JPS5891011A - Manufacture of silicon nitride powder with high alpha-phase content - Google Patents

Manufacture of silicon nitride powder with high alpha-phase content

Info

Publication number
JPS5891011A
JPS5891011A JP18887181A JP18887181A JPS5891011A JP S5891011 A JPS5891011 A JP S5891011A JP 18887181 A JP18887181 A JP 18887181A JP 18887181 A JP18887181 A JP 18887181A JP S5891011 A JPS5891011 A JP S5891011A
Authority
JP
Japan
Prior art keywords
powder
silicon nitride
phase content
granulated
nitride powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18887181A
Other languages
Japanese (ja)
Inventor
Kazunari Koide
小出 一成
Masaaki Mori
正章 森
Sho Sano
佐野 省
Yoshihiro Okumura
奥村 吉宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP18887181A priority Critical patent/JPS5891011A/en
Publication of JPS5891011A publication Critical patent/JPS5891011A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To increase the alpha-phase content by granulating a powdered mixture of a compound contg. an Si-O component with C and silicon nitride, silicon carbide or the like to a prescribed grain size and by reacting the granules at a prescribed temp. in a nonoxidizing atmosphere contg. N2. CONSTITUTION:A powdered mixture as a starting material is prepared by adding >=1 kind of powder selected from silicon nitride powder, silicon carbide powder and silicon oxynitride powder to silica powder or powder of a compound contg. an Si-O component and carbon powder. The powdered mixture is granulated to form granules having <=30mm. minor axis size. The granules are treated at 1,300-1,550 deg.C in a nonoxidizing atmosphere contg. N2 to cause reduction and nitriding reactions. Thus, silicon nitride powder with a high alpha-phase content is obtd.

Description

【発明の詳細な説明】 本発明はα相含有率の高い窒化珪素粉末の製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing silicon nitride powder with a high alpha phase content.

例えば輩化珪累−酸化イットリウムもしくは酸化マグネ
シウム(5i6N4− Y2O3もしくは5t6N4−
 MgO)焼結体Fi、機械的強度が尚く、耐熱性もす
ぐれているため高温ガスタービン部材等に適用されるよ
うになってきている。窒化珪素系焼結体の熱的・機械的
特性は出発原料の性質によって大きく影響され、窒化珪
素についてはできるだけα相官有率の高いことが望まれ
る。
For example, silica-yttrium oxide or magnesium oxide (5i6N4-Y2O3 or 5t6N4-
MgO) sintered body Fi has high mechanical strength and excellent heat resistance, so it is being applied to high-temperature gas turbine parts and the like. The thermal and mechanical properties of a silicon nitride-based sintered body are greatly influenced by the properties of the starting materials, and it is desired that silicon nitride has as high an α-phase functionalization rate as possible.

ところで、従来、窒化珪素粉末の製造は種々の方法で行
われているが、最近ではα相含有率の島い窒化珪素粉末
が得られる方法としてシリカ粉末とカーボン粉末に窒化
珪素粉末、炭化珪素粉末及び酸窒化珪素系粉末のうち少
なくとも1種を添加して混合原料粉末全調整し、これを
窒素含有非酸化性雰囲気中で加熱処理し、還元・窒化反
応させる方法が採用されている。
Incidentally, conventionally, silicon nitride powder has been produced by various methods, but recently, as a method for obtaining island silicon nitride powder with α phase content, silicon nitride powder and silicon carbide powder are used in combination with silica powder and carbon powder. A method is adopted in which a mixed raw material powder is prepared by adding at least one of silicon oxynitride powder and silicon oxynitride powder, and then heat-treated in a nitrogen-containing non-oxidizing atmosphere to cause a reduction/nitriding reaction.

しかし、上記従来方法では下記のような棟々の欠点があ
る。
However, the above conventional method has the following drawbacks.

(1)窒化珪素は混合原料粉末中の窒化珪素等の添加粉
末を核として、その表面に成長していくので、良好な焼
結性を有する微細な窒化珪素粉末を得るためには、添加
粉末の添加量を多くしなければならない。このように添
加量を多くすると生成する窒化珪素粉末の粒径が均一化
して、成形時の成形密度が小さくなる。
(1) Silicon nitride grows on the surface using the added powder such as silicon nitride in the mixed raw material powder as a core, so in order to obtain fine silicon nitride powder with good sinterability, it is necessary to use the added powder The amount of addition must be increased. When the amount added is increased in this way, the particle size of the silicon nitride powder produced becomes uniform, and the compacting density during compacting becomes low.

