JPS60195099A - Production of silicon nitride whisker - Google Patents

Production of silicon nitride whisker

Info

Publication number
JPS60195099A
JPS60195099A JP59048596A JP4859684A JPS60195099A JP S60195099 A JPS60195099 A JP S60195099A JP 59048596 A JP59048596 A JP 59048596A JP 4859684 A JP4859684 A JP 4859684A JP S60195099 A JPS60195099 A JP S60195099A
Authority
JP
Japan
Prior art keywords
silicon
gas
diimide
silicon nitride
thermal decomposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59048596A
Other languages
Japanese (ja)
Inventor
Tetsuo Matsumura
哲夫 松村
Masakazu Yamamoto
正和 山本
Katsunori Shimazaki
嶋崎 勝乗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP59048596A priority Critical patent/JPS60195099A/en
Publication of JPS60195099A publication Critical patent/JPS60195099A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/62Whiskers or needles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To produce silicon nitride whisker having an a-type crystal structure, in high yield, by dissolving silicon tetrachloride in a large amount of an organic solvent, passing ammonia gas thereto, and thermally decomposing the produced silicon diimide under a specific condition. CONSTITUTION:Silicon tetrachloride is dissolved in >=10 times vol., preferably about >=20 times vol. of an organic solvent such as n-hexane, and ammonia gas is passed through the solution while cooling the solution at about 0 deg.C. The produced silicon diimide is collected by evaporating the solvent. The silicon diimide is heated in a mixed gas stream composed of ammonia gas and/or nitrogen gas and hydrogen gas at a temperature increase of <=450 deg.C/hr to evaporate the remaining solvent, ammonium chloride, etc. successively, and then heated at 1,300-1,450 deg.C for >=2hr to remove the existing chlorine ion and oxygen, etc. completely, and to effect the thermal decomposition of the diimide to the silicon nitride whisker having an a-type crystal structure.

Description

【発明の詳細な説明】 本発明は窒化珪素の製造条件を改良するととによってα
−型結晶構造を有するウィスカー状窒化珪素を製造する
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention improves the manufacturing conditions of silicon nitride and thereby increases α
The present invention relates to a method of manufacturing whisker-like silicon nitride having a -type crystal structure.

セラミックス材料としては従来酸化物系材料が主流であ
ったが、最近は炭化珪素や窒化珪素が注目を集める様に
なっている。このうち本発明の対象となる窒化珪素(例
えばSN、N4 )は、高温強度、対磨耗性、耐食性な
どが優れている為耐熱構造材としての期待が高まってい
る。一方窒化珪素の製造手段について社色々外方法が模
索されているが、焼結体原料として適性の高いのはα−
型結晶含有量が多いものであるとされておシ、当該α−
型結晶の生成比率が高い方法としてシリコンジイミドの
熱分解法が注目されている。本発明者等もかねてからシ
リコンジイミドの熱分解法を研究しておシ、α−型結晶
の生成比率を更に高めると共に高強度材料として適性が
更に高いウィスカー状とするととについて検討してきた
。本発明はそれらの成果として完成されたものであって
、α−型結晶構造を有するウィスカー状窒化珪素を収率
良く製造する方法の提供を目的とするものである。そし
て上記目的に適う本発明の方法とは、有機溶剤中に4塩
化珪素を溶解してこれにアンモニアガスを通し、生成し
たシリコンジイミドを次いで熱分解することによって窒
化珪素を製造する方法において、 (1)有機溶剤の使用量を4塩化珪素の使用量に対して
10倍(容量比)以上とすること、(2)熱分解反応を
、アンモニアガス及び窒素ガスよシなる群から選択され
る1種以上のガスと水素ガスとの混合ガス気流中で行な
うこと、(3)熱分解反応における加熱昇温速度を45
0℃/時間以下とすること、及び (4)熱分解における加熱条件を1800〜1450℃
、2時間具、上とすること、 の4条件を満足しつつ遂行する点に要旨が存在するもの
である。
Oxide-based materials have conventionally been the mainstream as ceramic materials, but recently silicon carbide and silicon nitride have been attracting attention. Among these, silicon nitride (for example, SN, N4), which is the subject of the present invention, has high expectations as a heat-resistant structural material because of its excellent high-temperature strength, abrasion resistance, and corrosion resistance. On the other hand, various methods are being explored for producing silicon nitride, but α- is the most suitable as a raw material for sintered bodies.
It is said that the α-type crystal content is high.
Thermal decomposition of silicon diimide is attracting attention as a method with a high generation rate of type crystals. The present inventors have also been researching the thermal decomposition method of silicon diimide for some time, and have considered ways to further increase the production ratio of α-type crystals and create whisker-like crystals that are more suitable as high-strength materials. The present invention has been completed as a result of these efforts, and its purpose is to provide a method for producing whisker-like silicon nitride having an α-type crystal structure with good yield. The method of the present invention that meets the above objective is a method for producing silicon nitride by dissolving silicon tetrachloride in an organic solvent, passing ammonia gas through it, and then thermally decomposing the silicon diimide produced. 1) The amount of organic solvent used is 10 times or more (volume ratio) to the amount of silicon tetrachloride used, (2) The thermal decomposition reaction is carried out using gas selected from the group consisting of ammonia gas and nitrogen gas. (3) The heating temperature increase rate in the pyrolysis reaction is 45%.
(4) The heating conditions for thermal decomposition should be 1800 to 1450°C.
The gist lies in fulfilling the following four conditions: , 2 hours, and above.

