Google Patents

Production of high-purity silicon carbide powder

Info

Publication number
JPS63170207A
JPS63170207A JP62000601A JP60187A JPS63170207A JP S63170207 A JPS63170207 A JP S63170207A JP 62000601 A JP62000601 A JP 62000601A JP 60187 A JP60187 A JP 60187A JP S63170207 A JPS63170207 A JP S63170207A
Authority
JP
Japan
Prior art keywords
silicon carbide
carbon
silica
hydrogen chloride
carbide powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62000601A
Other languages
Japanese (ja)
Other versions
JPH062568B2 (en
Inventor
Koji Kako
浩司 加古
Mitsutatsu Akazawa
赤澤 充樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKAI KOUNETSU KOGYO KK
Original Assignee
TOKAI KOUNETSU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKAI KOUNETSU KOGYO KK filed Critical TOKAI KOUNETSU KOGYO KK
Priority to JP62000601A priority Critical patent/JPH062568B2/en
Publication of JPS63170207A publication Critical patent/JPS63170207A/en
Publication of JPH062568B2 publication Critical patent/JPH062568B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To stably and inexpensively produce the title high-purity SiC having a low content of metallic impurities, by heating a mixture of silica and carbon in the nonoxidizing atmosphere contg. hydrogen chloride. CONSTITUTION:The mixture of silica (e.g., silica gel) and carbon (e.g., carbon black) of 1.1-2.0 times the theoretical carbon amt. is heated at >=1,500 deg.C in the nonoxidizing atmosphere contg. 3-10vol% hydrogen chloride, and then heated at 500-700 deg.C in an oxidizing atmosphere to oxidize the excess carbon and to remove the carbon.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高純度炭化けい素粉末の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for producing high purity silicon carbide powder.

本発明に係る炭化けい素粉末は、半4体製造用治具等金
属不純物が少ないことが要求される材料の原料として有
用である。
The silicon carbide powder according to the present invention is useful as a raw material for materials that require a small amount of metal impurities, such as jigs for manufacturing half-quarts.

〔従来の技術〕[Conventional technology]

炭化けい素の主な製造方法としては、 (11金属シリコンと炭素を高温で直接反応させる方法
。すなわち、Si+C−4SiCなる反応により、炭化
けい素を製造する方法。
The main methods for producing silicon carbide include (11) a method in which metal silicon and carbon are directly reacted at high temperatures; that is, a method in which silicon carbide is produced by a reaction of Si+C-4SiC;

(21Rn S i X a□ (ここにRは水素原子
またはアルキル基、Xはハロゲン原子、n=1〜4)で
示されるシランまたはシランと炭化水素化合物の混合物
を高温で熱分解させる方法。
(21Rn S i X a□ (wherein R is a hydrogen atom or an alkyl group, X is a halogen atom, n = 1 to 4) A method of thermally decomposing a silane or a mixture of a silane and a hydrocarbon compound at a high temperature.

(3)  シリカ還元法。すなわち、 SiO□+3C−SiC+2COなる反応により、炭化
けい素を製造する方法。処理温度によってα型炭化けい
素、β型炭化けい素が出来る。特に、高温型のα型炭化
けい素の製造方法は、一般にアチソン法と呼ばれ、研削
材用からいわゆるファインセラミックス用の原料まで広
く本方法で製造されている。
(3) Silica reduction method. That is, a method for producing silicon carbide through the reaction SiO□+3C-SiC+2CO. Depending on the treatment temperature, α-type silicon carbide and β-type silicon carbide can be produced. In particular, the method for producing high-temperature α-type silicon carbide is generally called the Acheson method, and this method is used to produce a wide range of products from materials for abrasives to raw materials for so-called fine ceramics.