(2)  5ho2とCから513N4が生成する反応
は5IO2とCとの同−同反応が律速段階であるので、
シリカ粉末とカーボン粉末の接触が良好である必要があ
る。しかし、出発原料はいずれも徽細な粉末で、その混
合原料粉末のカサ比重は非常に小さく (0,13〜0
.20)、シリカ粒子とカービン粒子との良好な接触状
態が得にくい。また、充填量も少ないので生産効率が悪
い。
(2) In the reaction that generates 513N4 from 5ho2 and C, the rate-determining step is the same-same reaction between 5IO2 and C.
Good contact between silica powder and carbon powder is required. However, the starting materials are all fine powders, and the bulk specific gravity of the mixed raw material powder is extremely small (0.13~0
.. 20) It is difficult to obtain good contact between silica particles and carbine particles. In addition, since the amount of filling is small, production efficiency is poor.

(3)混合原料粉末を容器に光填して還元・窒化反応さ
せる際、混合原料粉末はカサ比重が小さいにもかかわら
ず出発原料が微細なため、粉体床中での間隙が非常に狭
い状態になっている。
(3) When the mixed raw material powder is filled with light into a container and subjected to the reduction/nitriding reaction, the starting raw material is fine even though the bulk specific gravity of the mixed raw material powder is small, so the gaps in the powder bed are very narrow. is in a state.

このため、反応により生成するCOガスが粉体床中から
外へ拡散しに〈<、かつ窒化反応に必要なN2ガスが粉
体床中に浸透しにくい。この場合、粉体床が厚いと粉体
床内部ではN2濃度が低く、CO濃度が高くなるためS
iCやSi2ON2が副生じたり未反応S iO2が残
留して、Si、N4の生成が良好でない。したがって、
粉体床の厚さは約15論程度に制限される。また、粉体
床内部では反応速度が遅いため5t3N4生成を完了さ
せるのに時間がかかり生産効率が悪い。
Therefore, the CO gas generated by the reaction is difficult to diffuse out from the powder bed, and the N2 gas necessary for the nitriding reaction is difficult to penetrate into the powder bed. In this case, if the powder bed is thick, the N2 concentration inside the powder bed will be low and the CO concentration will be high, so S
Since iC and Si2ON2 are produced as by-products and unreacted SiO2 remains, the generation of Si and N4 is not good. therefore,
The thickness of the powder bed is limited to about 15 mm. Furthermore, since the reaction rate inside the powder bed is slow, it takes time to complete the production of 5t3N4, resulting in poor production efficiency.

本発明は上記欠点を解消するためになされたものであり
、混合原料粉末を造粒した後、還元・窒化反応させるこ
とにより生産効率を向上し得るとともに良好な焼結性を
有する微細なα相含有率の高い仝什珪累粉末の衷遣方法
を提供しようとするものである。
The present invention has been made in order to eliminate the above-mentioned drawbacks, and after granulating mixed raw material powder, reduction and nitriding reactions are performed to improve production efficiency and produce fine α-phase particles that have good sinterability. It is an object of the present invention to provide a method for distributing silicon powder with a high content.

すなわち本発明は、シリカ粉末あるいは5i−0成分を
會む化合物粉末及びカーボン粉末に窒化珪累粉末、炭化
珪累粉末及び酸窒化珪素粉末のうち少々くとも1釉を添
加して混合原料粉末を調整し、これを短径が30鴫以下
になるように造粒した後、との造粒粒子を130 ()
−1550℃の窒素含有非酸化性雰囲気中で処理し、還
元・窒化反応させることを%徴とするものである。
That is, in the present invention, at least one glaze of silicon nitride cumulative powder, silicon carbide cumulative powder, and silicon oxynitride powder is added to silica powder or compound powder and carbon powder that meet the 5i-0 component to obtain a mixed raw material powder. After adjusting this and granulating it so that the short axis is 30 mm or less, the granulated particles are 130 ()
It is treated in a nitrogen-containing non-oxidizing atmosphere at -1550°C to cause a reduction/nitriding reaction.

