JP3906354B2 - Method for producing high surface area silicon carbide ceramic porous body - Google Patents

Method for producing high surface area silicon carbide ceramic porous body Download PDF

Info

Publication number
JP3906354B2
JP3906354B2 JP2001212181A JP2001212181A JP3906354B2 JP 3906354 B2 JP3906354 B2 JP 3906354B2 JP 2001212181 A JP2001212181 A JP 2001212181A JP 2001212181 A JP2001212181 A JP 2001212181A JP 3906354 B2 JP3906354 B2 JP 3906354B2
Authority
JP
Japan
Prior art keywords
surface area
sic
silicon carbide
high surface
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001212181A
Other languages
Japanese (ja)
Other versions
JP2003026483A (en
Inventor
将博 小松
英司 前田
修二 恒松
昌男 柴田
剛 坂木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2001212181A priority Critical patent/JP3906354B2/en
Publication of JP2003026483A publication Critical patent/JP2003026483A/en
Application granted granted Critical
Publication of JP3906354B2 publication Critical patent/JP3906354B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、新規な高表面積炭化ケイ素(以下SiCと略す)セラミックス多孔体の製造方法に関するものである。
【0002】
【従来の技術】
これまで、カルボシラン類又はそのゲルを熱分解するか、あるいはクロスリンクスを導入後、熱分解することにより微細粒子を形成させ、単位重量当りの表面積を高めた高表面積の炭化ケイ素材料は知られている。
一方において、活性炭と酸化ケイ素のようなケイ素源を高温で反応させ、粒径2mm程度の顆粒を得ることも知られていた。
【0003】
しかしながら、カルボシラン類の熱分解による高表面積SiC材料は、粒径0.01μm程度の粉体であり、そのまま触媒担体として使用すると、圧力損失が大きくなるため、2000℃付近の温度で焼結させ、サイズを大きくした成形体に加工して用いる必要があったが、このような焼結温度においては、SiCの粒子成長が起り、表面積が減少するのを免れない。
また、このような粒子成長を抑制するために、より低い温度で焼結しようとすれば、SiCの結晶性が劣化し、積層欠陥が大きくなり、高温における耐酸化性が低下し、SiCの空気中、高温での酸化により生じたSiO2がガラス状となり表面積が減少するという欠点を生じる。
【0004】
【発明が解決しようとする課題】
本発明は、触媒担体として使用する場合に、顆粒化のような成形を必要とせず、しかも耐酸化性が優れ、高強度の高表面積SiCセラミックス多孔体の製造方法を提供することを目的としてなされたものである。
【0005】
【課題を解決するための手段】
本発明者らは、触媒担体として好適な高表面積SiCセラミックス多孔体を開発するために種々研究を重ねた結果、これまでシリカの供給源の1つとして用いられていたもみがらを炭化して、これを炭素とシリカの供給源とし、これを先ず金属触媒の存在下、所定の温度でホットプレスして、SiC焼結多孔体を形成させ、次いでこの中に含まれる金属シリサイドとSiCを酸で溶出してさらに細孔を形成させることにより、高強度の高表面積SiCセラミックスが得られることを見出し、この知見に基づいて本発明をなすに至った。
【0006】
すなわち、本発明は、もみがら炭を酸化処理してC/SiO2の重量比が0.65以上の酸化生成物としたのち、これに金属触媒を加えて、2050℃の温度でホットプレスして微量の金属シリサイドと炭素との複合体を含むSiC焼結体を形成させ、次いでこの焼結体から残留炭素を除去後、フッ化水素酸と硝酸との混合物により、焼結体中の金属シリサイドを溶出させ、かつその溶けた後に生じた細孔を中心に炭化ケイ素を溶出させることを特徴とする高表面積炭化ケイ素セラミックス多孔体の製造方法を提供するものである。
【0007】
【発明の実施の形態】
本発明の高表面積SiCセラミックス多孔体は、もみがらを炭化したもみがら炭を原料として製造される。このもみがら炭中には、炭素とケイ素が含まれるので、これを300℃以上の温度で酸化すると、炭素とシリカの混合物が得られる。この場合の酸化条件を変えることにより、酸化もみがら炭中のC/SiO2の重量比を変えることができる。このC/SiO2の重量比は、0.65以上、好ましくは0.65〜0.79の範囲を選ぶことが必要である
【0008】
このような酸化もみがら炭から次の2段階の過程を経て高表面積SiCセラミックスが得られる。
【0009】
すなわち、第一段階では酸化もみがら炭に反応触媒としてFe23やCoOのような遷移金属の化合物を加え、所定温度でホットプレスして焼結多孔体を形成させる。この焼結多孔体は、通常の焼結の際に生じる孔径の細孔を有している。この際、SiC化反応の途中で、金属触媒例えば鉄は金属シリサイド例えば鉄シリサイドに変化する。そして、この金属シリサイド中に炭素が溶解し、過飽和になったSiCは析出する。このようにして生成するSiCは積層欠陥が小さいため、耐酸化性が良好である。
【0010】
このようにして、いったん析出したSiCは、溶融したSiC含有金属シリサイドと合体し、太いSiC粒子間ネック結合を形成し、セラミックスとなる。
次に、第2段階では、このようにして形成された金属シリサイドを含有したSiCセラミックスをフッ化水素酸と硝酸との混合酸(以下HF−HNO3と示す)により溶出する。この場合、50wt%程度溶出しても本来の多孔質セラミックス構造はそこなわれずに保たれる。そして、C/SiO 2 が大きい場合、第1段階でのホットプレス温度が高いと、金属シリサイドSiC粒子中に入った状態のまま溶出され、細孔が形成されるので、酸処理後に高表面積多孔体を生じる。
【0011】
【実施例】
次に実施例により、本発明をさらに詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。
【0012】
参考例
もみがらを炭化した後、300℃以上で空気中で酸化した。この酸化もみがら炭18gにFe 2 3 を2.2mMを加え、エタノールスラリー中で良く混合し、乾燥した後、図1に示す温度でホットプレスした。この時、この酸化もみがら炭を1000℃で1時間、窒素気流中で熱処理して得たもののC/SiO 2 は重量比で0.42であった。次に、図1に示す温度でホットプレスして得た多孔質SiCセラミックスを50H 2 O:25HNO 3 :25HF(体積比)の混酸中に浸して、継続的に表面積を測定した。横軸にその時の溶出量、縦軸に表面積を示す。このように、表面積はホットプレス温度と、溶出量に依存することが判明した。これらの溶出後の電子顕微鏡を観察すると、温度が比較的に低いところでは、SiC粒子中に細孔が発達しており、ホットプレス温度が2050℃になるとSiC粒子の外部が溶出されていることがわかった。このことは触媒として加えたFe 2 3 が鉄シリサイドとなり、その鉄シリサイド中に高温で炭素が溶解し、溶解度以上になると、SiCが析出となり、生じたSiCに鉄シリサイドが合体して粒成長する、いわゆる " 溶解−析出 " 機構によって、SiC粒子中に鉄シリサイドが取り込まれる。この鉄シリサイドは、比較的HF−HNO 3 に溶けやすいため、この細孔を起点として、さらに細孔が発達するが、高温になると鉄シリサイドはSiC粒子外に出るため、SiC粒子の内部は 溶出されず、粒子の外部が溶出されるため、溶出量に対する表面積の増加は少なくなると考えられる。同じように、コバルトを触媒とした多孔質SiCセラミックスの表面積もホットプレス温度が上昇するとともに、SiC溶出量に対する表面積の増加は減少することが判明した。この場合、鉄やコバルト等触媒を存在させないと、セラミックスの強度が弱く、溶出した場合、粉体または塊状になる。さらに、ホットプレス温度が高くなるとSiC同士の繋がりが強くなり、坑折力は大きくなる。