低温型のβ型炭化けい素は、いわゆるファインセラミッ
クス用の原料として、より微細で粒度範囲の狭い形状の
そろった炭化けい素粒子を得るため種々の方法が考案さ
れている。例えば、Sin、の加水分解によって得られ
る微粒子状のシリカを特徴とする特開昭58−2048
13号、シリカ・炭素・炭化けい素の混合粉末を特徴と
する特公昭58−50929号がある。また、上述の方
法はバッチ式であるが、特開昭54−33899号、特
開昭55−40527号、特開昭58−20708号、
特開昭58−194731号、特開昭59−39709
号等で連続的にβ型炭化けい素を製造する方法が開示さ
れている。
Low-temperature β-type silicon carbide is used as a raw material for so-called fine ceramics, and various methods have been devised to obtain finer silicon carbide particles with a narrower particle size range and uniform shape. For example, JP-A-58-2048, which features fine particulate silica obtained by hydrolysis of Sin.
No. 13, and Japanese Patent Publication No. 58-50929, which features a mixed powder of silica, carbon, and silicon carbide. Moreover, although the above-mentioned method is a batch method, JP-A-54-33899, JP-A-55-40527, JP-A-58-20708,
JP-A-58-194731, JP-A-59-39709
A method for continuously producing β-type silicon carbide is disclosed in No.

また、特公昭60−44280号は、得られるβ型炭化
けい素がウィスカー状であるが、シリカゲルとカーボン
ブラックを原料としている。
Further, in Japanese Patent Publication No. 60-44280, the β-type silicon carbide obtained is in the form of whiskers, but silica gel and carbon black are used as raw materials.

等が知られている。etc. are known.

炭化けい素粉末の高純度化方法としては、HCI、HF
5HF + HNO3等の無機酸による洗浄が一般に行
なわれている。
Methods for highly purifying silicon carbide powder include HCI and HF.
Cleaning with an inorganic acid such as 5HF + HNO3 is commonly performed.

また、半導体製造用治具等の炭化けい素焼粘体の洗浄は
、上記の無機酸による洗浄に加え、塩素または塩化水素
によるガス洗浄が行なわれている。
In addition to cleaning with the above-mentioned inorganic acid, gas cleaning with chlorine or hydrogen chloride is also used to clean silicon carbide sintered viscous bodies such as semiconductor manufacturing jigs.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

半導体製造用治具等として使用される炭化けい素焼粘体
は、半導体に悪影響を与える鉄、銅等の金属不純物の含
有量が少ないことが要求される。
Silicon carbide sintered viscous bodies used as semiconductor manufacturing jigs and the like are required to have a low content of metal impurities such as iron and copper that adversely affect semiconductors.

上記用途の炭化けい素焼粘体を製造するための原料は、
鉄、銅等の金属不純物の含有量が少な(、工業的に安定
して必要量を速やかに、しかも安価に供給可能であるこ
とが要求される。上述の観点から各製造方法を比較する
と、 金属シリコンを原料とする製造方法(1)は、高純度金
属シリコンが高価で、しかも金属シリコンの炭化が発熱
反応であるため反応を制御することが難しく、さらに、
合成される炭化けい素の粒子が比較的大きい。微細な粉
体を得るためには、粉砕を行なう必要があり、金属不純
物の汚染を受ける。
The raw materials for producing the silicon carbide sintered viscous material for the above uses are:
It is required that the content of metal impurities such as iron and copper is small (and that the required amount can be supplied industrially stably and quickly and at low cost.Comparing each manufacturing method from the above point of view, In the production method (1) using metallic silicon as a raw material, high-purity metallic silicon is expensive, and carbonization of metallic silicon is an exothermic reaction, so it is difficult to control the reaction.
The synthesized silicon carbide particles are relatively large. In order to obtain fine powder, it is necessary to perform pulverization, which is subject to contamination with metal impurities.

金属不純物を除去するためには、前述の無機酸による洗
浄が必要となり更に高価なものになってしまう。
In order to remove metal impurities, cleaning with the above-mentioned inorganic acid is required, which further increases the cost.

シランを原料とする製造方法(2)は、高純度の炭化け
い素微粒子が得られる。しかし、使用する原料ガスが極
めて高価であり、反応の収率も低い。
Production method (2) using silane as a raw material yields highly pure silicon carbide fine particles. However, the raw material gas used is extremely expensive and the yield of the reaction is also low.

本製造方法は、純度の点では優れているが、工業的に必
要量を安定してしかも安価に供給することは困難である
Although this production method is excellent in terms of purity, it is difficult to supply the required amount industrially stably and at low cost.