4塩化珪素に対して10倍容量以上の有機溶剤を使うこ
ととしたのは、4塩化珪素とアンモニアガスとの反応に
よって形成されるシリコンジイミド、並びに副生ずる塩
化アンモニウムの結晶粒をいずれも微細化すると共に有
機溶剤中へ分散させそれ自身を次の熱分解反応における
良質の原料とするだけでなく、上記生成物による上記ア
ンモニアガス供給ラインの閉塞事故を防止し、上記反応
を好率良く且つ安全に完遂せしめる上で必須不可欠と考
えたからである。尚有機溶剤のよシ好ましい使用量は4
塩化珪素に対して20倍容量以上である。有機溶剤とし
ては一般にn−ヘキサン等の不活性溶媒が用いられるが
、その他4塩化珪素を溶解し且つ反応の進行に悪影響を
与いないものであれば全て本発明に利用することができ
る。反応は通常0℃前後に冷却しつつアンモニアガスを
導入し気液接触によって行なう。
The reason why we decided to use an organic solvent with a volume more than 10 times that of silicon tetrachloride is to make the crystal grains of silicon diimide formed by the reaction between silicon tetrachloride and ammonia gas and ammonium chloride, which is a by-product, fine. At the same time, by dispersing it in an organic solvent, it not only serves as a high-quality raw material for the next thermal decomposition reaction, but also prevents the ammonia gas supply line from being blocked by the product, making the reaction efficient and safe. This is because we believe that it is essential for achieving this goal. The preferred amount of organic solvent used is 4
It has a capacity more than 20 times that of silicon chloride. As the organic solvent, an inert solvent such as n-hexane is generally used, but any other solvent that dissolves silicon tetrachloride and does not adversely affect the progress of the reaction can be used in the present invention. The reaction is usually carried out by introducing ammonia gas while cooling to around 0° C. and bringing about gas-liquid contact.

反応完結時点ではスラリー状となっておシ、次の熱分解
反応に先だって主生成物であるシリコンジイミドを可及
的純粋に単離することが望まれる。
At the completion of the reaction, it is in the form of a slurry, and it is desirable to isolate silicon diimide, the main product, as pure as possible before the next thermal decomposition reaction.