このように、C/SiO 2 の重量比が小さい場合、すなわち含有炭素量が少ない場合には、金属触媒を加え、2050℃の温度でホットプレスし、HF−HNO 3 で処理しても表面積の増加は認められない。
【0013】
実施例1
次に、もみがら炭を300℃以上で酸化し、C/SiO2比を変えた酸化もみがら炭18gとFe23を2.2mMをスラリーで混合物とし、乾燥後、2050℃でホットプレスした。この時、もみがら炭中の炭素の酸化減量が少ないとSiCと炭素の複合した成形体得られた。その後、700℃、空気中で、この複合成形体中の過剰の炭素を除去した。その後、50H 2 O:25HNO 3 :25HF(体積比)の混酸中に浸し、継続的に表面積を測定した。その結果を図2に示す
C/SiO2が小さくなると、溶出量に対する表面積の増加の割合は小さくなっている。C/SiO2が0.79,0.65,0.53の時の残留炭素量はそれぞれ26.2,10.7,0wt%であった。このことから、残留炭素によりSiCの粒成長が阻害されること及び、脱炭素後は炭素であった部分が孔となりHF−HNO3の混酸が効率的に多孔質SiCセラミックスに入り込み、SiCの溶出が進むため、残留炭素が多く存在しているほどSiCセラミックス表面積が大きくなることが推測される
【0014】
実施例2
Coを触媒として各C/SiO2を有するもみがら炭を2050℃でホットプレスし、700℃で脱炭素した。次に、50H 2 O:25HNO 3 :25HF(体積比)中に湿潤し、溶出量が約50wt%の高表面積SiCセラミックス細孔分布を測定した。この結果を図3に示す。この図から分るように、溶出処理により孔径200Å以下の細孔が形成される。
【0015】
【発明の効果】
SiCは焼結性が低く、高表面積を有するSiCセラミックス製造は困難であった。しかし、本発明により、炭素とシリカの混合物に金属触媒を加えて、ホットプレスすると金属シリサイドによる溶解−析出作用によりSiCの生成と粒成長が起こり、積層欠陥の小さな多孔質SiCセラミックスを製造される。その後、HF−HNO3溶出により、高強度、高表面積SiCセラミックス製造することができる。これは特に、発熱反応触媒担体や疎水性触媒担体に使用される
【図面の簡単な説明】
【図1】 Fe触媒時の各ホットプレス温度におけるHF−HNO3溶出量と表面積の関係を示すグラフ。
【図2】 Fe触媒時のもみがら炭中の各C/SiO2におけるHF−HNO3溶出量と表面積との関係を示すグラフ。
【図3】 Co触媒共存下、各C/SiO2における50wt%を溶出した時の細孔分布曲
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a novel high surface area silicon carbide (hereinafter abbreviated as SiC) ceramic porous body.
[0002]
[Prior art]
Hitherto, high surface area silicon carbide materials in which fine particles are formed by thermal decomposition of carbosilanes or their gels, or by introducing cross-links and then increasing the surface area per unit weight are known. Yes.
On the other hand, it has been known that activated carbon and a silicon source such as silicon oxide are reacted at a high temperature to obtain granules having a particle size of about 2 mm.
[0003]
However, the high surface area SiC material by thermal decomposition of carbosilanes is a powder having a particle size of about 0.01 μm, and if used as a catalyst carrier as it is, the pressure loss increases, so that it is sintered at a temperature around 2000 ° C., Although it has been necessary to process and use the molded article having a large size, at such a sintering temperature, SiC particle growth occurs and the surface area is inevitably reduced.
Further, if sintering is attempted at a lower temperature in order to suppress such particle growth, the crystallinity of SiC deteriorates, stacking faults increase, oxidation resistance at high temperatures decreases, and SiC air In the middle, the SiO 2 generated by oxidation at a high temperature becomes glassy and the surface area is reduced.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide a method for producing a porous ceramic body having a high surface area that does not require molding such as granulation and has excellent oxidation resistance and high strength when used as a catalyst carrier. It is a thing.
[0005]
[Means for Solving the Problems]
As a result of various studies to develop a high surface area SiC ceramic porous body suitable as a catalyst support, the present inventors carbonized rice husks that have been used as one of silica sources until now. Using this as a source of carbon and silica, this is first hot-pressed at a predetermined temperature in the presence of a metal catalyst to form a SiC sintered porous body, and then the metal silicide and SiC contained therein are acid-added. It was found that a high-strength, high surface area SiC ceramic can be obtained by elution to form pores, and the present invention has been made based on this finding.
[0006]
