JPH0319163B2 - - Google Patents

Info

Publication number
JPH0319163B2
JPH0319163B2 JP12844082A JP12844082A JPH0319163B2 JP H0319163 B2 JPH0319163 B2 JP H0319163B2 JP 12844082 A JP12844082 A JP 12844082A JP 12844082 A JP12844082 A JP 12844082A JP H0319163 B2 JPH0319163 B2 JP H0319163B2
Authority
JP
Japan
Prior art keywords
powder
silicon
sialon
raw material
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12844082A
Other languages
Japanese (ja)
Other versions
JPS5918106A (en
Inventor
Yoshio Masuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP12844082A priority Critical patent/JPS5918106A/en
Publication of JPS5918106A publication Critical patent/JPS5918106A/en
Publication of JPH0319163B2 publication Critical patent/JPH0319163B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/0821Oxynitrides of metals, boron or silicon
    • C01B21/0826Silicon aluminium oxynitrides, i.e. sialons

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は珪素アルミニウムオキシ窒化物系(Si
−Al−O−N系化合物)粉末原料の製造方法に
関するものである。 近時、窒化物系高温材料として窒化珪素系セラ
ミツクス、及び窒化珪素Si3N4の珪素の一部がア
ルミニウムにより置換され、且つ窒素の一部が酸
素により置換された珪素アルミニウムオキシ窒化
物、いわゆるサイアロン(Si−Al−O−N)系
セラミツクスに関心が寄せられている。 窒化珪素は結合の共有性が大きく、窒化珪素の
単独での緻密化焼結がむずかしい。そこで焼結助
剤を加えるなどして特有の焼結法が研究されてい
るが、焼結助剤を加えれば、期待されるSi3N4
特性を十分に引き出せない場合が多い。一方、サ
イアロンについてはイオン結合性の大きいアルミ
ニウムや酸素が含まれているため、窒化珪素その
ものより焼結性の向上が期待される。そのため、
焼結性の比較的高いサイアロン原料を合成すれば
二次的な添加剤を使用することなく、あるいは、
少量の添加だけで焼結体を得ることが期待でき
る。 ところで、一般にセラミツク焼結体は多孔質材
料などを除き、緻密且つ微細で均一な組織からで
きていることが好ましい。そのためには粉末原料
の調整条件、成形条件、焼結条件等々が関係する
が、粉末原料については微粒子ほど低温且つ短時
間で好適なセラミツクス焼結体が得られやすい。
また微細な結晶粒子から成る焼結体を作るために
は、できるでけ微細な粉末を出発原料とした方が
よい。しかも、二つ以上の成分が化学合成されて
調整される粉末原料として均質で高純度な特性を
有していることが望まれている。 かくして上述の目的に沿つたサイアロン系粉末
原料をつくるためには次の方法が提案されてい
る。 (i) シリカ(SiO2)粉末、炭素粉末、AlN(また
はAl2O3)粉末を混合し、窒素雰囲気中で炭素
によつてシリカを還元して窒化反応をおこな
う。この方法ではシリカ粉末の粒径が小さいほ
ど原料粉末の粒径が小さくなる。そのため、極
めて粒径の小さいシリカ粉末が要望されるがシ
リカを微粉末にするためのコストが高く、且つ
不純物の混入が起こりやすく、今だ満足し得る
ものではない。 しかも、出発原料を粉末状で混合するため、
均一な混合状態にするには、かなり時間を要し
ている。 (ii) C.V.D法…珪素源としてSiCl4、SiH4、窒素
源としてNH3がよく用いられ、AlCl3ガス、O2
ガス、水蒸気の共存のもとで気相反応によつて
合成されるもので、この製法によればかなり微
粉化でき、反応性の高いアモルフアス状態にも
できるが、原料が比較的高価であり生成速度が
極めて遅いため量産に適さない。 本発明は上記の諸事情に鑑みて開発したもの
で、窒化珪素に比べて高反応性というサイアロン
の特性に加えて、均一な組成且つ粒子径が極めて
小さく、その結果、易焼結性という利点を有した
サイアロン系粉末の製造方法をもたらさんとする
ものである。 本発明の他の目的は従来の方法に比べてより簡
単にサイアロン系粉末原料を製造できる方法を提
供することにある。 以下、本発明のサイアロン系粉末原料製造方法
を詳細に説明する。 本発明の構成は次のような工程から成つてい
る。 第1工程 シリカゾルとアルミナゾルとスラリー状炭素
(好ましくはカーボンブラツクスラリー)とを出
発原料として所望の珪素アルミニウムオキシ窒化
物系の組成になるように混合溶液をつくる。 ここで各出発原料は固有のPHを有しているため
に(PH=−log〔H+〕、〔H+〕は水素イオンのモル
濃度を表わす)、それぞれのPH差が約4.6以下とな
るように調整する必要がある。例えば、シリカゾ
ルのPH=2.9、アルミナゾルのPH=4.5、カーボン
ブラツクスラリのPH=3.5のとき、それぞれのPH
差のうち最大PH差は1.6であり、均一な混合溶液
が容易に得られた。ところがシリカゾルのPH=
9.3、アルミナゾルのPH=4.5、カーボンブラツク
スラリーのPH=7.5のとき、シリカゾルとアルミ
ナゾルのPH差が4.8となり、この場合、混合する
と早急にゲル化して均一になりにくかつた。 第2工程 前記混合溶液を粉末化するため熱風乾燥(例え
ばスプレードライ)、またはゲル硬化後粉砕処理
等をおこなう。ゲル化の方法には種々孝えられる
が100℃近くまで加熱するだけで容易にゲル化が
可能であり、他に冷却やPH調整してもよい。前記
ゲルを乳バチや振動ミル等によつて粉砕すると、
溶液混合のため均質になつており、簡単に微細な
粉末になる。尚、この粉末の一次粒径は約0.01〜
0.05ミクロンであつた。 第3工程 上記混合粉末を窒素を含む非酸化性ガスの雰囲
気中約1200〜1800℃で合成反応をおこなわせるこ
とでサイアロン系粉末原料が得られた。反応温度
が1200℃以下では、合成反応に長時間を要し、
1800℃以上では一部分解反応の恐れがあつた。従
つて、1200〜1800℃、好ましくは1300〜1600℃の
温度が好適であつた。 以下、本発明の実施例を述べる。 実施例 1 シリカゾル(含有率48.0wt%)90.1c.c.、アルミ
ナゾル(含有率7.2wt%)337.3c.c.及びカーボンブ
ラツクスラリー(含有率24.0wt%)103.9c.c.とを
混合させた(この時それぞれのPH差は2前後であ
つた。)該混合液を約80℃に加熱することで早急
にゲル化させ、このゲルを乳バチで粉砕した。該
粉砕物を窒素気流(200s.l/hr)中、1400℃2時
間合成反応させた。かくして得られた粉末につい
てX線回折して調べたところ、Si4Al2O2N6で示
されるサイアロンが95%含有であることが確認さ
れ、平均粒径は約0.3μmであつた。 実施例 2 シリカゾル(含有率48.2wt%)45.2c.c.、アルミ
ナゾル(含有率20.0wt%)207.3c.c.、カーボンブ
ラツクスラリー(含有率24.0wt%)69.4c.c.とを混
合させた(この時それぞれのPH差は3前後であつ
た)。該混合液を約80℃加熱することで早急にゲ
ル化させ、このゲルを振動ミルで粉砕した。該粉
砕物を窒素気流(200s./hr)中、1500℃2時
間で合成反応させた。かくして得られた粉末につ
いてX線回折して調べたところ、Si2Al4O4N4
示されるサイアロンが95%以上含有であることが
確認され、平均粒径は約0.5μmであつた。 次に第一工程において出発原料のゾルから溶液
のまま混合するためには各出発原料のPHが重要と
なることを本発明者は知見するに至り、それにつ
れて以下詳述する。 所望のサイアロン系粉末原料を得るためには溶
液混合においてゲル化がおきないという制限があ
る。ゲル化は各出発原料間のPH差が大きくなるほ
ど経時的なゲル生成が確認された。 そこでSi4Al2O2N6で示されるサイアロン系粉
末をつくるために、シリカゾルのPH=2.9、9.1、
アルミナゾルのPH=4.5、6.3、カーボンブラツク
スラリーのPH=3.5、7.5、10.5の各種の出発原料
をつかつて、混合割合を変えることでゲル生成傾
向を繰り返し実験したところ、表1に示す通りと
なつた。 表中、評価として○印をつけたサンプルでは各
出発原料の成分含有率や混合順位、撹拌手段など
の混合方法とは無関係に溶液のまま、混合調整さ
れた。×印は混合方法をいろいろと変えてもゲル
が経時的に生成され、均一な混合が不可能になつ
たことを示す。また、△印では各出発原料の成分
含有率や混合順位、撹拌手段などの混合方法を改
良することによつてほぼ均一な混合が可能となつ
たことを示す。
The present invention is based on silicon aluminum oxynitride (Si