その為まず有機溶剤及び未反応の4塩化珪素を蒸留分離
するが、この間の操作はシリコンジイミドの酸化分解を
防止する意図によ多窒素ガス雰囲気中で行なうのが良い
。蒸留後の残留物にはシリコンジイミドの他塩化アンモ
ニウムが混在し、又吸着等によって残留している有機溶
剤も含まれているので、これを熱分解装置に装入した上
で徐々に温度を上げながら順次除去していく必要がある
For this purpose, the organic solvent and unreacted silicon tetrachloride are first separated by distillation, but this operation is preferably carried out in a nitrogen-rich gas atmosphere in order to prevent oxidative decomposition of the silicon diimide. The residue after distillation contains ammonium chloride in addition to silicone diimide, as well as organic solvents remaining due to adsorption, etc., so this is charged into a pyrolysis device and the temperature is gradually raised. It is necessary to remove them one by one.

その為本発明では熱分解における昇温速度を450℃/
時間以下という遅い速度に設定し、まず吸着溶剤を除去
し、更に塩化アンモニウムを除去する。
Therefore, in the present invention, the temperature increase rate during thermal decomposition is set to 450℃/
A slow speed of less than 1 hour is set to first remove the adsorbent solvent and then remove the ammonium chloride.

溶剤としてn−へキサンを用いたときの昇温条件につい
て例示すると、例えば150℃の温度で30分程度でn
−ヘキサンはIIぼ十分除去され、更に300〜400
℃に加熱すれば塩化アンモニウムが昇華する。尚不純物
としては上記の他にも塩素イオンや酸素があシ、これら
を除く為には後述する様な水素含有ガス気流の形成下に
熱分解をはじめていく必要があるが、いずれにせよ45
0℃/時間を超える早さで昇温させていけば、前記の各
種不純物が十分に除去しきれず、生成した窒化珪素の焼
結性が悪くなって高温強度を十分に高めることを阻害す
ると共に、ウィスカーの緩やかな成長を促進させること
ができず所期の目的を達成することか不可能である。
To give an example of the heating conditions when using n-hexane as a solvent, for example, n-hexane increases in about 30 minutes at a temperature of 150°C.
- Hexane is removed almost II, and further 300-400
When heated to ℃, ammonium chloride sublimates. In addition to the above impurities, there are chlorine ions and oxygen, and in order to remove these, it is necessary to start thermal decomposition under the formation of a hydrogen-containing gas flow as described below, but in any case, 45
If the temperature is raised at a rate exceeding 0°C/hour, the various impurities mentioned above will not be removed sufficiently, and the sinterability of the produced silicon nitride will deteriorate, inhibiting the high temperature strength from being sufficiently increased. However, it is impossible to achieve the desired purpose because the gradual growth of the whiskers cannot be promoted.

熱分解反応をアンモニアガスと窒素ガスの混合ガス気流
中で行なうことは公知であシ、これによってシリコンジ
イミドと共存する塩素イオンは塩化アンモニウムとして
除去されていく。しかし本発叫渚等の研究によれば、不
純物として共存する酸素が十分に除去されないときは焼
結物としたときの機械的性質に悪影響が与えられること
が分かった。そこで酸素除去の目的で前述の如く水素ガ
スを前記気流中に混入したところ、酸素はH,0として
除去され、合わせて塩素イオンもHCIとして除去され
ることを見出した。又水素ガスによる上記作用効果が期
待される結果、従来アンモニアガスと窒素ガスを併用す
ることが必要とされていたものが、(1)アンモニアガ
スと水素ガスの鼾ガス、(2)窒素ガスと水素ガスの混
合ガス、並びに(3)前記王者の混合ガスのいずれであ
ってもよいことが明らかとなった。尚水素ガスの配合量
としては1〜50容量チ、好ましくは5〜40容量−の
比率で混合することが推奨される。
It is well known that the thermal decomposition reaction is carried out in a mixed gas flow of ammonia gas and nitrogen gas, whereby chlorine ions coexisting with silicon diimide are removed as ammonium chloride. However, according to the research of Nagisa et al., it was found that when the coexisting oxygen as an impurity is not sufficiently removed, the mechanical properties of the sintered product are adversely affected. Therefore, when hydrogen gas was mixed into the air stream as described above for the purpose of removing oxygen, it was found that oxygen was removed as H,0 and chlorine ions were also removed as HCI. In addition, as a result of the expected effects of hydrogen gas, the combination of ammonia gas and nitrogen gas that previously required the use of (1) snoring gas of ammonia gas and hydrogen gas, and (2) nitrogen gas and It has become clear that either a mixed gas of hydrogen gas or (3) the above-mentioned champion mixed gas may be used. It is recommended that hydrogen gas be mixed in a ratio of 1 to 50 volumes, preferably 5 to 40 volumes.