That is, the present invention oxidizes rice husk charcoal to obtain an oxidation product having a C / SiO 2 weight ratio of 0.65 or more, and then a metal catalyst is added thereto and hot pressed at a temperature of 2050 ° C. After forming a SiC sintered body containing a composite of a trace amount of metal silicide and carbon, and then removing residual carbon from the sintered body , a mixture of hydrofluoric acid and nitric acid is used to remove the metal in the sintered body. The present invention provides a method for producing a high surface area silicon carbide ceramic porous body characterized by eluting silicide and eluting silicon carbide around pores formed after melting the silicide.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The high surface area SiC ceramic porous body of the present invention is produced using rice husk charcoal obtained by carbonizing rice husk. Since the rice husk charcoal contains carbon and silicon, when this is oxidized at a temperature of 300 ° C. or higher, a mixture of carbon and silica is obtained. By changing the oxidation conditions in this case, the weight ratio of C / SiO 2 in the oxidized chaff charcoal can be changed. The C / SiO 2 weight ratio should be 0.65 or more, preferably in the range of 0.65 to 0.79.
[0008]
A high surface area SiC ceramic is obtained from such oxidized rice bran charcoal through the following two-stage process.
[0009]
That is, in the first stage, a transition metal compound such as Fe 2 O 3 or CoO is added as a reaction catalyst to oxidized rice bran charcoal and hot pressed at a predetermined temperature to form a sintered porous body. This sintered porous body has pores having a pore size generated during normal sintering. At this time, the metal catalyst such as iron changes to a metal silicide such as iron silicide during the SiC conversion reaction. And carbon melt | dissolves in this metal silicide, SiC which became supersaturated precipitates. SiC produced in this manner has good oxidation resistance because of small stacking faults.
[0010]
Thus, once precipitated SiC is united with molten SiC-containing metal silicide to form a thick SiC inter-particle neck bond and become ceramic.
Next, in the second stage, the SiC ceramic containing the metal silicide formed in this way is eluted with a mixed acid of hydrofluoric acid and nitric acid (hereinafter referred to as HF-HNO 3 ). In this case, the original porous ceramic structure is kept intact even if about 50 wt% is eluted. And when C / SiO 2 is large, if the hot press temperature in the first stage is high, the metal silicide is eluted in the state of being contained in the SiC particles, and pores are formed. This produces a porous material.
[0011]
【Example】
EXAMPLES Next , although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.
[0012]
Reference example
After carbonizing the rice husk, it was oxidized in air at 300 ° C. or higher. After adding 2.2 mM Fe 2 O 3 to 18 g of this oxidized rice bran charcoal , mixing well in an ethanol slurry, drying, and hot pressing at the temperature shown in FIG. At this time, C / SiO 2 obtained by heat-treating the oxidized rice husk charcoal at 1000 ° C. for 1 hour in a nitrogen stream had a weight ratio of 0.42. Next, the porous SiC ceramic obtained by hot pressing at the temperature shown in FIG. 1 was immersed in a mixed acid of 50H 2 O: 25HNO 3 : 25HF (volume ratio), and the surface area was continuously measured. The horizontal axis indicates the amount of elution at that time, and the vertical axis indicates the surface area. Thus, it was found that the surface area depends on the hot press temperature and the elution amount. When observing these electron microscopes after elution, pores are developed in the SiC particles where the temperature is relatively low, and when the hot press temperature reaches 2050 ° C., the outside of the SiC particles is eluted. I understood. This is because Fe 2 O 3 added as a catalyst becomes iron silicide, carbon dissolves in the iron silicide at a high temperature, and when the solubility is exceeded, SiC is precipitated, and the iron silicide is coalesced with the generated SiC to grow grains. The iron silicide is taken