-Al-O-N compound) The present invention relates to a method for producing a powder raw material. Recently, as nitride-based high-temperature materials, silicon nitride-based ceramics and silicon-aluminum oxynitrides, in which part of the silicon in silicon nitride Si 3 N 4 is replaced by aluminum and part of the nitrogen is replaced by oxygen, have been developed. Sialon (Si-Al-O-N) ceramics are attracting attention. Silicon nitride has a large bond covalent nature, and it is difficult to densify and sinter silicon nitride alone. Therefore, unique sintering methods such as adding sintering aids are being researched, but adding sintering aids often fails to fully bring out the expected properties of Si 3 N 4 . On the other hand, since sialon contains aluminum and oxygen, which have high ionic bonding properties, it is expected to have better sinterability than silicon nitride itself. Therefore,
If a sialon raw material with relatively high sinterability is synthesized, it can be made without the use of secondary additives, or
It is expected that a sintered body can be obtained by adding only a small amount. Incidentally, it is generally preferable that a ceramic sintered body is made of a dense, fine, and uniform structure, excluding porous materials. For this purpose, the adjustment conditions, molding conditions, sintering conditions, etc. of the powder raw material are relevant, but the finer the powder raw material, the easier it is to obtain a suitable ceramic sintered body at a lower temperature and in a shorter time.
Furthermore, in order to produce a sintered body consisting of fine crystal grains, it is better to use as fine a powder as possible as a starting material. Furthermore, it is desired that the powder raw material, which is prepared by chemically synthesizing two or more components, has homogeneous and highly pure characteristics. Thus, the following method has been proposed to produce a sialon-based powder raw material that meets the above objectives. (i) Silica (SiO 2 ) powder, carbon powder, and AlN (or Al 2 O 3 ) powder are mixed, and the silica is reduced with carbon in a nitrogen atmosphere to perform a nitriding reaction. In this method, the smaller the particle size of the silica powder, the smaller the particle size of the raw material powder. Therefore, silica powder with extremely small particle size is desired, but it is still unsatisfactory because the cost of making silica into fine powder is high and impurities are likely to be mixed in. Moreover, since the starting materials are mixed in powder form,
It takes a considerable amount of time to achieve a uniform mixing state. (ii) CVD method... SiCl 4 , SiH 4 is often used as a silicon source, NH 3 is often used as a nitrogen source, AlCl 3 gas, O 2
It is synthesized by a gas phase reaction in the coexistence of gas and water vapor. This manufacturing method can be made into a fairly fine powder and can be made into a highly reactive amorphous state, but the raw materials are relatively expensive and the production process is slow. It is not suitable for mass production because the speed is extremely slow. The present invention was developed in view of the above circumstances, and in addition to the characteristics of SiAlON, which is highly reactive compared to silicon nitride, it has the advantage of having a uniform composition and extremely small particle size, resulting in easy sinterability. The present invention aims to provide a method for producing a sialon-based powder having the following properties. Another object of the present invention is to provide a method for producing sialon-based powder raw materials more easily than conventional methods. Hereinafter, the method for producing the sialon-based powder raw material of the present invention will be explained in detail. The structure of the present invention consists of the following steps. First step: Using silica sol, alumina sol, and carbon slurry (preferably carbon black slurry) as starting materials, a mixed solution is prepared to have a desired silicon-aluminum oxynitride composition. Since each starting material has a unique pH (PH = -log [H + ], [H + ] represents the molar concentration of hydrogen ions), the difference in pH between each is approximately 4.6 or less. It is necessary to adjust accordingly. For example, when the PH of silica sol is 2.9, the PH of alumina sol is 4.5, and the PH of carbon black slurry is 3.5, each PH
