JPS61242905A - Production of alpha-silicon nitride powder - Google Patents

Production of alpha-silicon nitride powder

Info

Publication number
JPS61242905A
JPS61242905A JP8257585A JP8257585A JPS61242905A JP S61242905 A JPS61242905 A JP S61242905A JP 8257585 A JP8257585 A JP 8257585A JP 8257585 A JP8257585 A JP 8257585A JP S61242905 A JPS61242905 A JP S61242905A
Authority
JP
Japan
Prior art keywords
powder
si3n4
silicon nitride
alpha
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8257585A
Other languages
Japanese (ja)
Other versions
JPH0649565B2 (en
Inventor
Hiroshi Inoue
寛 井上
Yoshiyuki Onuma
佳之 大沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60082575A priority Critical patent/JPH0649565B2/en
Publication of JPS61242905A publication Critical patent/JPS61242905A/en
Publication of JPH0649565B2 publication Critical patent/JPH0649565B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/068Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon
    • C01B21/0685Preparation by carboreductive nitridation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To obtain alpha-Si3N4 powder of high quality in high yield, by specifying the ratios of the respective raw materials in the silica reduction method using SiO2-C system containing Si3N4, etc., added thereto. CONSTITUTION:Mixed powder consisting of 1pts.wt. SiO2 powder having >=50m<2>/g specific surface area, 0.39-0.41pts.wt. C powder having >=50m<2>/g specific surface area and 0.005-1pts.wt. one or more of silicon nitride (Si3N4), silicon nitride oxide (Si2ON2) and Si powder is prepared. The mixed powder is then heat-treated in a nonoxidizing atmosphere containing nitrogen at 1,350-1,550 deg.C and subjected to reducing and nitriding reaction. According to this method, the reduction of SiO2 is remarkably promoted, and the formed Si3N4 is smoothly grown using previously added Si3N4 as a nucleus to give the aimed alpha-Si3N4 based powder of high quality with a high alpha-Si3N4 content in high yield.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はα製置化ケイ素(α型5laN4)粉末の製造
方法に係り、高い品位のαfisi、N、粉末を高い収
率で得られる製造方法に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for producing α-fisi silicon (α-type 5laN4) powder, which is a manufacturing method that can obtain high-quality α-fisi, N, powder in high yield. Regarding.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

例えば窒化ケイ素−酸化イツトリウムもしくは酸化マグ
ネシウム(S−N4− Y、 0.もしくは8i、N、
 −MfO系)焼結体は機械的強度が高く且つ耐熱性も
すぐれているため高温がスターヒン部材への適用が試み
られている。しかして上記5isN、系焼結体を高温高
応力材料として実用に供する場合には高温時における物
理的、化学的安定性と信頼性が厳しく要求される。その
ため焼結体の製造工程にはきびしい工程管理1品質管理
が不可欠となるが、とシわけ原料の窒化ケイ素粉末は工
程の原点として重視されている。例えば原料粉体特性は
単に高純度。
For example, silicon nitride-yttrium oxide or magnesium oxide (S-N4-Y, 0. or 8i, N,
-MfO type) sintered bodies have high mechanical strength and excellent heat resistance, so attempts have been made to apply them to high-temperature starching members. However, when the above-mentioned 5isN-based sintered body is put to practical use as a high-temperature, high-stress material, physical and chemical stability and reliability at high temperatures are strictly required. Therefore, strict process control and quality control are essential in the manufacturing process of sintered bodies, and silicon nitride powder, which is the raw material for sintering, is regarded as the starting point of the process. For example, the raw material powder characteristics are simply high purity.

微粉末であればいいと云うものではなく影響を与える特
性が狭い適正範囲内にあることが必要とされる。
It is not enough that it is a fine powder; it is necessary that the properties that influence it fall within a narrow appropriate range.

ところで5isN、粉末の合成法としては一般に(1)
金属ケイ素粉末を窒化させる方法3si + 2凡→S
i、N。
By the way, the general method for synthesizing 5isN powder is (1)
Method for nitriding metal silicon powder 3si + 2b → S
i,N.