最後に熱分解の温度条件であるが、1300℃未満或は
2時間未満であると窒化珪素の結晶化が進み難くなって
アモルファス化し易く、又仮に結晶化しても粉末のまま
で止まシ易く、ウィスカー状への成長が不十分となる。
Finally, regarding the thermal decomposition temperature conditions, if it is less than 1300°C or less than 2 hours, it will be difficult for silicon nitride to crystallize and it will become amorphous, and even if it crystallizes, it will remain as a powder. The whisker-like growth becomes insufficient.

尚好ましい条件範囲は1300〜1450℃、2〜6時
間である。
The preferred range of conditions is 1300 to 1450°C for 2 to 6 hours.

次に実施例及び比較例を挙げて本発明の効果を明らかに
する。
Next, Examples and Comparative Examples will be given to clarify the effects of the present invention.

実施例1 n−へキサニア10100Oに4塩化珪素201mを加
え0℃に冷却した。同温度に保ちつつ乾燥アンモニアガ
スを7001nl/分の条件で通過させることによシ、
シリコンジイミドを製造した。シリコンジイミドと塩化
アンモニウムの分散したスラリー状生成物を蒸留に付し
てn−ヘキサンを回収し、蒸留物を電気炉に装填した。
Example 1 201 m of silicon tetrachloride was added to 10,100 O of n-hexania, and the mixture was cooled to 0°C. By passing dry ammonia gas at 7001 nl/min while maintaining the same temperature,
Manufactured silicon diimide. A slurry-like product in which silicon diimide and ammonium chloride were dispersed was subjected to distillation to recover n-hexane, and the distillate was charged into an electric furnace.

これに混合ガス(アンそニアガス:10容量チ、窒素ガ
ス二80容量チ、水素ガス:10容量%)を400mJ
/分の条件で流しながら200℃/時間の速度で昇温し
、1400℃に到達した時点で2時間保持するととによ
シシリコンジイミドの熱分解反応を完結させた。冷却し
て得られた生成物の走査電子顕微鏡写真を第1図にX線
回折結果を第2図に示す如く、α−型結晶に富んだウィ
スカー状S、i、N、であることが確認された。尚分析
結果によればSiの歩留シは原料に対し92重量%であ
った。
Add 400 mJ of mixed gas (amsonia gas: 10 volumes, nitrogen gas: 280 volumes, hydrogen gas: 10% by volume) to this.
The temperature was raised at a rate of 200° C./hour while flowing at a flow rate of 1,400° C./minute, and when the temperature reached 1,400° C., the temperature was maintained for 2 hours to complete the thermal decomposition reaction of silicon diimide. The scanning electron micrograph of the product obtained by cooling is shown in Figure 1, and the X-ray diffraction results are shown in Figure 2, which confirmed that it was a whisker-like S, i, N, rich in α-type crystals. It was done. According to the analysis results, the Si yield was 92% by weight based on the raw material.

尚水晶(95重量部)に焼結助剤としてMg0(5重量
部)を加え、窒素気流中300 kg、4m”、175
0℃、100分の加圧条件でホットプレスを行なって板
状試料を得た。一方市販の粉状Si3N4を入手し全く
同じ条件でホットプレスし板状試料を得た。これらの密
度及び曲げ強度を測定したところ第1表の通しであった
Furthermore, Mg0 (5 parts by weight) was added as a sintering aid to quartz crystal (95 parts by weight), and 300 kg, 4 m'', 175
Hot pressing was performed under pressure conditions of 0° C. and 100 minutes to obtain a plate-shaped sample. On the other hand, commercially available powdered Si3N4 was obtained and hot-pressed under exactly the same conditions to obtain a plate-shaped sample. The density and bending strength of these were measured and were as shown in Table 1.

