JP3420036B2 - Carbon dioxide absorbing material and carbon dioxide absorbing method - Google Patents

Carbon dioxide absorbing material and carbon dioxide absorbing method

Info

Publication number
JP3420036B2
JP3420036B2 JP25110497A JP25110497A JP3420036B2 JP 3420036 B2 JP3420036 B2 JP 3420036B2 JP 25110497 A JP25110497 A JP 25110497A JP 25110497 A JP25110497 A JP 25110497A JP 3420036 B2 JP3420036 B2 JP 3420036B2
Authority
JP
Japan
Prior art keywords
carbon dioxide
oxide
lithium
carbonate
absorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25110497A
Other languages
Japanese (ja)
Other versions
JPH1190219A (en
Inventor
和明 中川
俊之 大橋
秀行 大図
芳浩 赤坂
師浩 富松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP25110497A priority Critical patent/JP3420036B2/en
Priority to DE19842228A priority patent/DE19842228B4/en
Publication of JPH1190219A publication Critical patent/JPH1190219A/en
Application granted granted Critical
Publication of JP3420036B2 publication Critical patent/JP3420036B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/043Carbonates or bicarbonates, e.g. limestone, dolomite, aragonite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3035Compressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/42Materials comprising a mixture of inorganic materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】本発明は、炭酸ガス吸収材に
関し、特に炭化水素を主成分とする燃料を利用するエネ
ルギープラントや化学プラント等から発生する排出ガス
中の炭酸ガスを200〜500℃の温度域で繰り返し分
離回収するのに用いられる炭酸ガス吸収材に係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon dioxide absorbent, and particularly to carbon dioxide in an exhaust gas generated from an energy plant or a chemical plant using a fuel containing hydrocarbon as a main component at 200 to 500 ° C. It relates to a carbon dioxide absorbent used for repeated separation and recovery in a temperature range.

【0002】[0002]

【従来の技術】例えば、発動機などの炭化水素を主成分
とする燃料を燃焼させる装置においては、炭酸ガスの回
収に適した場所の温度が300℃以上の高温になること
が多い。
2. Description of the Related Art For example, in an apparatus such as an engine for burning a fuel containing hydrocarbon as a main component, the temperature of a place suitable for carbon dioxide recovery is often as high as 300 ° C. or higher.

【0003】ところで、炭酸ガスの分離方法としては従
来より酢酸セルロースを用いる方法、アルカノールアミ
ン系溶媒による化学吸収方法等が知られている。しかし
ながら、前述した分離方法はいずれも導入ガス温度を2
00℃以下に抑える必要がある。したがって、高温度の
リサイクルを要する排気ガスに対しては一旦、熱交換器
等により200℃以下に冷却する必要があり、結果的に
炭酸ガス分離ためのエネルギー消費量が多くなるという
問題があった。
By the way, as a method for separating carbon dioxide gas, a method using cellulose acetate, a chemical absorption method using an alkanolamine-based solvent, and the like have been conventionally known. However, in any of the above-mentioned separation methods, the introduced gas temperature is set to 2
It is necessary to keep the temperature below 00 ° C. Therefore, exhaust gas that needs to be recycled at a high temperature needs to be once cooled to 200 ° C. or lower by a heat exchanger or the like, resulting in a large amount of energy consumption for carbon dioxide separation. .

【0004】一方、特開平9−99214号公報にはリ
チウム化ジルコニアからなる炭酸ガス吸収材が開示され
ているが、リチウム化ジルコニアは約500℃を越える
温度域において炭酸ガスの回収が可能となり、必ずしも
全ての排気ガスから炭酸ガスの吸収・回収を実施するこ
とが困難である。
On the other hand, Japanese Patent Application Laid-Open No. 9-99214 discloses a carbon dioxide gas absorbent made of lithiated zirconia. Lithiated zirconia enables recovery of carbon dioxide in a temperature range exceeding about 500 ° C., It is not always possible to absorb and recover carbon dioxide from all exhaust gases.

【0005】[0005]

【発明が解決しようとする課題】本発明は、炭化水素を
燃焼させる装置からの排出ガス中の炭酸ガスを高温下で
直接かつ低エネルギー消費量、高効率で分離回収するこ
とが可能な炭酸ガス吸収材を提供しようとするものであ
る。
DISCLOSURE OF THE INVENTION The present invention provides a carbon dioxide gas that can be separated and recovered directly at a high temperature, with low energy consumption, and with high efficiency, carbon dioxide gas in exhaust gas from a device for burning hydrocarbons. It is intended to provide an absorbent material.

