JP2004216245A - Carbon dioxide absorbent, and its production method - Google Patents

Carbon dioxide absorbent, and its production method Download PDF

Info

Publication number
JP2004216245A
JP2004216245A JP2003005463A JP2003005463A JP2004216245A JP 2004216245 A JP2004216245 A JP 2004216245A JP 2003005463 A JP2003005463 A JP 2003005463A JP 2003005463 A JP2003005463 A JP 2003005463A JP 2004216245 A JP2004216245 A JP 2004216245A
Authority
JP
Japan
Prior art keywords
carbon dioxide
lithium silicate
carbon
dioxide gas
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003005463A
Other languages
Japanese (ja)
Inventor
Kazuhide Kawai
和秀 河合
Kazuji Matsuyama
和司 松山
Hideo Uemoto
英雄 上本
Kenji Suzuki
健司 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP2003005463A priority Critical patent/JP2004216245A/en
Publication of JP2004216245A publication Critical patent/JP2004216245A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize a carbon dioxide absorbent which has improved carbon dioxide absorbing efficiency by suppressing the growth of the grains thereof on synthesis or regeneration of the material. <P>SOLUTION: The carbon dioxide absorbent has, as a major component, lithium silicate of which the main constituting phase is Li<SB>4</SB>SiO<SB>4</SB>, wherein the crystal grain size of the lithium silicate is 1 to 12 μm. The carbon dioxide absorbent is obtained by mixing silica, lithium carbonate and carbon or a pyrolytic organic substance, heating the mixture at 700 to 1,000°C to synthesize lithium silicate, or heating a mixture of silica and lithium carbonate to <700°C in a gas atmosphere having a carbon dioxide concentration of ≤20 vol.%. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、室温から700℃程度の温度域において炭酸ガスを吸収する炭酸ガス吸収材、およびその製造方法に関するものである。
【0002】
【従来の技術】
近年、地球の温暖化が進行し、その原因となっている炭酸ガスの削減が求められている。そこで、炭化水素を主成分する燃料を燃焼させる自動車が発生する排気ガス、同じく炭化水素を原料として利用するエネルギープラントや化学プラントなどから発生する排出ガス、火力発電所から排出される燃焼ガスから、炭酸ガス(二酸化炭素)を分離回収するシステムの検討が行われ、これに用いる炭酸ガス吸収材に関する開発が行われている。
【0003】
これまでに、室温から700℃程度の温度域で炭酸ガスを有効に吸収できる材料として、リチウムシリケートを主成分とする吸収材が知られている。
その1例として、炭化水素を燃焼させる装置からの排出ガス中の炭酸ガスを高温下で直接分離回収する炭酸ガス吸収材として、LixSiyOz(x+4y−2z=0)で表される主な構成相がLiSiOであるリチウムシリケートからなる炭酸ガス吸収材が知られている(例えば特許文献1参照。)。さらに、他の例として、LiSiOの構造を有するリチウムシリケートが、100〜700℃の温度域で活性であり、炭酸ガス吸収材として好適であること、さらにシリカと炭酸リチウムの混合物を大気中、1000℃で熱処理してLiSiOを合成する実施例が示されている(例えば特許文献2参照。)。
【0004】
ところで、主な構成相がLiSiOであるリチウムシリケートが炭酸ガスを吸収する化学反応式は以下の式(1)で表される。
LiSiO+CO → LiSiO+LiCO ‥‥式(1)
式(1)は可逆反応であり、高温下では次の式(2)に示すような逆の反応が起り、炭酸ガスは放出される。
LiSiO+LiCO → LiSiO+CO ‥‥式(2)
このような可逆反応を繰り返させることにより、リチウムシリケートを主材とする炭酸ガス吸収材は繰り返し使用することが可能となっている。
【0005】
このような炭酸ガス吸収材を実用的なものとするためには、炭酸ガス吸収能に優れていることが必要である。すなわち炭酸ガス吸収材の単位重量あたりの炭酸ガス吸収量が多い方が、多量の炭酸ガスを吸収できるので、効率よく処理ガスから炭酸ガスを除去できるので好ましい。
このような、炭酸ガス吸収能向上のための技術として、炭酸ガスと反応して炭酸リチウムを生成するリチウム複合酸化物の一つとしてリチウムシリケートからなる炭酸ガス吸収材であって、そのリチウムシリケートの粒子径を0.1〜10μmとすることによって、炭酸ガスと化学反応して吸収する上で反応効率が良く好適であることが知られている(例えば特許文献3参照。)。さらに、他の例として、リチウムシリケートにアルカリ炭酸塩を添加し、共晶塩を作り液層化しやすくすることにより速やかに吸収反応を生じさせて、吸収能を向上させることが知られている(例えば特許文献4参照。)。
【0006】
前述の技術の内、炭酸ガス吸収性能を向上させるために、すなわち、炭酸ガスとの反応性を向上させるために、炭酸ナトリウム、炭酸カリウムのようなアルカリ炭酸塩を、リチウムシリケートを主材とする炭酸ガス吸収材に添加することは非常に有効であると考えられる。しかし、炭酸ガス吸収材のリチウムシリケートを合成する際あるいは再生する際に、炭酸ガス吸収材が高温にさらされたとき、これらアルカリ炭酸塩が存在すると、二酸化炭素を吸収して生成した炭酸リチウムの溶融が促進されるため、リチウムシリケートの焼結が進みやすくなり、粒成長が起ることがわかった。その結果、合成あるいは再生されたリチウムシリケートの比表面積が小さくなり、反応性が低下し、炭酸ガス吸収能が低下するおそれがある。
【0007】
【特許文献1】
特開2000−262890号公報
【特許文献2】
特開2001−096122号公報
【特許文献3】
特開2001−232184号公報
【特許文献4】
特開2001−170480号公報
【0008】
【発明が解決しようとする課題】
本発明は、従来の炭酸ガス吸収材の課題を解決するためになされたもので、炭酸ガス吸収材の合成時あるいは再生時に炭酸ガス吸収材の粒成長を抑制することによって、改善された炭酸ガス吸収効率を有する炭酸ガス吸収材を実現することを目的としている。
【0009】
【課題を解決するための手段】
第1の本発明は、主な構成相がLiSiOであるリチウムシリケートを主成分とし、該リチウムシリケートの結晶粒径が1μm以上12μm以下であることを特徴とする炭酸ガス吸収材である。
【0010】
第2の本発明は、主な構成相がLiSiOであるリチウムシリケートを主成分とし、これに炭素が0.1〜20.0重量%含有されていることを特徴とする炭酸ガス吸収材である。
【0011】
第3の本発明は、シリカ、リチウム化合物、及び炭素もしくは熱分解性有機物質を混合し、これを700℃以上1000℃以下の温度で、かつ反応生成物中に炭素が残存する条件で加熱して、主な構成相がLiSiOであるリチウムシリケートを合成することを特徴とする炭酸ガス吸収材の製造方法である。
【0012】
第4の本発明は、シリカと炭酸リチウムの混合物を、炭酸ガス濃度が20体積%以下の気体雰囲気中で700℃未満の温度に加熱することを特徴とする炭酸ガス吸収材の製造方法である。
【0013】
【発明の実施の形態】
以下本発明炭酸ガス吸収材について詳細に説明する。
本発明においては、炭酸ガス吸収材を構成するリチウムシリケートを構成する結晶相としては、LiSiOが少なくとも60重量%を占めるものであることが必要である。残余の結晶相としては、LiSiOやLiCOなどが存在する。炭酸ガス吸収材中のLiSiOの占める比率が大きいほど炭酸ガス吸収能が高く、この比率が60重量%を下回ると、実用的な炭酸ガス吸収率の材料とは言えない。
また、リチウムシリケートの数平均結晶粒径は、1μm以上12μm以下であることが必要であり、これが、1μmを下回った場合、結晶が不完全で、十分な炭酸ガス吸収能を発揮し得ない。一方、数平均結晶粒径が12μmを上回った場合、リチウムシリケートの比表面積が低下して炭酸ガス吸収能の低下が発生する。
【0014】
リチウムシリケートを主成分とする炭酸ガス吸収材が有効に炭酸ガスを吸収するためには吸収材と炭酸ガスとの反応面積が大きいほど有利であり、リチウムシリケートの結晶粒子が小さい程吸収効率が高い。主な構成相がLiSiOであるリチウムシリケートは一般にシリカと炭酸リチウムから800℃以上の温度で合成される。この時、原料の炭酸リチウムは溶融状態であるのでリチウムシリケートが合成されやすい一方で、結晶成長を起こしやすく、粒子径の小さな吸収材を得るのが困難である。炭酸ガスの吸収効率の高い吸収材を合成するためには合成物の結晶成長を抑制する必要がある。
【0015】