(2)四塩化ケイ素やシランとアンモニアを原料とする
気相反応法 3SiCJ4 + 4NH3→8 is N4 + 1
2HCJなど(3)シリカ(sift)を反応量論比程
度のカーボン0で還元して得た8i0を窒化する方法 a8i0. + eC+ zNt→Si、N、−t−s
coが採られている。
(2) Gas phase reaction method using silicon tetrachloride, silane and ammonia as raw materials 3SiCJ4 + 4NH3→8 is N4 + 1
2HCJ, etc. (3) A method of nitriding 8i0 obtained by reducing silica (sift) with carbon 0 in a reaction stoichiometric ratio a8i0. + eC+ zNt→Si, N, -t−s
co is taken.

しかじ(1)の場合の8iの窒化が発熱反応で、その発
熱制御のためプロセス上工夫を要し例えばSiとしては
比較的粗粒のものを選び窒化後微粉砕化している。この
ため不純物の混入が避けられず(粉砕過程)、耐火レン
ガなど一般耐熱材料としての使用には支障ないが高温ガ
スタービン用などには適さない。
In the case of Shikaji (1), the nitriding of 8i is an exothermic reaction, and in order to control the heat generation, a process must be devised.For example, relatively coarse particles of Si are selected and pulverized after nitriding. For this reason, contamination with impurities is unavoidable (during the crushing process), and although there is no problem in using it as a general heat-resistant material such as refractory bricks, it is not suitable for high-temperature gas turbines.

また(2)の場合は例えば半導体素子の表面被覆などに
は適するが無機耐熱材料には量産的とは云えず工業的製
造には適さない。
In the case of (2), it is suitable for, for example, surface coating of semiconductor elements, but it cannot be said to be mass-produced as an inorganic heat-resistant material and is not suitable for industrial manufacturing.

(3)の場合、原料として充分精製されたsio、、 
c粉末を用いる必要があシ、さらに生成した粉末にSi
、N、以外例えば炭化ケイ素、酸窒化ケイ素等が混在す
ることが多いと云う欠点がある。しかし反応操作上煩雑
さを要しない利点があシ、さらに反応促進と生成層の粒
制御を目的にあらかじめ出発原料に1種”St、N、を
少量添加することで品質の向上と安定化が可能となった
。しかしながら高性能焼結体用原料粉末とは前述の如く
、高純度、微粉末であれば良いと云うものではなく、焼
結体を製造する上で大きな影響を与える特性1例えば原
料粉体に含まれる酸素量などは狭い適正範囲を持ってい
る。このような観点からシリカ還元Si、N。
In the case of (3), sufficiently purified sio as the raw material,
It is necessary to use C powder, and Si is added to the generated powder.
, N, such as silicon carbide, silicon oxynitride, etc., are often mixed together. However, it has the advantage of not requiring complicated reaction operations, and it is also possible to improve quality and stabilize by adding a small amount of one type of "St" or "N" to the starting materials in advance for the purpose of promoting the reaction and controlling the grains of the formed layer. However, as mentioned above, the raw material powder for high-performance sintered bodies does not just have to be a high-purity, fine powder. The amount of oxygen contained in the raw material powder has a narrow appropriate range.From this point of view, silica-reduced Si and N.

粉末を見ると1合成反応がsto、、c粒子の固相反応
を起点としているため1反応円滑化には過剰Cが不可欠
であ[,8i、N、生成層は過剰Cの除去を行なわなけ
ればなら々い。通常は酸化除去(空気中=700℃で熱
処理)の手法で行なうが、この工程で生成した81.N
、粒子表面の微量酸化が避けられず、結果として原料粉
体中の酸素含有量の増大が避けられ表い。8i、N、の
焼結はS!sN+に存在するシリカ(含有酸素)と添加
物の反応で生ずるガラス質物質を介した液相焼結で進む
と考えられているが、焼結完了後は高温での機械的特性
を劣化させる原因となるため、ガラス質物質の量を少な
くするため1組成あるいは結晶化処理等が検討されてい
る。
Looking at the powder, the first synthesis reaction starts from the solid phase reaction of sto,,c particles, so excess C is essential for smoothing the first reaction [,8i,N, the generation layer must remove excess C. There are many flowers. Usually, this is done by oxidation removal (heat treatment in air at 700°C), but the 81. N
However, a small amount of oxidation on the particle surface is unavoidable, and as a result, an increase in the oxygen content in the raw material powder is avoided. Sintering of 8i, N, is S! It is thought that liquid phase sintering occurs through a glassy substance generated by the reaction between silica (containing oxygen) present in sN+ and additives, but after sintering is completed, the mechanical properties at high temperatures deteriorate. Therefore, in order to reduce the amount of glassy material, single composition or crystallization treatment, etc. are being considered.