【0006】[0006]

【課題を解決するための手段】本発明に係わる炭酸ガス
吸収材は、リチウムが固溶された酸化物、ここで酸化物
は、チタン、鉄ニッケルおよびシリコンから選ばれる少
なくとも1種の金属を含む酸化物を示す、を含有し、炭
酸ガスと反応して炭酸リチウムを生成することを特徴と
するものである。
The carbon dioxide absorbent according to the present invention is an oxide in which lithium is solid-dissolved .
Is a small amount selected from titanium, iron nickel and silicon.
It is characterized by containing at least an oxide containing one kind of metal and reacting with carbon dioxide gas to produce lithium carbonate.

【0007】[0007]

【0008】[0008]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明の炭酸ガス吸収材は、リチウムが固溶された酸化
物を含み、450℃以下の温度で炭酸ガスと反応して炭
酸リチウムを生成するものである。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.
The carbon dioxide absorbent of the present invention contains an oxide in which lithium is solid-dissolved, and reacts with carbon dioxide at a temperature of 450 ° C. or less to produce lithium carbonate.

【0009】前記炭酸ガスを含む気体としては、例えば
炭化水素を主成分とする燃料を利用する発動機のような
装置、発電プラントや化学プラントのプロセス中で発生
するガス等を挙げることができる。
Examples of the gas containing carbon dioxide include a device such as an engine using a fuel containing hydrocarbon as a main component, a gas generated in a process of a power plant or a chemical plant, and the like.

【0010】前記リチウムが固溶された酸化物として
は、アルミニウム、チタン、鉄、ニッケルおよび珪素か
ら選ばれる少なくとも1種を含むリチウム化酸化物を挙
げることができる。特に、高温での安定性および炭酸ガ
スとの反応性を考慮するとチタン、ニッケルのリチウム
化酸化物、また炭酸ガスの大量処理およびコストを考慮
するとアルミニウム、鉄のリチウム化酸化物が好まし
い。また、前記元素を含む複合物としては、例えばTi
−V、Ni−Co、Ni−Feのリチウム化複合酸化物
を挙げることができる。
Examples of the oxide in which lithium is solid-dissolved include a lithiated oxide containing at least one selected from aluminum, titanium, iron, nickel and silicon. In particular, lithiated oxides of titanium and nickel are preferable in view of stability at high temperature and reactivity with carbon dioxide gas, and lithiated oxides of aluminum and iron are preferable in consideration of mass treatment of carbon dioxide gas and cost. Further, as the composite containing the above-mentioned element, for example, Ti
Examples thereof include lithiated complex oxides of -V, Ni-Co, and Ni-Fe.

【0011】前記酸化物には、さらにリチウム、ナトリ
ウムおよびカリウムから選ばれるアルカリの炭酸塩が添
加されることを許容する。このような炭酸塩を添加する
ことによって、得られた吸収材の炭酸ガスの吸収・放出
反応が350℃以上の温度で促進させることができる。
前記炭酸塩の添加量は、前記リチウム化酸化物に対して
5〜30モル%にすることが好ましい。前記炭酸塩の添
加量を5モル%未満にすると、炭酸ガスの吸収反応の促
進効果を十分に発揮することが困難になる。一方、前記
炭酸塩の添加量が30モル%を越えると炭酸ガスの吸収
反応の促進効果が飽和するばかりか、吸収材の容積当た
りの炭酸ガス吸収量が低下する恐れがある。より好まし
い前記炭酸塩の添加量は、前記リチウム化酸化物に対し
て10〜20モル%である。
It is permissible to add an alkali carbonate selected from lithium, sodium and potassium to the oxide. By adding such a carbonate, the absorption / desorption reaction of carbon dioxide gas of the obtained absorbent can be promoted at a temperature of 350 ° C. or higher.
The amount of the carbonate added is preferably 5 to 30 mol% with respect to the lithium oxide. When the amount of the carbonate added is less than 5 mol%, it becomes difficult to sufficiently exert the effect of promoting the absorption reaction of carbon dioxide gas. On the other hand, when the amount of the carbonate added exceeds 30 mol%, not only the effect of promoting the absorption reaction of carbon dioxide gas is saturated, but also the absorption amount of carbon dioxide gas per volume of the absorbent may decrease. More preferable addition amount of the carbonate is 10 to 20 mol% with respect to the lithium oxide.

