JP3443548B2 - Carbon dioxide absorber - Google Patents

Carbon dioxide absorber

Info

Publication number
JP3443548B2
JP3443548B2 JP2000049567A JP2000049567A JP3443548B2 JP 3443548 B2 JP3443548 B2 JP 3443548B2 JP 2000049567 A JP2000049567 A JP 2000049567A JP 2000049567 A JP2000049567 A JP 2000049567A JP 3443548 B2 JP3443548 B2 JP 3443548B2
Authority
JP
Japan
Prior art keywords
carbon dioxide
lithium
lithium silicate
absorbent
zirconate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000049567A
Other languages
Japanese (ja)
Other versions
JP2001232186A (en
Inventor
雅礼 加藤
佐和子 吉川
和明 中川
俊之 大橋
健司 越崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2000049567A priority Critical patent/JP3443548B2/en
Publication of JP2001232186A publication Critical patent/JP2001232186A/en
Application granted granted Critical
Publication of JP3443548B2 publication Critical patent/JP3443548B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treating Waste Gases (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、炭化水素を主成分
とする燃料を利用するエネルギープラントや化学プラン
ト、自動車から発生する排気ガス中の炭酸ガスを分離回
収するシステム、または燃料供給部におけるガスの分離
回収に利用される炭酸ガス吸収材に係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an energy plant or a chemical plant that uses a fuel containing hydrocarbon as a main component, a system for separating and recovering carbon dioxide gas in exhaust gas generated from an automobile, or a gas in a fuel supply section. Related to carbon dioxide absorbent used for separation and recovery of

【0002】[0002]

【従来の技術】例えば、発動機などの炭化水素を主成分
とする燃料を燃焼させる装置においては、炭酸ガスの回
収に適した場所の温度が300℃以上の高温になること
が多い。ところで、炭酸ガスの分離方法としては従来よ
り酢酸セルロースを用いる方法、アルカノールアミン系
溶媒による化学吸収法等が知られている。しかしなが
ら、前述した分離方法はいずれも導入ガス温度を200
℃いかに押さえる必要がある。したがって、高温度での
リサイクルを要する排気ガスに対してはいったん、熱交
換器等により200℃以下に冷却する必要があり、結果
的に炭酸ガス分離のためのエネルギー消費量が多くなる
という問題があった。
2. Description of the Related Art For example, in an apparatus such as an engine for burning a fuel containing hydrocarbon as a main component, the temperature of a place suitable for carbon dioxide recovery is often as high as 300 ° C. or higher. By the way, as a method for separating carbon dioxide, a method using cellulose acetate, a chemical absorption method using an alkanolamine-based solvent, and the like have been conventionally known. However, in all of the above-mentioned separation methods, the introduced gas temperature is set to
℃ It is necessary to hold down. Therefore, exhaust gas that needs to be recycled at a high temperature needs to be once cooled to 200 ° C. or lower by a heat exchanger or the like, resulting in a large amount of energy consumption for carbon dioxide separation. there were.

【0003】一方、特開平9−99214号公報にはリ
チウム化ジルコニアからなる炭酸ガス吸収材が開示され
ているが、リチウムジルコネートを形成する母材酸化物
である酸化ジルコニウムの重量が大きいため、吸収材自
体の重量が大きくなるという問題があった。
On the other hand, Japanese Patent Application Laid-Open No. 9-99214 discloses a carbon dioxide gas absorbent made of lithiated zirconia, but since the weight of zirconium oxide, which is a base material oxide forming lithium zirconicate, is large, There is a problem that the weight of the absorbent itself becomes large.

【0004】そのため特願平11−77199には母材
酸化物を酸化ジルコニウムに比べて軽量である二酸化珪
素とし、さらに1molのリチウムシリケートと2mo
l以上の炭酸ガスが反応するように、リチウムシリケー
トの一般式、LixSiyOzのxを4以上とすること
で、高温で作用する炭酸ガス吸収材の著しい軽量化が図
れることが開示されている。
Therefore, in Japanese Patent Application No. 11-77199, the base material oxide is silicon dioxide, which is lighter than zirconium oxide, and further 1 mol of lithium silicate and 2 mo are used.
It is disclosed that by setting the x in the general formula of lithium silicate, LixSiyOz, to 4 or more so that 1 or more carbon dioxide gas reacts, it is possible to significantly reduce the weight of the carbon dioxide absorbent that acts at high temperature.