シリカを原料とする製造方法(3)は、原料面では他の
2方法に比べ安価にできるという点で有利である。
The production method (3) using silica as a raw material is advantageous in that it can be produced at a lower cost than the other two methods in terms of raw materials.

アチソン法によって製造されるα型炭化けい素は、塊状
であり、製造方法(1)と同様に粉砕を行なう必要があ
る。金属不純物の汚染量は、製造方法(1)とは比べも
のにならない程大きく、前述の無機酸による洗浄を数回
行なう等多大な労力を費やしても不純物を完全に除去す
ることは極めて困難である。
The α-type silicon carbide produced by the Acheson method is in the form of lumps and needs to be pulverized in the same manner as in production method (1). The amount of metal impurity contamination is incomparably greater than in production method (1), and it is extremely difficult to completely remove the impurities even if a great deal of effort is spent, such as cleaning with the aforementioned inorganic acid several times. .

低温型のβ型炭化けい素の製造に関して、特開昭58−
204813号では、原料として使用するシリカの不純
物濃度は極めて低いが、合成時に汚染を受けて原料のシ
リカの純度を維持することは出来ていない。
Regarding the production of low-temperature β-type silicon carbide, JP-A-58-
In No. 204813, the impurity concentration of the silica used as a raw material is extremely low, but the purity of the raw silica cannot be maintained due to contamination during synthesis.

特公昭5B−50929号においては、合成された炭化
けい素の純度に関しては論述されておらず、発明の目的
が本発明の目的とは異なることは明らかである。
Japanese Patent Publication No. 5B-50929 does not discuss the purity of synthesized silicon carbide, and it is clear that the purpose of the invention is different from the purpose of the present invention.

特開昭54−33899号、特開昭55−40527号
、特開昭58−20708号、特開昭58−19473
1号、特開昭59−39709号は、β型炭化けい素の
連続的な製造方法に関するもので、やはり合成された炭
化けい素の純度に関しては論述されていない。また、合
成された炭化けい素中には、未反応のシリカ分が%単位
で含まれ、該シリカを除去するためにIP処理が必要で
ある。
JP-A-54-33899, JP-A-55-40527, JP-A-58-20708, JP-A-58-19473
No. 1, JP-A No. 59-39709, relates to a continuous production method of β-type silicon carbide, and also does not discuss the purity of the synthesized silicon carbide. In addition, the synthesized silicon carbide contains unreacted silica in units of %, and IP treatment is required to remove the silica.

特公昭60−44280号においては、β型炭化けい素
ウィスカを得るという目的のために半導体に悪影響を与
える鉄、ニッケル、コバルトおよび塩化ナトリウムを加
えており、半導体製造用治具等として使用される炭化け
い素焼粘体の原料としては不適である。
In Japanese Patent Publication No. 60-44280, iron, nickel, cobalt and sodium chloride, which have an adverse effect on semiconductors, are added for the purpose of obtaining β-type silicon carbide whiskers, which are used as jigs for semiconductor manufacturing. It is unsuitable as a raw material for silicon carbide sintered viscous material.

本発明の目的は、上述の問題点を解決するため、シリカ
還元法を改良することによって鉄、銅等の金属不純物の
含有量を少なく、工業的に安定して必要量を速やかに、
しかも安価に供給可能な高純度炭化けい素粉末の製造方
法を提供することにある。
The purpose of the present invention is to solve the above-mentioned problems by improving the silica reduction method to reduce the content of metal impurities such as iron and copper, and to quickly and stably reduce the amount of metal impurities such as iron and copper.
Moreover, it is an object of the present invention to provide a method for producing high-purity silicon carbide powder that can be supplied at low cost.

〔問題点を解決するための手段〕[Means for solving problems]

すなわち、本発明は、シリカと炭素を出発原料として炭
化けい素を製造する方法において、該出発原料を塩化水
素を含む非酸化性雰囲気中1500℃以上で合成し、炭
化けい素を得ることを特徴とする。さらに、本発明に使
用するシリカとしては、シリカゲルが、炭素としてはカ
ーボンブランクおよび/または加熱により炭素に変化す
る炭素質物質が好ましく、該シリカゲルの表面及び微細
な空孔中にカーボンブランクおよび/または加熱により
炭素に変化する炭素質物質を含浸させることが好ましい
That is, the present invention is a method for producing silicon carbide using silica and carbon as starting materials, characterized in that the starting materials are synthesized at 1500° C. or higher in a non-oxidizing atmosphere containing hydrogen chloride to obtain silicon carbide. shall be. Further, the silica used in the present invention is preferably silica gel, and the carbon is preferably a carbon blank and/or a carbonaceous material that changes into carbon by heating. It is preferable to impregnate the material with a carbonaceous material that changes into carbon when heated.