【0012】本発明の炭酸ガス吸収材は、例えば平均粒
径0.1〜5.0μmの粒子からなる多孔質体の形態を
有する。この多孔質体の気孔率は、40前後であること
が好ましい。このような多孔質体において、添加される
リチウム、ナトリウムおよびカリウムから選ばれるアル
カリの炭酸塩はその細孔に保持される。
The carbon dioxide absorbent of the present invention has the form of a porous body composed of particles having an average particle size of 0.1 to 5.0 μm, for example. The porosity of this porous body is preferably around 40. In such a porous body, the added alkali carbonate selected from lithium, sodium and potassium is retained in the pores.

【0013】このような多孔体構造の炭酸ガス吸収材
は、例えば次のような方法により作製される。まず、ア
ルミニウム、チタン、鉄、ニッケルおよび珪素から選ば
れる少なくとも1種を含む酸化物とリチウム炭酸塩とを
大気中、900℃程度の温度で反応させることにより粒
状のリチウム化酸化物を生成する。つづいて、平均粒径
0.1〜5.0μmのリチウム化酸化物粒子を例えば直
径10〜20mmの金型に入れ、圧縮成形して気孔率4
0%前後の圧粉体とすることにより多孔体構造の炭酸ガ
ス吸収材を作製する。
The carbon dioxide absorbent having such a porous structure is produced, for example, by the following method. First, a granular lithiated oxide is produced by reacting an oxide containing at least one selected from aluminum, titanium, iron, nickel, and silicon with lithium carbonate in the atmosphere at a temperature of about 900 ° C. Subsequently, lithium oxide particles having an average particle diameter of 0.1 to 5.0 μm are put into a mold having a diameter of 10 to 20 mm, and compression-molded to obtain a porosity of 4
A carbon dioxide absorbent having a porous structure is produced by making the green compact around 0%.

【0014】以上説明した本発明に係わる炭酸ガス吸収
材は、リチウムが固溶された酸化物、例えばアルミニウ
ム、チタン、鉄およびニッケルから選ばれる少なくとも
1種を含むリチウム化酸化物を含有する。このようなリ
チウム化酸化物は、次式(1)〜(4)に示すように炭
酸ガスと反応してリチウム炭酸塩を生成する。
The carbon dioxide absorbent according to the present invention described above contains an oxide in which lithium is solid-solved, for example, a lithiated oxide containing at least one selected from aluminum, titanium, iron and nickel. Such a lithiated oxide reacts with carbon dioxide gas to produce lithium carbonate as shown in the following formulas (1) to (4).

【0015】 2LiAlO2 (s)+CO2 (g) →Al23 (s)+Li2 CO3 (l) …(1) Li2 TiO3 (s)+CO2 (g) →TiO2 (s)+Li2 CO3 (l) …(2) Li2 NiO2 (s)+CO2 (g) →NiO(s)+Li2 CO3 (l) …(3) 2LiFeO2 (s)+CO2 (g) →Fe23 (s)+Li2 CO3 (l) …(4) ここで、前記式(1)の反応は350℃以下の温度で特
に起きやすい。
2LiAlO 2 (s) + CO 2 (g) → Al 2 O 3 (s) + Li 2 CO 3 (l) (1) Li 2 TiO 3 (s) + CO 2 (g) → TiO 2 (s) + Li 2 CO 3 (l) (2) Li 2 NiO 2 (s) + CO 2 (g) → NiO (s) + Li 2 CO 3 (l) (3) 2LiFeO 2 (s) + CO 2 (g) → Fe 2 O 3 (s) + Li 2 CO 3 (l) (4) Here, the reaction of the formula (1) is particularly likely to occur at a temperature of 350 ° C. or lower.

【0016】前記式(2)の反応は310℃以下の温度
で特に起きやすい。前記式(3)の反応は400℃以下
の温度で特に起きやすい。前記式(4)の反応は450
℃以下の温度で特に起きやすい。
The reaction of the above formula (2) is particularly likely to occur at a temperature of 310 ° C. or lower. The reaction of the formula (3) is particularly likely to occur at a temperature of 400 ° C. or lower. The reaction of the formula (4) is 450
It is especially likely to occur at temperatures below ℃.