〔発明の目的〕[Purpose of the invention]

本発明はこのような知見に基づき、煩雑な操作乃至反応
装置を要せず1C8i、N、系の高温高応力材料用とし
て適するαW 81s N4粉末を高収率で得られる製
造方法を提供しようとするものである。
Based on this knowledge, the present invention aims to provide a manufacturing method that can obtain αW 81s N4 powder suitable for 1C8i, N, high-temperature, high-stress materials in high yield without requiring complicated operations or reaction equipment. It is something to do.

〔発明の概要〕[Summary of the invention]

本発明の詳細な説明すると、比表面積50m”79以上
のシリカ(StO,)粉末1重食部、比表面積50禮今
以上のカーボン(C)粉末0.39〜0.41重量部、
および窒化ケイ素(Sin N4)粉末0.005〜1
重量部の割合からなる混合粉末を窒素を含む雰囲気中1
350〜1550℃で加熱処理し、還元、窒化反応させ
ることを特徴とするα型窒化ケイ素(α・8i、N、)
粉末の製造方法である。
To explain the present invention in detail, 1 part of silica (StO) powder with a specific surface area of 50 m"79 or more, 0.39 to 0.41 parts by weight of carbon (C) powder with a specific surface area of 50 m" or more,
and silicon nitride (Sin N4) powder 0.005-1
A mixed powder consisting of 1 part by weight in an atmosphere containing nitrogen
α-type silicon nitride (α・8i, N,) characterized by heat treatment at 350 to 1550°C to undergo reduction and nitridation reactions.
This is a method for producing powder.

本発明においてSin、 −〇 −Si、 N、系の重
量混合比を1: 0.39〜0.41 : 0.005
〜1.0の割合に選ぶのは次の理由による。即ち8i0
!1重量部当シCが0.39未満では未還元の残留St
O,増大し、S i、 ON、の生成が顕著となシ1合
成粉中の酸素含有率が多く結果として高温高強度813
N4焼結体の製造には適さカい。
In the present invention, the weight mixing ratio of Sin, -〇-Si, N, system is 1: 0.39 to 0.41: 0.005.
The reason why the ratio is selected to be 1.0 is as follows. That is, 8i0
! If 1 part by weight C is less than 0.39, unreduced residual St
813 The oxygen content in the synthetic powder is high, and as a result, the high temperature and high strength 813
It is suitable for manufacturing N4 sintered bodies.

また0、41を超えると生成し7’1H8i、N、粉末
に予剰Cが不純物として混在するため焼結体用原料とし
て適当でない。
Moreover, if it exceeds 0.41, 7'1H8i, N, and residual C are mixed in the powder as impurities, making it unsuitable as a raw material for a sintered body.

一方8i0,1に対する84.N、の比が0.005未
満ではα型81.N4の高収率化効果が少なく、逆に1
を超えると酸化物還元で得られる好ましい粉末特性を有
する粉末が得られず添加した8i、N、粉末の特性が顕
著となり本来の目的が達せられない。しかしてこれらS
iO,、CおよびSl、N、の各原料組成分はいずれも
99ζ程度以上の高純度のものが好ましく。
On the other hand, 84. for 8i0,1. If the ratio of N is less than 0.005, it is α type 81. The effect of increasing the yield of N4 is small, and on the contrary, 1
If it exceeds this, a powder with preferable powder characteristics obtained by oxide reduction cannot be obtained, and the characteristics of the added 8i, N, and powder become noticeable, and the original purpose cannot be achieved. However, these S
Each raw material composition of iO, C, Sl, and N preferably has a high purity of about 99ζ or more.