【0005】ところがリチウムシリケートの炭酸ガス最
適吸収温度域がリチウムジルコネートに比べると高温側
にシフトしているため、そのメリットを十分生かせない
場合があった。
However, since the optimum absorption temperature range of carbon dioxide gas of lithium silicate is shifted to a high temperature side as compared with lithium zirconate, there are cases where the merit cannot be fully utilized.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記課題を
克服するためになされたものであり、炭化水素を燃焼さ
せる装置からの排出ガス中の炭酸ガスを高温下で直接か
つ低エネルギー消費量、高効率で分離回収することが可
能である炭酸ガス吸収材を提供することを目的とするも
のである。
SUMMARY OF THE INVENTION The present invention has been made to overcome the above-mentioned problems, and the carbon dioxide gas in the exhaust gas from a device for burning hydrocarbons can be directly consumed at a high temperature with low energy consumption. It is an object of the present invention to provide a carbon dioxide absorbent that can be separated and recovered with high efficiency.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、本発明者らは鋭意研究を重ねた結果、最適吸収温度
がリチウムシリケートよりも低いリチウムジルコネート
をリチウムシリケート中に分散させることで、吸収材全
体としての最適吸収温度域が広がり、その結果排ガスを
再加熱することなく高効率で炭酸ガスを分離回収できる
ことを見出し、本発明の炭酸ガス吸収材を発明するに至
った。
[Means for Solving the Problems] In order to achieve the above object, the inventors of the present invention have conducted extensive studies and found that lithium zirconate having an optimum absorption temperature lower than that of lithium silicate was dispersed in lithium silicate. The inventors have found that the optimum absorption temperature range of the absorbent as a whole is widened, and as a result, carbon dioxide can be separated and recovered with high efficiency without reheating the exhaust gas, and the inventors have invented the carbon dioxide absorbent of the present invention.

【0008】[0008]

【発明の実施の形態】本発明の炭酸ガス吸収材は、リチ
ウムシリケートとリチウムジルコネートから構成され、
吸収材全体としての最適吸収温度域が広がり、排ガスを
再加熱することなく、高効率で炭酸ガスを分離回収する
ことが可能である。
BEST MODE FOR CARRYING OUT THE INVENTION The carbon dioxide absorbent of the present invention comprises lithium silicate and lithium zirconate,
The optimum absorption temperature range of the absorbent as a whole is widened, and carbon dioxide can be separated and recovered with high efficiency without reheating the exhaust gas.