Among the differences, the maximum PH difference was 1.6, and a uniform mixed solution was easily obtained. However, the pH of silica sol =
9.3, when the pH of the alumina sol was 4.5 and the pH of the carbon black slurry was 7.5, the PH difference between the silica sol and the alumina sol was 4.8, and in this case, when they were mixed, they quickly gelled and were difficult to become uniform. Second Step In order to powderize the mixed solution, hot air drying (for example, spray drying) or pulverization treatment after gel hardening is performed. Although various methods can be used for gelation, gelation can be easily achieved simply by heating to nearly 100°C, and cooling and pH adjustment may also be used. When the gel is crushed using a milk bee or a vibrating mill,
Because it is mixed as a solution, it becomes homogeneous and easily becomes a fine powder. The primary particle size of this powder is approximately 0.01~
It was 0.05 micron. Third Step A sialon-based powder raw material was obtained by carrying out a synthesis reaction on the above mixed powder at about 1200 to 1800°C in an atmosphere of non-oxidizing gas containing nitrogen. If the reaction temperature is below 1200℃, the synthesis reaction will take a long time,
There was a risk of partial decomposition reaction at temperatures above 1800°C. Therefore, a temperature of 1200 to 1800°C, preferably 1300 to 1600°C was suitable. Examples of the present invention will be described below. Example 1 90.1 cc of silica sol (48.0 wt% content), 337.3 cc of alumina sol (7.2 wt% content), and 103.9 cc of carbon black slurry (24.0 wt% content) were mixed (at this time, the PH difference between them was 2) The mixed solution was heated to about 80° C. to quickly form a gel, and this gel was crushed with a milk pestle. The pulverized product was subjected to a synthesis reaction at 1400°C for 2 hours in a nitrogen stream (200 s.l/hr). When the thus obtained powder was examined by X-ray diffraction, it was confirmed that it contained 95% sialon represented by Si 4 Al 2 O 2 N 6 and the average particle size was about 0.3 μm. Example 2 45.2 cc of silica sol (48.2 wt% content), 207.3 cc of alumina sol (20.0 wt% content), and 69.4 cc of carbon black slurry (24.0 wt% content) were mixed (at this time, the PH difference between them was It was around 3). The mixture was heated to about 80° C. to rapidly gel, and the gel was pulverized using a vibration mill. The pulverized product was subjected to a synthesis reaction at 1500° C. for 2 hours in a nitrogen stream (200 s./hr). When the thus obtained powder was examined by X-ray diffraction, it was confirmed that it contained 95% or more of sialon represented by Si 2 Al 4 O 4 N 4 and the average particle size was about 0.5 μm. Next, in the first step, the present inventor has come to the knowledge that the pH of each starting material is important in order to mix the starting materials as a solution from a sol, and this will be described in detail below. In order to obtain the desired sialon-based powder raw material, there is a limitation that gelation does not occur during solution mixing. It was confirmed that gel formation occurs over time as the pH difference between each starting material increases. Therefore, in order to make sialon powder represented by Si 4 Al 2 O 2 N 6 , the pH of silica sol was 2.9, 9.1,
Using various starting materials with pH = 4.5, 6.3 for alumina sol and pH = 3.5, 7.5, and 10.5 for carbon black slurry, we repeated experiments to determine the gel formation tendency by changing the mixing ratio, and the results were as shown in Table 1. Ta. In the table, the samples marked with a circle for evaluation were mixed and adjusted as a solution, regardless of the component content of each starting material, mixing order, mixing method such as stirring means, etc. The x mark indicates that even if the mixing method was changed, a gel was formed over time and uniform mixing was no longer possible. In addition, the mark △ indicates that almost uniform mixing has become possible by improving the component content of each starting material, the mixing order, the mixing method such as the stirring means, etc.