シリカと炭酸リチウムを800℃以上の温度で熱処理する合成法を採用する場合の合成物の結晶成長を抑制する手段を検討した結果、反応系に炭素粒子が存在すると、炭素粒子がリチウムシリケートの結晶成長を阻害し、粒成長が抑制されることがわかった。その結果、この方法で製造した炭酸ガス吸収材は高い炭酸ガス吸収効率を示すことが判明した。
【0016】
一方、粒子径の小さな合成物を得るための他の方法として、合成温度を下げればよいが、この方法には以下の問題がある。すなわち、合成反応は反応生成物である炭酸ガスの分圧に影響され、合成温度が低いほど反応の平衡炭酸ガス分圧も低くなるので合成反応が起こりにくい。したがって炭酸ガスの吸収効率の高い吸収材を合成するためには合成の期間中、反応物の内部または周囲の炭酸ガス分圧を反応の平衡分圧よりも低く保つ必要がある。
【0017】
シリカと炭酸リチウムから主な構成相がLiSiOであるリチウムシリケートを合成する反応について実験的に調査したところ、合成は以下の式(3)および式(4)で表される二段階を経ると考えるのが合理的であることが判明した。
SiO+LiCO → LiSiO+CO ‥‥式(3)
LiSiO+LiCO → LiSiO+CO ‥‥式(4)
式(4)の反応では、例えば600℃の合成温度を仮定すると、平衡炭酸ガス分圧は0.25気圧程度である。したがって、合成が進み炭酸ガスが放出されて、合成物のまわりの炭酸ガス分圧が0.25気圧程度(炭酸ガスの濃度が25%程度)以上になると合成反応は進行しなくなる。合成反応を進めるためには合成炉または合成容器内部の炭酸ガス濃度を0.25気圧未満にする必要がある。
これによって結晶粒成長を効果的に抑制し、炭酸ガス吸収効率のよい吸収材を合成できることが判明した。
【0018】
本発明は、本発明者らのこのような知見に基づいてなされたものであり、極めて優れた炭酸ガス吸収能を有する炭酸ガス吸収材を実現できるものである。
【0019】
[第1の実施の形態]
以下、本発明の第1の実施の形態についてさらに詳細に説明する。
本実施の形態は、シリカと炭酸リチウムの反応によって主な構成相がLiSiOであるリチウムシリケートを合成する際に、反応系中に炭素を含有させることを特徴とするものである。
すなわち、シリカと炭酸リチウムの混合物を700℃以上1000℃以下の温度で熱処理して主な構成相がLiSiOであるリチウムシリケートを合成する際に、混合物に炭素または熱分解性有機物質を添加し、炭素または熱分解性有機物質が酸化消失しない条件下で熱処理する。合成反応の進行中被合成物の周囲に炭素または熱分解性有機物質の熱分解炭化物が存在し、これらが反応物質の移動を妨げるので、合成された結晶粒子同士の合体が妨げられ、合成物の結晶粒子の成長を抑制し小さな粒子の合成物を得ることができる。合成物に含有される好ましい炭素または熱分解性有機物質の熱分解炭化物の量は0.1重量%から20重量%である。この含有量が、0.1%未満では反応物質の移動を妨げる効果が小さく、20%を越すと吸収材に占めるリチウムシリケートの割合が減少して炭酸ガスの吸収量が減るからである。さらに好ましくは、0.1%から10%である。
【0020】
この実施の形態に於いて用いることができる炭素としては、カーボンブラック、黒鉛、無定形炭素など、公知の炭素材料粒子を採用することができる。この炭素材料粒子の粒径は特に制限されるものではないが、平均粒径で0.1〜5μmの範囲のものが好ましい。
また、熱分解性有機物質としては、700℃以上1000℃以下の温度範囲で揮散もしくは酸化焼失しないようなフェノール樹脂、エポキシ樹脂などのプラスチック材料、セルロース、ロジンなどの天然高分子材料などを用いることができる。これらの材料は、粉砕した粒子として、リチウムシリケートの合成原料中に添加することができる。これらの熱分解性有機物質の配合量は、熱分解後の炭素としてリチウムシリケートに対して0.1〜20.0重量%の量が必要である。従って、熱分解性有機物としては、加熱減量を考慮して配合量を決定する必要があるが、概略、0.2〜20重量%の範囲で添加することが好ましい。
【0021】
本実施の形態において、原料に添加した炭素あるいは熱分解性有機物質が残存するような条件で熱処理を行うが、このような条件としては、700℃以上1000℃以下の温度で、窒素雰囲気下のような非酸化性雰囲気下で加熱することによって行うことができる。この加熱温度が、700℃を下回った場合、反応が不完全で、生成するリチウムシリケート中にLiSiO相が残存し、期待される炭酸ガス吸収能を有する材料が得られない。一方、加熱温度が1000℃を上回ると、吸収材の燃焼による緻密化が進行し、合成反応で放出される炭酸ガス(CO)の放出が困難になるため合成反応の進行が阻害されて十分な量の主な構成相がLiSiOであるリチウムシリケートが生成しがたい不具合が生じる。
【0022】
以下本実施の形態の炭酸ガス吸収材の具体的な製造方法について説明する。
本実施の形態の炭酸ガス吸収材は、例えば次のような方法により作製される。まず、二酸化珪素および炭酸リチウム、アルカリ金属炭酸塩、及び炭素粒子または熱分解性有機物質を所定量秤量し、メノウ乳鉢等で0.1〜1時間混合する。得られた混合粉末をアルミナるつぼに入れ、好ましくは非酸化性雰囲気中、箱型電気炉等で700℃以上1000℃以下の温度で0.5〜20時間熱処理し、主な構成相がLiSiOであるリチウムシリケート粉末を得る。続いてこのリチウムシリケート粉末を所定量秤量し、金型に充填し、圧縮成形して気孔率40%前後例えば35〜45%の成形体とすることにより多孔質体構造の炭酸ガス吸収材を作製することができる。
上記方法では、アルカリ金属炭酸塩をリチウムシリケート合成前に原料に添加しているが、リチウムシリケートを合成し成形した後、その表面にアルカリ金属炭酸塩水溶液を塗布、含浸などの手段で添加することもできる。
【0023】
[第2の実施の形態]
以下、本発明の第2の実施の形態について説明する。
本実施の形態は、シリカと炭酸リチウムを、比較的低温で、かつ反応系における炭酸ガス濃度を制御しながら行うものである。
すなわち、約500℃〜約700℃の温度領域でシリカと炭酸リチウムの混合物から主な構成相がLiSiOであるリチウムシリケートを合成する場合、合成を行う炉内の雰囲気を空気で置換しながら合成を行う。空気中の炭酸ガス分圧は通常0.0003気圧〜0.0005気圧程度であり、前述した式(4)の反応の平衡炭酸ガス分圧よりも小さいので被合成物のまわりの炭酸ガス分圧を平衡分圧よりも小さくすることができる。空気の代わりに窒素ガス等のように炭酸ガス含有量の少ないガスを使用すれば、さらに効果的である。500℃〜750℃の温度領域で合成を行うことによってより高温での合成に比べて合成物である主な構成相がLiSiOであるリチウムシリケートの結晶粒子径を小さくすることができる。
【0024】
また、約500℃〜約700℃の温度領域で合成を行う場合、空気等で炉内雰囲気を置換する代わりに炉内を真空吸引して減圧にすることで被合成物内部から反応生成物である炭酸ガスの除去がより効率的にできるので、効率的な合成が可能である。
【0025】
以下本実施の形態の炭酸ガス吸収材の具体的な製造方法について説明する。
本実施の形態の炭酸ガス吸収材は、例えば次のような方法により作製される。まず、二酸化珪素および炭酸リチウム、及びアルカリ金属炭酸塩を所定量秤量し、メノウ乳鉢等で0.1〜1時間混合する。得られた混合粉末をアルミナるつぼに入れ、大気中、箱型電気炉等で約500℃〜約700℃の温度で0.5〜20時間熱処理する。その後再びメノウ乳鉢で平均粒径が0.1〜5.0mmとなるまで粉砕し、主な構成相がLiSiOであるリチウムシリケート粉末を得る。続いてこのリチウムシリケート粉末を所定量秤量し、金型に充填し、圧縮成形して気孔率40%前後例えば35〜45%の成形体とすることにより多孔質体構造の炭酸ガス吸収材を作製することができる。
上記方法では、アルカリ金属炭酸塩をリチウムシリケート合成前に原料に添加しているが、主な構成相がLiSiOであるリチウムシリケートを合成し成形した後、その表面にアルカリ金属炭酸塩水溶液を塗布、含浸などの手段で付与し乾燥して層形成することもできる。
【0026】
【実施例】
(実施例1)
シリカ粉末と炭酸リチウム粉末モル比で1:2の割合で秤取った後、湿式混合・粉砕して平均粒子径が3μmの混合物粉末を得た。この混合物粉末に比率が0.5重量%となるようにカーボン粉末を加えさらにミキサーで混合して原料混合物を得た。この原料混合物1kgを、寸法が150mm×150mmのアルミナ製さやに厚さ70mmに充填して、概ね密閉された電気炉中で、毎時100℃で800℃まで昇温し800℃で5時間保持した後、室温まで冷却する熱処理を施して主な構成相がLiSiOであるリチウムシリケートの合成粉末を得た。炉には炉内の圧力が外部より上昇した時に内部からガスを排出できる排気口を設けておいた。
【0027】
(実施例2)
原料混合物におけるカーボン粉末の比率が1重量%になるようにカーボン粉末を加えた以外は実施例1と同じ条件で主な構成相がLiSiOであるリチウムシリケートの合成粉末を得た。
【0028】
(実施例3)
原料混合物におけるカーボン粉末の比率が5重量%になるようにカーボン粉末を加えた以外は実施例1と同じ条件で主な構成相がLiSiOであるリチウムシリケートの合成粉末を得た。
【0029】
(実施例4)
原料混合物におけるカーボン粉末の比率が20重童%になるようにカーボン粉末を加えた以外は実施例1と同じ条件で主な構成相がLiSiOであるリチウムシリケートの合成粉末を得た。
【0030】
(比較例1)
原料混合物中にカーボン粉末を含まないこと以外は実施例1と同じ条件でリチウムシリケートの合成粉末を合成した。
【0031】
(比較例2)
原料混合物におけるカーボン粉末の比率が25重量%になるようにカーボン粉末を加えた以外は実施例1と同じ条件でリチウムシリケートの合成粉末を得た。
【0032】
上記実施例1〜4及び比較例1〜2で得られたリチウムシリケート合成粉末を、粉末X繰回折装置で測定して結晶相を同定した後、同じ合成粉末10gを電気炉中に設置し、炭酸ガス20体積%、窒素ガス80体積%の混合ガスを毎分3リットル流通させながら500℃で5時間保持し保持後の重量増加(炭酸ガス吸収量)を測定した。その結果を表1に示す。
【0033】
さらに実施例1,4および比較例1,2の合成粉末を電子顕微鏡(SEM)で観察して結晶粒子の大きさを測定した。何れの合成粉末においても結晶粒子は互いに結合し合っているので粒子の短径を粒子径とした。また結晶粒子径には大きさの分布があるので、最も数が多く観察される大きさをそれぞれの合成粉末の粒子経とした。なお、粒子径の測定は厳密でなく、相対的な大きさを比較する目的であるので、5μm単位で決定した。その結果を表1に示す。
【0034】
【表1】