【0009】前記リチウムジルコネートおよびリチウム
シリケートは炭酸ガスと反応して炭酸リチウムをせいせ
いするが、発熱反応であるために結果的に排ガス温度が
上昇する。したがって、リチウムシリケート中に最適吸
収温度の低いリチウムジルコネートを分散複合させてお
くと、炭酸ガスを含有する排ガス温度がリチウムシリケ
ートの炭酸ガス吸収最適温度以下であっても、リチウム
ジルコネートが優先的に炭酸ガスを吸収し、発熱反応に
より排ガス温度がリチウムシリケートの吸収最適温度に
達する。その結果、リチウムシリケートが高効率で炭酸
ガスを吸収できるようになる。すなわちリチウムジルコ
ネートをリチウムシリケート中に分散複合することで、
炭酸ガスを吸収する最適温度域が広くなる。したがって
リチウムジルコネートの複合割合が大きいほどリチウム
シリケートの最適吸収温度に達する時間が早くなるが、
吸収材自体の重量が大きくなり、単位重量当たりの吸収
性能が低下してしまう。逆に複合割合が小さいと、炭酸
ガス吸収に伴う発熱量が少なく、排ガス温度をリチウム
シリケートの最適吸収温度まで到達させることが困難で
ある。したがって好ましいリチウムジルコネートの複合
割合は、1〜50mol%であり、より好ましくは5〜
30mol%である。
The lithium zirconate and lithium silicate react with carbon dioxide to cause lithium carbonate, but since it is an exothermic reaction, the exhaust gas temperature rises as a result. Therefore, if lithium zirconate having a low optimum absorption temperature is dispersed and complexed in lithium silicate, even if the temperature of the exhaust gas containing carbon dioxide is equal to or lower than the optimum carbon dioxide absorption temperature of lithium silicate, lithium zirconate is preferentially used. It absorbs carbon dioxide, and the temperature of the exhaust gas reaches the optimum temperature for absorption of lithium silicate due to the exothermic reaction. As a result, lithium silicate can absorb carbon dioxide gas with high efficiency. That is, by dispersing and complexing lithium zirconate in lithium silicate,
The optimum temperature range for absorbing carbon dioxide becomes wider. Therefore, the higher the composite ratio of lithium zirconate, the faster the time to reach the optimum absorption temperature of lithium silicate,
The weight of the absorbent material itself increases, and the absorption performance per unit weight decreases. On the other hand, when the composite ratio is small, the amount of heat generated by carbon dioxide absorption is small, and it is difficult to make the exhaust gas temperature reach the optimum absorption temperature of lithium silicate. Therefore, the preferable composite ratio of lithium zirconate is 1 to 50 mol%, more preferably 5 to 50 mol%.
It is 30 mol%.

【0010】前記炭酸ガス吸収材は、リチウムシリケー
トとリチウムジルコネートから構成され、リチウムジル
コネートが0.1〜50mol%分散複合されている。
The carbon dioxide absorbent is composed of lithium silicate and lithium zirconate, and lithium zirconate is dispersed and compounded in an amount of 0.1 to 50 mol%.

【0011】また、前記リチウムシリケートは一般式L
ixSiyOzで表され、x、y、Zが−1<x+4y
−2Z<1の関係を満たす正数であり、前記リチウムジ
ルコネートは一般式Li2ZrO3で表される。
The lithium silicate has the general formula L
It is represented by ixSiyOz, and x, y, and Z are -1 <x + 4y.
It is a positive number satisfying the relationship of −2Z <1, and the lithium zirconate is represented by the general formula Li2ZrO3.

【0012】さらに前記リチウムジルコネート複合リチ
ウムシリケートにはリチウム、ナトリウムおよびカリウ
ムから選ばれるアルカリの炭酸塩が添加されることを許
容する。このような炭酸塩を添加することによって、得
られた吸収材の炭酸ガスの吸収・放出反応が促進され
る。前記炭酸塩の添加量は、前記リチウムシリケートに
対して5〜30mol%にすることが好ましい。前記炭
酸塩の添加量を5mol%未満にすると、炭酸ガスの吸
収反応の促進効果を十分に発揮することが困難になる。
一方、前記炭酸塩の添加量が30mol%を超えると炭
酸ガスの吸収反応の促進効果が飽和するばかりか、吸収
材の容積当たりの炭酸ガス吸収量が低下する恐れがあ
る。より好ましい前記炭酸塩の添加量は、前記リチウム
ジルコネートに対して10〜20mol%である。
Further, it is allowed to add an alkali carbonate selected from lithium, sodium and potassium to the lithium zirconate composite lithium silicate. By adding such a carbonate, the absorption / release reaction of carbon dioxide gas of the obtained absorbent is promoted. The amount of the carbonate added is preferably 5 to 30 mol% with respect to the lithium silicate. When the amount of the carbonate added is less than 5 mol%, it becomes difficult to sufficiently exert the effect of promoting the absorption reaction of carbon dioxide gas.
On the other hand, when the amount of the carbonate added exceeds 30 mol%, not only the effect of promoting the absorption reaction of carbon dioxide gas is saturated, but also the amount of carbon dioxide absorption per volume of the absorbent may decrease. More preferable addition amount of the carbonate is 10 to 20 mol% with respect to the lithium zirconate.