【0017】前記各リチウム化酸化物は、前記各反応温
度以上に加熱することにより反応が右から左に進行して
炭酸ガスを放出するため、炭酸ガスの回収が可能にな
る。したがって、本発明に係わる炭酸ガス吸収材は従来
では困難であった200〜500℃以下の温度域におい
て、少ないエネルギーで炭酸ガスの分離・回収を行うこ
とができる。
When each of the lithiated oxides is heated to the above-mentioned reaction temperature or higher, the reaction proceeds from right to left to release carbon dioxide, so that carbon dioxide can be recovered. Therefore, the carbon dioxide absorbent according to the present invention can separate and recover carbon dioxide with a small amount of energy in the temperature range of 200 to 500 ° C. or lower, which has been difficult in the past.

【0018】また、さらにリチウム、ナトリウムおよび
カリウムから選ばれるアルカリの炭酸塩を添加すること
によって、炭酸ガスの吸収・放出反応をより効率的に行
うことが可能な炭酸ガス吸収材を得ることが可能にな
る。
Further, by adding an alkali carbonate selected from lithium, sodium and potassium, it is possible to obtain a carbon dioxide absorbent capable of more efficiently carrying out a carbon dioxide absorption / desorption reaction. become.

【0019】[0019]

【実施例】以下、本発明の好ましい実施例を詳細に説明
する。 (実施例1〜5)まず、平均粒径1μm前後の酸化アル
ミニウム、酸化チタン、酸化鉄(Fe23 )、酸化ニ
ッケルおよび酸化珪素それぞれ1モルと炭酸リチウム1
モルとを混合し、900℃、大気中で焼成してリチウム
化酸化アルミニウム、リチウム化酸化チタン、リチウム
化酸化鉄、リチウム化酸化ニッケルおよびリチウム化酸
化珪素の粒状物をそれぞれ作製した。つづいて、これら
の粒状物1gをそれぞれ直径12mmの金型内に投入し
て加圧成形することにより気孔率40%の圧粉体からな
る5種の炭酸ガス吸収材を製造した。
The preferred embodiments of the present invention will be described in detail below. (Examples 1 to 5) First, aluminum oxide, titanium oxide, iron oxide (Fe 2 O 3 ), nickel oxide and silicon oxide each having an average particle size of about 1 μm, 1 mol each, and lithium carbonate 1
The mixture was mixed with mol and baked in the atmosphere at 900 ° C. to produce particles of lithiated aluminum oxide, lithiated titanium oxide, lithiated iron oxide, lithiated nickel oxide and lithiated silicon oxide. Subsequently, 5 g of the carbon dioxide gas absorbent made of a green compact having a porosity of 40% was manufactured by introducing 1 g of each of the granules into a mold having a diameter of 12 mm and performing pressure molding.

【0020】(比較例1)平均粒径1μmの酸化マグネ
シウム粒子を実施例1と同様に加圧成形して気孔率40
%の圧粉体からなる炭酸ガス吸収材を製造した。
(Comparative Example 1) Magnesium oxide particles having an average particle size of 1 μm were pressure-molded in the same manner as in Example 1 to give a porosity of 40.
% Carbon dioxide absorbent made of green compact was manufactured.

【0021】(比較例2)平均粒径1μmのリチウム化
ジルコニア粒子を実施例1と同様に加圧成形して気孔率
40%の圧粉体からなる炭酸ガス吸収材を製造した。
Comparative Example 2 Lithiated zirconia particles having an average particle size of 1 μm were pressure-molded in the same manner as in Example 1 to produce a carbon dioxide absorbent made of a green compact having a porosity of 40%.

【0022】得られた実施例1〜5および比較例1,2
の炭酸ガス吸収材を電気炉に設置し、この電気炉内に炭
酸ガス20体積%および窒素ガス80体積%からなる混
合ガスを流通させながら下記表1に示す300℃、45
0℃,500℃の温度で1時間保持し、その前後の吸収
材の重量増加を調べることにより炭酸ガスの吸収量を測
定した。その結果を下記表1に示す。なお、この測定に
おいて前記吸収材が設置された電気炉内に窒素ガスのみ
を供給して同様な実験を行ったところ、吸収材の重量増
加が全く見られないことを確認した。
The obtained Examples 1 to 5 and Comparative Examples 1 and 2 were obtained.
The carbon dioxide absorbent of No. 1 was installed in an electric furnace, and while flowing a mixed gas of 20 vol% carbon dioxide and 80 vol% nitrogen gas in the electric furnace, 300 ° C.
The amount of carbon dioxide gas absorbed was measured by keeping the temperature at 0 ° C. and 500 ° C. for 1 hour and examining the weight increase of the absorbent before and after that. The results are shown in Table 1 below. In this measurement, a similar experiment was carried out by supplying only nitrogen gas into the electric furnace in which the absorber was installed, and it was confirmed that no increase in the weight of the absorber was observed.