ところで本発明において、塩化水素の濃度は3vo1%
〜10vo1%であることが好ましい。
By the way, in the present invention, the concentration of hydrogen chloride is 3 vol.
It is preferable that it is 10vol%.

〔作用〕[Effect]

一般的なシリカ還元法は、シリカと炭素を混合した原料
を非酸化性雰囲気で加熱することにより炭化けい素を合
成する。
In a typical silica reduction method, silicon carbide is synthesized by heating a raw material mixture of silica and carbon in a non-oxidizing atmosphere.

本発明は、上記の炭化けい素合成時に塩化水素を添加す
ることによって、原料であるシリカと炭素中に含まれる
鉄、銅等の金属不純物を塩化物として揮散させることに
より高純度の炭化けい素を得ることができるという知見
に基づいてなされたものである。
The present invention is capable of producing high-purity silicon carbide by adding hydrogen chloride during the synthesis of silicon carbide and volatilizing metal impurities such as iron and copper contained in the raw material silica and carbon as chloride. This was done based on the knowledge that it is possible to obtain

炭化けい素合成温度は、1500℃以上であれば良<1
500℃〜2050℃の温度範囲では、β型炭化けい素
が、2050℃以上の温度範囲では、α型炭化けい素が
合成される。
Silicon carbide synthesis temperature should be 1500℃ or higher <1
In the temperature range of 500°C to 2050°C, β-type silicon carbide is synthesized, and in the temperature range of 2050°C or higher, α-type silicon carbide is synthesized.

また、1500℃以下の温度では炭化けい素の収率が極
端に悪くなるので好ましくない。
Furthermore, temperatures below 1500° C. are not preferred because the yield of silicon carbide becomes extremely poor.

シリカゲルの表面及び微細な空孔中にカーボンブラック
および/または加熱により炭素に変化する炭素質物質を
含浸したものを原料とした場合、シリカ還元反応が極め
て効率良く行なわれるため炭化けい素合成反応後には、
未反応シリカはほとんど残らない。
When the surface and fine pores of silica gel are impregnated with carbon black and/or a carbonaceous substance that converts into carbon when heated, the silica reduction reaction is extremely efficient, so after the silicon carbide synthesis reaction. teeth,
Almost no unreacted silica remains.

また、シリカと炭素の混合割合は、反応式Sing +
 3C=SiC+ 2COによってシリカ還元反応を完
結させるための理論炭素量の1.1〜2.0倍が良い。
In addition, the mixing ratio of silica and carbon is determined by the reaction formula Sing +
3C=SiC+ 2CO is preferably 1.1 to 2.0 times the theoretical carbon amount for completing the silica reduction reaction.

理論炭素量の1.1倍以下では、未反応シリカが残留し
、理論炭素量の2.0倍以上加えても、単に反応後に反
応に携わらなかった炭素が大量に残るばかりで好ましく
ない。
If the amount of carbon is less than 1.1 times the theoretical carbon amount, unreacted silica will remain, and if it is added more than 2.0 times the theoretical amount of carbon, a large amount of carbon that has not participated in the reaction will simply remain after the reaction, which is not preferable.

反応生成物には、余剰の炭素が幾分台まれているが、酸
化雰囲気中、500℃〜700℃で炭素を酸化して除去
することができる。
Although the reaction product contains some excess carbon, it can be removed by oxidizing the carbon at 500°C to 700°C in an oxidizing atmosphere.

高純度の炭化けい素を得るために加える塩化水素の濃度
は、3vo1%〜1ovo1%であることが好ましい。
The concentration of hydrogen chloride added to obtain high purity silicon carbide is preferably 3vol% to 1ovo1%.