【0013】本発明の炭酸ガス吸収材は、例えば多孔質
体の形態を有する。この多孔質体の気孔率は、40%前
後であることが好ましい。このような多孔質体におい
て、添加されるリチウム、ナトリウムおよびカリウムか
ら選ばれるアルカリの炭酸塩はその細孔に保持される。
The carbon dioxide absorbent of the present invention has, for example, the form of a porous body. The porosity of this porous body is preferably around 40%. In such a porous body, the added alkali carbonate selected from lithium, sodium and potassium is retained in the pores.

【0014】このような多孔質体構造の炭酸ガス吸収材
は、例えば次のような方法により作製される。
The carbon dioxide gas absorbent having such a porous structure is produced, for example, by the following method.

【0015】まず、二酸化珪素、酸化ジルコニウムおよ
び炭酸リチウムを所定量秤量し、メノウ乳鉢等で0.1
〜1h混合する。得られた混合粉末をアルミナるつぼに
入れ、大気中、箱型電気炉等で0.5〜20h熱処理
し、リチウムジルコネート複合リチウムシリケートを得
る。続いてこのリチウムジルコネート複合リチウムシリ
ケート粉末を所定量秤量し、金型に充填し、圧縮成形し
て気孔率40%前後の成形体とすることにより多孔質体
構造の炭酸ガス吸収材を作製する。
First, a predetermined amount of silicon dioxide, zirconium oxide and lithium carbonate is weighed, and the amount is adjusted to 0.1 with an agate mortar or the like.
Mix for ~ 1h. The obtained mixed powder is put into an alumina crucible and heat-treated in the air in a box-type electric furnace for 0.5 to 20 hours to obtain a lithium zirconate composite lithium silicate. Subsequently, a predetermined amount of this lithium zirconate composite lithium silicate powder is weighed, filled in a mold, and compression-molded to obtain a compact having a porosity of about 40%, thereby producing a carbon dioxide absorbent having a porous structure. .

【0016】以上説明した本発明に関わる炭酸ガス吸収
材は、リチウムシリケートとリチウムジルコネートから
構成され、リチウムジルコネートが0.1〜50mol
%分散複合されている。 (実施例)以下、例示的ではあるが限定的ではい本発明
の実施例を説明する事によって、発明をより深く理解す
ることができる。 (実施例1)平均粒径1μmの炭酸リチウム粉末と平均
粒径0.8μmの二酸化珪素粉末および平均粒径1μm
の酸化ジルコニウム粉末をモル比で2:1:0.02と
なるように秤量し、メノウ乳鉢にて10min乾式混合
した。得られた混合粉末を箱型電気炉にて、大気中10
00℃で8h熱処理し、リチウムジルコネート複合リチ
ウムシリケート粉末を得た。続いてこのリチウムシリケ
ート粉末を直径12mmの金型内に充填し、加圧成形す
ることにより気孔率40%の成形体を作製した。以下の
実施例では、実施例1と異なる部分を中心に説明し、同
一部分は説明を省略する。 (実施例2)酸化ジルコニウムの複合割合を0.05と
した以外は実施例1と同様の方法で成形体を作製した。 (実施例3)酸化ジルコニウムの複合割合を0.1とし
た以外は実施例1と同様の方法で成形体を作製した。 (実施例4)酸化ジルコニウムの複合割合を0.3とし
た以外は実施例1と同様の方法で成形体を作製した。 (実施例5)酸化ジルコニウムの複合割合を0.5とし
た以外は実施例1と同様の方法で成形体を作製した。 (比較例1)酸化ジルコニウムを添加しない以外は実施
例1と同様の方法で成形体を作製した。 (比較例2)酸化ジルコニウムの複合割合を0.7とし
た以外は実施例1と同様の方法で成形体を作製した。
The carbon dioxide absorbent according to the present invention described above is composed of lithium silicate and lithium zirconate, and the lithium zirconate is 0.1 to 50 mol.
% Dispersion compounded. (Examples) The present invention can be better understood by describing examples of the present invention, which are illustrative but not limitative. Example 1 Lithium carbonate powder having an average particle size of 1 μm, silicon dioxide powder having an average particle size of 0.8 μm, and average particle size of 1 μm
The zirconium oxide powder of was weighed so that the molar ratio was 2: 1: 0.02 and dry-mixed in an agate mortar for 10 min. The obtained mixed powder was placed in a box-type electric furnace in the atmosphere for 10
Heat treatment was carried out at 00 ° C. for 8 hours to obtain a lithium zirconate composite lithium silicate powder. Subsequently, this lithium silicate powder was filled in a mold having a diameter of 12 mm and pressure-molded to prepare a molded body having a porosity of 40%. In the following embodiments, description will be made focusing on the parts different from the first embodiment, and the description of the same parts will be omitted. (Example 2) A molded body was produced in the same manner as in Example 1 except that the composite ratio of zirconium oxide was changed to 0.05. (Example 3) A molded body was produced in the same manner as in Example 1 except that the composite ratio of zirconium oxide was 0.1. (Example 4) A molded body was produced in the same manner as in Example 1 except that the composite ratio of zirconium oxide was 0.3. (Example 5) A molded body was produced in the same manner as in Example 1 except that the composite ratio of zirconium oxide was changed to 0.5. (Comparative Example 1) A molded body was produced in the same manner as in Example 1 except that zirconium oxide was not added. (Comparative Example 2) A molded body was produced in the same manner as in Example 1 except that the composite ratio of zirconium oxide was 0.7.