into the SiC particles by the so-called dissolution-precipitation mechanism. Since this iron silicide is relatively easy to dissolve in HF-HNO 3 , further pores develop starting from this pore, but since the iron silicide comes out of the SiC particle at a high temperature, the inside of the SiC particle is eluted. However, since the outside of the particles is eluted, it is considered that the increase in the surface area with respect to the elution amount is reduced. Similarly, it has been found that the surface area of porous SiC ceramics using cobalt as a catalyst also increases the hot press temperature and decreases the surface area relative to the amount of SiC eluted. In this case, unless a catalyst such as iron or cobalt is present, the strength of the ceramic is weak, and when it is eluted, it becomes powder or lump. Furthermore, when the hot press temperature is increased, the connection between SiCs is increased, and the folding force is increased.
Thus, when the weight ratio of C / SiO 2 is small, that is, when the carbon content is small, a metal catalyst is added, hot pressed at a temperature of 2050 ° C., and treated with HF-HNO 3 to reduce the surface area. There is no increase.
[0013]
Example 1
Next, oxidize rice bran charcoal at 300 ° C. or higher, and mix 18 g of oxidized rice bran charcoal and Fe 2 O 3 in a slurry of 2.2 mM with a C / SiO 2 ratio, dry, and hot press at 2050 ° C. did. At this time, if the oxidation loss of the carbon in the husk charcoal was small, a molded body in which SiC and carbon were combined was obtained. Thereafter, excess carbon in the composite molded body was removed at 700 ° C. in air. Thereafter, 50H 2 O: 25HNO 3: immersed in mixed acid of 25HF (volume ratio) was measured continuously surface area. The result is shown in FIG .
As C / SiO 2 becomes smaller, the rate of increase in surface area relative to the elution amount becomes smaller . When C / SiO 2 was 0.79, 0.65, and 0.53, the residual carbon amounts were 26.2, 10.7, and 0 wt%, respectively. Therefore, the particle growth of SiC is inhibited by the residual carbon and, after removing carbon enters the mixed acid in efficiently porous SiC ceramics HF-HNO 3 becomes hole portion was carbon, the SiC elution progresses Mutame, it is presumed that the surface area of the SiC ceramics as residual carbon is abundant increases.
[0014]
Example 2
Boiled charcoal having C / SiO 2 with Co as a catalyst was hot pressed at 2050 ° C. and decarbonized at 700 ° C. Next, 50H 2 O: 25HNO 3: wet during 25HF (volume ratio), the amount of elution was measured pore distribution of about 50 wt% of a high surface area SiC ceramics. The result is shown in FIG. As can be seen from this figure, pores having a pore diameter of 200 mm or less are formed by the elution process.
[0015]
【The invention's effect】
SiC has low sinterability, the manufacture of SiC ceramic having a high surface area has been difficult. However, according to the present invention, when a metal catalyst is added to a mixture of carbon and silica and hot pressing is performed, SiC generation and grain growth occur due to dissolution-precipitation action due to metal silicide, and porous SiC ceramics with small stacking faults are manufactured. . Thereafter, the HF-HNO 3 elution, it is possible to produce high strength, high surface area SiC ceramics. This is particularly used in the exothermic reaction catalyst carrier and hydrophobic catalyst support.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the HF-HNO 3 elution amount and the surface area at each hot press temperature during Fe catalyst.
FIG. 2 is a graph showing the relationship between the HF-HNO 3 elution amount and the surface area of each C / SiO 2 in rice bran charcoal when Fe catalyst is used.
[Figure 3] Co catalyst presence, pore distribution curve obtained when eluted 50 wt% of each C / SiO 2.

