JPS6259599A - Production of fibrous aggregate consisting of silicon nitride and silicon nitride oxide - Google Patents

Production of fibrous aggregate consisting of silicon nitride and silicon nitride oxide

Info

Publication number
JPS6259599A
JPS6259599A JP20087085A JP20087085A JPS6259599A JP S6259599 A JPS6259599 A JP S6259599A JP 20087085 A JP20087085 A JP 20087085A JP 20087085 A JP20087085 A JP 20087085A JP S6259599 A JPS6259599 A JP S6259599A
Authority
JP
Japan
Prior art keywords
silicon
silicon nitride
alloy
fibrous
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20087085A
Other languages
Japanese (ja)
Other versions
JPH0352439B2 (en
Inventor
Nobuyuki Azuma
伸行 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP20087085A priority Critical patent/JPS6259599A/en
Publication of JPS6259599A publication Critical patent/JPS6259599A/en
Publication of JPH0352439B2 publication Critical patent/JPH0352439B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To readily produce a nitride based fibrous aggregate having good performance, by mixing powder forming an alloy, e.g. Mg, Cu, etc., on an Si surface layer with SiO2 and silicon nitride, molding the resultant mixture and heating the molded material in a specific gas stream. CONSTITUTION:One or more of Mg, Cu, Fe, Mn, Ni or a salt thereof and, as necessary, Al and carbon are added to Si powder and the resultant mixture is heated to <=1,450 deg.C in an inert or reducing atmosphere to form an alloy on the Si surface. SiO2 and silicon nitride are added to the power, mixed therewith and, as necessary, granulated and molded into a given shape. The resultant molded material is heated to >=1,380 deg.C in nitrogen or a reducing gas stream to grow fibrous crystals. The resultant fibrous aggregate consisting of the silicon nitride and silicon nitride oxide obtained by this method has improved performance as heat-resistant and heat insulating materials, composite reinforcing materials, etc.

Description

【発明の詳細な説明】 (a)  発明の技術分野 本発明は窒化ケイ素と酸窒化ケイ素よりなる繊維状結晶
(ウィスカーを含む)集合体の製造法、さらに詳しくい
えばケイ素にマグネシウム、アルミニウム及び銅など特
定の金属を組合せケイ素の表層に合金をあらかじめ作シ
、これと窒化ケイ素穏結晶に二酸化ケイ素を加えて混合
、あるいは造(′b)従来技術と問題点 酸窒化ケイ素とシわけ窒化ケイ素はその耐熱性、機械的
強度など良好な性質を有するためその繊維も耐熱、断熱
材料あるいは複合強化材料として重要とされ種々の方法
が提案されている。すなわち、従来法による窒化ケイ素
繊維の製造法は一般にケイ素の加熱、ケイ素化合物ある
いは二酸化ケイ素等酸化物の還元、ケイ素と二酸化ケイ
素の反応などによって得られるケイ素や一酸化ケイ素蒸
気を窒素と反応させて行なわれているがそのいずれの方
法も収率は低く、またもみがらから製造する方法もみら
れるが繊維は微細である。またどの方法においても生成
する結晶は原料中にではなく離れた基質あるいは炉の内
壁に析出するだめに窒化ケイ素として分離、回収に難点
があり断熱材料あるいはガラス、金属など複合材料用骨
材として扱い′j5 1 6827号に提案したがそのさい窒化ケイ素の一繊
維状m織は得られずその集合体はこわれ易く扱いにくい
欠点があった。
Detailed Description of the Invention (a) Technical Field of the Invention The present invention relates to a method for producing a fibrous crystal (including whiskers) aggregate made of silicon nitride and silicon oxynitride, and more specifically, a method for producing a fibrous crystal (including whiskers) aggregate made of silicon nitride and silicon oxynitride. By combining specific metals such as, pre-forming an alloy on the surface layer of silicon, and mixing this with silicon dioxide by adding silicon dioxide to moderate crystals of silicon nitride, or forming ('b) Conventional technology and problems Silicon oxynitride and silicon nitride Because of its good properties such as heat resistance and mechanical strength, its fibers are also important as heat-resistant, heat-insulating materials or composite reinforcing materials, and various methods have been proposed. That is, conventional methods for producing silicon nitride fibers generally involve reacting silicon or silicon monoxide vapor obtained by heating silicon, reducing silicon compounds or oxides such as silicon dioxide, or reacting silicon and silicon dioxide with nitrogen. However, the yield is low in all of these methods, and there is also a method of manufacturing from rice husks, but the fibers are fine. In addition, regardless of the method, the crystals that are formed are not deposited in the raw material but on a distant substrate or the inner wall of the furnace, so it is difficult to separate and recover them as silicon nitride, so they are used as insulation materials or aggregates for composite materials such as glass and metal. 'j5 1 6827, but in that case, a monofilament-like m-woven fabric of silicon nitride could not be obtained, and the aggregate was fragile and difficult to handle.