また粒度については810.、Cとも平均粒径1μIn
以下である事が好ましく8−N、はなるべく微粒、たと
えば2μm以下のものがそれぞれ好ましい。尚原料とし
て用いる81.N、はα型がよいがβ型を含むものでも
また他の元素例えばAJ、0など固溶しているものでも
さしつかえない。さらにSi、N、の代シに炭化ケイ素
SIC酸窒化ケイ素系化合物例えばS l、 ON、な
どの単独あるいはそれらの混合物(含”!N4)1また
はこれらの1部を金属Stで置きかけても同様な反応促
進効果がえられる。但し、 SIC,8i!ON。
The particle size is 810. , C both have an average particle size of 1μIn
8-N is preferably as fine as possible, for example, 2 μm or less. In addition, 81. used as a raw material. N is preferably in the α-type, but it may also be in the β-type or in solid solution with other elements such as AJ and 0. Furthermore, in place of Si, N, silicon carbide, SIC, silicon oxynitride compounds such as S1, ON, etc. alone or a mixture thereof (including N4) 1 or a part thereof may be placed on the metal St. A similar reaction promoting effect can be obtained.However, SIC, 8i!ON.

を用いた場合には純度の点でやや劣る傾向が認めら°れ
る。以下8isN、添加を中心に説明を進める。
There is a tendency for purity to be slightly inferior when using . The following explanation will focus on 8isN and its addition.

本発明において810.−C−8i、N、混合物の加熱
焼成に際し、その雰囲気はN、 、 NH,、N、−水
素(H,)。
In the present invention, 810. -C-8i, N, When the mixture is heated and fired, the atmosphere is N, , NH,, N, -hydrogen (H,).

N、−不活性ガスなどの系が挙げられるが主反応ガスは
N!またはNH,でなければならない。その理由は最終
的に高純度のα型5i8N、の生成に大きく影響すると
とが実験的に確認されたからである。一方このN1マた
はNH,を主反応ガスとする雰囲気中での加熱焼成温度
は1350〜1550℃の範囲内に選ばれる。その理由
は1350℃未満では84N、が生成し難く、また15
50℃を超えるとSiCの生成がみられ。
Systems such as N, -inert gas can be mentioned, but the main reaction gas is N! or NH. The reason for this is that it has been experimentally confirmed that it greatly influences the final production of high-purity α-type 5i8N. On the other hand, the firing temperature in the atmosphere containing N1 or NH as the main reaction gas is selected within the range of 1350 to 1550°C. The reason for this is that below 1350°C, 84N is difficult to generate, and 15N is difficult to generate.
When the temperature exceeds 50°C, formation of SiC is observed.

結局所望の、高温高応力材料用に適するα型5isN4
系粉末を得られないからである。
Finally, the desired α-type 5isN4 suitable for high-temperature and high-stress materials
This is because it is not possible to obtain powder based on this method.

上記の如(8tO,の還元、窒化反応において還元作用
を働くCを化学量論比近傍の混合比を用いる一方、所定
量の8i、N、を共存させる本発明によればSin、の
還元が大いに促進され、生成されるS−Nが、あらかじ
め添加されている8−N、を核として円滑に成長し、a
fi別、N、の含有率の高い高品位のαfi Si、 
N、系粉末を収率よ〈得られる。
As described above (reduction of 8tO, in the nitriding reaction, a mixing ratio near the stoichiometric ratio of C is used, while a predetermined amount of 8i and N coexist. According to the present invention, the reduction of Sin is achieved. The S-N that is generated is greatly promoted and grows smoothly using the 8-N added in advance as a nucleus.
High-grade αfi Si with high content of N,
N, system powder can be obtained in high yield.

しかして本発明によれば高温高応力性の要求されるSi
、N、系焼結体の製造に適するα型81.N、系粉末が
容易に得られるのは次のように考えられる。
However, according to the present invention, Si, which is required to have high temperature and high stress properties,
, N, α type 81. suitable for manufacturing sintered bodies. The reason why N-based powder can be easily obtained is thought to be as follows.