【0023】また、実施例1〜5および比較例1の吸収
材を炭酸ガス20体積%および窒素ガス80体積%から
なる混合ガスを流通させながら300℃に5時間保持
し、一旦室温に戻して重量を測定し、同様なガス条件で
600℃、1時間保持して重量減少を測定して炭酸ガス
の放出量を測定した。なお、比較例2の吸収材では炭酸
ガス吸収のための温度条件を500℃とし、その後同様
な600℃で炭酸ガスの放出を行った。その結果を下記
表1に示す。
The absorbents of Examples 1 to 5 and Comparative Example 1 were held at 300 ° C. for 5 hours while flowing a mixed gas of carbon dioxide gas of 20 vol% and nitrogen gas of 80 vol%, and once returned to room temperature. The weight was measured, and the amount of carbon dioxide gas released was measured by maintaining the same gas conditions at 600 ° C. for 1 hour to measure the weight reduction. In the absorbent of Comparative Example 2, the temperature condition for absorbing carbon dioxide was set to 500 ° C., and then carbon dioxide was released at the same temperature of 600 ° C. The results are shown in Table 1 below.

【0024】[0024]

【表1】 [Table 1]

【0025】前記表1から明らかなように実施例1〜5
の吸収材は、比較例1、2の吸収材に比べて300〜4
50℃における1時間当たりの炭酸ガスの吸収量が大き
く、優れた炭酸ガス吸収性を有することがわかる。特
に、リチウム化酸化アルミニウム、リチウム化酸化チタ
ン、リチウム化酸化鉄、リチウム化酸化ニッケルからな
る実施例1〜4の吸収材は、炭酸ガスの吸収速度が高い
ことがわかる。
As is clear from Table 1, Examples 1 to 5
The absorbent material of No. 3 is 300 to 4 as compared with the absorbent materials of Comparative Examples 1 and 2.
It can be seen that the amount of carbon dioxide gas absorbed at 50 ° C. per hour is large, and the carbon dioxide gas has excellent carbon dioxide gas absorbability. In particular, it can be seen that the absorbents of Examples 1 to 4 composed of lithium aluminum oxide, lithium titanium oxide, lithium iron oxide, and lithium nickel oxide have a high absorption rate of carbon dioxide gas.

【0026】(実施例6〜8)平均粒径1μm前後の酸
化鉄1モルに対して炭酸リチウム1モルを加え、さらに
下記表2に示す種類および量のアルカリ炭酸塩を混合
し、900℃、大気中で焼成してリチウム化酸化鉄をそ
れぞれ作製した。つづいて、これらの粒状物1gをそれ
ぞれ直径12mmの金型内に投入して加圧成形すること
により気孔率40%の圧粉体からなる3種の炭酸ガス吸
収材を製造した。
(Examples 6 to 8) 1 mol of lithium carbonate was added to 1 mol of iron oxide having an average particle size of about 1 μm, and alkaline carbonates of the types and amounts shown in Table 2 below were mixed, and 900 ° C. Lithiated iron oxide was produced by firing in air. Subsequently, 1 g of each of the granules was put into a mold having a diameter of 12 mm and pressure-molded to produce three kinds of carbon dioxide absorbents made of a green compact having a porosity of 40%.

【0027】得られた実施例6〜8の炭酸ガス吸収材を
電気炉に設置し、この電気炉内に炭酸ガス20体積%お
よび窒素ガス80体積%からなる混合ガスを流通させな
がら450℃の温度で1時間保持し、その前後の吸収材
の重量増加を調べることにより炭酸ガスの吸収量を測定
した。その結果を下記表2に併記する。なお、表2には
前述した比較例3の結果も併記する。
The carbon dioxide absorbents of Examples 6 to 8 thus obtained were placed in an electric furnace, and a mixed gas of 20 vol% carbon dioxide and 80 vol% nitrogen gas was passed through the electric furnace at 450 ° C. The amount of carbon dioxide absorbed was measured by keeping the temperature for 1 hour and examining the weight increase of the absorbent before and after that. The results are also shown in Table 2 below. Table 2 also shows the results of Comparative Example 3 described above.