3vo1%以下では高純度化が十分でなく、10νo1
%以上では合成された炭化けい素が塩化水素によって分
解してしまい炭化けい素の収率が悪くなってしまう。
If it is less than 3vo1%, high purity is not sufficient, and 10νo1
% or more, the synthesized silicon carbide is decomposed by hydrogen chloride and the yield of silicon carbide becomes poor.

〔実施例〕〔Example〕

次に、本発明を実施例により説明する。 Next, the present invention will be explained by examples.

実施例1 シリカ微粉末500gにカーボンブラック210gおよ
びフェノール樹脂430g (炭素換算で150 g)
を加えよく混合した。加えた炭素の量は理論炭素量の1
.2倍に相当する。尚、第1表中の倍率とは、(加えた
炭素量/理論炭素量)の値を表わす。
Example 1 500 g of fine silica powder, 210 g of carbon black and 430 g of phenol resin (150 g in terms of carbon)
was added and mixed well. The amount of carbon added is 1 of the theoretical amount of carbon.
.. Equivalent to twice as much. Note that the magnification in Table 1 represents the value of (added carbon amount/theoretical carbon amount).

次に、該原料を200℃で10時間乾燥後、Ar95v
o1χ、HCl5vol%の雰囲気中1650℃で4時
間合成反応を行なった。冷却後228.5gの反応生成
物を得た。該反応生成物を大気中650℃で5時間保持
しこ余剰の炭素を酸化して除去したところ194gの炭
化けい素を得た。
Next, after drying the raw material at 200°C for 10 hours, Ar95v
The synthesis reaction was carried out at 1650° C. for 4 hours in an atmosphere of o1χ and HCl 5 vol%. After cooling, 228.5 g of reaction product was obtained. The reaction product was held in the atmosphere at 650° C. for 5 hours, and excess carbon was oxidized and removed, yielding 194 g of silicon carbide.

得られた炭化けい素のX線回折図形からβ型炭化けい素
と同定された。化学分析により未反応の遊離シリカ、鉄
、銅を定量したところ、遊離シリカは3.4%1t%、
鉄は10pp+s、銅はtpp−であった。
Based on the X-ray diffraction pattern of the obtained silicon carbide, it was identified as β-type silicon carbide. When unreacted free silica, iron, and copper were quantified by chemical analysis, the free silica was 3.4%, 1t%,
Iron was 10 pp+s, copper was tpp-.

比較例1 雰囲気をAr100vol%とした他は、実施例1と全
く同一の方法で炭化けい素を合成した。得られた炭化け
い素はX線回折図形からβ型炭化けい素と同定されたが
、化学分析の結果遊離シリカは3.3wt%、鉄は54
0ppm、銅は10ppa+であった。
Comparative Example 1 Silicon carbide was synthesized in exactly the same manner as in Example 1, except that the atmosphere was changed to 100 vol% Ar. The obtained silicon carbide was identified as β-type silicon carbide from the X-ray diffraction pattern, but chemical analysis showed that free silica was 3.3 wt% and iron was 54 wt%.
0 ppm, copper was 10 ppa+.

実施例2.3 シリカゲル微粉550gにフェノール樹JIIf130
0g(炭素換算で455 g)を加えよく混合した。
Example 2.3 Phenol tree JIIf130 in 550g of silica gel fine powder
0 g (455 g in terms of carbon) was added and mixed well.

加えた炭素の量は理論炭素量の1.38倍に相当する。The amount of carbon added corresponds to 1.38 times the theoretical amount of carbon.

該原料から第1表の条件で炭化けい素を合成した。得ら
れた炭化けい素はX線回折図形からβ型炭化けい素と同
定された。化学分析の結果は第1表の通りである。
Silicon carbide was synthesized from the raw materials under the conditions shown in Table 1. The obtained silicon carbide was identified as β-type silicon carbide from the X-ray diffraction pattern. The results of chemical analysis are shown in Table 1.

比較例2.3 実施例2.3と同一の原料を使用し、第1表の条件で炭
化けい素を合成した。化学分析の結果未反応の遊離シリ
カが多く、炭化けい素の収率が極端に悪くなった。
Comparative Example 2.3 Using the same raw materials as in Example 2.3, silicon carbide was synthesized under the conditions shown in Table 1. Chemical analysis revealed that there was a large amount of unreacted free silica, and the yield of silicon carbide was extremely poor.