【表】 * 表中、容量%は出発原料の容積比
を表わす
** 最大pH差は各出発原料間のpH差の
なかで最大値を表わす
表1が示す通り、各出発原料のPH差の最大値が
4.6を越えると経時的なゲル化が進行し、均一な
混合溶液は得られなかつた。しかし、最大PH差が
約4.6以下、好ましくは約4.2以下となれば出発原
料が十分に混合できて、均一な溶液が得られた。 上述した実施例1及び2から明らかなように本
発明の製造方法によれば、出発原料が比較的安価
で容易に入手できるゾルであり、溶液混合するだ
けで均一な混合となり、微細な粒子となるため、
ミル粉砕のような工程が省かれた。その結果、粉
末混合に要する操作とコストが飛躍的に低減し
た。しかも、得られた合成粉末原料は純度が高
く、且つ粒径の小さいものであり、当然の事なが
ら、出発原料の配合割合によつて所望の組成から
なるサイアロン径粉末原料となつた。 かくして上記粉末原料を使つて焼結すると比較
的低温短時間で容易に焼結するという利点をもつ
ているほか、緻密且つ微細で均一な組成のサイア
ロン系セラミツクスなど、多種多様のセラミツク
焼結体の展開が可能である。
[Table] * In the table, volume % represents the volume ratio of the starting materials.
** The maximum pH difference represents the maximum value among the pH differences between each starting material. As shown in Table 1, the maximum pH difference between each starting material is
When it exceeds 4.6, gelation progresses over time and a homogeneous mixed solution cannot be obtained. However, when the maximum PH difference was about 4.6 or less, preferably about 4.2 or less, the starting materials could be sufficiently mixed and a homogeneous solution was obtained. As is clear from Examples 1 and 2 above, according to the production method of the present invention, the starting material is a sol that is relatively inexpensive and easily available, and just by mixing the solution, a uniform mixture can be obtained, and fine particles and To become
Steps such as milling are eliminated. As a result, the operations and costs required for powder mixing have been dramatically reduced. Moreover, the obtained synthetic powder raw material had high purity and small particle size, and as a matter of course, depending on the blending ratio of the starting raw materials, it became a sialon diameter powder raw material having a desired composition. Thus, sintering using the above-mentioned powder raw materials has the advantage of being easy to sinter at relatively low temperatures and in a short time. Expansion is possible.