Figure 2004216245
【0035】
表1に示したように、合成温度が800℃の場合、カーボンを含有しない比較例1では結晶粒子径が30μmと大きく、その結果炭酸ガス吸収率が8%と小さな値であったのに比ベカーボンを含有する実施例1〜4では結晶粒子経は10μm以下で、その結果炭酸ガス吸収率は20%以上であった。一方カーボンを含有する比較例2は結晶粒子径は5μmであったが、カーボンの比率が増加したために吸収材の割合が減少し、炭酸ガス吸収率は15%となり、実施例に比べて低い吸収率であった。
以上のようにカーボンを含有させるように合成した合成物の炭酸ガス吸収率は20%を超し発明の効果が明らかであった。
【0036】
(実施例5)
シリカ粉末と炭酸リチウム粉末モル比で1:2の割合で秤取った後、湿式混合・粉砕して平均粒子径が3mの混合物粉末を得た。この混合物粉末500gを、寸法が150mm×150mmのアルミナ製さやに厚さ35mmに充てんして、電気炉中で、500℃で100時間熱処理した。さらに電気炉にガス給気口と排気口を設け、給気口から毎分10リットルの空気を供給し一方炉内圧により排気口から炉内ガスを排出した。以上の操作により主な構成相がLiSiOであるリチウムシリケートの合成粉末を合成した。
【0037】
(実施例6)
熱処理温度が600℃、熱処理時間が10時間であること以外は実施例5と同じ条件で主な構成相がLiSiOであるリチウムシリケートの合成粉末を合成した。
【0038】
(実施例7)
熱処理温度が700℃、熱処理時間が5時間であること以外は実施例5と同じ条件で主な構成相がLiSiOであるリチウムシリケートの合成粉末を合成した。
【0039】
(比較例3)
熱処理温度が450℃、熱処理時間が150時間であること以外は実施例5と同じ条件でリチウムシリケートの合成粉末を合成した。
【0040】
(比較例4)
熱処理温度が750℃、熱処理時間が5時間であること以外は実施例5と同じ条件でリチウムシリケートの合成粉末を合成した。
【0041】
得られた実施例5〜7および比較例3〜4の合成粉末を粉末X繰回折装置で測定して結晶相を同定した後、同じ合成粉末10gを電気炉中に設置し、炭酸ガス20体積%、窒素ガス80体積%の混合ガスを毎分3リットル流通させながら500℃で5時間保持し保持後の重量増加(炭酸ガス吸収量)を測定した。その結果を表2に示す。さらに実施例5,7および比較例4の合成粉末を電子顕微鏡(SEM)で観察して結晶粒子の大きさを測定した。何れの合成粉末においても結晶粒子は互いに結合し合っているので粒子の短径を粒子径とした。また結晶粒子径には大きさの分布があるので、最も数が多く観察される大きさをそれぞれの合成粉末の粒子経とした。なお、粒子径の測定は厳密でなく、相対的な大きさを比較する目的であるので、5μm単位で決定した。その結果を表2に示す。
【0042】
【表2】
Figure 2004216245
【0043】
表2の結果から明らかなように、合成温度を500〜700℃とした実施例の場合、結晶粒子径はいずれも5μmであり、その結果炭酸ガス吸収率が20%を超す値であった。これに対して、合成温度が450℃であった比較例3の場合は粉末X線回折で未反応の炭酸リチウム(LiCO)の存在が確認でき、合成反応が十分進まず低い炭酸ガス吸収率を示した。合成温度が750℃であった比較例4の場合、合成反応は十分に進んだが結晶成長が大きく、その結果炭酸ガス吸収率が12%で実施例のものと比べると小さな値であった。
以上のように合成温度を500〜700℃にして合成した合成物の炭酸ガス吸収率は20%を超し発明の効果が明らかであった。
【0044】
【発明の効果】
以上に詳述した本発明によれば、優れた炭酸ガス吸収効率を有する炭酸ガス吸収材を製造することができた。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a carbon dioxide absorbing material that absorbs carbon dioxide in a temperature range from room temperature to about 700 ° C., and a method for manufacturing the same.
[0002]
[Prior art]
In recent years, the global warming has progressed, and reduction of carbon dioxide, which is the cause, is required. Therefore, from exhaust gas generated by automobiles that burn fuels containing hydrocarbons as main components, exhaust gas generated from energy plants and chemical plants that also use hydrocarbons as raw materials, and combustion gas emitted from thermal power plants, A system for separating and recovering carbon dioxide (carbon dioxide) has been studied, and a carbon dioxide absorbent used for the system has been developed.
[0003]
Up to now, as a material capable of effectively absorbing carbon dioxide in a temperature range from room temperature to about 700 ° C., an absorbing material containing lithium silicate as a main component has been known.
As one example, a main constituent phase represented by LixSiyOz (x + 4y-2z = 0) is used as a carbon dioxide absorbent for directly separating and recovering carbon dioxide in an exhaust gas from an apparatus for burning hydrocarbons at a high temperature. A carbon dioxide gas absorbent made of lithium silicate, which is Li 4 SiO 4 , is known (for example, see Patent Document 1). Further, as another example, lithium silicate having a structure of Li 2 SiO 3 is active in a temperature range of 100 to 700 ° C. and is suitable as a carbon dioxide gas absorbing material. An example is shown in which a heat treatment is performed at 1000 ° C. to synthesize Li 4 SiO 4 (for example, see Patent Document 2).
[0004]
Meanwhile, a chemical reaction formula in which lithium silicate whose main constituent phase is Li 4 SiO 4 absorbs carbon dioxide is represented by the following formula (1).
Li 4 SiO 4 + CO 2 → Li 2 SiO 3 + Li 2 CO 3 {Formula (1)
Equation (1) is a reversible reaction, and at high temperature, the reverse reaction as shown in the following equation (2) occurs, and carbon dioxide gas is released.
Li 2 SiO 3 + Li 2 CO 3 → Li 4 SiO 4 + CO 2 {Formula (2)
By repeating such a reversible reaction, the carbon dioxide gas absorbent containing lithium silicate as a main component can be used repeatedly.
[0005]
In order to make such a carbon dioxide absorbing material practical, it is necessary that the carbon dioxide absorbing material has excellent carbon dioxide absorbing ability. That is, it is preferable that the amount of carbon dioxide gas absorbed per unit weight of the carbon dioxide gas absorbent be large, because a large amount of carbon dioxide gas can be absorbed, and the carbon dioxide gas can be efficiently removed from the processing gas.
As such a technique for improving the carbon dioxide gas absorbing ability, a carbon dioxide gas absorbent made of lithium silicate as one of lithium composite oxides that generate lithium carbonate by reacting with carbon dioxide gas, It is known that by setting the particle diameter to 0.1 to 10 μm, the chemical reaction with carbon dioxide gas is absorbed and the reaction efficiency is good and suitable (for example, see Patent Document 3). Further, as another example, it has been known that an alkali carbonate is added to lithium silicate to form a eutectic salt, thereby facilitating the formation of a liquid layer, thereby promptly causing an absorption reaction and improving the absorption capacity ( For example, see Patent Document 4.)
[0006]
Among the above-mentioned techniques, in order to improve the carbon dioxide absorption performance, that is, in order to improve the reactivity with carbon dioxide, sodium carbonate, alkali carbonates such as potassium carbonate, and lithium silicate as a main material It is considered that the addition to the carbon dioxide gas absorbent is very effective. However, when synthesizing or regenerating lithium silicate as a carbon dioxide gas absorbent, when the carbon dioxide gas absorbent is exposed to a high temperature, if these alkali carbonates are present, lithium carbonate generated by absorbing carbon dioxide is produced. It has been found that since the melting is promoted, the sintering of the lithium silicate easily proceeds, and the grain growth occurs. As a result, the specific surface area of the synthesized or regenerated lithium silicate may be reduced, the reactivity may be reduced, and the carbon dioxide absorption capacity may be reduced.
[0007]
[Patent Document 1]
JP 2000-262890 A [Patent Document 2]
Japanese Patent Application Laid-Open No. 2001-096122 [Patent Document 3]
JP 2001-232184 A [Patent Document 4]
JP 2001-170480 A
[Problems to be solved by the invention]
The present invention has been made in order to solve the problems of the conventional carbon dioxide gas absorbent, and improved carbon dioxide gas by suppressing grain growth of the carbon dioxide gas absorbent during synthesis or regeneration of the carbon dioxide gas absorbent. It is intended to realize a carbon dioxide gas absorbent having an absorption efficiency.
[0009]
[Means for Solving the Problems]
A first aspect of the present invention is a carbon dioxide gas absorbing material comprising a lithium silicate whose main constituent phase is Li 4 SiO 4 as a main component, and a crystal grain size of the lithium silicate is 1 μm or more and 12 μm or less. .
[0010]
According to a second aspect of the present invention, there is provided carbon dioxide absorption, wherein lithium silicate whose main constituent phase is Li 4 SiO 4 is a main component, and contains 0.1 to 20.0% by weight of carbon. Material.
