JPS63230508A - Production of silicon nitride-silicon carbide mixed fine powder of silicon nitride fine powder - Google Patents

Production of silicon nitride-silicon carbide mixed fine powder of silicon nitride fine powder

Info

Publication number
JPS63230508A
JPS63230508A JP62061275A JP6127587A JPS63230508A JP S63230508 A JPS63230508 A JP S63230508A JP 62061275 A JP62061275 A JP 62061275A JP 6127587 A JP6127587 A JP 6127587A JP S63230508 A JPS63230508 A JP S63230508A
Authority
JP
Japan
Prior art keywords
fine powder
silicon nitride
silicon
powder
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62061275A
Other languages
Japanese (ja)
Inventor
Hiromasa Isaki
寛正 伊崎
Takamasa Kawakami
川上 殷正
Takuji Shidara
琢治 設楽
Kouichi Yakiyou
八京 孝一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP62061275A priority Critical patent/JPS63230508A/en
Publication of JPS63230508A publication Critical patent/JPS63230508A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently obtain the titled high-purity isometric fine powder of an uniform and fine particle shape, by thermally decomposing a specific organosilicon compound in the vapor phase in a nonoxidizing atmosphere without containing NH3 and heat-treating the resultant amorphous fine powder in an NH3-containing nonoxidizing atmosphere. CONSTITUTION:An organosilicon compound expressed by the formula (R is hydrocarbon group, such as alkyl or allyl; n is 1-3) is previously gasified and thermally decomposed in the vapor phase in a nonoxidizing atmosphere, such as N2, Ar- or H2-containing N2 or Ar, at 800-1,600 deg.C without using NH3 to provide amorphous spherical fine powder of uniform shape having <=0.3mu average particle diameter. The obtained fine powder is then heat-treated at 1,400-1,600 deg.C in a mixed gas atmosphere of 5-100vol.% NH3 and a nonoxidizing gas, such as N2 or Ar for 0.5-24hr.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、窒化ケイ素−炭化ケイ素混合微粉末または窒
化ケイ素微粉末の製造法に関し、さらに詳しくは、気相
反応法による窒化ケイ素−炭化ケイ素混合微粉末、ある
いは窒化ケイ素微粉末の製造法に係り、特に気相反応時
おいてはNH3を使用せず、熱処理工程においてN H
zを含む雰囲気ガス中で結晶化を行う、窒化ケイ素と炭
化ケイ素とが所望する組成で存在する高純度で、粒子形
状の揃った等軸状粒子からなる微粉末を効率よく製造す
る方法に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for producing a silicon nitride-silicon carbide mixed fine powder or a silicon nitride fine powder, and more specifically, a method for producing a silicon nitride-silicon carbide mixed powder or a silicon nitride fine powder by a gas phase reaction method. Regarding the manufacturing method of mixed fine powder or silicon nitride fine powder, in particular, NH3 is not used in the gas phase reaction, and NH3 is not used in the heat treatment process.
The present invention relates to a method for efficiently producing fine powder consisting of equiaxed particles with high purity and uniform particle shape, in which silicon nitride and silicon carbide exist in a desired composition, by performing crystallization in an atmospheric gas containing Z.

〔従来技術およびその問題点〕[Prior art and its problems]

近年、窒化ケイ素および炭化ケイ素は高温構造材料とし
て多方面に利用されつつある。
In recent years, silicon nitride and silicon carbide are being used in a wide range of applications as high-temperature structural materials.