第1表に見られる通シ、本発明の試料片は極めて強大な
曲げ強度を示し、従来品に比べて室温で1.3倍、12
00℃で1.6倍であシ、特に高温強度が飛躍的に改善
されていることが分かる。
As can be seen in Table 1, the specimen of the present invention exhibited extremely high bending strength, 1.3 times that of the conventional product at room temperature, and 12
It can be seen that the strength is 1.6 times lower at 00°C, and that the high-temperature strength in particular has been dramatically improved.

実施例2 実施例1と同様にして得たシリコンジイミドと塩化アン
モニウムの混合物に混合ガス(アンモニアガス=10容
量チ、水素ガス二20容量チ)を200mJ/分の条件
で流しながら300℃/時間の速度で昇温し、1350
℃に到達した時点で4時間保持することによシシリコン
ジイミドの熱分解反応を完結させた。この生成物の走査
電子顕微鏡写真を第3図に、X線回折結果を第4図に示
す。
Example 2 A mixture of silicon diimide and ammonium chloride obtained in the same manner as in Example 1 was heated at 300°C/hour while flowing a mixed gas (ammonia gas = 10 volumes, hydrogen gas 220 volumes) at a rate of 200 mJ/min. The temperature was raised at a rate of 1350
When the temperature reached °C, the temperature was maintained for 4 hours to complete the thermal decomposition reaction of silicon diimide. A scanning electron micrograph of this product is shown in FIG. 3, and the results of X-ray diffraction are shown in FIG.

a−型結晶に富んだウィスカー状51gN4であること
が分かる。水晶と市販の粉末状5i6N4を対比し9つ
不純物分析及び結晶組成を調べたところ、第2表に示す
通りであシ、本発明品では不純物が少ない上、α−型結
晶の比率は極めて高かった。
It can be seen that it is a whisker-like 51 g N4 rich in a-type crystals. When we compared crystal and commercially available powdered 5i6N4 and examined nine impurity analyzes and crystal compositions, we found that the products of the present invention had fewer impurities and an extremely high ratio of α-type crystals, as shown in Table 2. Ta.

第 2 表 □ □ 実施例3 実施例1と同様にして得たシリコンジイミドと塩化アン
モニウムの混合物に混合ガス(窒素ガスエフ0容量チ、
水素ガス二30容量チ)を400d/分の条件で流しな
がら400℃/時間の速度で昇温し1400℃に到達し
た時点で2時間保持して熱分解を完結した。得られた生
成物の走査電子顕微鏡写真を第5図に示す。
Table 2 □ □ Example 3 A mixture of silicon diimide and ammonium chloride obtained in the same manner as in Example 1 was charged with a mixed gas (nitrogen gas
The temperature was raised at a rate of 400°C/hour while flowing hydrogen gas (230 volumes) at 400 d/min, and when it reached 1400°C, it was held for 2 hours to complete thermal decomposition. A scanning electron micrograph of the obtained product is shown in FIG.

比較例1 n−ヘキサン400+++Jに4塩化珪素60dを加え
一10℃前後に冷却しながら混合ガス(アンモニアガス
=95容量チ、水素ガス=5容量q6)を70011L
lZ分の条件で通過させた。しかし約10分後には上記
混合ガスの供給ラインが閉塞し反応の続行が不可能とな
った。尚この時点でn−ヘキサン中の珪素を測定し反応
率を調べだところ6゜饅であった。これは有機溶剤量が
少な過ぎた為であると思われる。
Comparative Example 1 60d of silicon tetrachloride was added to 400++J of n-hexane, and while cooling to around 10°C, 70011L of mixed gas (ammonia gas = 95 volumes, hydrogen gas = 5 volumes, q6) was added.
It was allowed to pass under the conditions of 1Z. However, after about 10 minutes, the supply line for the mixed gas was blocked, making it impossible to continue the reaction. At this point, silicon in the n-hexane was measured and the reaction rate was found to be 6°. This seems to be because the amount of organic solvent was too small.