【0028】[0028]

【表2】 [Table 2]

【0029】前記表2から明らかなようにアルカリ炭酸
塩の添加量の多くした実施例6〜8の吸収材は、実施例
3の吸収材に比べて450℃における1時間当たりの炭
酸ガスの吸収量がより大きく、優れた炭酸ガス吸収性を
有することがわかる。
As is clear from Table 2, the absorbents of Examples 6 to 8 in which the amount of alkali carbonate added was large, compared with the absorbent of Example 3, the absorption of carbon dioxide gas at 450 ° C. per hour. It can be seen that the amount is larger and it has excellent carbon dioxide absorption.

【0030】[0030]

【発明の効果】以上詳述したように本発明によれば、炭
化水素を燃焼させる装置からの排出ガス中の炭酸ガスを
高温下で直接かつ低エネルギー消費量、高効率で分離回
収することが可能な炭酸ガス吸収材を提供することがで
きる。
As described in detail above, according to the present invention, carbon dioxide in exhaust gas from a device for burning hydrocarbons can be separated and recovered directly at high temperature with low energy consumption and high efficiency. A possible carbon dioxide absorbent can be provided.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 赤坂 芳浩 神奈川県川崎市幸区小向東芝町1番地 株式会社東芝研究開発センター内 (72)発明者 富松 師浩 神奈川県川崎市幸区小向東芝町1番地 株式会社東芝研究開発センター内 (56)参考文献 特開 平2−43917(JP,A) 特開 平9−99214(JP,A) 特開 昭49−22391(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01J 20/00 - 20/34 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshihiro Akasaka 1 Komukai Toshiba Town, Komukai-ku, Kawasaki City, Kanagawa Prefecture Toshiba Research and Development Center, Inc. (72) Inventor Shigehiro Tomimatsu Toshiba Komukai Toshiba, Kawasaki City, Kanagawa Prefecture 1-City, Toshiba Research & Development Center Co., Ltd. (56) Reference JP-A-2-43917 (JP, A) JP-A-9-99214 (JP, A) JP-A-49-22391 (JP, A) (58) ) Fields surveyed (Int.Cl. 7 , DB name) B01J 20/00-20/34