【0017】得られた実施例1〜5および比較例1、2
の炭酸ガス吸収材を箱型電気炉に設置し、この電気炉内
に炭酸ガス20体積%および窒素ガス80体積%からな
る混合ガスを流通させながら500℃の温度で1h保持
し、その前後の吸収材の重量増加を調べることにより、
炭酸ガスの吸収量を測定した。このとき、吸収反応が進
行中温度が上昇しても電気炉の出力は500℃となるよ
うに固定した。その結果をリチウムジルコネート複合割
合と合わせて表1に示す。なお、本測定において前記吸
収材が設置された電気炉内に窒素ガスのみを供給して同
様な実験を行なったところ、吸収材の重量増加が全く認
められないことを確認した。
The obtained Examples 1 to 5 and Comparative Examples 1 and 2
The carbon dioxide absorbent of No. 1 was installed in a box-type electric furnace, and a mixed gas consisting of 20 vol% of carbon dioxide and 80 vol% of nitrogen gas was circulated in the electric furnace and kept at a temperature of 500 ° C. for 1 hour, and before and after that. By examining the weight gain of the absorbent material,
The amount of carbon dioxide absorbed was measured. At this time, the output of the electric furnace was fixed so as to be 500 ° C. even if the temperature rose during the absorption reaction. The results are shown in Table 1 together with the lithium zirconate composite ratio. In this measurement, when a similar experiment was conducted by supplying only nitrogen gas into the electric furnace in which the absorber was installed, it was confirmed that no weight increase of the absorber was observed.

【0018】また、実施例1〜4の吸収材を炭酸ガス2
0体積%および窒素ガス80体積%からなる混合ガスを
流通させながら500℃に5h保持し、一旦室温に戻し
て重量を測定し、同様なガス条件で800℃に1h保持
して重量減少を測定して、炭酸ガスの放出量を測定し
た。その結果を表1に合わせて示す。
The absorbents of Examples 1 to 4 were treated with carbon dioxide gas 2
While keeping a mixed gas consisting of 0% by volume and 80% by volume of nitrogen gas at 500 ° C for 5 hours, the temperature was returned to room temperature and the weight was measured, and the weight loss was measured at 800 ° C for 1 hour under the same gas conditions. Then, the amount of carbon dioxide released was measured. The results are also shown in Table 1.