実施例4 実施例2.3と同一の原料を使用し、3vol%のHC
Iを含むAr雰囲気中2200℃で2時間合成反応を行
なった。得られた炭化けい素はX線回折図形からβ型炭
化けい素と同定された。化学分析の結果は第1表の通り
である。
Example 4 Using the same raw materials as Example 2.3, 3 vol% HC
The synthesis reaction was carried out at 2200° C. for 2 hours in an Ar atmosphere containing I. The obtained silicon carbide was identified as β-type silicon carbide from the X-ray diffraction pattern. The results of chemical analysis are shown in Table 1.

比較例4 雰囲気をAr100vol%とした他は、実施例4と全
く同一の方法で炭化けい素を合成した。得られた炭化け
い素はX線回折図形からα型炭化けい素と同定された。
Comparative Example 4 Silicon carbide was synthesized in exactly the same manner as in Example 4, except that the atmosphere was changed to 100 vol% Ar. The obtained silicon carbide was identified as α-type silicon carbide from the X-ray diffraction pattern.

化学分析の結果は第1表の通りである。The results of chemical analysis are shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

上述したように本発明によれば、シリカ還元法による炭
化けい素の合成において合成時に塩化水素を添加するこ
とにより、半導体製造用治具等として使用される炭化け
い素焼粘体用の原料として好適な鉄、銅等の金属不純物
の含有量が少ない高純度炭化けい素粉末を工業的に安定
して必要量を速やかに、しかも安価に供給出来た。今後
、炭化けい素の用途が広まる中で本発明の産業上の役割
は大といえる。
As described above, according to the present invention, by adding hydrogen chloride during the synthesis of silicon carbide by the silica reduction method, it is possible to obtain a material suitable as a raw material for silicon carbide sintered viscous bodies used as semiconductor manufacturing jigs, etc. High-purity silicon carbide powder with a low content of metal impurities such as iron and copper could be industrially stably supplied in the required amount quickly and at low cost. It can be said that the present invention will play a major role in industry as the uses of silicon carbide expand in the future.

特許出願人  東海高熱工業株式会社 手続補正書 昭和62年 6月/♂日 特許庁長官  黒  1) 明  雄  殿16事件の
表示 昭和62年特許願第 601号 2、発明の名称 3、補正をする者 事件との関係  特許出願人 トウ愈イスウネッゴウギコウヵブシキヵイシャ名称 東
海高熱工業株式会社 7、補正の内容 明細書12ペ一ジ9行目の“β型”を「α型」と訂正す
る。
Patent Applicant Tokai Konetsu Kogyo Co., Ltd. Procedural Amendment June 1986 / ♂ Date Commissioner of the Patent Office Black 1) Akio Tono Indication of Case 16 Patent Application No. 601 of 1988 2, Name of the Invention 3, Make amendments Relationship with the patent applicant's case Name: Tokai Kounetsu Kogyo Co., Ltd. 7, "β-type" in line 9 of page 12 of the amended statement of contents was changed to "α-type" correct.

Claims (1)