[0011]
In the third aspect of the present invention, silica, a lithium compound, and carbon or a thermally decomposable organic substance are mixed, and the mixture is heated at a temperature of 700 ° C. or more and 1000 ° C. or less, and under the condition that carbon remains in the reaction product. And a method for producing a carbon dioxide gas absorbent characterized by synthesizing a lithium silicate whose main constituent phase is Li 4 SiO 4 .
[0012]
A fourth aspect of the present invention is a method for producing a carbon dioxide gas absorbent, comprising heating a mixture of silica and lithium carbonate to a temperature of less than 700 ° C. in a gas atmosphere having a carbon dioxide gas concentration of 20% by volume or less. .
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the carbon dioxide absorbent of the present invention will be described in detail.
In the present invention, it is necessary that Li 4 SiO 4 accounts for at least 60% by weight as a crystal phase constituting lithium silicate constituting the carbon dioxide gas absorbent. As the remaining crystal phase, Li 2 SiO 3 , Li 2 CO 3 and the like exist. The larger the ratio of Li 4 SiO 4 in the carbon dioxide gas absorbent, the higher the carbon dioxide gas absorption capacity. If this ratio is less than 60% by weight, it cannot be said that the material has a practical carbon dioxide gas absorption rate.
Further, the number average crystal grain size of lithium silicate needs to be 1 μm or more and 12 μm or less, and if it is less than 1 μm, the crystals are incomplete and cannot exhibit sufficient carbon dioxide gas absorbing ability. On the other hand, when the number average crystal grain size exceeds 12 μm, the specific surface area of the lithium silicate decreases, and the carbon dioxide absorption capacity decreases.
[0014]
In order for a carbon dioxide gas absorbent containing lithium silicate as a main component to effectively absorb carbon dioxide gas, the larger the reaction area between the carbon dioxide gas and the absorbent material, the more advantageous it is, and the smaller the lithium silicate crystal particles, the higher the absorption efficiency . Lithium silicate whose main constituent phase is Li 4 SiO 4 is generally synthesized from silica and lithium carbonate at a temperature of 800 ° C. or higher. At this time, since lithium carbonate as a raw material is in a molten state, lithium silicate is easily synthesized, while crystal growth is easily caused, and it is difficult to obtain an absorbent having a small particle diameter. In order to synthesize an absorbent having a high absorption efficiency of carbon dioxide gas, it is necessary to suppress the crystal growth of the compound.
[0015]
As a result of examining means for suppressing the crystal growth of the synthesized product in the case of employing a synthesis method in which silica and lithium carbonate are heat-treated at a temperature of 800 ° C. or more, if carbon particles are present in the reaction system, the carbon particles are converted to lithium silicate crystals. It was found that growth was inhibited and grain growth was suppressed. As a result, it was found that the carbon dioxide absorbent produced by this method exhibited high carbon dioxide absorption efficiency.
[0016]
On the other hand, as another method for obtaining a compound having a small particle size, the synthesis temperature may be lowered, but this method has the following problems. In other words, the synthesis reaction is affected by the partial pressure of carbon dioxide, which is a reaction product, and the lower the synthesis temperature, the lower the equilibrium carbon dioxide partial pressure of the reaction. Therefore, in order to synthesize an absorbent having high carbon dioxide absorption efficiency, it is necessary to keep the partial pressure of carbon dioxide inside or around the reactant lower than the equilibrium partial pressure of the reaction during the synthesis.
[0017]
An experimental investigation on the reaction of synthesizing lithium silicate whose main constituent phase is Li 4 SiO 4 from silica and lithium carbonate revealed that the synthesis was performed in two steps represented by the following formulas (3) and (4). It turned out to be reasonable to think.
SiO 2 + Li 2 CO 3 → Li 2 SiO 3 + CO 2 formula (3)
Li 2 SiO 3 + Li 2 CO 3 → Li 4 SiO 4 + CO 2 formula (4)
In the reaction of the formula (4), for example, assuming a synthesis temperature of 600 ° C., the equilibrium carbon dioxide partial pressure is about 0.25 atm. Therefore, the synthesis proceeds and carbon dioxide gas is released, and the synthesis reaction does not proceed when the partial pressure of carbon dioxide gas around the synthesized product becomes about 0.25 atm (the concentration of carbon dioxide gas is about 25%) or more. In order to advance the synthesis reaction, the concentration of carbon dioxide in the synthesis furnace or the synthesis vessel needs to be less than 0.25 atm.
As a result, it has been found that the crystal growth can be effectively suppressed, and an absorbent having a high carbon dioxide gas absorption efficiency can be synthesized.
[0018]
The present invention has been made based on such findings of the present inventors, and is capable of realizing a carbon dioxide absorbent having extremely excellent carbon dioxide absorption capacity.
[0019]
[First Embodiment]
Hereinafter, the first embodiment of the present invention will be described in more detail.
The present embodiment is characterized in that carbon is contained in a reaction system when a lithium silicate whose main constituent phase is Li 4 SiO 4 is synthesized by a reaction between silica and lithium carbonate.
That is, when a mixture of silica and lithium carbonate is heat-treated at a temperature of 700 ° C. or more and 1000 ° C. or less to synthesize lithium silicate whose main constituent phase is Li 4 SiO 4 , carbon or a thermally decomposable organic substance is added to the mixture. And heat-treated under the condition that carbon or the thermally decomposable organic substance does not disappear by oxidation. During the course of the synthesis reaction, pyrolytic carbides of carbon or a thermally decomposable organic substance are present around the compound to be synthesized, which hinders the movement of the reactant. The growth of crystal grains can be suppressed and a composite of small grains can be obtained. The preferred amount of pyrolytic carbides of carbon or pyrolytic organic material contained in the composition is from 0.1% to 20% by weight. If the content is less than 0.1%, the effect of hindering the transfer of the reactants is small, and if it exceeds 20%, the proportion of lithium silicate in the absorbent decreases, and the amount of carbon dioxide absorbed decreases. More preferably, it is 0.1% to 10%.
[0020]
As carbon that can be used in this embodiment, known carbon material particles such as carbon black, graphite, and amorphous carbon can be used. The particle size of the carbon material particles is not particularly limited, but is preferably in the range of 0.1 to 5 μm in average particle size.