比較例2 実施例1と同様にして得られたシリコンジイミドと塩化
アンモニウムの混合物を電気炉に装填し真空(1o1〜
104 +<gA+F )に保ちながら200℃/時間
の昇温速度で加熱し、1400 ”C−に到達した時点
で2時間保持した。得られた窒化珪素は走査電子顕微鏡
写真(第6図)及びX線回析結果(第7図)に示す如く
大部分が粉状化し、且っβ−型結晶がかな)現われてお
ル本発明の目的は達せられなかった。熱分解に際して所
望のガスを流、さなかった為と思われる。
Comparative Example 2 A mixture of silicon diimide and ammonium chloride obtained in the same manner as in Example 1 was charged into an electric furnace and heated under vacuum (1o1~
The silicon nitride was heated at a temperature increase rate of 200°C/hour while maintaining the temperature at 1400"C- (104+<gA+F), and held for 2 hours when the temperature reached 1400"C-. As shown in the X-ray diffraction results (Fig. 7), most of the particles were powdered and β-type crystals appeared, so the object of the present invention could not be achieved. This seems to be because I didn't do it properly.

比較例3 実施例1と同様にして得られたシリコンジイミドと塩化
アンモニウムの混合物を電気炉に装填し混合ガス(窒素
ガス:95容量チ、水素ガス:5容in>を400mJ
/分の条件で流しなから600℃/時間の昇温速度で加
熱し、1350℃に到達した時点で2時間保持した。得
られた5i6N4は第8図(走査電子顕微鏡写真)に示
す如くほぼ完全な粉末状を呈していた。これは昇温速度
が早過ぎた為であると思われる。
Comparative Example 3 A mixture of silicon diimide and ammonium chloride obtained in the same manner as in Example 1 was charged into an electric furnace, and a mixed gas (nitrogen gas: 95 volumes, hydrogen gas: 5 volumes) was heated at 400 mJ.
The mixture was heated at a heating rate of 600° C./hour under the condition of 1,350° C./hour without running a sink, and when the temperature reached 1350° C., it was held for 2 hours. The obtained 5i6N4 had an almost perfect powder form as shown in FIG. 8 (scanning electron micrograph). This seems to be because the temperature increase rate was too fast.

【図面の簡単な説明】[Brief explanation of the drawing]