(C)  解決しようとする問題点 本発明者らは窒化ケイ素と酸窒化ケイ素よシなる491
.錐状集合体を得るため鋭意研究を重ねた結果、まずケ
イ素とマグネシウムに必要に応じてカーボ:111 の表層に添加金属との合金を形成させ、これに二酸化ケ
イ素を混合した成形体を窒化せしめることによって成形
体の表層部より内部まで結晶性と繊度に優れた窒化ケイ
素及び酸窒化ケイ素繊維状組織を生成ぜしめた(第1の
方法)。また上記第1の方法においてケイ素合金と二酸
化ケイ素を造粒することにより形状保持性がよい、細く
長い繊維状組織を有する集合体を生成せしめた(第2の
方法)。
(C) Problems to be Solved The present inventors have discovered that silicon nitride and silicon oxynitride are similar to 491
.. As a result of extensive research in order to obtain a pyramidal aggregate, we first formed an alloy of silicon and magnesium with additive metals on the surface layer of Carbo:111 as needed, and then nitrided the molded product mixed with silicon dioxide. As a result, silicon nitride and silicon oxynitride fibrous structures with excellent crystallinity and fineness were produced from the surface layer to the interior of the molded body (first method). Furthermore, by granulating the silicon alloy and silicon dioxide in the first method described above, an aggregate having a thin and long fibrous structure with good shape retention was produced (second method).

カーボンを加え加熱し、ケイ素の表層部に合金を形成さ
せ混和された活性を有するケイ素含有合金と二酸化ケイ
素との反応に導びくことかできる。
Carbon can be added and heated to form an alloy on the surface layer of silicon, leading to a reaction between the active silicon-containing alloy and silicon dioxide.

すなわち、本性は酸窒化ケイ素の生成開始温度(105
0℃)まで二酸化ケイ素にマグネシウム、アルミニウム
あるいは銅など触媒の金属の溶は込みを抑制することに
より結晶性及び繊度がよくそろった酸窒化ケイ素繊維状
結晶を1) 、2)で示し7た反応式によって生成させ
るとともに3) 、4)、5)によってケイ素含有合金
あるいは一酸化ケイ素蒸気より窒化ケイ素ウィスカーを
再現性よく得ることを可能にした製造法である。
In other words, the true nature is the temperature at which silicon oxynitride begins to form (105
By suppressing the incorporation of catalytic metals such as magnesium, aluminum or copper into silicon dioxide up to 0°C), silicon oxynitride fibrous crystals with well-evened crystallinity and fineness can be produced by the reactions shown in 1) and 2) and 7. This manufacturing method makes it possible to generate silicon nitride whiskers using formulas 3), 4), and 5) from silicon-containing alloys or silicon monoxide vapor with good reproducibility.

S 1(9)+ S 102(S)−一→ 2sio(
g)I)2sio(g)+ 28+ +2N2−28t
2ON2(s)  2)3 S 1(S)+ 2 N2
 −一−−→ S13N4(S)3)3sio(g)+
ae     −+a 38i(s)+ 3004 )
3Si(■+2N2□→ Si3N、(S)5)(e)
発明の作用 (1)  ケイ素にマグネシウムと、アルミニウム、触
媒として銅あるいはマンガン、鉄、ニッケルに合金相を
形成させる。これら調製法によれば比較的低温領域にて
ケイ素と化合するがケイ素の融点1420℃まで達する
ように行なうのが有利である。
S 1 (9) + S 102 (S) - 1 → 2sio (
g) I) 2sio(g) + 28+ +2N2-28t
2ON2(s) 2)3 S 1(S)+2 N2
-1--→ S13N4(S)3)3sio(g)+
ae −+a 38i(s)+ 3004)
3Si(■+2N2□→ Si3N, (S)5) (e)
Effects of the invention (1) An alloy phase is formed with silicon, magnesium, aluminum, copper as a catalyst, manganese, iron, and nickel. According to these preparation methods, the compound is combined with silicon at a relatively low temperature range, but it is advantageous to carry out the process so as to reach the melting point of silicon, 1420°C.