ところで、高温構造材料として要求される物性には様々
なものがあるが、窒化ケイ素と炭化ケイ素とを比較する
と、窒化ケイ素は耐熱衝撃性や破壊靭性に、また炭化ケ
イ素は耐酸化性や高温強度にそれぞれ優れた性質を有し
ている。このため窒素化ケイ素、炭化ケイ素はそれぞれ
の特徴を生かした分野において開発が行われている。一
方、両者の利点を生かすために窒化ケイ素−炭化ケイ素
複合セラミックスの開発も試みられている。この方法と
しては、例えば、 (1)窒化ケイ素粉末と炭化ケイ素粉末とを機械的に混
合してホットプレスなどで焼結する方法、(2)反応焼
結的な手法を用いて、予め炭化ケイ素とケイ素との混合
物を成型した後窒化反を行わせて窒化ケイ素質を生成さ
せたり、窒化ケイ素と炭素との混合物を成型後ケイ素を
浸透させて炭化ケイ素を生成させる方法。
By the way, there are various physical properties required for high-temperature structural materials, but when comparing silicon nitride and silicon carbide, silicon nitride has good thermal shock resistance and fracture toughness, while silicon carbide has good oxidation resistance and high-temperature strength. Each has excellent properties. For this reason, silicon nitride and silicon carbide are being developed in fields that take advantage of their respective characteristics. On the other hand, attempts have been made to develop silicon nitride-silicon carbide composite ceramics in order to take advantage of the advantages of both. Examples of this method include: (1) mechanically mixing silicon nitride powder and silicon carbide powder and sintering the mixture using a hot press or the like; (2) using a reaction sintering method to prepare silicon carbide powder in advance. A method in which a mixture of silicon nitride and carbon is molded and then subjected to nitriding to produce silicon nitride, or a mixture of silicon nitride and carbon is molded and silicon is infiltrated to produce silicon carbide.

(3)有機ケイ素ポリマーを原料として、これにケイ素
粉末を加えて直接あるいは熱処理後成型し、窒化反応を
行わせて炭化ケイ素−窒化ケイ素混合物を生成させる方
法。
(3) A method in which an organosilicon polymer is used as a raw material, silicon powder is added to the polymer, molded directly or after heat treatment, and a nitriding reaction is performed to produce a silicon carbide-silicon nitride mixture.

等が知られている。これらのうち、(2)、(3)によ
る方法は一般に、焼結体の寸法安定性が良いという利点
はあるが、得られる焼結体は多孔質になり易く、緻密な
焼結体を得ることが困難である。
etc. are known. Among these methods, methods (2) and (3) generally have the advantage of good dimensional stability of the sintered body, but the resulting sintered body tends to be porous, and it is difficult to obtain a dense sintered body. It is difficult to do so.

このため高密度の複合体を得るためには通常前記(1)
の方法が行われている。たとえばP、F、Lange。
Therefore, in order to obtain a high-density composite, the above-mentioned (1) is usually required.
method is being used. For example, P, F, Lange.

J、 Am、 Ceram、 Soc、 56,445
(1973)において、窒化ケイ素に炭化ケイ素を混合
しホットプレス焼結することにより熱伝導度を高めたり
、高温強度の改良された複合体を得ている。しかし、室
温強度などはむしろ低下する傾向を見せ、用いる原料の
粒径に大きく依存することが報告されている。
J, Am, Ceram, Soc, 56,445
(1973), by mixing silicon nitride with silicon carbide and hot-press sintering, a composite with improved thermal conductivity and high-temperature strength was obtained. However, it has been reported that room temperature strength and other properties tend to decrease, and are largely dependent on the particle size of the raw materials used.

この様に一部の物性は向上するものの他の物性の改良が
みられず、この方法では必ずしも期待した物性が得られ
ない。これは原料粉末の粒径や形状などが複合体を形成
するのに不適であったり、各成分が均一に混合されてい
ないことなどによるものと考えられる。
As described above, although some physical properties are improved, other physical properties are not improved, and the expected physical properties are not necessarily obtained with this method. This is thought to be due to the particle size and shape of the raw material powder being unsuitable for forming a composite, or to the fact that each component is not mixed uniformly.