本発明における出発原料として用いられる三成分の粉末
の混合割合はその成分粉末の柚類によって異なるが、例
えばシリカ−カーボン−望化珪累(5i02− C−8
13N4)混合系の場合、SiO:  C:  Sl 
3N 4 =  1   二 〇、 4〜4  :  
0005〜1.0の重量割合にするのが望ましい。これ
は5IO21に対してCが0.4未満ではSiO□が未
反応として残留し、かつ812 ON2の多量生成がみ
らnる反面α相S i 、N4の生成量が少なくなる。
The mixing ratio of the three component powders used as starting materials in the present invention differs depending on the component powders, but for example, silica-carbon-hokasilicate (5i02-C-8
13N4) In the case of a mixed system, SiO: C: Sl
3N 4 = 1 20, 4~4:
It is desirable that the weight ratio is between 0.0005 and 1.0. This is because if C is less than 0.4 with respect to 5IO21, SiO□ remains unreacted and a large amount of 812ON2 is produced, but on the other hand, the amount of α-phase S i and N4 produced is small.

また、Cが4を超えるとβ相513N4の生成がみられ
結果的にα相S i 5N4の純度が悪化するほか、と
くに欣率低下がみられるためである。一方S+02 1
に対してSI3N4が0.005未満ではα相S I 
3N 4の高収率化効果が少なく、逆に1を超えると好
ましい粉末特性を有する粉末が得られない。
Moreover, if C exceeds 4, the formation of β-phase 513N4 is observed, resulting in a deterioration in the purity of α-phase S i 5N4, and in particular, a decrease in the air content is observed. On the other hand, S+02 1
If SI3N4 is less than 0.005, α phase SI
3N4 has little effect on increasing the yield, and conversely, if it exceeds 1, a powder with preferable powder characteristics cannot be obtained.

本発明において出発原料を混合して混合粉末原料を調装
する方法としては、例えば湿式又は乾式のビールミル法
が挙げられる。
In the present invention, a method for preparing a mixed powder raw material by mixing starting materials includes, for example, a wet or dry beer mill method.

本発明における混合原料粉末の造粒は水、アルコール、
アセトン等を用いた湿式法で行い造粒、乾燥してもよい
し、ぼりビニルアルコール。
In the present invention, the mixed raw material powder is granulated using water, alcohol,
It may be granulated by a wet method using acetone, etc., and then dried, or it may be granulated using vinyl alcohol.

フェノールレジン、小麦粉等の有機バインダー=5− 又はエチルシリケート、コロイダルシリカ等の無機バイ
ンダーを使用して造粒、乾燥してもよい◎また、造粒法
としては、湿式又は乾式の押出し法1回転法、加圧圧縮
法、流動層造粒法。
Granulation and drying may be performed using an organic binder such as phenol resin or wheat flour (5-) or an inorganic binder such as ethyl silicate or colloidal silica.In addition, as a granulation method, one rotation of wet or dry extrusion may be used. method, pressure compression method, fluidized bed granulation method.