第11 s t s t 6r 8図は走査電子顕微鏡
写真、第2.4.7図はX線回析結果を示すグラフであ
る。 出願人 株式会社神戸製鋼所 第3図 第7図 手続−?tgj j[−町−2(方式)%式%] 2、発明の名称 ウィスカー状窒化珪素の製造法 3、補正をする者 シ1を件との関係 特許出願人 神戸市中央区脇浜町−1’ l’l 3番18号(1,
19)株式会社 神戸製鋼所 代表者 牧 冬 彦 4、代理人〒530 大阪市北区堂島2丁目3番7号 シンコービル 昭和59年6月26日 (発送日) 6、補正の対象 明細書の「発明の詳細な説明」及び「図面の簡単な説明
」の各欄並びに図面 7、補正の内容 。 (1)明細書中の下記箇所を夫々訂正します。 (a)第8頁第2〜3行 (誤)生成物の・・・・・・に示す如く、(正)、生成
物のX線回折結果を第1図に示す如く(参考写真lは走
査電子顕微鏡写 真)、 (b)第9頁第11−12行 (誤)生成物の・・・・・・に示す。 (正)生成物のX線回折結果を第2図に示す(#考写真
2は走査電子顕微鏡写 真)。 (c)第10頁第2表の下から第7〜8行(誤)完結し
た。・・・・・・に示す。 (正)完結した(参考写真3は走査電子顕微鏡写真)。 (d)第11頁第11−12行 (誤)走査電子・・・・・・に示す如く。 (正)第3図のX線回折結果に示す如く (参考写真4
は走査電子顕微鏡写真)、 (e)第12頁第3〜5行 (誤)第814・・・・・・呈していた。 (止)はぼ完全な粉末状を呈していた(参考写真5は走
査電子fI微鏡写真)。 (f)第12頁第7〜9行 (誤)第1,3.・・・・・・である。 (正)第1.2.3図はX線回折結果を示すグラフであ
る。。 (2)図面のうち第1.3,5,6.81Mは夫々の複
写に朱害しました様に削除します。又同じく朱書しまし
た様に第2図は第1図に、第4図は第2図に、第7図は
第3図に夫々打圧します。又新たに参考写真l〜5を別
紙の通り提出します。
Figure 11 is a scanning electron micrograph, and Figure 2.4.7 is a graph showing the results of X-ray diffraction. Applicant: Kobe Steel, Ltd. Figure 3 Figure 7 Procedures-? tgj j [-machi-2 (method) % formula %] 2. Name of the invention Process for producing whisker-shaped silicon nitride 3. Person making the amendment 1. Relationship to the matter Patent applicant Wakihama-cho-1, Chuo-ku, Kobe City 'l'l No. 3 No. 18 (1,
19) Kobe Steel Co., Ltd. Representative: Fuyuhiko Maki 4, Agent: Shinko Building, 2-3-7 Dojima, Kita-ku, Osaka 530 June 26, 1980 (Shipping date) 6. Each column of “Detailed Description of the Invention” and “Brief Description of Drawings” as well as Drawing 7 and contents of amendments. (1) The following sections in the statement will be corrected. (a) Page 8, lines 2-3 (Incorrect) The product is as shown in (Correct) The X-ray diffraction results of the product are shown in Figure 1 (Reference photo l is (scanning electron micrograph), (b) Page 9, lines 11-12 (incorrect) of the product. (Correct) The X-ray diffraction results of the product are shown in FIG. 2 (Photo 2 is a scanning electron micrograph). (c) Page 10, Table 2, rows 7-8 from the bottom (wrong) Completed. ...shown below. (Correct) Completed (Reference photo 3 is a scanning electron micrograph). (d) Page 11, lines 11-12 (erroneous) Scanning electron... As shown. (Correct) As shown in the X-ray diffraction results in Figure 3 (Reference photo 4)
(scanning electron micrograph), (e) Page 12, lines 3 to 5 (erroneous) No. 814... (Stop) It was almost completely powdery (Reference photo 5 is a scanning electron fI micrograph). (f) Page 12, lines 7-9 (wrong) 1st, 3rd. It is... (Correct) Figure 1.2.3 is a graph showing the results of X-ray diffraction. . (2) Of the drawings, drawings 1.3, 5, and 6.81M will be deleted as if they were red in the respective copies. Also, as I wrote in red, Figure 2 is stamped on Figure 1, Figure 4 is stamped on Figure 2, and Figure 7 is stamped on Figure 3. We will also submit new reference photos 1 to 5 as shown in the attached sheet.

Claims (1)

【特許請求の範囲】 有機溶剤中に4塩化珪素を溶解してこれにアンモニアガ
スを通し、生成したシリコンジイミドを次いで熱分解す
ることによって窒化珪素を製造する方法において、以下
の条件を満足することを特徴とするウィスカー状窒化珪
素の製造法。 有機溶剤の使用量を4塩化珪素の使用量に対して10倍
(容量比)以上とすること、 熱分解反応を、アンモニアガス及び窒素ガスよ)なる群
から選択される1種以上のガスと水素ガスとの混合ガス
気流中で行なうこと、 熱分解反応における加熱昇温速度を450℃/時間以下
とすること、及び 熱分解における加熱条件を130.0〜1450℃、2
時間以上とすること。
[Scope of Claims] A method for producing silicon nitride by dissolving silicon tetrachloride in an organic solvent, passing ammonia gas therein, and then thermally decomposing the produced silicon diimide, which satisfies the following conditions. A method for producing whisker-like silicon nitride, characterized by: The amount of organic solvent used should be at least 10 times (by volume) the amount of silicon tetrachloride used, and the thermal decomposition reaction should be carried out with one or more gases selected from the group consisting of ammonia gas and nitrogen gas. It should be carried out in a mixed gas flow with hydrogen gas, the heating temperature increase rate in the thermal decomposition reaction should be 450°C/hour or less, and the heating conditions in the thermal decomposition should be 130.0 to 1450°C, 2
It should be more than an hour.
JP59048596A 1984-03-13 1984-03-13 Production of silicon nitride whisker Pending JPS60195099A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59048596A JPS60195099A (en) 1984-03-13 1984-03-13 Production of silicon nitride whisker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59048596A JPS60195099A (en) 1984-03-13 1984-03-13 Production of silicon nitride whisker