In addition, as the thermally decomposable organic substance, a plastic material such as a phenol resin or an epoxy resin, which does not volatilize or oxidize and burn off in a temperature range of 700 ° C. or more and 1000 ° C. or less, and a natural polymer material such as cellulose and rosin are used. Can be. These materials can be added to the lithium silicate synthesis raw material as pulverized particles. The amount of these thermally decomposable organic substances needs to be 0.1 to 20.0% by weight based on lithium silicate as carbon after pyrolysis. Therefore, it is necessary to determine the amount of the thermally decomposable organic substance in consideration of the loss on heating. However, it is preferable to add the thermally decomposable organic substance in a range of about 0.2 to 20% by weight.
[0021]
In this embodiment, the heat treatment is performed under the condition that the carbon or the thermally decomposable organic substance added to the raw material remains, but such a condition is a temperature of 700 ° C. or more and 1000 ° C. or less under a nitrogen atmosphere. It can be performed by heating in such a non-oxidizing atmosphere. When the heating temperature is lower than 700 ° C., the reaction is incomplete, the Li 2 SiO 3 phase remains in the generated lithium silicate, and a material having the expected carbon dioxide gas absorbing ability cannot be obtained. On the other hand, if the heating temperature exceeds 1000 ° C., the densification due to the burning of the absorbent proceeds, and it becomes difficult to release carbon dioxide (CO 2 ) released in the synthesis reaction. A large amount of lithium silicate whose main constituent phase is Li 4 SiO 4 causes a problem that it is difficult to generate lithium silicate.
[0022]
Hereinafter, a specific method for manufacturing the carbon dioxide gas absorbent of the present embodiment will be described.
The carbon dioxide gas absorbent of the present embodiment is produced by, for example, the following method. First, predetermined amounts of silicon dioxide, lithium carbonate, alkali metal carbonate, carbon particles or a thermally decomposable organic substance are weighed and mixed in an agate mortar or the like for 0.1 to 1 hour. The obtained mixed powder is put into an alumina crucible and heat-treated in a box-type electric furnace or the like at a temperature of 700 ° C to 1000 ° C for 0.5 to 20 hours, preferably in a non-oxidizing atmosphere, and the main constituent phase is Li 4 A lithium silicate powder that is SiO 4 is obtained. Subsequently, a predetermined amount of the lithium silicate powder is weighed, filled in a mold, and compression-molded to form a molded body having a porosity of about 40%, for example, 35 to 45%, thereby producing a carbon dioxide absorbent having a porous structure. can do.
In the above method, the alkali metal carbonate is added to the raw material before synthesizing the lithium silicate.However, after synthesizing and forming the lithium silicate, an alkali metal carbonate aqueous solution is applied to the surface thereof, and added by means such as impregnation. You can also.
[0023]
[Second embodiment]
Hereinafter, a second embodiment of the present invention will be described.
In the present embodiment, silica and lithium carbonate are produced at a relatively low temperature while controlling the concentration of carbon dioxide in the reaction system.
That is, when a lithium silicate whose main constituent phase is Li 4 SiO 4 is synthesized from a mixture of silica and lithium carbonate in a temperature range of about 500 ° C. to about 700 ° C., the atmosphere in a furnace for synthesis is replaced with air. Combine while doing. The partial pressure of carbon dioxide in the air is usually about 0.0003 atmosphere to 0.0005 atmosphere, which is smaller than the equilibrium carbon dioxide partial pressure of the reaction of the above-mentioned formula (4). Can be smaller than the equilibrium partial pressure. It is more effective to use a gas having a low carbon dioxide content, such as nitrogen gas, instead of air. By performing the synthesis in a temperature range of 500 ° C. to 750 ° C., it is possible to reduce the crystal particle diameter of the lithium silicate whose main constituent phase is Li 4 SiO 4 as compared with synthesis at a higher temperature.
[0024]
When the synthesis is performed in a temperature range of about 500 ° C. to about 700 ° C., instead of replacing the atmosphere in the furnace with air or the like, the inside of the furnace is vacuum-evacuated to reduce the pressure of the reaction product. Since certain carbon dioxide gas can be removed more efficiently, efficient synthesis is possible.
[0025]
Hereinafter, a specific method for manufacturing the carbon dioxide gas absorbent of the present embodiment will be described.
The carbon dioxide gas absorbent of the present embodiment is produced by, for example, the following method. First, predetermined amounts of silicon dioxide, lithium carbonate, and alkali metal carbonate are weighed and mixed in an agate mortar or the like for 0.1 to 1 hour. The obtained mixed powder is placed in an alumina crucible and heat-treated in a box-type electric furnace at a temperature of about 500 ° C. to about 700 ° C. for 0.5 to 20 hours. Thereafter, the powder is pulverized again in an agate mortar until the average particle size becomes 0.1 to 5.0 mm to obtain a lithium silicate powder whose main constituent phase is Li 4 SiO 4 . Subsequently, a predetermined amount of the lithium silicate powder is weighed, filled in a mold, and compression-molded to form a molded body having a porosity of about 40%, for example, 35 to 45%, thereby producing a carbon dioxide absorbent having a porous structure. can do.
In the above method, the alkali metal carbonate is added to the raw material before the synthesis of the lithium silicate. However, after the lithium silicate whose main constituent phase is Li 4 SiO 4 is synthesized and molded, the alkali metal carbonate aqueous solution is formed on the surface thereof. Can be applied by means such as coating or impregnation and dried to form a layer.
[0026]
【Example】
(Example 1)
After weighing silica powder and lithium carbonate powder at a molar ratio of 1: 2, the mixture was wet-mixed and pulverized to obtain a mixture powder having an average particle diameter of 3 μm. Carbon powder was added to the mixture powder so that the ratio became 0.5% by weight, and the mixture was further mixed with a mixer to obtain a raw material mixture. 1 kg of this raw material mixture was filled into an alumina sheath having a size of 150 mm × 150 mm to a thickness of 70 mm, and the temperature was increased to 800 ° C. at 100 ° C./hour and held at 800 ° C. for 5 hours in a substantially closed electric furnace. Thereafter, a heat treatment of cooling to room temperature was performed to obtain a lithium silicate synthetic powder whose main constituent phase was Li 4 SiO 4 . The furnace was provided with an exhaust port capable of discharging gas from the inside when the pressure inside the furnace increased from the outside.
[0027]
(Example 2)
Synthetic powder of lithium silicate whose main constituent phase was Li 4 SiO 4 was obtained under the same conditions as in Example 1 except that the carbon powder was added so that the ratio of the carbon powder in the raw material mixture was 1% by weight.