遠心流動法、攪拌造粒法、スプレードライヤー法等ある
いはこれらの組合せ法を挙げることができる。混合原料
粉末を造粒することにより、5102とCとの接触状態
がよくなシ、かつ反応容器に光填された造粒粒子のカサ
比重は0.35〜0.6釉度になるため、813N4生
成反応の律速段階であるSiO□とCとの同−同反応が
起こりやすくなる。造粒粒子内部ではSIO□とCとの
反応により発生したSiOガスとCOガスが粒子に亀裂
を生じさせる。この亀裂を通じてCQガスが外部へ拡散
し、N2ガスが内部へ浸透するため、反応が起こりやす
くなりSi3N4の生産効率が向上する。造粒粒子の短
径を30mn以下としたのは、30tanを超えると造
粒粒子内部からのCOガスの拡散や内部へのN2ガスの
浸透が困難になるためである。また、造粒粒子間の間隙
を広くするために、造粒6一 粒子の短径は0.2 tab以上のものが80チ以上で
あることが望ましい。
Examples include centrifugal flow method, agitation granulation method, spray dryer method, and combination methods thereof. By granulating the mixed raw material powder, the contact state between 5102 and C is good, and the bulk specific gravity of the granulated particles filled in the reaction container becomes 0.35 to 0.6, so The same-same reaction between SiO□ and C, which is the rate-determining step in the 813N4 production reaction, becomes more likely to occur. Inside the granulated particles, SiO gas and CO gas generated by the reaction between SIO□ and C cause cracks in the particles. CQ gas diffuses to the outside through these cracks, and N2 gas permeates inside, making it easier for reactions to occur and improving Si3N4 production efficiency. The reason why the short axis of the granulated particles is set to 30 mm or less is because if it exceeds 30 tan, it becomes difficult for CO gas to diffuse from inside the granulated particles and for N2 gas to penetrate into the inside of the granulated particles. Further, in order to widen the gap between the granulated particles, it is desirable that the short axis of each granulated particle is 0.2 tab or more and 80 inches or more.

本発明における窒累含南非酸化性雰囲気としては、N2
. NH3,N2− N2. N2−不活性ガス等が挙
げられる。
In the present invention, the nitrogen-containing southern non-oxidizing atmosphere includes N2
.. NH3, N2- N2. Examples include N2-inert gas.

本発明において9累含有非酸化性雰囲気の温度範囲を1
300〜1550℃としたのは、1300℃未満ではS
 l 3N4が生成し難く、1550℃を超えるとSi
Cの生成がみられるためである。
In the present invention, the temperature range of the non-oxidizing atmosphere containing
The reason for setting the temperature to 300 to 1550℃ is that S is lower than 1300℃.
l 3N4 is difficult to generate, and if the temperature exceeds 1550℃, Si
This is because the formation of C is observed.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

実施例 シリカ粉末1重量部と吸油量250 mVloo、i/
のランノブラ1.り05重量部に平均粒径1.0μmの
窒化珪素粉末を01重量部添加し、混合原料粉末を調製
した。次に、この混合原料粉末を押出し造粒法により下
記表に示す如く短径が0.5端・3.0mm、15閣の
造粒粒子を造った。つづいて、これらの造粒粒子を黒鉛
製容器に下記表に示す種々の粒子床厚さで充填し、14
50℃の窒素雰囲気下で5時間処理し、還元・窒化反応
を行った。この加熱手段としては例えば容器自体もしく
は容器外周の導電体を高周波誘導加熱する方法、又は抵
抗加熱によって加熱する方法が挙げられる。その後、7
00℃の空気中で8時間処理し、残留カーボンを燃焼除
去して窒化珪素粉末を得た。
Example: 1 part by weight of silica powder and oil absorption: 250 mVloo, i/
Runno bra 1. A mixed raw material powder was prepared by adding 01 parts by weight of silicon nitride powder having an average particle size of 1.0 μm to 05 parts by weight. Next, this mixed raw material powder was extruded and granulated to produce granulated particles having a width of 0.5 mm and a length of 3.0 mm, as shown in the table below. Subsequently, these granulated particles were filled into a graphite container with various particle bed thicknesses shown in the table below, and 14
A reduction/nitridation reaction was performed under a nitrogen atmosphere at 50° C. for 5 hours. Examples of this heating means include a method of high-frequency induction heating of the container itself or a conductor on the outer periphery of the container, or a method of heating by resistance heating. After that, 7
The mixture was treated in air at 00° C. for 8 hours to burn off residual carbon and obtain silicon nitride powder.

得られた窒化珪素粉末を走査型電子顕微鏡で観察したと
ころ粒状を呈していることが分った。
When the obtained silicon nitride powder was observed with a scanning electron microscope, it was found that it had a granular shape.

また、窒化珪素粉末の粒径の範囲、平均粒径。Also, the particle size range and average particle size of silicon nitride powder.

窒素含有率、α相含有率、副生物の生成を調べた。その
結果を同表に併記した。
The nitrogen content, alpha phase content, and by-product formation were investigated. The results are also listed in the same table.