まずCの混合比であるが、シリカ還元反応は前述の如く
起点はSin、粒子の界面での固相反応と考えられてお
シ、界面が多い程反応は円滑に進行する。この場合、界
面の多小(状態)はSiO,、Cの平均粒径にも関係す
るが、実際は両者の比表面積に大きく関係する。ここに
おいて本発明では比表面積50WL″7p以上の数値を
必須条件とするのは上の理由による。その結果、Sin
、を還元するのく必要なC量が化学量論比近傍であって
も十分高品質な8i、N、粉末が合成され、かつ後の脱
炭工程も不用となる。
First, regarding the mixing ratio of C, the silica reduction reaction starts with Sin and is considered to be a solid phase reaction at the particle interface, as described above, and the reaction proceeds more smoothly as there are more interfaces. In this case, the size (state) of the interface is also related to the average grain size of SiO, C, but in reality it is largely related to the specific surface area of both. Here, in the present invention, the reason why the specific surface area is set as an essential condition of 50WL''7p or more is due to the above reason.As a result, Sin
Even if the amount of C required to reduce , is close to the stoichiometric ratio, a sufficiently high quality 8i, N, powder can be synthesized, and the subsequent decarburization step is also unnecessary.

一方、8i0.−C系にあらかじめ微細なSi、N、粉
末を混合するのは次のように考えられる。
On the other hand, 8i0. The reason why fine Si, N, and powder are mixed in advance into the -C system can be considered as follows.

即ち一次反応としてSiO!十〇−+SiO+COが進
行する。この反応は同相反応であシ、比表面積の大きい
素原料を用いることで相対的に速くなり、且生成した5
iOdN、またはNH,と容易に反応する。この反応に
おいては8i0とN!、NH,は気相状態で存在できる
のでカーボン(C)蒸気の占める割合が8i0の還元、
窒化反応を左右すると云える。しかして、この場合、C
O比表面積が十分大きいため容易にα型Si、N、が生
成するに至ると考えられる。
That is, as a first reaction, SiO! 10-+SiO+CO progresses. This reaction is an in-phase reaction, and using raw materials with a large specific surface area makes it relatively faster, and the generated 5
Easily reacts with iOdN or NH. In this reaction, 8i0 and N! , NH, can exist in a gaseous state, so reduction where the proportion of carbon (C) vapor is 8i0,
It can be said that it influences the nitriding reaction. However, in this case, C
It is thought that since the O specific surface area is sufficiently large, α-type Si and N are easily generated.

しかるに本発明においてはさらに所定量の8i、N。However, in the present invention, a predetermined amount of 8i,N is further added.

粉末を反応系に共存せしめている。ところで酸化物還元
反応による8isN4合成は先述のようにSin、。
Powder is allowed to coexist in the reaction system. By the way, 8isN4 synthesis by oxide reduction reaction is Sin, as mentioned above.

N、 、 NHs等が気相状態で存在するので最終的に
は固体のSi3N4を生成する場合、気相状態の5is
N4の早期安定沈着化と、後の成長が反応速度、収率に
非常に影響する。しかるに本発明においては5iaN4
粉末が予じめ共存させてあシ上記気相状態のSi、 −
N4が沈着、成長するための核として働く。このS−N
、の沈着、成長効果によってさらに8iCの生成も防止
され、5isN、の純度向上に大きく貢献するものであ
る。
Since N, , NHs, etc. exist in the gas phase, when solid Si3N4 is finally produced, 5is in the gas phase
The early stable deposition of N4 and the subsequent growth greatly influence the reaction rate and yield. However, in the present invention, 5iaN4
Si in the gas phase above is prepared by coexisting the powder in advance, -
Serves as a nucleus for N4 deposition and growth. This S-N
The deposition and growth effect of , further prevents the production of 8iC, which greatly contributes to improving the purity of 5isN.

尚、この反応系中にFe系化合物などが存在しても1本
発明は原則的にさまたげられない。
Incidentally, even if an Fe-based compound or the like is present in this reaction system, the present invention is not hindered in principle.