【表1】 [Table 1]

【0019】[0019]

【発明の効果】前記表1より、実施例1〜5の吸収材
は、比較例1、2の吸収材に比べて炭酸ガスの吸収量が
著しく大きく、優れた炭酸ガス吸収特性を有することが
明らかになった。また、炭酸ガス放出量は吸収量とほぼ
同一であり、吸収・放出が可能な材料であることも確認
された。また、実施例1〜5および比較例1、2より、
好ましいリチウムジルコネート複合割合は1〜50mo
l%であり、より好ましい比表面積は5〜30mol%
であることが明らかになった。
As shown in Table 1, the absorbent materials of Examples 1 to 5 have a significantly larger carbon dioxide absorption amount than the absorbent materials of Comparative Examples 1 and 2 and have excellent carbon dioxide gas absorption characteristics. It was revealed. It was also confirmed that the amount of carbon dioxide gas released was almost the same as the amount absorbed, and that it was a material that could be absorbed and released. In addition, from Examples 1 to 5 and Comparative Examples 1 and 2,
A preferable lithium zirconate composite ratio is 1 to 50 mo.
1%, more preferable specific surface area is 5 to 30 mol%
Became clear.

【0020】以上説明したように本発明によれば、最適
吸収温度がリチウムシリケートよりも低いリチウムジル
コネートをリチウムシリケート中に分散させることで、
吸収材全体としての最適吸収温度域が広がり、その結果
排ガスを再加熱することなく高効率で炭酸ガスを分離回
収することができる。
As described above, according to the present invention, by dispersing lithium zirconate having an optimum absorption temperature lower than that of lithium silicate in lithium silicate,
The optimum absorption temperature range of the absorbent as a whole is widened, and as a result, carbon dioxide can be separated and recovered with high efficiency without reheating the exhaust gas.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大橋 俊之 神奈川県川崎市幸区小向東芝町1番地 株式会社東芝 研究開発センター内 (72)発明者 越崎 健司 神奈川県川崎市幸区小向東芝町1番地 株式会社東芝 研究開発センター内 (56)参考文献 特開2000−26289(JP,A) 特開 平11−99330(JP,A) 特開 平9−99214(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01J 20/10 B01D 53/02 B01D 53/62 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshiyuki Ohashi 1 Komukai Toshiba Town, Saiwai-ku, Kawasaki City, Kanagawa Prefecture Toshiba Research & Development Center (72) Inventor Kenji Koshizaki Komukai Toshiba, Kawasaki City, Kanagawa Prefecture No. 1 in the town, Toshiba Research & Development Center (56) References JP 2000-26289 (JP, A) JP 11-99330 (JP, A) JP 9-99214 (JP, A) (58) Fields surveyed (Int.Cl. 7 , DB name) B01J 20/10 B01D 53/02 B01D 53/62

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 リチウムシリケートとリチウムジルコネ
ートから構成されていることを特徴とする炭酸ガス吸収
材。
1. A carbon dioxide absorbent characterized by comprising lithium silicate and lithium zirconate.
【請求項2】 リチウムシリケートをマトリックスと
し、リチウムジルコネートが1〜50mol%分散複合
されていることを特徴とする炭酸ガス吸収材。
2. A carbon dioxide gas absorbent comprising lithium silicate as a matrix and 1 to 50 mol% of lithium zirconate dispersed and composited.
【請求項3】 前記リチウムシリケートは一般式Lix
SiyOzで表されることを特徴とする請求項1記載の
炭酸ガス吸収材。
3. The lithium silicate has the general formula Lix.
The carbon dioxide absorbent according to claim 1, which is represented by SiyOz.
【請求項4】 前記リチウムシリケートは一般式Lix
SiyOzで表され、x、y、Zが−1<x+4y−2
Z<1の関係を満たす正数であることを特徴とする請求
項1記載の炭酸ガス吸収材。
4. The lithium silicate has the general formula Lix.
It is represented by SiyOz, and x, y, and Z are -1 <x + 4y-2.
The carbon dioxide absorbent according to claim 1, wherein the carbon dioxide absorbent is a positive number satisfying the relationship of Z <1.
【請求項5】 前記リチウムシリケートは一般式Li4
SiO4で表されることを特徴とする請求項1記載の炭
酸ガス吸収材。
5. The lithium silicate has the general formula Li4.
The carbon dioxide absorbent according to claim 1, which is represented by SiO4.
【請求項6】 前記請求項1記載のリチウムジルコネー
トは一般式Li2ZrO3で表されることを特徴とする
炭酸ガス吸収材。
6. The carbon dioxide absorbent according to claim 1, wherein the lithium zirconate is represented by the general formula Li2ZrO3.
JP2000049567A 2000-02-25 2000-02-25 Carbon dioxide absorber Expired - Lifetime JP3443548B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000049567A JP3443548B2 (en) 2000-02-25 2000-02-25 Carbon dioxide absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000049567A JP3443548B2 (en) 2000-02-25 2000-02-25 Carbon dioxide absorber