々お、下記表には比較例1,2として混合原料粉末を造
粒し碌いものを、参照例として混合原料粉末を短径35
胴に造粒したものを夫々示した。
In the table below, as Comparative Examples 1 and 2, the mixed raw material powder is granulated and is granulated, and as a reference example, the mixed raw material powder is granulated with a short diameter of 35 mm.
The granules in the shell are shown in each case.

9− 上記懺から明らかなように、比較例1.2に対して実施
例1〜6はいずれも窒化珪素粉末の粒径の範囲が広く、
平均粒径が小さい。すなわち、実施例1〜6の窒化珪素
粉末は良好な焼結性を有する。また、比較例2では粒子
床の厚さが20諭でSiCが副生して窒化珪素粉末の特
性が悪化するが、実施例4.6では粒子床の厚さが80
++1+++でも5iCU副生じない。すなわち、実施
例では粒子床の厚さを80欄程度まで厚くすることがで
き、生産効率を向上させることができる。一方、参照例
の如く、造粒粒子の短径が35爛と本発明の造粒粒子の
短径の範囲(30咽以下)を超えると、α相含有率が低
いうえにSiCが副生じて窒化珪素粉末の特性が態化す
る。
9- As is clear from the above diagram, the particle size range of the silicon nitride powder in Examples 1 to 6 is wider than that in Comparative Example 1.2,
Small average particle size. That is, the silicon nitride powders of Examples 1 to 6 have good sinterability. In addition, in Comparative Example 2, when the particle bed thickness was 20 mm, SiC was produced as a by-product and the properties of the silicon nitride powder deteriorated, but in Example 4.6, the particle bed thickness was 80 mm.
Even with ++1+++, 5iCU does not occur as a side effect. That is, in the example, the thickness of the particle bed can be increased to about 80 mm, and production efficiency can be improved. On the other hand, as in the reference example, when the breadth of the granulated particles is 35mm, which exceeds the range of the breadth of the granulated particles of the present invention (30mm or less), the α phase content is low and SiC is produced as a by-product. The properties of silicon nitride powder change.

以上詳述した如く本発明によれば、生産効率を向上し得
るとともに良好な焼結性を有する微細なα相含有率の高
い窒化珪素粉末の製造方法を提供できるものである。
As described in detail above, according to the present invention, it is possible to provide a method for producing fine silicon nitride powder with a high content of α phase, which can improve production efficiency and has good sinterability.

出願人代理人  弁理士 鈴 江 武 彦=10−Applicant's agent: Patent attorney Suzue Takehiko = 10-

Claims (1)

【特許請求の範囲】[Claims] シリカ粉末あるいは5i−0成分を含む化合物粉末及び
カーボン粉末に窒化珪素粉末、炭化珪素粉末及び酸窒化
珪素系粉末のうち少なくとも1徨を添加して混合原料粉
末を調整し、これを短径が30m以下になるように造粒
した故、この造粒粒子を1300〜1550℃の窒素含
有非酸化性雰囲気中で処理し、還元・窒化反応させるこ
とを特徴とするα相含有率の高い窒化珪素粉末の製造方
法。
A mixed raw material powder is prepared by adding at least one of silicon nitride powder, silicon carbide powder, and silicon oxynitride powder to silica powder or compound powder containing the 5i-0 component and carbon powder, and the mixed raw material powder is prepared with a short axis of 30 m. Silicon nitride powder with a high α phase content, which is characterized by being granulated as follows, and the granulated particles are treated in a nitrogen-containing non-oxidizing atmosphere at 1300 to 1550°C to undergo a reduction and nitriding reaction. manufacturing method.
JP18887181A 1981-11-25 1981-11-25 Manufacture of silicon nitride powder with high alpha-phase content Pending JPS5891011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18887181A JPS5891011A (en) 1981-11-25 1981-11-25 Manufacture of silicon nitride powder with high alpha-phase content

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18887181A JPS5891011A (en) 1981-11-25 1981-11-25 Manufacture of silicon nitride powder with high alpha-phase content

Publications (1)

Publication Number Publication Date
JPS5891011A true JPS5891011A (en) 1983-05-30

Family

ID=16231327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18887181A Pending JPS5891011A (en) 1981-11-25 1981-11-25 Manufacture of silicon nitride powder with high alpha-phase content