〔発明の効果〕〔Effect of the invention〕

かくして本発明によれば反応後の脱炭処理を要せずとも
α型5isN、の含有量率の高い、しかもSiCなど不
純物の含有量が著しく少なく高品位の、α型5isN、
系粉末が得られるので1本発明方法は高温、高応力を要
求される8i、N、系焼結構造材料用原料Si、N、系
粉末の製造に適するものと云える。
Thus, according to the present invention, high-quality α-type 5isN, which has a high content rate of α-type 5isN and has a significantly low content of impurities such as SiC, can be produced without requiring decarburization treatment after the reaction.
Since it is possible to obtain Si, N, powders, the method of the present invention can be said to be suitable for producing 8i, N, raw material Si, N, powders for sintered structural materials that require high temperatures and high stress.

〔発明の実施例〕[Embodiments of the invention]

次に本発明の実施例を記載する。 Next, examples of the present invention will be described.

比表面積200 dlF OS t O!粉末、比表面
積100m7’pのC粉末および平均粒径約0.8μm
081.N、粉末を表1に示す組成割合(重量比)で混
合粉を調整した。
Specific surface area 200 dlF OS t O! Powder, C powder with a specific surface area of 100 m7'p and an average particle size of about 0.8 μm
081. A mixed powder was prepared using the composition ratio (weight ratio) shown in Table 1.

コt’L ラt Nz −N2 + Hz 、 NH−
雰囲気下1350〜1550’O”t’2〜10時間そ
れぞれ加熱処理を施し還元、窒化させて合成粉を得た。
kot'L rat Nz -N2 + Hz, NH-
A heat treatment was performed in an atmosphere of 1350 to 1550'O''t' for 2 to 10 hours to reduce and nitridate to obtain a synthetic powder.

かくして得られたそれぞれのSi、N、粉末についてα
型St、N、の含有率9分析によるSi+N、酸素及び
炭素を求めた結果を第1表に示す。
α for each Si, N, powder obtained in this way
Table 1 shows the results of Si+N, oxygen, and carbon determined by type St, N, content ratio 9 analysis.

表から明らかなように50m”71以上の比表面積を有
するsio、、C粉末を用いることにょl、α−8i、
N。
As is clear from the table, by using sio, C powder having a specific surface area of 50m"71 or more, α-8i,
N.

含有率の高い、高純度粉末が合成できる。High purity powder with high content can be synthesized.

Claims (1)

【特許請求の範囲】[Claims] 比表面積が50m^2/g以上のシリカ(SiO_2)
粉末1重量部と、比表面積が50m^2/g以上のカー
ボン粉末0.39〜0.41重量部と、窒化ケイ素(S
i_3N_4)、酸窒化ケイ素(Si_2ON_2)及
び金属ケイ素(Si)粉末のうち少なくともいずれか1
種0.005〜1重量部の割合とからなる混合粉末を窒
素を含む非酸化性雰囲気中1350〜1550℃で加熱
処理し、還元・窒化反応させることを特徴とするα型窒
化ケイ素粉末の製造方法。
Silica (SiO_2) with a specific surface area of 50m^2/g or more
1 part by weight of powder, 0.39 to 0.41 part by weight of carbon powder with a specific surface area of 50 m^2/g or more, and silicon nitride (S
i_3N_4), silicon oxynitride (Si_2ON_2), and metal silicon (Si) powder.
Production of α-type silicon nitride powder, characterized in that a mixed powder consisting of 0.005 to 1 part by weight of seeds is heat-treated at 1350 to 1550°C in a non-oxidizing atmosphere containing nitrogen to cause a reduction and nitriding reaction. Method.
JP60082575A 1985-04-19 1985-04-19 Method for producing α-type silicon nitride powder Expired - Lifetime JPH0649565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60082575A JPH0649565B2 (en) 1985-04-19 1985-04-19 Method for producing α-type silicon nitride powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60082575A JPH0649565B2 (en) 1985-04-19 1985-04-19 Method for producing α-type silicon nitride powder

Publications (2)

Publication Number Publication Date
JPS61242905A true JPS61242905A (en) 1986-10-29
JPH0649565B2 JPH0649565B2 (en) 1994-06-29