Claims (1)

【特許請求の範囲】 1 下記(A)(B)及び(C)工程から成ることを特徴とす
る珪素アルミニウムオキシ窒化物系粉末原料の製
造方法: (A) シリカゾルとアルミナゾルとスラリー状炭素
とを出発原料とし、所望の珪素アルミニウムオ
キシ窒化物系の組成になるように混合溶液をつ
くる工程。 (B) 前記混合溶液を熱風乾燥、またはゲル硬化後
粉砕処理等をして粉末化する工程。 (C) 前記粉末を窒素を含む非酸化性ガスの雰囲気
中約1200〜1800℃で加熱合成反応をおこなつて
珪素アルミニウムオキシ窒化物系粉末を得る工
程。
[Claims] 1. A method for producing a silicon-aluminum oxynitride-based powder raw material, characterized by comprising the following steps (A), (B), and (C): (A) silica sol, alumina sol, and slurry carbon; A process of preparing a mixed solution using the starting materials so as to have the desired silicon-aluminum oxynitride composition. (B) A step of pulverizing the mixed solution by drying with hot air or by pulverizing the gel after hardening. (C) A step of performing a heating synthesis reaction on the powder at about 1200 to 1800°C in an atmosphere of a non-oxidizing gas containing nitrogen to obtain a silicon aluminum oxynitride powder.
JP12844082A 1982-07-22 1982-07-22 Preparation of silicon aluminum oxynitride type powdery raw material Granted JPS5918106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12844082A JPS5918106A (en) 1982-07-22 1982-07-22 Preparation of silicon aluminum oxynitride type powdery raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12844082A JPS5918106A (en) 1982-07-22 1982-07-22 Preparation of silicon aluminum oxynitride type powdery raw material