Publications (2)

Publication Number Publication Date
JP2001232186A JP2001232186A (en) 2001-08-28
JP3443548B2 true JP3443548B2 (en) 2003-09-02

Family

ID=18571485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000049567A Expired - Lifetime JP3443548B2 (en) 2000-02-25 2000-02-25 Carbon dioxide absorber

Country Status (1)

Country Link
JP (1) JP3443548B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004313916A (en) 2003-04-15 2004-11-11 Bridgestone Corp Material and apparatus for absorbing/desorbing carbon dioxide

Also Published As

Publication number Publication date
JP2001232186A (en) 2001-08-28

Similar Documents

Publication Publication Date Title
Seggiani et al. High-temperature and low concentration CO2 sorption on Li4SiO4 based sorbents: Study of the used silica and doping method effects
JP3053362B2 (en) Separation method of carbon dioxide gas Foam carbon dioxide gas absorbent and carbon dioxide gas separation device
JP2651993B2 (en) Compositions, processes and uses based on ceric oxide
US8921255B2 (en) Complex oxide, method for producing same and exhaust gas purifying catalyst
JP2003103141A (en) Carbon dioxide absorbing material and carbon dioxide separating device
WO2004091774A1 (en) Material and apparatus for adsorbing and desorbing carbon dioxide
KR100543149B1 (en) Carbon Dioxide Absorbents, Process for the Preparation Thereof, and Process for the Regeneration Thereof
CN109476495A (en) Cerium oxide particle and its production method
EP2315732A1 (en) Method for making porous acicular mullite bodies
JP5987855B2 (en) Exhaust gas purification catalyst
JP3420036B2 (en) Carbon dioxide absorbing material and carbon dioxide absorbing method
JP5231016B2 (en) Carbon dioxide absorbing material, carbon dioxide absorbing material manufacturing method, carbon dioxide absorbing method, and carbon dioxide absorbing device
KR20140005342A (en) Complex oxide, method for producing same, and exhaust gas purification catalyst
JP3443548B2 (en) Carbon dioxide absorber
JP3761371B2 (en) Carbon dioxide absorber and combustion device
US7799720B2 (en) Method of regenerating carbon dioxide gas absorbent
JP2005013952A (en) Carbon dioxide absorber
CN107754787A (en) Three-dimensional order mullite catalyst and preparation method thereof, purification method
JP2000262890A (en) Carbon dioxide gas absorbing material, method and apparatus for separating carbon dioxide gas
JP3443550B2 (en) Carbon dioxide absorbent and method for producing carbon dioxide absorbent
JP3857667B2 (en) Carbon dioxide absorbing material, carbon dioxide absorbing material manufacturing method, carbon dioxide absorbing method, carbon dioxide separating method and carbon dioxide separating device
Cai et al. Efficient carbon dioxide adsorption properties of cellular structure Li4SiO4 sorbents prepared by additive manufacturing based on polymer-derived ceramics strategy
JP2004216245A (en) Carbon dioxide absorbent, and its production method
JP2003126688A (en) Carbon dioxide absorbing material, usage thereof and regeneration method therefor
KR102046794B1 (en) Adsorbent for Capturing Carbon Dioxide Comprising Eutectic Mixture Promoter and Magnesium Oxide/Titanium Dioxide Composite and Method for Manufacturing Same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R151 Written notification of patent or utility model registration

Ref document number: 3443548

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090620

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090620

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100620

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100620

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term