すなわち、粒径の大きな原料を使用した場合は焼結体中
に欠陥を導入することになり、強度の高いものを得るこ
とはできない。また均一に混合されず分散が不充分であ
ることも同様な結果を示すことになる。さらにまた、均
一混合するために長時間にわたって機械的に混合を行う
ことは、混合中に不純物が混入する原因ともなり好まし
くない結果をもたらすことにもなる。
That is, if a raw material with a large particle size is used, defects will be introduced into the sintered body, making it impossible to obtain a sintered body with high strength. Furthermore, if the mixture is not uniformly mixed and the dispersion is insufficient, the same result will occur. Furthermore, performing mechanical mixing over a long period of time in order to achieve uniform mixing may cause impurities to be mixed in during the mixing, resulting in undesirable results.

こうした原料粉末の欠点を改善するために、無機のハロ
ゲン化ケイ素化合物とアンモニアおよび炭素質物質とを
気相反応させて、窒化ケイ素と炭化ケイ素との混合粉末
を製造する方法が提示された(特開昭58−91058
) 、この方法によれば、窒素化ケイ素と炭化ケイ素と
が予め均一に混合され、熱処理後の粉末の比表面積が1
0m”/g以上であることから微細な粒子で構成されて
いると言われている。しかしながら、この方法はケイ素
源と炭素源は別々な原料を用いるものであり、それぞれ
の熱分解温度が異なる故、反応中に同時に分解して窒化
ケイ素と炭化ケイ素とが均一に混合さているとは言い難
く、また無機ハロゲン化物を使用するために製造過程に
おいて多量のハロゲン化アンモンが副生したり、四塩化
ケイ素を用いる窒化ケイ素粉末の合成に見られる様に結
晶後の粉末中には成型体の密度を低下させ焼結時の緻密
化を阻害する針状結晶が生成し易い欠点がある。
In order to improve these drawbacks of raw material powder, a method has been proposed for producing a mixed powder of silicon nitride and silicon carbide by causing a gas phase reaction between an inorganic silicon halide compound, ammonia, and a carbonaceous material (especially Kaisho 58-91058
), according to this method, silicon nitride and silicon carbide are uniformly mixed in advance, and the specific surface area of the powder after heat treatment is 1.
0 m"/g or more, it is said to be composed of fine particles. However, this method uses separate raw materials for the silicon source and the carbon source, and the thermal decomposition temperatures of each are different. Therefore, it is difficult to say that silicon nitride and silicon carbide are mixed uniformly because they decompose simultaneously during the reaction, and because inorganic halides are used, large amounts of ammonium halides are produced as by-products in the manufacturing process. As seen in the synthesis of silicon nitride powder using silicon chloride, there is a drawback that needle-shaped crystals are likely to be formed in the powder after crystallization, which lowers the density of the molded body and inhibits densification during sintering.

また、窒化ケイ素微粉末を得る方法と゛しては、金属ケ
イ素の窒化法、シリカ還元法、イミド分解法、あるいは
気相法などが一般によく知られている。これらのうち気
相法は高純度で微細な粉末かえられるが、無機ハロゲン
化物を使用した場合、反応が非常に速くガス供給部分で
も反応が起こり供給部分の閉塞を惹き起こす危険性があ
り、また反応に伴って多量の塩化アンモンを副生ずる。
In addition, methods for obtaining fine silicon nitride powder include metal silicon nitriding, silica reduction, imide decomposition, and gas phase methods. Among these methods, the gas phase method can produce fine powder with high purity, but when inorganic halides are used, the reaction is very fast and there is a risk that the reaction will occur in the gas supply section and cause clogging of the supply section. A large amount of ammonium chloride is produced as a by-product during the reaction.

さらには結晶化において成型体の密度を低下させ緻密化
を阻害する原因となる針状結晶が多く生成する等の欠点
がある。
Furthermore, there is a drawback that many needle-shaped crystals are formed during crystallization, which lowers the density of the molded product and inhibits densification.

こうした欠点を解消すべく本発明者らは先に有機ハロゲ
ン化ケイ素化合物とアンモニアとの気相反応による窒化
ケイ素−炭化ケイ素混合微粉末の製造方法(特開昭6O
−200814)、あるいは窒化ケイ素微粉末の製造法
(特開昭61−63506>を提案した。
In order to eliminate these drawbacks, the present inventors have previously developed a method for producing a silicon nitride-silicon carbide mixed fine powder by a gas-phase reaction between an organohalogenated silicon compound and ammonia (Japanese Patent Application Laid-open No.
-200814) or a method for producing silicon nitride fine powder (JP-A-61-63506).