【特許請求の範囲】 1、シリカと炭素を出発原料として炭化けい素を製造す
る方法において、該出発原料を塩化水素を含む非酸化性
雰囲気中1500℃以上で合成し、炭化けい素を得るこ
とを特徴とする高純度炭化けい素粉末の製造方法。 2、シリカとしてシリカゲルを用い、炭素としてカーボ
ンブラックおよび/または加熱により炭素に変化する炭
素質物質を用いて、該シリカゲルの表面及び微細な空孔
中にカーボンブラックおよび/または加熱により炭素に
変化する炭素質物質を含浸する特許請求の範囲第1項記
載の高純度炭化けい素粉末の製造方法。 3、塩化水素の濃度が3vol%〜10vol%である
特許請求の範囲第1項または第2項記載の高純度炭化け
い素粉末の製造方法。
[Claims] 1. A method for producing silicon carbide using silica and carbon as starting materials, in which the starting materials are synthesized at 1500°C or higher in a non-oxidizing atmosphere containing hydrogen chloride to obtain silicon carbide. A method for producing high-purity silicon carbide powder, characterized by: 2. Using silica gel as the silica, using carbon black and/or a carbonaceous substance that changes to carbon when heated as the carbon, and using carbon black and/or a carbonaceous substance that changes to carbon when heated on the surface and fine pores of the silica gel. A method for producing high-purity silicon carbide powder according to claim 1, which comprises impregnating a carbonaceous material. 3. The method for producing high-purity silicon carbide powder according to claim 1 or 2, wherein the concentration of hydrogen chloride is 3 vol% to 10 vol%.
JP62000601A 1987-01-07 1987-01-07 Method for producing high-purity silicon carbide powder Expired - Lifetime JPH062568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62000601A JPH062568B2 (en) 1987-01-07 1987-01-07 Method for producing high-purity silicon carbide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62000601A JPH062568B2 (en) 1987-01-07 1987-01-07 Method for producing high-purity silicon carbide powder

Publications (2)

Publication Number Publication Date
JPS63170207A true JPS63170207A (en) 1988-07-14
JPH062568B2 JPH062568B2 (en) 1994-01-12

Family

ID=11478250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62000601A Expired - Lifetime JPH062568B2 (en) 1987-01-07 1987-01-07 Method for producing high-purity silicon carbide powder

Country Status (1)

Country Link
JP (1) JPH062568B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006256941A (en) * 2005-03-18 2006-09-28 Toda Kogyo Corp Method for manufacturing silicon carbide powder
CN115087620A (en) * 2020-01-31 2022-09-20 弗劳恩霍夫应用研究促进协会 Method for separating impurities from silicon carbide and silicon carbide powder subjected to temperature treatment and purification treatment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6792412B2 (en) * 2016-10-28 2020-11-25 太平洋セメント株式会社 Method for manufacturing silicon carbide powder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006256941A (en) * 2005-03-18 2006-09-28 Toda Kogyo Corp Method for manufacturing silicon carbide powder
CN115087620A (en) * 2020-01-31 2022-09-20 弗劳恩霍夫应用研究促进协会 Method for separating impurities from silicon carbide and silicon carbide powder subjected to temperature treatment and purification treatment
CN115087620B (en) * 2020-01-31 2024-05-07 弗劳恩霍夫应用研究促进协会 Method for separating impurities from silicon carbide and temperature-treated and purified silicon carbide powder

Also Published As

Publication number Publication date
JPH062568B2 (en) 1994-01-12

Similar Documents

Publication Publication Date Title
JPS6112844B2 (en)
JPS5913442B2 (en) Manufacturing method of high purity type silicon nitride
JPS63170207A (en) Production of high-purity silicon carbide powder
JPS62241812A (en) Manufacture of silicon nitride
JPS6111886B2 (en)
JP2721678B2 (en) β-silicon carbide molded body and method for producing the same
US4582696A (en) Method of making a special purity silicon nitride powder
JPS5839764B2 (en) Method for producing aluminum nitride powder
JPH0553723B2 (en)
JPS5930645B2 (en) Manufacturing method of high purity α-type silicon nitride
US4795622A (en) Method for producing silicon-imide
US4914063A (en) Process for producing organic products containing silicon, hydrogen, nitrogen, and carbon by the direct reaction between elemental silicon and organic amines
JPS60195099A (en) Production of silicon nitride whisker
JPH0543210A (en) Production of high purity phosphorus
JPS6111885B2 (en)
JPS61201608A (en) Manufacture of high purity aluminum nitride powder
JPH03193617A (en) Production of silicon carbide powder
JPH0313166B2 (en)
JPS62143805A (en) Removal of chlorine and/or fluorine from silicon nitride powder
JPS62216907A (en) Manufacture of low carbon content silicon nitride
JPH0218310A (en) Preparation of zirconium-containing ceramic powder
Pugar et al. Process for producing organic products containing silicon, hydrogen, nitrogen, and carbon by the direct reaction between elemental silicon and organic amines and products formed thereby
JPH0454610B2 (en)
JPH05326B2 (en)
JPS63248798A (en) Production of silicon carbide whisker