[0028]
(Example 3)
Synthetic powder of lithium silicate whose main constituent phase was Li 4 SiO 4 was obtained under the same conditions as in Example 1 except that the carbon powder was added so that the ratio of the carbon powder in the raw material mixture was 5% by weight.
[0029]
(Example 4)
A lithium silicate synthetic powder having a main constituent phase of Li 4 SiO 4 was obtained under the same conditions as in Example 1 except that the carbon powder was added so that the ratio of the carbon powder in the raw material mixture was 20% by weight.
[0030]
(Comparative Example 1)
Synthetic powder of lithium silicate was synthesized under the same conditions as in Example 1 except that the raw material mixture did not contain carbon powder.
[0031]
(Comparative Example 2)
A lithium silicate synthetic powder was obtained under the same conditions as in Example 1 except that the carbon powder was added so that the ratio of the carbon powder in the raw material mixture was 25% by weight.
[0032]
After the lithium silicate synthetic powder obtained in Examples 1 to 4 and Comparative Examples 1 and 2 was measured with a powder X-ray diffractometer to identify the crystal phase, 10 g of the same synthetic powder was placed in an electric furnace, The mixture was kept at 500 ° C. for 5 hours while flowing a mixed gas of 20% by volume of carbon dioxide and 80% by volume of nitrogen gas at a rate of 3 liters per minute, and the weight increase (carbon dioxide absorption) after the retention was measured. Table 1 shows the results.
[0033]
Further, the synthetic powders of Examples 1 and 4 and Comparative Examples 1 and 2 were observed with an electron microscope (SEM) to measure the size of crystal particles. In each of the synthetic powders, the crystal particles are bonded to each other, and thus the minor diameter of the particles is defined as the particle diameter. Since the crystal particle diameter has a size distribution, the size with the largest number observed is defined as the particle size of each synthetic powder. The measurement of the particle diameter is not strict and is for the purpose of comparing the relative sizes, so that it was determined in units of 5 μm. Table 1 shows the results.
[0034]
[Table 1]
Figure 2004216245
[0035]
As shown in Table 1, when the synthesis temperature was 800 ° C., in Comparative Example 1 containing no carbon, the crystal particle diameter was as large as 30 μm, and as a result, the carbon dioxide absorption rate was as small as 8%. In Examples 1 to 4 containing becarbon, the crystal grain size was 10 μm or less, and as a result, the carbon dioxide absorption rate was 20% or more. On the other hand, in Comparative Example 2 containing carbon, the crystal particle diameter was 5 μm, but the ratio of carbon material increased, so the ratio of the absorbing material decreased, and the carbon dioxide gas absorption rate became 15%. Rate.
As described above, the carbon dioxide absorption rate of the compound synthesized so as to contain carbon exceeded 20%, and the effect of the invention was apparent.
[0036]
(Example 5)
After weighing silica powder and lithium carbonate powder at a molar ratio of 1: 2, the mixture was wet-mixed and pulverized to obtain a mixture powder having an average particle diameter of 3 m. 500 g of this mixture powder was filled into a 35 mm-thick alumina sheath having dimensions of 150 mm × 150 mm, and heat-treated at 500 ° C. for 100 hours in an electric furnace. Further, a gas supply port and an exhaust port were provided in the electric furnace, and air at a rate of 10 liters per minute was supplied from the supply port, and the furnace gas was discharged from the exhaust port by the furnace pressure. Through the above operation, a lithium silicate synthetic powder whose main constituent phase was Li 4 SiO 4 was synthesized.
[0037]
(Example 6)
A lithium silicate synthetic powder whose main constituent phase was Li 4 SiO 4 was synthesized under the same conditions as in Example 5, except that the heat treatment temperature was 600 ° C. and the heat treatment time was 10 hours.
[0038]
(Example 7)
Synthetic powder of lithium silicate whose main constituent phase was Li 4 SiO 4 was synthesized under the same conditions as in Example 5 except that the heat treatment temperature was 700 ° C. and the heat treatment time was 5 hours.
[0039]
(Comparative Example 3)
A lithium silicate synthetic powder was synthesized under the same conditions as in Example 5 except that the heat treatment temperature was 450 ° C. and the heat treatment time was 150 hours.
[0040]
(Comparative Example 4)
Synthetic powder of lithium silicate was synthesized under the same conditions as in Example 5 except that the heat treatment temperature was 750 ° C. and the heat treatment time was 5 hours.
[0041]
After the obtained synthetic powders of Examples 5 to 7 and Comparative Examples 3 and 4 were measured with a powder X-ray diffractometer to identify the crystal phase, 10 g of the same synthetic powder was placed in an electric furnace, and 20 volumes of carbon dioxide gas were added. % And nitrogen gas at 80% by volume while flowing at a rate of 3 liters per minute at 500 ° C. for 5 hours, and the weight increase (carbon dioxide absorption) after the holding was measured. Table 2 shows the results. Further, the synthesized powders of Examples 5, 7 and Comparative Example 4 were observed with an electron microscope (SEM) to measure the size of the crystal particles. In each of the synthetic powders, the crystal particles are bonded to each other, and thus the minor diameter of the particles is defined as the particle diameter. Since the crystal particle diameter has a size distribution, the size with the largest number observed is defined as the particle size of each synthetic powder. The measurement of the particle diameter is not strict and is for the purpose of comparing the relative sizes, so that it was determined in units of 5 μm. Table 2 shows the results.
[0042]
[Table 2]
Figure 2004216245
[0043]
As is clear from the results in Table 2, in the examples in which the synthesis temperature was 500 to 700 ° C, the crystal particle diameters were all 5 µm, and as a result, the carbon dioxide gas absorption was a value exceeding 20%. In contrast, in the case of Comparative Example 3 in which the synthesis temperature was 450 ° C., the presence of unreacted lithium carbonate (Li 2 CO 3 ) was confirmed by powder X-ray diffraction, and the synthesis reaction did not proceed sufficiently and low carbon dioxide gas The absorption rate was indicated. In the case of Comparative Example 4 in which the synthesis temperature was 750 ° C., the synthesis reaction proceeded sufficiently, but the crystal growth was large, and as a result, the carbon dioxide gas absorption rate was 12%, which was a small value as compared with that of the example.
As described above, the carbon dioxide absorption rate of the compound synthesized at a synthesis temperature of 500 to 700 ° C. exceeded 20%, and the effect of the invention was apparent.
[0044]
【The invention's effect】
According to the present invention described in detail above, a carbon dioxide absorbent having excellent carbon dioxide absorption efficiency can be produced.