Publications (2)

Publication Number Publication Date
JPS5918106A JPS5918106A (en) 1984-01-30
JPH0319163B2 true JPH0319163B2 (en) 1991-03-14

Family

ID=14984780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12844082A Granted JPS5918106A (en) 1982-07-22 1982-07-22 Preparation of silicon aluminum oxynitride type powdery raw material

Country Status (1)

Country Link
JP (1) JPS5918106A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60145902A (en) * 1984-01-10 1985-08-01 Natl Inst For Res In Inorg Mater Production of sialon powder
JPS62167209A (en) * 1986-01-17 1987-07-23 Natl Inst For Res In Inorg Mater Alpha-sialon powder and its production
JPH0274508A (en) * 1988-09-07 1990-03-14 Nippon Cement Co Ltd Production of beta-sialon powder
US4977113A (en) * 1989-05-15 1990-12-11 Aluminum Company Of America Process for producing silicon aluminum oxynitride by carbothermic reaction
DE3991023T1 (en) * 1989-08-22 1990-09-20 Nihon Cement METHOD FOR PRODUCING (BETA) SIALON POWDER

Also Published As

Publication number Publication date
JPS5918106A (en) 1984-01-30

Similar Documents

Publication Publication Date Title
CA2187333A1 (en) Silicon nitride/silicon carbide composite powders, their preparation and densified materials prepared using the composite powders
US4780299A (en) Method for producing aluminum nitride powder
JPS5891005A (en) Production of silicon nitride powder
JPS61151006A (en) Production of aluminum nitride powder
US4716028A (en) Process for preparation of high-type silicon nitride powder
JPH0319163B2 (en)
JPS63274611A (en) Manufacture of ceramic powder based on beta'-sialon
US4812298A (en) Method for producing sialon powders
JPH0647447B2 (en) Method for producing aluminum nitride powder
JP2907366B2 (en) Method for producing crystalline silicon nitride powder
JP3900589B2 (en) Magnesium siliconitride powder and method for producing the same
JPS61242905A (en) Production of alpha-silicon nitride powder
JPS5891011A (en) Manufacture of silicon nitride powder with high alpha-phase content
JP4958353B2 (en) Aluminum nitride powder and method for producing the same
JP2976076B2 (en) Method for producing sialon-silicon carbide composite powder
JP3472802B2 (en) Manufacturing method of Sialon sintered body
EP0227324B1 (en) Method of making ultrapure silicon nitride/oxynitride powder
JP2547786B2 (en) Manufacturing method of aluminum nitride sintered body
JPS62167208A (en) Production of aluminum nitride powder
JPS6227004B2 (en)
JPS6259049B2 (en)
JPS61201608A (en) Manufacture of high purity aluminum nitride powder
JPH0218285B2 (en)
JP4025810B2 (en) Method for producing silicon nitride particles
JP2731333B2 (en) Silicon nitride sintered body, method of manufacturing the same, silicon nitride powder and method of manufacturing the same