Country Status (1)

Country Link
JP (1) JPS5891011A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61242905A (en) * 1985-04-19 1986-10-29 Toshiba Corp Production of alpha-silicon nitride powder
JPS61295212A (en) * 1985-06-24 1986-12-26 Kawasaki Steel Corp Production of silicon nitride powder
US5525556A (en) * 1994-04-14 1996-06-11 The Dow Chemical Company Silicon nitride/silicon carbide composite powders
CN112250046A (en) * 2020-12-11 2021-01-22 安阳亨利高科实业有限公司 Production process of high alpha-phase silicon nitride powder
CN112408992A (en) * 2020-12-11 2021-02-26 安阳亨利高科实业有限公司 Production method of high alpha-phase silicon nitride powder

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52102300A (en) * 1976-02-24 1977-08-27 Richter Gedeon Vegyeszet Vinclistine derivatives or acid additives thereof process for preparing same medical comosition containing same and method of producing same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52102300A (en) * 1976-02-24 1977-08-27 Richter Gedeon Vegyeszet Vinclistine derivatives or acid additives thereof process for preparing same medical comosition containing same and method of producing same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61242905A (en) * 1985-04-19 1986-10-29 Toshiba Corp Production of alpha-silicon nitride powder
JPS61295212A (en) * 1985-06-24 1986-12-26 Kawasaki Steel Corp Production of silicon nitride powder
US5525556A (en) * 1994-04-14 1996-06-11 The Dow Chemical Company Silicon nitride/silicon carbide composite powders
US5538675A (en) * 1994-04-14 1996-07-23 The Dow Chemical Company Method for producing silicon nitride/silicon carbide composite
US5643843A (en) * 1994-04-14 1997-07-01 The Dow Chemical Company Silicon nitride/silicon carbide composite densified materials prepared using composite powders
CN112250046A (en) * 2020-12-11 2021-01-22 安阳亨利高科实业有限公司 Production process of high alpha-phase silicon nitride powder
CN112408992A (en) * 2020-12-11 2021-02-26 安阳亨利高科实业有限公司 Production method of high alpha-phase silicon nitride powder
CN112408992B (en) * 2020-12-11 2022-08-02 安阳亨利高科实业有限公司 Production method of high alpha-phase silicon nitride powder
CN112250046B (en) * 2020-12-11 2022-11-18 安阳亨利高科实业有限公司 Production process of high alpha-phase silicon nitride powder

Similar Documents

Publication Publication Date Title
JPS5891005A (en) Production of silicon nitride powder
JPS5850929B2 (en) Method for manufacturing silicon carbide powder
JPS5891011A (en) Manufacture of silicon nitride powder with high alpha-phase content
JPS6016387B2 (en) Method for manufacturing heat-resistant materials
JPS5839764B2 (en) Method for producing aluminum nitride powder
JPH0319163B2 (en)
JPS6212663A (en) Method of sintering b4c base fine body
JP2976076B2 (en) Method for producing sialon-silicon carbide composite powder
JP3906354B2 (en) Method for producing high surface area silicon carbide ceramic porous body
JPS6356168B2 (en)
JPS5891027A (en) Manufacture of silicon carbide powder
JPS62128913A (en) Production of silicon carbide powder
JPS62167208A (en) Production of aluminum nitride powder
JPS5950006A (en) Manufacture of alpha-type silicon nitride powder
JPS5891013A (en) Manufacture of silicon nitride powder
JP3350907B2 (en) Method for producing crystalline silicon nitride powder
JPH06321510A (en) Production of crystalline silicon nitride powder
JPH03208864A (en) Production of mixed powder of boron nitride and aluminum nitride
JPH01197307A (en) Silicon nitride fine powder having a low oxygen content and its production
JPS5950617B2 (en) Method for producing silicon nitride-silicon carbide composition
JPS63176301A (en) Production of silicon nitride powder
JPS6259599A (en) Production of fibrous aggregate consisting of silicon nitride and silicon nitride oxide
JPH0240606B2 (en)
JP2584252B2 (en) Method for producing β-sialon / silicon carbide composite powder
JPH0345506A (en) High-oxygen high beta-type silicon nitride fine powder and production thereof