Publications (1)

Publication Number Publication Date
JPS60195099A true JPS60195099A (en) 1985-10-03

Family

ID=12807783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59048596A Pending JPS60195099A (en) 1984-03-13 1984-03-13 Production of silicon nitride whisker

Country Status (1)

Country Link
JP (1) JPS60195099A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4788049A (en) * 1986-03-21 1988-11-29 Gte Products Corporation Method for controlling the crystal morphology of silicon nitride
EP0410107A2 (en) * 1989-07-22 1991-01-30 Hüls Aktiengesellschaft Process for the preparation of silicon dimide with a low carbon content
CN105217583A (en) * 2015-09-28 2016-01-06 韩召 A kind of method preparing nano level high purity silicon nitride
CN108928806A (en) * 2017-05-25 2018-12-04 新疆晶硕新材料有限公司 A kind of method and silicon imide synthesizing silicon imide

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4788049A (en) * 1986-03-21 1988-11-29 Gte Products Corporation Method for controlling the crystal morphology of silicon nitride
EP0410107A2 (en) * 1989-07-22 1991-01-30 Hüls Aktiengesellschaft Process for the preparation of silicon dimide with a low carbon content
CN105217583A (en) * 2015-09-28 2016-01-06 韩召 A kind of method preparing nano level high purity silicon nitride
CN105217583B (en) * 2015-09-28 2017-05-31 青岛桥海陶瓷新材料科技有限公司 A kind of method for preparing nanoscale high purity silicon nitride
CN108928806A (en) * 2017-05-25 2018-12-04 新疆晶硕新材料有限公司 A kind of method and silicon imide synthesizing silicon imide

Similar Documents

Publication Publication Date Title
US4428916A (en) Method of making α-silicon nitride powder
JPS5850929B2 (en) Method for manufacturing silicon carbide powder
GB2040902A (en) High purity silicon nitride and its production
US4613490A (en) Process for preparing silicon nitride, silicon carbide or fine powdery mixture thereof
JPS5913442B2 (en) Manufacturing method of high purity type silicon nitride
JPS63274611A (en) Manufacture of ceramic powder based on beta&#39;-sialon
JPS60195099A (en) Production of silicon nitride whisker
JPS62241812A (en) Manufacture of silicon nitride
JPS6111886B2 (en)
Anfilogov et al. Carbothermal synthesis of nanoparticulate silicon carbide in a self-contained protective atmosphere
JPS5930645B2 (en) Manufacturing method of high purity α-type silicon nitride
JPS61146797A (en) Continuous manufacture of silicon nitride and silicon carbide
KR102475700B1 (en) Preparation method of silicon powder, and preparation method of silicon nitride using the same
JPS6111885B2 (en)
JPS61127616A (en) Production of silicon carbide fine powder
JPS63170207A (en) Production of high-purity silicon carbide powder
JPS6227003B2 (en)
JPS6227004B2 (en)
JPH0454610B2 (en)
JP2569074B2 (en) α-Silicon nitride powder and method for producing the same
JPS61168567A (en) Manufacture of silicon carbide sintered body
JPH02289457A (en) Decreasing carbon content in ceramic powder
JP2635695B2 (en) Method for producing α-silicon nitride powder
JPS63230508A (en) Production of silicon nitride-silicon carbide mixed fine powder of silicon nitride fine powder
JPH0535683B2 (en)