Claims (4)

主な構成相がLiSiOであるリチウムシリケートを主成分とし、該リチウムシリケートの結晶粒径が1μm以上12μm以下であることを特徴とする炭酸ガス吸収材。A carbon dioxide gas absorbent comprising lithium silicate whose main constituent phase is Li 4 SiO 4 as a main component, and a crystal grain size of the lithium silicate is 1 μm or more and 12 μm or less. 主な構成相がLiSiOであるリチウムシリケートを主成分とし、これに炭素が0.1〜20.0重量%含有されていることを特徴とする炭酸ガス吸収材。A carbon dioxide gas absorbent characterized by comprising lithium silicate whose main constituent phase is Li 4 SiO 4 as a main component, and containing 0.1 to 20.0% by weight of carbon. シリカ、リチウム化合物、及び炭素もしくは熱分解性有機物質を混合し、これを700℃以上1000℃以下の温度で、かつ反応生成物中に炭素が残存する条件で加熱して、主な構成相がLiSiOであるリチウムシリケートを合成することを特徴とする炭酸ガス吸収材の製造方法。A mixture of silica, lithium compound, and carbon or a thermally decomposable organic substance is heated at a temperature of 700 ° C. or more and 1000 ° C. or less and under the condition that carbon remains in the reaction product, and the main constituent phases are A method for producing a carbon dioxide gas absorbent, comprising synthesizing lithium silicate which is Li 4 SiO 4 . シリカと炭酸リチウムの混合物を、炭酸ガス濃度が20体積%以下の気体雰囲気中で700℃未満の温度に加熱することを特徴とする炭酸ガス吸収材の製造方法。A method for producing a carbon dioxide gas absorbent, comprising heating a mixture of silica and lithium carbonate to a temperature of less than 700 ° C. in a gas atmosphere having a carbon dioxide gas concentration of 20% by volume or less.
JP2003005463A 2003-01-14 2003-01-14 Carbon dioxide absorbent, and its production method Pending JP2004216245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003005463A JP2004216245A (en) 2003-01-14 2003-01-14 Carbon dioxide absorbent, and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003005463A JP2004216245A (en) 2003-01-14 2003-01-14 Carbon dioxide absorbent, and its production method