Family

ID=13778279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60082575A Expired - Lifetime JPH0649565B2 (en) 1985-04-19 1985-04-19 Method for producing α-type silicon nitride powder

Country Status (1)

Country Link
JP (1) JPH0649565B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63162512A (en) * 1986-12-26 1988-07-06 Toshiba Ceramics Co Ltd Production of silicon nitride
JPH01226708A (en) * 1988-03-07 1989-09-11 Toshiba Ceramics Co Ltd Superfine silicon nitride powder and its production
US5525556A (en) * 1994-04-14 1996-06-11 The Dow Chemical Company Silicon nitride/silicon carbide composite powders
JP2009161376A (en) * 2007-12-28 2009-07-23 Toda Kogyo Corp Manufacturing method of silicon nitride powder

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020129840A1 (en) 2018-12-21 2020-06-25 国立研究開発法人物質・材料研究機構 Hot-forged tial-based alloy, method for producing same, and uses for same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53137899A (en) * 1977-05-07 1978-12-01 Toshiba Corp Preparation of alpha type silica nitride powder
JPS5673604A (en) * 1979-11-22 1981-06-18 Toshiba Corp Manufacture of silicon nitride
JPS5891011A (en) * 1981-11-25 1983-05-30 Toshiba Ceramics Co Ltd Manufacture of silicon nitride powder with high alpha-phase content

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53137899A (en) * 1977-05-07 1978-12-01 Toshiba Corp Preparation of alpha type silica nitride powder
JPS5673604A (en) * 1979-11-22 1981-06-18 Toshiba Corp Manufacture of silicon nitride
JPS5891011A (en) * 1981-11-25 1983-05-30 Toshiba Ceramics Co Ltd Manufacture of silicon nitride powder with high alpha-phase content

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63162512A (en) * 1986-12-26 1988-07-06 Toshiba Ceramics Co Ltd Production of silicon nitride
JPH01226708A (en) * 1988-03-07 1989-09-11 Toshiba Ceramics Co Ltd Superfine silicon nitride powder and its production
US5525556A (en) * 1994-04-14 1996-06-11 The Dow Chemical Company Silicon nitride/silicon carbide composite powders
US5538675A (en) * 1994-04-14 1996-07-23 The Dow Chemical Company Method for producing silicon nitride/silicon carbide composite
US5643843A (en) * 1994-04-14 1997-07-01 The Dow Chemical Company Silicon nitride/silicon carbide composite densified materials prepared using composite powders
JP2009161376A (en) * 2007-12-28 2009-07-23 Toda Kogyo Corp Manufacturing method of silicon nitride powder

Also Published As

Publication number Publication date
JPH0649565B2 (en) 1994-06-29

Similar Documents

Publication Publication Date Title
US4428916A (en) Method of making α-silicon nitride powder
US4117095A (en) Method of making α type silicon nitride powder
JPH0134925B2 (en)
JPS61151006A (en) Production of aluminum nitride powder
JPS6112844B2 (en)
US4812298A (en) Method for producing sialon powders
JPS61242905A (en) Production of alpha-silicon nitride powder
JPS61191506A (en) Production of high alpha-type silicon nitride powder
JPS6047205B2 (en) Method for producing silicon nitride powder
JPS5945915A (en) Preparation of beta-type silicon carbide powder
JPH02180710A (en) Preparation of finely powdered alpha- or beta- silicon carbide
JPS63239104A (en) Production of fine silicon nitride powder containing beta-phase
JPS62148309A (en) Preparation of silicon nitride having high content of alpha type silicon nitride
JPS6111885B2 (en)
JPS6047204B2 (en) Method for manufacturing silicon nitride powder
JP2610156B2 (en) Method for producing silicon nitride powder
JPS60122706A (en) Manufacture of silicon nitride powder
JPS5950006A (en) Manufacture of alpha-type silicon nitride powder
JPS6120486B2 (en)
JP4025810B2 (en) Method for producing silicon nitride particles
JPH0313166B2 (en)
JPS6259049B2 (en)
JPS6140805A (en) Manufacture of silicon nitride fine powder
JPS5891007A (en) Manufacture of alpha-type silicon nitride powder
JPS60145902A (en) Production of sialon powder