(2)  マグネシウムは空気中の酸素や湿分と容易に
化合して酸化膜が形成され、ときにMg (OR) 2
の繊維を生成する。このようにマグネシウム表面に酸化
膜ができるとケイ素や銅など触媒と合金を形成しにくく
なる一方では二酸化ケイ素と反応しマグネシウム−シリ
カ−溶融体を形成し易い。・こ〜j 変化が少なく主たる゛ダイ素金属表面への汚染の少ない
合金粒子を提供するものである。
(2) Magnesium easily combines with oxygen and moisture in the air to form an oxide film, and sometimes Mg (OR) 2
produces fibers. When an oxide film is formed on the surface of magnesium, it becomes difficult to form an alloy with a catalyst such as silicon or copper, but it tends to react with silicon dioxide to form a magnesium-silica melt.・This provides alloy particles that undergo little change and cause less contamination of the main di-metal surface.

(3)更に合金粒子を形成させる過程でその大部分を占
めるケイ素粒子の角は丸味を帯びそろった形状となるの
で次の段階で二酸化ケイ素との反応は一様に進行する。
(3) Furthermore, in the process of forming alloy particles, the corners of the silicon particles, which make up the majority of them, become rounded and uniform, so that the reaction with silicon dioxide proceeds uniformly in the next step.

更に合金形成の利点は金属の組成の均一化のみでなく金
属微粒を混合、成形のさい発生する粉塵による汚染、あ
るいは器具への逸散が容易に防止できる。
Furthermore, the advantage of forming an alloy is not only that the metal composition is made uniform, but also that it is possible to easily prevent contamination by dust generated during mixing and molding of metal particles, or its escape into equipment.

(4)  合金粒子と二酸化ケイ素の粒状化にはバイン
ダーと水を加えて混ぜ合せ乾燥した後粉砕し、ふるいに
よって0,07〜2關のあらさに造粒する。
(4) To granulate alloy particles and silicon dioxide, binder and water are added, mixed, dried, crushed, and granulated to a roughness of 0.07 to 2 mm using a sieve.

バインダーと17ではカルボキシメチ/I/虹7ノ1ノ
ローズ、メ 4χルセルど口 ・−ズ、ポ  リ ビ 
ニー ルア ルコ − ルナトをa −t 0重量%の
溶液として使用する。これらバインダーは粉末混合物の
全量の2〜10重量%の割合で加える。本発明では混合
粉末を粒状化す、;−ノ ーすムと多成分合金粒子と二酸化ケイ素は除々に反応し
て成形体内部で二酸化ケイ素よりなる液状相と無数のケ
イ素の小球体が形成され、上記、l)5.2)の反応が
ゆるやか、かつ一様に進行する結果、成形体内部には先
願のものと比べ未反応物及びシリグー1−溶融体が少な
い酸窒化ケ5イ素結晶が生成する。
In the binder and 17, carboxymethi/I/Rainbow 7 no 1 Norose, Mel 4x Roussel Doguchi・-zu, Polyvinyl
Neal alcohol is used as an a-t 0% by weight solution. These binders are added in a proportion of 2 to 10% by weight of the total amount of the powder mixture. In the present invention, the mixed powder is granulated; - Nosum, multicomponent alloy particles, and silicon dioxide gradually react to form a liquid phase made of silicon dioxide and countless silicon spherules inside the molded body, and the above-mentioned , l) As a result of the reaction in 5.2) progressing slowly and uniformly, silicon oxynitride crystals with less unreacted substances and less silicon nitride melt than those in the previous application are present inside the molded body. generate.

なお、カーボンを合金中に溶は込ませると2)、3)、
4・)反応における合金液相に窒素の溶解度が増すため
、結晶性のよい酸窒化ケイ素及び窒化ケイ素の生成が助
長される。
In addition, when carbon is melted into the alloy, 2), 3),
4.) Since the solubility of nitrogen increases in the alloy liquid phase in the reaction, the production of silicon oxynitride and silicon nitride with good crystallinity is promoted.

り6)  窒化ケイ素の種結晶を加えることは窒素と結
合する金属液滴に窒化り“イ素類似構造イオンを生成さ
せ結晶核の形成に貢献し、結晶生長の方向を制御する役
割をはたして窒化ケイ素繊維状結晶の生長を促進させた
。窒化ケ゛イ素結晶は細くカラミ効果を有するため得ら
れた繊維状集合体の形状に大きく、ケイ素表層部におけ
る合金相の形成、反応体の粒状化の有効性を証明するも
のである。
6) Adding silicon nitride seed crystals causes nitridation of the metal droplets that combine with nitrogen, which contributes to the formation of crystal nuclei by generating ions with a structure similar to that of nitrogen, which plays the role of controlling the direction of crystal growth. The growth of silicon fibrous crystals was promoted.Silicon nitride crystals are thin and have a karami effect, so the shape of the obtained fibrous aggregates is large, and the formation of an alloy phase in the silicon surface layer and the granulation of reactants are effective. It proves the gender.

次の実施例によって本発明をさらに詳細に説明する。The invention will be explained in further detail by the following examples.

げ)発明の実施例 実施例1 ケイ素2.81.g(モル比10)にマグネシウム0.
07g(モ ル比 (L、S)、銅 0.02g(モ 
ル比 0.03)、アルミニウム0.02g(モル比0
.1)の各金属微粉末にカーボン0.05g(モル比0
12)を混合したのち15mmφ× 10nの円柱状に
成形する。成形体を窒化ケイ素質のポートに入れ、ふた
をして高アノ1/ミナ質燃焼管の中央部に装てんする。
g) Examples of the invention Example 1 Silicon 2.81. g (mole ratio 10) and magnesium 0.
07g (molar ratio (L, S), copper 0.02g (molar ratio (L, S)
molar ratio 0.03), aluminum 0.02g (molar ratio 0.03), aluminum 0.02g (molar ratio 0.03),
.. 1) 0.05g of carbon (molar ratio 0)
After mixing 12), the mixture is formed into a cylindrical shape of 15 mmφ x 10 nm. The molded body is placed in a silicon nitride port, covered with a lid, and loaded into the center of a high anolyte/mina combustion tube.

アルゴンを30rnl/力、水素を5 m17分流しな
がら抵抗加熱炉で加熱し、毎分10℃の速度で昇温しで
1420℃で30分間保持する。この工程によってケイ
素の表層部分にはアルミニウムとマグネジケイ素0.3
5gを加えて十分混合したのち1oflφx7mの円柱
状に成形し窒化ケイ素容器に入れ窒素ガスを30m17
分、水素ガス3′/分の割合で導入し、8℃/′分の速
度で1470℃まで昇温させる。成形体は5分経過後よ
りふくらみ始め、徐々にもり上っておよそ2時間経過す
るまで連続的にふくらみ繊維状結晶は生長する。操作保
持温度は1470℃、4時間である。
It was heated in a resistance heating furnace while flowing 30 rnl/force of argon and 5 ml/min of hydrogen, and the temperature was increased at a rate of 10°C per minute and held at 1420°C for 30 minutes. Through this process, the surface layer of silicon contains aluminum and 0.3% of magnetic silicon.
After adding 5g and mixing thoroughly, form it into a cylinder of 1oflφx7m, place it in a silicon nitride container, and fill it with nitrogen gas for 30m17.
hydrogen gas was introduced at a rate of 3'/min, and the temperature was raised to 1470°C at a rate of 8°C/'min. The molded body begins to swell after 5 minutes have elapsed, gradually rises, and swells continuously until about 2 hours have elapsed, and the fibrous crystals grow. The operation holding temperature is 1470°C for 4 hours.

この工程によって成形体は10〜12倍のかさとなり繭
状のσ型を主体とする窒化ケイ素と酸窒化ケイ素の集合
体が得られる。このもののかさ比重はO,Bである。集
合体の一部を顕微鏡で測定した結果、酸窒化ケイ素は太
さ1〜3 l1m、長さ50〜300μm、平均長さ1
.00μmnの比較的揃った繊維状結晶である。窒化ケ
イ素は犬さ0,5〜1μmで固まり集合体の表層部から
内部まで一様に分布繊維状結晶の生長は1400℃より
始まp ’1470℃、30分保持までであるが、ひき
つづきα型窒化ケイ素結晶は液状相中のケイ素合金がガ
ス状となり成形体内部で生長するとみられる。なお、残
りの無定形シリカ相は成形体が急速にふくらむさいに生
成するものでその大部分は繊維状をなし一部には繊維同
志のつなぎの役割をはだすものである。このようにして
ケイ素、銅、マグネシウム、アルミニウムにカーボンを
加えた合金形成粒子に二酸化ケイ素とα型の窒化ケイ素
を加えた圧粉体を窒素中加熱処理することにより得られ
る集合体の大部分を結晶性のよい窒化ケイ素と酸窒化ケ
イ宋の線維状組織に転化することができる。
Through this process, the molded body becomes 10 to 12 times bulkier, and an aggregate of silicon nitride and silicon oxynitride, which is mainly cocoon-like σ-shaped, is obtained. The bulk specific gravity of this material is O and B. As a result of measuring a part of the aggregate with a microscope, the silicon oxynitride has a thickness of 1 to 3 l1m, a length of 50 to 300 μm, and an average length of 1
.. It is a relatively uniform fibrous crystal with a diameter of 00 μm. Silicon nitride hardens with a diameter of 0.5 to 1 μm and is uniformly distributed from the surface to the inside of the aggregate. Growth of fibrous crystals starts at 1400℃ and continues to be α-type until kept at 1470℃ for 30 minutes. It is thought that silicon nitride crystals grow inside the compact as the silicon alloy in the liquid phase becomes gaseous. Incidentally, the remaining amorphous silica phase is formed as the molded product expands rapidly, and most of it is in the form of fibers, and some of it serves as a link between the fibers. In this way, most of the aggregate obtained by heat-treating the green compact in which silicon dioxide and α-type silicon nitride are added to the alloy-forming particles of silicon, copper, magnesium, and aluminum with carbon added thereto. It can be converted into a fibrous structure of silicon nitride and silicon oxynitride with good crystallinity.

実施例2 実施例1における銅の代りにマンガン0.02 g(モ
ル比0.031を用い、ケイ素2.24 g (七ル1
、て得た合金形成粒子に二酸化ケイ素を0.60064
H(−eル比1)とその合量の10重量%、α型室化ゲ
イ素o、agを加え、他は実施例1と同じ条件−C処理
して得た繊維状集合体の生成相はS + 2 ON 2
19 ’15、α−8i3N483%、β−8i3N4
 18%であった。
Example 2 0.02 g of manganese (mole ratio 0.031 was used instead of copper in Example 1, 2.24 g of silicon (7 g)
0.60064 ml of silicon dioxide was added to the alloy-forming particles obtained by
Formation of a fibrous aggregate obtained by adding H (-e ratio 1), 10% by weight of its total amount, α-type indoor gael element o, ag, and performing the -C treatment under the same conditions as in Example 1. The phase is S + 2 ON 2
19'15, α-8i3N483%, β-8i3N4
It was 18%.

実施例3 実施例1の銅の代りにマンガン0.011g(モル比0
.02)ニッケ/l/ 0゜Ollg(モル比0.02
)を用い、ケイ素2.24g(モル比0.8)にマグネ
シウムo、o7g(モル゛比0.3)、アルミニウム0
.02g(モル比0.1 ) 、カーボンo、o5g(
モル比0.2)の各微粉末を混合成形する。次にこの成
形体を実施例1と同様に加熱処理して得だ合金形成粒子
に二酸化ケイ素0.6006g(モル比1)とその合量
の10重量%、α型窒化ケイ素0.3g窒化ケイ素と酸
窒化ケイ素を主体とするからみ性のよいtl1、雄状集
合体が得られた。生成相は5i2ON221%、α−8
i3N425%、β−8i3N4 25%であった。こ
の例における触媒としての各重金属微粉末の組合せと種
類を変えて用いるととができる。
Example 3 0.011 g of manganese (molar ratio 0) was used instead of copper in Example 1.
.. 02) Nickel/l/0°Ollg (molar ratio 0.02
), 2.24 g of silicon (molar ratio 0.8), 7 g of magnesium o, o (molar ratio 0.3), and 0 aluminum
.. 02g (molar ratio 0.1), carbon o, o5g (
The fine powders having a molar ratio of 0.2) are mixed and molded. Next, this molded body was heat-treated in the same manner as in Example 1 to obtain alloy-forming particles containing 0.6006 g of silicon dioxide (molar ratio 1), 10% by weight of the total amount, and 0.3 g of α-type silicon nitride. A male-like aggregate of tl1 and silicon oxynitride with good entanglement properties was obtained. The generated phase is 5i2ON221%, α-8
The i3N content was 425%, and the β-8i3N4 content was 25%. In this example, it is possible to use different combinations and types of the heavy metal fine powders as the catalyst.

実施例4 実施例1における銅の代υに塩化第一銅0.03g、銅
として0.02g(モル比O,Oa)を用いるが結晶水
を十分除去したのち合金を形成させる。また、ケイ素と
二酸化ケイ素の配合比を変え、他は実施例1に同じ条件
で処理して得だ繊維状集合体の結果を第1表に示す。
Example 4 An alloy was formed by using 0.03 g of cuprous chloride and 0.02 g (molar ratio O, Oa) of copper as the copper substitute υ in Example 1, but sufficiently removing crystal water. In addition, Table 1 shows the results of the fibrous aggregate obtained by processing under the same conditions as in Example 1 except that the blending ratio of silicon and silicon dioxide was changed.

実施例5 実施例1における銅の代りに一睡以上の塩類すなわち、
炭酸銅0.03g(金属として0.01g、モル比0.
015)、硝酸マンガンo、otg(金属として0.0
08g、モル比0.015)を用い結晶、り 一状−集合体の生成相の結果を表に示す。
Example 5 In place of copper in Example 1, more than one salt, that is,
Copper carbonate 0.03g (0.01g as metal, molar ratio 0.
015), manganese nitrate o, otg (0.0 as metal
08g, molar ratio 0.015), the results of the formed phases of crystals and monolithic aggregates are shown in the table.

実施例6 ケイ素2.24g(モル比8)に銅0.02g(モル比
0.08)、マグネシウム0.07g(モル比0.3)
、アルミニウム0.02g(モル比0.1 ) 、カー
ボン0.05g(モル比0.1)の各微粉末を混合する
Example 6 2.24 g of silicon (molar ratio 8), 0.02 g of copper (molar ratio 0.08), and 0.07 g of magnesium (molar ratio 0.3)
, 0.02 g of aluminum (molar ratio 0.1), and 0.05 g of carbon (molar ratio 0.1) are mixed together.

この混合物を実施例1と同様にケイ素の表層部分にMg
Cu2、A]Mg、 MgSi2  など合金相を形成
さえて成形する。成形体は80℃で20時間乾燥゛じた
後乳鉢で粉砕し7 Qmesh (0,2at)〜20
 Qmesh (0,07ff>に粒度をそろえる。造
粒しだもの2,5gをとp200Kg/iで103ff
φ×7耀の円柱状に成形し窒化ケイ素容器に入れ窒素ガ
スを30−7分の割合で導入し、7℃/分 の速度でる
窒化ケイ素と酸窒化ケイ素の集合体が得られる。
This mixture was applied to the surface layer of silicon in the same manner as in Example 1.
An alloy phase such as Cu2, A]Mg, MgSi2 is formed and molded. The molded body was dried at 80°C for 20 hours and then ground in a mortar to give a mass of 7 Qmesh (0,2 at) to 20
Adjust the particle size to Qmesh (0.07ff>. 2.5g of granulated soybean and p200Kg/i to 103ff
It is formed into a cylindrical shape of φ×7 mm, placed in a silicon nitride container, and nitrogen gas is introduced at a rate of 30-7 minutes to obtain an aggregate of silicon nitride and silicon oxynitride at a rate of 7° C./minute.

酸窒化ケイ素結晶は実施例1と同様であったが窒化ケイ
素結晶の収量は増加した。生成相の結果を表1及び2に
示す。
The silicon oxynitride crystals were the same as in Example 1, but the yield of silicon nitride crystals was increased. The results of the generated phases are shown in Tables 1 and 2.

実施例7 ケイ素8.87g(モル比12)と多くしマンガン0.
04g(モル比0.5 ) 、マグネシウム0.07g
(モル比0.3>、アルミニウム0.02g(モル比0
.1)の各微粉末を混合したのち実施例1と同じ条件で
ケイ素の表層部分に合金相を形成させる。
Example 7 Silicon was increased to 8.87 g (molar ratio 12) and manganese was increased to 0.87 g.
04g (molar ratio 0.5), magnesium 0.07g
(molar ratio 0.3>, aluminum 0.02g (molar ratio 0
.. After mixing each of the fine powders of 1), an alloy phase is formed on the surface layer of silicon under the same conditions as in Example 1.

この合金粒子2.Olg(モル比12)と二酸化ケイ素
o、36g(モル比1)をはかシ、β型−窒化ケイ素結
晶を全量の10重量%の0.28 g加え混合したのち
7flφの円柱状に成形する。これを再び燃焼管内に入
れ、窒素を30か1分、水素を5r!tl/分供給しな
がら毎分8℃の昇温速度で1470℃にJA、iさぜ3
0分間だもち1510℃で3時間保持酸窒化ケイ素は太
さ1〜3μm1長さ20〜100μn1、平均長さ70
μm、窒化ケイ素は太さ0.5〜llJ、m、長さ10
0〜200μmとともに結晶組織は短かくなった。実施
例1〜6と同じように銅、鉄、マンガン、ニッケ/L/
またはその塩を用い、あるいはメチルセルローズ等にて
造粒処理することにより結晶性のよい酸窒化ケイ素とβ
型の多い窒化ケイ素よりなる繊維状集合体が得られた。
This alloy particle 2. Add 0.28 g of β-type silicon nitride crystal (10% by weight of the total amount) to 36 g (molar ratio 1) of silicon dioxide O (mole ratio 12) and mix, and then form into a cylinder of 7 flφ. . Put this into the combustion tube again, add nitrogen for 30 to 1 minute, and add hydrogen for 5 liters! JA, iSaze 3 to 1470°C at a heating rate of 8°C per minute while supplying tl/min.
Hold for 0 minutes at 1510°C for 3 hours Silicon oxynitride has a thickness of 1 to 3 μm, a length of 20 to 100 μm, and an average length of 70
μm, silicon nitride has a thickness of 0.5 to 11J, m, and a length of 10
The crystal structure became shorter from 0 to 200 μm. As in Examples 1 to 6, copper, iron, manganese, nickel/L/
Silicon oxynitride with good crystallinity and β
A fibrous aggregate consisting of silicon nitride with many types was obtained.

その際の生成相の結果を表2、実施例22に示す。さら
にケイ素/二酸化ケイ素比(モ/I/)を増し15.1
8としたところ成形体のかさは各々6倍、4倍と繊維状
組織は短かくなり固まる傾向を示した。
The results of the generated phase at that time are shown in Table 2 and Example 22. Furthermore, increase the silicon/silicon dioxide ratio (Mo/I/) to 15.1
When it was set to 8, the bulk of the molded product was 6 times and 4 times, respectively, and the fibrous structure showed a tendency to shorten and harden.

ケイ素/二酸化ケイ素比(モ)v )を減少させ8以下
とすると窒化ケイ素の生成が急激に減少した。
When the silicon/silicon dioxide ratio (mo)v) was decreased to 8 or less, the production of silicon nitride was sharply reduced.

したがって結晶性のよい酸窒化ケイ素とα及びβ型窒化
ケイ素よυなる繊維状集合体を得るケイ素と二酸化ケイ
素とのモル比の上限は好ましくは12・1..1 、−二−1′ (ロ))発明の効果 このように本発明方法により41′性能のよい窒化物系
繊維状集合体を比較的容易に製造する仁とができる。
Therefore, the upper limit of the molar ratio of silicon and silicon dioxide to obtain a fibrous aggregate of silicon oxynitride and α- and β-type silicon nitride υ with good crystallinity is preferably 12.1. .. 1, -2-1' (b) Effects of the Invention As described above, the method of the present invention makes it possible to produce a nitride-based fibrous aggregate with good 41' performance relatively easily.

本発明により得られる窒化ケイ素と酸窒化り゛イ素より
なる繊維状集合体は宇宙、。毎洋及び環境化学用材料、
軽合金、窯業、高温電気等、あるいは原子力、石油化学
等プラントに用いられる耐熱及び断熱材料としであるい
は金属やプラスチックやガ!ラスの複合強化材料として
その性能を向上させ図面は窒化ケイ素と酸窒化ケイ素結
晶の走査型電子顕微鏡による写真図である。(X200
)指定代理人 11′−・島1
The fibrous aggregate made of silicon nitride and silicon oxynitride obtained by the present invention is in space. Materials for Kaiyo and environmental chemicals,
Heat-resistant and heat-insulating materials used in light alloys, ceramics, high-temperature electricity, etc., nuclear power, petrochemical plants, etc., as well as metals, plastics, and gas! The figure is a scanning electron microscope photograph of silicon nitride and silicon oxynitride crystals. (X200
) Designated agent 11'-・Island 1

Claims (1)