これらの方法は原料段階ですでにケイ素と炭素は結合し
ているためアンモニアとの熱分解反応によって分子レベ
ルで混じりあった高純度で微細な混合粉末が得られ、ま
た、気相反応時に起こる原料供給部分の閉塞の問題をも
解決されると共に副生ずる塩化アンモンの量も極めて少
ない。
In these methods, since silicon and carbon are already bonded at the raw material stage, a high-purity, fine mixed powder can be obtained in which they are mixed at the molecular level through a thermal decomposition reaction with ammonia. The problem of clogging of the supply section is also solved, and the amount of ammonium chloride produced as a by-product is also extremely small.

しかしながら、これらの方法においても得られた微粉末
の熱処理工程で針状結晶や金属ケイ素がしばしば生成す
ることが判った。
However, it has been found that even in these methods, needle-like crystals and metallic silicon are often generated during the heat treatment process of the obtained fine powder.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、上記の従来法に認められる種々の問題点
に鑑み、窒化ケイ素粉末と炭化ケイ素粉末とを機械的に
混合する手段によらず、予め均一に混合され、しかも高
純度で微細かつ粒子形状の揃った粒子からなる窒化ケイ
素−炭化ケイ素混合微粉末、あるいは窒化ケイ素微粉末
の合成法について研究をおこなった結果、ハロゲンを含
む有機ケイ素化合物を用い、気相反応の段階でアンモニ
アの存在しない非酸化性雰囲気下に反応させ、熱処理工
程を、狙13を含む非酸化性雰囲気下で、NH2量、反
応温度および反応時間を充分に制御して行うことにより
、上記の目的とする微粉末が得られることを見出した。
In view of the various problems observed in the above-mentioned conventional methods, the present inventors have determined that silicon nitride powder and silicon carbide powder can be mixed uniformly in advance, with high purity and finely divided, without using mechanical mixing means. As a result of research on the synthesis method of silicon nitride-silicon carbide mixed fine powder or silicon nitride fine powder, which consists of particles with uniform particle shape, we found that using an organic silicon compound containing halogen, ammonia can be removed in the gas phase reaction stage. By conducting the reaction in a non-oxidizing atmosphere that does not exist, and carrying out the heat treatment step in a non-oxidizing atmosphere containing Aim 13, with sufficient control of the amount of NH2, reaction temperature, and reaction time, the above-mentioned target microorganism can be achieved. It has been found that a powder can be obtained.

本発明は、高純度で微細かつ針状結晶や遊離ケイ素を含
まない粒子形状の制御された等軸状の粒子からなる窒化
ケイ−炭化ケイ素混合微粉末、あるいは高純度で微細か
つα化率の高い等軸状の粒子からなる窒化ケイ微粉末を
提供するにある。
The present invention provides a silicon nitride-silicon carbide mixed fine powder consisting of highly pure, fine, equiaxed particles with a controlled particle shape that does not contain acicular crystals or free silicon, or a high purity, fine, and gelatinized powder. The present invention provides a fine silicon nitride powder consisting of highly equiaxed particles.

すなわち、本発明は、一般式 R,sic l a−n
(ただし、式中Rはアルキル基、アリル基、等の炭化水
素基を示し、nは1〜3である)で表される有機ケイ素
化合物をN!、Arあるいは■2を含むN、、Arなど
の非酸化性雰囲気下、気相熱分解して非晶質微粉末を得
、該微粉末をNH3を含む非酸化性雰囲気下で、140
0〜1600°Cで熱処理することを特徴とする窒化ケ
イ素−炭化ケイ素混合微粉末または窒化ケイ素微粉末の
製造法に関する。
That is, the present invention provides general formula R, sic l a-n
(However, in the formula, R represents a hydrocarbon group such as an alkyl group or an allyl group, and n is 1 to 3). , Ar or ■ N containing 2, Ar, etc. to obtain an amorphous fine powder by vapor phase pyrolysis, and the fine powder was heated to 140 ml under a non-oxidizing atmosphere containing NH3.
The present invention relates to a method for producing silicon nitride-silicon carbide mixed fine powder or silicon nitride fine powder, which is characterized by heat treatment at 0 to 1600°C.