Publications (1)

Publication Number Publication Date
JP2004216245A true JP2004216245A (en) 2004-08-05

Family

ID=32896111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003005463A Pending JP2004216245A (en) 2003-01-14 2003-01-14 Carbon dioxide absorbent, and its production method

Country Status (1)

Country Link
JP (1) JP2004216245A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102583415A (en) * 2012-02-14 2012-07-18 陕西科技大学 Method for preparing liquid phase of Li4SiO4 high-temperature carbon pick-up material
CN104003411A (en) * 2014-05-16 2014-08-27 北京科技大学 Preparation method of lithium silicate porous material used for absorption of high temperature CO2
KR20160141410A (en) 2015-06-01 2016-12-09 울산과학기술원 Lithium orthosilicate with macropores and coral-like morphology for carbon dioxide capture and preparation method thereof
JP2020196654A (en) * 2019-06-05 2020-12-10 日本製鉄株式会社 Method for absorbing co2 and decomposing into carbon
JP2020196653A (en) * 2019-06-05 2020-12-10 日本製鉄株式会社 Method for absorbing co2 and decomposing into carbon
CN115414922A (en) * 2022-08-16 2022-12-02 华中农业大学 Spherical Li 4 SiO 4 Radical CO 2 Method for preparing adsorbent

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102583415A (en) * 2012-02-14 2012-07-18 陕西科技大学 Method for preparing liquid phase of Li4SiO4 high-temperature carbon pick-up material
CN104003411A (en) * 2014-05-16 2014-08-27 北京科技大学 Preparation method of lithium silicate porous material used for absorption of high temperature CO2
KR20160141410A (en) 2015-06-01 2016-12-09 울산과학기술원 Lithium orthosilicate with macropores and coral-like morphology for carbon dioxide capture and preparation method thereof
JP2020196654A (en) * 2019-06-05 2020-12-10 日本製鉄株式会社 Method for absorbing co2 and decomposing into carbon
JP2020196653A (en) * 2019-06-05 2020-12-10 日本製鉄株式会社 Method for absorbing co2 and decomposing into carbon
JP7265156B2 (en) 2019-06-05 2023-04-26 日本製鉄株式会社 A method that absorbs CO2 and decomposes it into carbon
JP7265157B2 (en) 2019-06-05 2023-04-26 日本製鉄株式会社 A method that absorbs CO2 and decomposes it into carbon
CN115414922A (en) * 2022-08-16 2022-12-02 华中农业大学 Spherical Li 4 SiO 4 Radical CO 2 Method for preparing adsorbent

Similar Documents

Publication Publication Date Title
JP3591724B2 (en) Carbon dioxide absorber and carbon dioxide separator
US20050214203A1 (en) Catalyst-containing reaction accelerator and steam reforming method using hydrocarbon
Ma et al. Preparation and properties of novel ceramic composites based on microencapsulated phase change materials (MEPCMs) with high thermal stability
JP2010047457A (en) Production method of powdery alumina precursor
JP2003326159A (en) Carbon dioxide absorber, its manufacturing method, and its regeneration method
JP5231016B2 (en) Carbon dioxide absorbing material, carbon dioxide absorbing material manufacturing method, carbon dioxide absorbing method, and carbon dioxide absorbing device
JP2004216245A (en) Carbon dioxide absorbent, and its production method
JPS606908B2 (en) Method for producing active silicon carbide powder containing boron component
Choudhary et al. Lithium orthosilicate ceramics with preceramic polymer as silica source
JP4830623B2 (en) Absorbing and dissipating material, manufacturing method of absorbing and dissipating material, and chemical heat pump system using this absorbing and dissipating material
JP3420036B2 (en) Carbon dioxide absorbing material and carbon dioxide absorbing method
JP2002282685A (en) Carbon dioxide absorbent and combustion apparatus
JP3761371B2 (en) Carbon dioxide absorber and combustion device
US20060183628A1 (en) Method of regenerating carbon dioxide gas absorbent
JP3857667B2 (en) Carbon dioxide absorbing material, carbon dioxide absorbing material manufacturing method, carbon dioxide absorbing method, carbon dioxide separating method and carbon dioxide separating device
JP2004313962A (en) Production method of carbon dioxide absorbent material
JP7366694B2 (en) Method for producing lithium metasilicate and method for producing carbon dioxide absorbing material
JPS6270210A (en) Production of aluminum nitride-silicon carbide composite fine powder
JP2002085966A (en) Carbon dioxide absorbing material, its production method and combustion equipment
JP2004267925A (en) Carbon dioxide absorption material
JP2004313961A (en) Method for manufacturing carbon dioxide absorbent molding
JP3840540B2 (en) Carbon dioxide absorber and its use
JP3850843B2 (en) Carbon dioxide absorbing material, carbon dioxide absorbing method, carbon dioxide absorbing device, carbon dioxide separating device, and method for producing lithium composite oxide
JP3443548B2 (en) Carbon dioxide absorber
JP3224406B2 (en) Method for producing silicon carbide single crystal

Legal Events

Date Code Title Description
RD15 Notification of revocation of power of sub attorney

Effective date: 20040630

Free format text: JAPANESE INTERMEDIATE CODE: A7435

RD14 Notification of resignation of power of sub attorney

Effective date: 20050804

Free format text: JAPANESE INTERMEDIATE CODE: A7434