【特許請求の範囲】 1、ケイ素粉末にマグネシウム及び銅、鉄、マンガン、
ニッケルの中から選ばれた金属もしくはその塩の少なく
とも一種の混合物に必要に応じてアルミニウム及びカー
ボンを添加し、不活性あるいは還元性雰囲気中で145
0℃以下に加熱、合金形成粉末となし、この合金粉末に
二酸化ケイ素と窒化ケイ素を加え混合、あるいは必要に
応じて粒状化して成形し、この成形体を窒素あるいは還
元性気流中1380℃以上に加熱することを特徴とする
窒化ケイ素と酸窒化ケイ素よりなる繊維状集合体の製造
法。 2、ケイ素に金属もしくはその塩を加えて加熱しケイ素
を合金化する特許請求の範囲第1項記載の方法。 3、ケイ素合金形成粉末に窒化ケイ素を加えた二酸化ケ
イ素の混合物を、粒径0.07〜2mmに粒状化する特
許請求の範囲第1項記載の方法。
[Claims] 1. Silicon powder containing magnesium, copper, iron, manganese,
Aluminum and carbon are added as necessary to a mixture of at least one metal selected from nickel or its salt, and 145% is added in an inert or reducing atmosphere.
Heat to below 0°C to form an alloy-forming powder, add and mix silicon dioxide and silicon nitride to this alloy powder, or granulate and shape as required, and heat this compact to above 1380°C in a nitrogen or reducing gas flow. A method for producing a fibrous aggregate made of silicon nitride and silicon oxynitride, characterized by heating. 2. The method according to claim 1, wherein a metal or a salt thereof is added to silicon and heated to alloy the silicon. 3. The method according to claim 1, wherein a mixture of silicon dioxide containing silicon alloy-forming powder and silicon nitride is granulated to a particle size of 0.07 to 2 mm.
JP20087085A 1985-09-10 1985-09-10 Production of fibrous aggregate consisting of silicon nitride and silicon nitride oxide Granted JPS6259599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20087085A JPS6259599A (en) 1985-09-10 1985-09-10 Production of fibrous aggregate consisting of silicon nitride and silicon nitride oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20087085A JPS6259599A (en) 1985-09-10 1985-09-10 Production of fibrous aggregate consisting of silicon nitride and silicon nitride oxide

Publications (2)

Publication Number Publication Date
JPS6259599A true JPS6259599A (en) 1987-03-16
JPH0352439B2 JPH0352439B2 (en) 1991-08-09

Family

ID=16431600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20087085A Granted JPS6259599A (en) 1985-09-10 1985-09-10 Production of fibrous aggregate consisting of silicon nitride and silicon nitride oxide

Country Status (1)

Country Link
JP (1) JPS6259599A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008230873A (en) * 2007-03-19 2008-10-02 Osaka Univ Metallic material for phosphor raw material and method for producing phosphor, phosphor and phosphor-containing composition, luminescent device, image display device and illuminating device
CN112341207A (en) * 2020-11-20 2021-02-09 哈尔滨工业大学 Silicon nitride-silicon oxynitride column-hole composite ceramic material and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008230873A (en) * 2007-03-19 2008-10-02 Osaka Univ Metallic material for phosphor raw material and method for producing phosphor, phosphor and phosphor-containing composition, luminescent device, image display device and illuminating device
CN112341207A (en) * 2020-11-20 2021-02-09 哈尔滨工业大学 Silicon nitride-silicon oxynitride column-hole composite ceramic material and preparation method thereof

Also Published As

Publication number Publication date
JPH0352439B2 (en) 1991-08-09

Similar Documents

Publication Publication Date Title
JPS5850929B2 (en) Method for manufacturing silicon carbide powder
US4469802A (en) Process for producing sintered body of boron nitride
JPS5891005A (en) Production of silicon nitride powder
US4619905A (en) Process for the synthesis of silicon nitride
US4224073A (en) Active silicon carbide powder containing a boron component and process for producing the same
US5693305A (en) Method for synthesizing aluminum nitride whiskers
JPS6111886B2 (en)
TWI297672B (en) Method for synthesizing aluminum nitride and composite thereof
JPS6259599A (en) Production of fibrous aggregate consisting of silicon nitride and silicon nitride oxide
JPS63239104A (en) Production of fine silicon nitride powder containing beta-phase
JPH10203806A (en) Production of boron nitride powder
JPH02180710A (en) Preparation of finely powdered alpha- or beta- silicon carbide
JP2004216245A (en) Carbon dioxide absorbent, and its production method
JPS60141698A (en) Manufacture of silicon carbide whisker
JPS61242905A (en) Production of alpha-silicon nitride powder
JPS6111885B2 (en)
JP2683397B2 (en) Method for manufacturing SiC whiskers
JPS5849611A (en) Powder containing 2h type silicon carbide and its preparation
JPH0352440B2 (en)
JPS5891028A (en) Manufacture of silicon carbide powder
JPS5855110B2 (en) Manufacturing method of carbide heat-resistant ceramics
JPH07330499A (en) Granular aggregate of aluminum borate whisker
JPS6227400A (en) Production of silicon nitride whisker
JP2000302573A (en) SiC-MoSi2 COMPOSITE MATERIAL AND ITS PRODUCTION
JP2681843B2 (en) Manufacturing method of β-type silicon nitride whiskers

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term