本発明の方法を実施するに際して、気相反応は種々の加
熱あるいは分解手段が適用される。たとえば抵抗式また
は高周波などの加熱方式や、プラズマ法、レーザー分解
法等が挙げられるが、実用的には加熱炉方式が一般的で
、この場合通常800”C〜1600°Cの温度範囲で
、N、、ArあるいはH2を含むN2.Arなどの非酸
化性雰囲気下で行われる。
When carrying out the method of the present invention, various heating or decomposition means are applied to the gas phase reaction. For example, heating methods such as resistance type or high frequency, plasma method, laser decomposition method, etc. are used, but in practice, the heating furnace method is common, and in this case, the temperature range is usually 800"C to 1600°C. The process is carried out under a non-oxidizing atmosphere such as N, Ar, or N2.Ar containing H2.

雰囲気ガス中にH2を添加することは生成粉末中の炭素
量を制御し原料中の塩素を塩酸として排出するのに有効
である。
Adding H2 to the atmospheric gas is effective in controlling the amount of carbon in the produced powder and discharging chlorine in the raw material as hydrochloric acid.

本発明において原料として使用される有機ケイ素化合物
は一般式 R,5iCf4−(ただし、式中Rはアルキ
ル基、アリル基、等の炭化水素基を示し、nは1〜3で
ある)で表され、具体的には、CHJtCI!、:l 
l (CHi)zstcf t + (CH2)ssx
cf +(C1,・C3)SiCf *、(CHI) 
(CJs)SiCf zなどが例示される。
The organosilicon compound used as a raw material in the present invention is represented by the general formula R,5iCf4- (wherein R represents a hydrocarbon group such as an alkyl group or an allyl group, and n is 1 to 3). , specifically, CHJtCI! , :l
l (CHi)zstcf t + (CH2)ssx
cf + (C1,・C3)SiCf*, (CHI)
(CJs)SiCfz etc. are exemplified.

本発明の方法における気相反応の具体的な方法を加熱炉
方式により説明すると、上記の原料有機ケイ素化合物を
予めガス化し、NH,を使用することなく、N2.Ar
あるいはH2を含むN2.八rなどの非酸化性ガスと充
分に混合したのち、反応管へ供給する。反応は速やかに
進行し、反応によって生成した浮遊状のガス状物は冷却
、凝集させ、捕集器に導かれ捕集される。この場合捕集
器としては一般に用いられている濾過方式の集塵器、電
気集塵器、サイクロン等が適宜使用される。
The specific method of the gas phase reaction in the method of the present invention will be explained using a heating furnace method.The above raw material organosilicon compound is gasified in advance, and N2. Ar
Or N2 containing H2. After thoroughly mixing with a non-oxidizing gas such as 8R, it is supplied to the reaction tube. The reaction proceeds rapidly, and the suspended gaseous substances produced by the reaction are cooled, coagulated, and guided to a collector where they are collected. In this case, a commonly used filter type dust collector, electric precipitator, cyclone, etc. is appropriately used as the collector.

このような方法で得られた主生成物は、平均粒径が0.
3μm以下の粒度を有し、形状の揃った非晶質の球状微
粉末である。
The main product obtained by this method has an average particle size of 0.
It is an amorphous spherical fine powder with a uniform shape and a particle size of 3 μm or less.