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 リチウムが固溶された酸化物、ここでこ
の酸化物はチタン、鉄、ニッケルおよびシリコンから選
ばれる少なくとも1種の金属を含む酸化物を示す、を含
有し、炭酸ガスと反応して炭酸リチウムを生成すること
を特徴とする炭酸ガス吸収材。
1. An oxide in which lithium is solid-dissolved, here
Oxide of titanium is selected from titanium, iron, nickel and silicon.
Demonstrating an oxide containing at least one metal selected from
A carbon dioxide absorbent, characterized by having a reaction with carbon dioxide to produce lithium carbonate.
【請求項2】 前記リチウムが固溶された酸化物は、
チウム固溶シリコン酸化物であることを特徴とする請求
項1記載の炭酸ガス吸収材。
Wherein oxide wherein lithium is dissolved, the Li
The carbon dioxide absorbent according to claim 1, wherein the carbon dioxide absorbent is a solid solution silicon oxide .
【請求項3】 さらにリチウム、ナトリウムおよびカリ
ウムから選ばれるアルカリの炭酸塩が添加されることを
特徴とする請求項1または2記載の炭酸ガス吸収材。
3. The carbon dioxide absorbent according to claim 1, further comprising an alkali carbonate selected from lithium, sodium and potassium.
【請求項4】 (a)炭酸ガスと反応して吸収し、シリ
コンを含むリチウム化酸化物と、 (b)ナトリウム炭酸塩、リチウム炭酸塩およびカリウ
ム炭酸塩の群から選ばれるアルカリ炭酸塩とを含有する
吸収材であって、 前記吸収材は、多孔質または圧粉体であり、かつ前記シ
リコンは前記炭酸ガスとの反応時にシリコン酸化物に転
換されることを特徴とする炭酸ガス吸収材。
4. A lithiated oxide containing silicon which reacts with and absorbs carbon dioxide (a), and (b) an alkali carbonate selected from the group consisting of sodium carbonate, lithium carbonate and potassium carbonate. containing
An absorbent material, wherein the absorbent material is a porous material or a green compact, and the silicon is converted into silicon oxide when reacting with the carbon dioxide gas.
【請求項5】 炭酸ガスと反応して吸収し、シリコンを
含むリチウム化酸化物を含有し、前記リチウム化酸化物
は0.1〜5μmの平均粒径を有する粒子を含む式Li
2SiO3を有する化合物である吸収材であって、 前記吸収材は、多孔質または圧粉体で、かつ前記シリコ
ンは前記炭酸ガスとの反応時にシリコン酸化物に転換さ
れることを特徴とする炭酸ガス吸収材。
5. A formula Li containing particles which react with and absorb carbon dioxide gas and contain silicon-containing lithiated oxide, said lithiated oxide containing particles having an average particle size of 0.1 to 5 μm.
An absorbent material which is a compound having 2 SiO 3 , wherein the absorbent material is porous or a green compact, and the silicon is converted into silicon oxide upon reaction with the carbon dioxide gas. Carbon dioxide absorbent.
【請求項6】 前記炭酸ガスを請求項4記載の炭酸ガス
吸収材と選択的に反応させることにより、リチウム炭酸
塩およびシリコン酸化物を形成し、かつ前記炭酸ガスを
炭酸塩として吸収する工程を備えることを特徴とする炭
酸ガスを含むガスから炭酸ガスを吸収する方法。
6. A step of forming lithium carbonate and silicon oxide by selectively reacting the carbon dioxide with the carbon dioxide absorbent according to claim 4 and absorbing the carbon dioxide as carbonate. A method for absorbing carbon dioxide from a gas containing carbon dioxide, comprising:
【請求項7】 前記炭酸ガスを請求項5記載の炭酸ガス
吸収材と選択的に反応させることにより、リチウム炭酸
塩およびシリコン酸化物を形成し、かつ前記炭酸ガスを
炭酸塩として吸収する工程を備えることを特徴とする炭
酸ガスを含むガスから炭酸ガスを吸収する方法。
By 7. be selectively reacted with carbon dioxide gas absorbent according to claim 5, wherein the carbon dioxide to form a lithium carbonate and silicon oxide, and the step of absorbing the carbon dioxide as carbonate A method for absorbing carbon dioxide from a gas containing carbon dioxide, comprising:
【請求項8】 炭酸ガスと反応して吸収し、リチウムが
固溶された酸化物、ここで酸化物は鉄を含む酸化物を示
す、を有することを特徴とする炭酸ガス吸収材。
8. Lithium is absorbed by reacting with carbon dioxide,
Dissolved oxide, where oxide refers to oxide containing iron
Carbon dioxide gas absorbent and having to, a.
【請求項9】 炭酸ガスと反応して吸収し、リチウムが
固溶された酸化物、ここで酸化物はチタンを含む酸化物
を示す、と、ナトリウム炭酸塩、リチウム炭酸塩および
カリウム炭酸塩の群から選ばれるアルカリ炭酸塩とを含
有することを特徴とする炭酸ガス吸収材。
9. Lithium is absorbed by reacting with carbon dioxide,
Dissolved oxide, where the oxide contains titanium
And an alkali carbonate selected from the group consisting of sodium carbonate, lithium carbonate and potassium carbonate.
【請求項10】 炭酸ガスと反応して吸収、リチウム
炭酸塩およびニッケル酸化物からなる反応性生物を形成
するリチウムが固溶された酸化物、ここで酸化物はニッ
ケルを含む酸化物を示す、を有することを特徴とする炭
酸ガス吸収材。
10. An oxide in which lithium is solid-dissolved, which reacts with carbon dioxide to be absorbed to form a reaction product composed of lithium carbonate and nickel oxide, wherein the oxide is nickel.
A carbon dioxide absorbent characterized by having an oxide containing Kel .
JP25110497A 1997-09-16 1997-09-16 Carbon dioxide absorbing material and carbon dioxide absorbing method Expired - Fee Related JP3420036B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP25110497A JP3420036B2 (en) 1997-09-16 1997-09-16 Carbon dioxide absorbing material and carbon dioxide absorbing method
DE19842228A DE19842228B4 (en) 1997-09-16 1998-09-15 Carbon dioxide gas absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25110497A JP3420036B2 (en) 1997-09-16 1997-09-16 Carbon dioxide absorbing material and carbon dioxide absorbing method

Publications (2)

Publication Number Publication Date
JPH1190219A JPH1190219A (en) 1999-04-06
JP3420036B2 true JP3420036B2 (en) 2003-06-23

Family

ID=17217714

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25110497A Expired - Fee Related JP3420036B2 (en) 1997-09-16 1997-09-16 Carbon dioxide absorbing material and carbon dioxide absorbing method