Claims (1)

もみがら炭を酸化処理してC/SiO2の重量比が0.65以上の酸化生成物としたのち、これに金属触媒を加えて、2050℃の温度でホットプレスして微量の金属シリサイドと炭素との複合体を含むSiC焼結体を形成させ、次いでこの焼結体から残留炭素を除去後、フッ化水素酸と硝酸との混合物により、焼結体中の金属シリサイドを溶出させ、かつその溶けた後に生じた細孔を中心に炭化ケイ素を溶出させることを特徴とする高表面積炭化ケイ素セラミックス多孔体の製造方法。After oxidation of the rice husk charcoal to an oxidation product having a C / SiO 2 weight ratio of 0.65 or more, a metal catalyst was added thereto and hot-pressed at a temperature of 2050 ° C. to form a trace amount of metal silicide and Forming a SiC sintered body containing a composite with carbon, and then removing residual carbon from the sintered body , then eluting the metal silicide in the sintered body with a mixture of hydrofluoric acid and nitric acid; and A method for producing a high surface area silicon carbide ceramic porous body, wherein silicon carbide is eluted around pores formed after melting.
JP2001212181A 2001-07-12 2001-07-12 Method for producing high surface area silicon carbide ceramic porous body Expired - Lifetime JP3906354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001212181A JP3906354B2 (en) 2001-07-12 2001-07-12 Method for producing high surface area silicon carbide ceramic porous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001212181A JP3906354B2 (en) 2001-07-12 2001-07-12 Method for producing high surface area silicon carbide ceramic porous body

Publications (2)

Publication Number Publication Date
JP2003026483A JP2003026483A (en) 2003-01-29
JP3906354B2 true JP3906354B2 (en) 2007-04-18

Family

ID=19047380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001212181A Expired - Lifetime JP3906354B2 (en) 2001-07-12 2001-07-12 Method for producing high surface area silicon carbide ceramic porous body

Country Status (1)

Country Link
JP (1) JP3906354B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1973329B1 (en) 2007-03-19 2017-02-15 Ricoh Company, Ltd. Image processing apparatus and image processing method
JP7064179B2 (en) * 2020-11-30 2022-05-10 富士電機株式会社 Moisture adsorbent

Also Published As

Publication number Publication date
JP2003026483A (en) 2003-01-29

Similar Documents

Publication Publication Date Title
JPS5850929B2 (en) Method for manufacturing silicon carbide powder
JP3906354B2 (en) Method for producing high surface area silicon carbide ceramic porous body
JP5045926B2 (en) Method for producing silicon nitride powder
JPS6152106B2 (en)
JP2585506B2 (en) Silicon carbide sintered body and method for producing the same
JP3285621B2 (en) Method for producing silicon nitride powder
JPS605550B2 (en) Manufacturing method of silicon carbide sintered body
JPS5891011A (en) Manufacture of silicon nitride powder with high alpha-phase content
JPS61242905A (en) Production of alpha-silicon nitride powder
JP4111572B2 (en) Method for producing graphite substrate for β-silicon carbide molded body
JPS61168567A (en) Manufacture of silicon carbide sintered body
JPH092811A (en) Granulated material of low-oxygen porous silicon and its production
JPS6355162A (en) High heat conductivity sintered body and manufacture
JP3838691B2 (en) Silicon nitride grinding aid and its use
JP2731333B2 (en) Silicon nitride sintered body, method of manufacturing the same, silicon nitride powder and method of manufacturing the same
JPS62128913A (en) Production of silicon carbide powder
JPS61102416A (en) Production of fibrous silicon carbide
JPS5891028A (en) Manufacture of silicon carbide powder
JPS5950006A (en) Manufacture of alpha-type silicon nitride powder
JP3194761B2 (en) Silicon nitride powder and method for producing the same
JPH01197307A (en) Silicon nitride fine powder having a low oxygen content and its production
JPS636601B2 (en)
JPH0147427B2 (en)
JPS6259599A (en) Production of fibrous aggregate consisting of silicon nitride and silicon nitride oxide
JPH06219715A (en) Production of high alpha-type highly pure silicon nitride powder

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050425

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061214

R150 Certificate of patent or registration of utility model

Ref document number: 3906354

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term