かくして得られた非晶質微粉末は、引続き高温下に熱処
理される。本発明においてはこの熱処理工程をN11.
を含む非酸化性雰囲気下に行うことが必須であり、NH
,が熱処理過程においてNHあるいはNH□などの活性
種に分解し、これが非晶質微粉末と反応し結晶化を伴っ
て窒化ケイ素を生成し、粒子形状の揃った等軸状の結晶
質の微粉末を生成する。この場合NH,iの濃度を適宜
選択することにより、生成する微粉末中の窒化ケイ素の
含有量を所望する量に選ぶことができ、通常5VolX
〜100Volχの範囲で使用され、NH,単独あるい
はN13.とN!、^rなどの非酸化性ガスと混合して
用いられる。
The amorphous fine powder thus obtained is subsequently heat treated at a high temperature. In the present invention, this heat treatment step is carried out at N11.
It is essential to carry out under a non-oxidizing atmosphere containing NH
, decomposes into active species such as NH or NH Produces powder. In this case, by appropriately selecting the concentration of NH,i, the content of silicon nitride in the generated fine powder can be selected to a desired amount, and usually 5VolX
It is used in the range of ~100 Volχ, NH alone or N13. And N! It is used by mixing with non-oxidizing gas such as ,^r.

この場合Nlhの代わりにヒドラジンなどを使用するこ
ともできる。
In this case, hydrazine or the like may be used instead of Nlh.

熱処理温度は、一般に1400°C〜1600°C1好
ましくは1450″C−1550℃の範囲である。熱処
理工程の温度が1400℃よりも低い場合生成物中に窒
素は導入されるが、結晶化に長時間を要し好ましくなく
、また1600°Cを超える高い温度では窒化ケイ素は
生成せず炭化ケイ素のみが生成する結果となり好ましく
ない。熱処理の時間は主として熱処理温度との関係にお
いて決められ、結晶化を完結させるには通常0.5〜2
4時間であるが、長時間は粒子の成長を起こし易く短時
間の方が好ましく、8時間以内が一般的である。
The heat treatment temperature is generally in the range of 1400°C to 1600°C, preferably 1450"C to 1550°C. If the temperature of the heat treatment step is lower than 1400°C, nitrogen will be introduced into the product, but it will not lead to crystallization. It is undesirable because it requires a long time, and at high temperatures exceeding 1600°C, silicon nitride is not produced but only silicon carbide is produced, which is undesirable.The heat treatment time is determined mainly in relation to the heat treatment temperature, and crystallization Usually 0.5 to 2 to complete
Although the duration is 4 hours, longer durations tend to cause particle growth, so shorter durations are preferable, and generally 8 hours or less.

本発明の方法において、熱処理の具体的な方法気炉ある
いはプッシャー炉などで所要温度で所要時間保持するこ
とにより行われる。。
In the method of the present invention, the heat treatment is carried out by holding the material at a required temperature for a required period of time in an air furnace or pusher furnace. .

以上の様な熱処理方法で結晶化して得られた生成微粉末
は窒化ケイ素と炭化ケイ素とが均一に分布した混合微粉
末、あるいはα化率の高い窒化ケイ素微粉末であり、針
状結晶を含まない3μm以下の粒子形状が揃った等軸状
の粒子からなる。
The fine powder obtained by crystallization using the heat treatment method described above is a mixed fine powder in which silicon nitride and silicon carbide are uniformly distributed, or a fine silicon nitride powder with a high gelatinization rate, and contains needle-like crystals. It consists of equiaxed particles with a uniform particle shape of 3 μm or less.

〔発明の効果〕〔Effect of the invention〕

上おの様に、本発明方法によれば、窒化ケイ素−炭化ケ
イ素複合焼結体、あるいは窒化ケイ素焼結体を得るのに
好適な高純度で微細かつ粒子形状の揃った等軸状微粉末
を得る゛ことができる。
As described above, according to the method of the present invention, a highly pure, fine, equiaxed fine powder with uniform particle shape suitable for obtaining a silicon nitride-silicon carbide composite sintered body or a silicon nitride sintered body can be obtained. can be obtained.

以下に本発明の実施例を示すが、本発明はこれらの実施
例に限定されるものでない。
Examples of the present invention are shown below, but the present invention is not limited to these Examples.

実施例 1〜4 電気炉中に設置された内径25nuw、長さ700mm
の高純度アルミナ製反応管と反応管の生成物出口部に付
設された浮遊状の反応生成物凝集器および生成物の捕集
器とからなる装置を用いて反応を行った。
Examples 1 to 4 Inner diameter 25nuw and length 700mm installed in electric furnace
The reaction was carried out using an apparatus consisting of a reaction tube made of high-purity alumina, a floating reaction product aggregator and a product collector attached to the product outlet of the reaction tube.

反応管を1000°Cに保持したのち、ガス化された(
CL) 、1SiCfを^rと共に原料導入口から反応
管に導入した。(有機ケイ素濃度11.5 Volχ)
反応は直ちに進行し、浮遊状の生成ガスの大部分は凝集
器で凝集し、一部の浮遊状物は凝集器と捕集器との導管
中で凝集し捕集器に捕集された。捕集された微粉末はサ
ブミクロン級の球状非晶質粉末であった。
After holding the reaction tube at 1000°C, it was gasified (
CL), 1SiCf and ^r were introduced into the reaction tube from the raw material inlet. (Organic silicon concentration 11.5 Volχ)
The reaction proceeded immediately, and most of the suspended product gas was coagulated in the condenser, and some of the suspended substances were condensed in the conduit between the condenser and the collector and collected in the collector. The collected fine powder was a submicron-sized spherical amorphous powder.

次に該微粉末をアルミナ容器に充填し、第1表に示した
種々の濃度のNH,とN2との混合ガス雰囲気中で、1
500°C12時間熱処理を行った。得られた結晶!微
粉末は3μmm以下の粒子形状の揃った等軸状粒子から
なり、X!a回折により求められた組成は第1表に示す
通、りであった。また、蛍光X線により不純物を分析し
たところFe、 Af、 Ca。
Next, the fine powder was filled into an alumina container, and heated in a mixed gas atmosphere of NH and N2 at various concentrations shown in Table 1.
Heat treatment was performed at 500°C for 12 hours. Obtained crystals! The fine powder consists of equiaxed particles with a uniform particle shape of 3 μmm or less, and has an X! The composition determined by a-diffraction was as shown in Table 1. In addition, analysis of impurities using fluorescent X-rays revealed Fe, Af, and Ca.

Kはいずれも100 ppm以下であった。実施例3の
窒化ケイ素−炭化ケイ素混合微粉末のSEM写真を第1
図として示す。
K was 100 ppm or less in all cases. The first SEM photograph of the silicon nitride-silicon carbide mixed fine powder of Example 3 is
Shown as a diagram.

実施例 5.6 前記実施例と同様な装置を用い、(CH3) zSiC
l zをNt(80Volχ) 、Hg(20Volχ
)の混合ガスと共に、1200°Cに保持された反応管
に導入し、反応させて球状非晶質微粉末を得た。この微
粉末をアルミナ容器に充填し、第2表に示す条件で熱処
理を行い窒化ケイ素−炭化ケイ素混合微粉末、および窒
素化ケイ素微粉末を得た。得られた微粉末は2μmm以
下の粒子形状の揃った等軸状粒子からなり、X線回折に
より求められた組成は第2表に示す通りであった。
Example 5.6 Using the same apparatus as in the previous example, (CH3)zSiC
l z to Nt(80Volχ), Hg(20Volχ
) was introduced into a reaction tube maintained at 1200°C and reacted to obtain a spherical amorphous fine powder. This fine powder was filled into an alumina container and heat treated under the conditions shown in Table 2 to obtain a silicon nitride-silicon carbide mixed fine powder and a silicon nitride fine powder. The obtained fine powder consisted of equiaxed particles with a uniform particle size of 2 μm or less, and the composition determined by X-ray diffraction was as shown in Table 2.

第2表Table 2

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明方法により得られた結晶質窒化ケイ素
−炭化ケイ素混合微粉末のSEM写真である。 特許出願人  三菱瓦斯化学株式会社 代理人(9070)弁理士 小 堀 貞 文第1図
FIG. 1 is an SEM photograph of a crystalline silicon nitride-silicon carbide mixed fine powder obtained by the method of the present invention. Patent applicant Mitsubishi Gas Chemical Co., Ltd. agent (9070) Patent attorney Sadafumi Kobori Figure 1

Claims (1)

【特許請求の範囲】[Claims] 一般式R_nSiCl_4_−_n(ただし、式中Rは
アルキル基、アリル基、等の炭化水素基を示し、nは1
〜3である)で表される有機ケイ素化合物を、NH_3
を含まない非酸化性雰囲気下、気相熱分解して非晶質微
粉末を得、該微粉末をNH_3を含む非酸化性雰囲気下
で、1400〜1600℃で熱処理することを特徴とす
る窒化ケイ素−炭化ケイ素混合微粉末または窒化ケイ素
微粉末の製造法。
General formula R_nSiCl_4_-_n (wherein, R represents a hydrocarbon group such as an alkyl group or an allyl group, and n is 1
~3)), NH_3
A nitriding process characterized by obtaining an amorphous fine powder by vapor phase pyrolysis in a non-oxidizing atmosphere that does not contain NH_3, and heat-treating the fine powder at 1400 to 1600°C in a non-oxidizing atmosphere containing NH_3. A method for producing silicon-silicon carbide mixed fine powder or silicon nitride fine powder.
JP62061275A 1987-03-18 1987-03-18 Production of silicon nitride-silicon carbide mixed fine powder of silicon nitride fine powder Pending JPS63230508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62061275A JPS63230508A (en) 1987-03-18 1987-03-18 Production of silicon nitride-silicon carbide mixed fine powder of silicon nitride fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62061275A JPS63230508A (en) 1987-03-18 1987-03-18 Production of silicon nitride-silicon carbide mixed fine powder of silicon nitride fine powder

Publications (1)

Publication Number Publication Date
JPS63230508A true JPS63230508A (en) 1988-09-27

Family

ID=13166494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62061275A Pending JPS63230508A (en) 1987-03-18 1987-03-18 Production of silicon nitride-silicon carbide mixed fine powder of silicon nitride fine powder

Country Status (1)

Country Link
JP (1) JPS63230508A (en)

Similar Documents

Publication Publication Date Title
US4387079A (en) Method of manufacturing high-purity silicon nitride powder
US4594330A (en) Fine amorphous powder and process for preparing fine powdery mixture of silicon nitride and silicon carbide
US4613490A (en) Process for preparing silicon nitride, silicon carbide or fine powdery mixture thereof
JPS61191506A (en) Production of high alpha-type silicon nitride powder
JPS62241812A (en) Manufacture of silicon nitride
JPS6111886B2 (en)
JP2721678B2 (en) β-silicon carbide molded body and method for producing the same
JPS63230508A (en) Production of silicon nitride-silicon carbide mixed fine powder of silicon nitride fine powder
JPS5930645B2 (en) Manufacturing method of high purity α-type silicon nitride
JPS6111885B2 (en)
JPS6355108A (en) Aluminum nitride powder and production thereof
JPH0454610B2 (en)
JPS60195099A (en) Production of silicon nitride whisker
JPS63230509A (en) Production of silicon nitride-silicon carbide mixed fine powder
JPH0454609B2 (en)
JPH0264100A (en) Production of aln whisker
JPS61201608A (en) Manufacture of high purity aluminum nitride powder
JPS63159204A (en) Amorphous spherical composite powder and production thereof
JPS5916968A (en) Synthesis of metal carbide or carbonitride
JPS58176109A (en) Production of alpha-type silicon nitride
JP2569074B2 (en) α-Silicon nitride powder and method for producing the same
JPH05326B2 (en)
JPS61127616A (en) Production of silicon carbide fine powder
JPH07187620A (en) Production of high purity aluminum nitride powder
JPS61127606A (en) Preparation of silicon nitride or silicon carbide