Country Status (2)

Country Link
JP (1) JP3420036B2 (en)
DE (1) DE19842228B4 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6387845B1 (en) * 1999-03-23 2002-05-14 Kabushiki Kaisha Toshiba Carbon dioxide gas absorbent containing lithium silicate
DE10016079A1 (en) 2000-03-31 2001-10-04 Alstom Power Nv Method for removing carbon dioxide from the exhaust gas of a gas turbine system and device for carrying out the method
JP2004313916A (en) * 2003-04-15 2004-11-11 Bridgestone Corp Material and apparatus for absorbing/desorbing carbon dioxide
KR100668933B1 (en) 2004-07-31 2007-01-12 한국전력공사 Method for producing dry regenerable high-surface area sorbent for CO2 recovery
JP4621887B2 (en) * 2005-01-21 2011-01-26 独立行政法人物質・材料研究機構 Carbon dioxide absorbing material
JP5279310B2 (en) * 2008-03-26 2013-09-04 国立大学法人埼玉大学 Rock salt type lithium ferrite and method for producing the same, carbon dioxide absorption method, absorption device and separation device
GB2490261B (en) * 2009-10-30 2017-03-08 Korea Electric Power Corp Carbon dioxide absorbent for exhaust gas, and preparation method thereof
CN103611493A (en) * 2013-11-04 2014-03-05 北京交通大学 High temperature carbon dioxide adsorbent and preparation method
JP6383188B2 (en) * 2014-06-16 2018-08-29 国立大学法人埼玉大学 Method for producing α-sodium ferrites

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4433981A (en) * 1981-02-18 1984-02-28 Shell Oil Company CO2 Removal from gaseous streams
US4493715A (en) * 1982-12-20 1985-01-15 Phillips Petroleum Company Removal of carbon dioxide from olefin containing streams
US4964889A (en) * 1989-12-04 1990-10-23 Uop Selective adsorption on magnesium-containing clinoptilolites

Also Published As

Publication number Publication date
DE19842228B4 (en) 2005-11-17
JPH1190219A (en) 1999-04-06
DE19842228A1 (en) 1999-03-18

Similar Documents

Publication Publication Date Title
JP3053362B2 (en) Separation method of carbon dioxide gas Foam carbon dioxide gas absorbent and carbon dioxide gas separation device
JP3591724B2 (en) Carbon dioxide absorber and carbon dioxide separator
US6271172B2 (en) Method for manufacturing a carbon dioxide gas absorbent
JP2001512412A (en) Getter material for decomposing ammonia
JP3420036B2 (en) Carbon dioxide absorbing material and carbon dioxide absorbing method
US3864450A (en) Process for removing nitrogen oxides from gaseous mixtures
JPS60500999A (en) Method and apparatus for purifying combustion gases discharged from combustion equipment
JP4746457B2 (en) Carbon dioxide absorber, carbon dioxide separator and reformer
RU2229335C1 (en) Carbon dioxide absorber, method for preparation thereof, and a method for removing carbon dioxide from gas mixtures
JP2000262890A (en) Carbon dioxide gas absorbing material, method and apparatus for separating carbon dioxide gas
JP2002282685A (en) Carbon dioxide absorbent and combustion apparatus
US7799720B2 (en) Method of regenerating carbon dioxide gas absorbent
JP3816662B2 (en) Carbon dioxide absorbing member
JP3443548B2 (en) Carbon dioxide absorber
JP3761371B2 (en) Carbon dioxide absorber and combustion device
JP2005013952A (en) Carbon dioxide absorber
JP3857667B2 (en) Carbon dioxide absorbing material, carbon dioxide absorbing material manufacturing method, carbon dioxide absorbing method, carbon dioxide separating method and carbon dioxide separating device
JP3675753B2 (en) Carbon dioxide absorber, method for using the same and method for regenerating the same
JP2004216245A (en) Carbon dioxide absorbent, and its production method
JP2002085966A (en) Carbon dioxide absorbing material, its production method and combustion equipment
JPH09876A (en) Carbon dioxide affinity material having water-vapor resistance
JP2001170480A (en) Carbon dioxide absorbent, method of producing the same and burner
JP4209053B2 (en) Oxide containing praseodymium oxide and method for producing the same
JPS58214341A (en) Catalyst for purifying noxious gas
JPH11253738A (en) Sulfide gas-absorbing material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100418

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100418

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees