JPS58214341A - Catalyst for purifying noxious gas - Google Patents

Catalyst for purifying noxious gas

Info

Publication number
JPS58214341A
JPS58214341A JP57096283A JP9628382A JPS58214341A JP S58214341 A JPS58214341 A JP S58214341A JP 57096283 A JP57096283 A JP 57096283A JP 9628382 A JP9628382 A JP 9628382A JP S58214341 A JPS58214341 A JP S58214341A
Authority
JP
Japan
Prior art keywords
catalyst
gas
slag
purifying
manganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57096283A
Other languages
Japanese (ja)
Other versions
JPS6251135B2 (en
Inventor
Yoshiharu Kobayashi
小林 美春
Yorihiko Ishibashi
石橋 暉彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP57096283A priority Critical patent/JPS58214341A/en
Publication of JPS58214341A publication Critical patent/JPS58214341A/en
Publication of JPS6251135B2 publication Critical patent/JPS6251135B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE:To obtain the economical catalyst of practical use for purifying noxious gas, by forming manganic slag by-produced in the preparation of potassium permanganate or the mixture of the manganic slag and a caking agent. CONSTITUTION:Manganic slag by-produced in the preparation of potassium permanganate or the mixture of the manganic slag and a caking agent is formed to make the catalyst for purifying noxious gas. As said caking agent, one or more selected from clay minerals, cement, silicic acid or its salts, slaked lime, gypsum, diatom and alumina may be used. If the content of the manganic slag in the catalyst is below 50wt%, the power of purifying gas is unfavorably lowered. A proper temp. for removing noxious gas is at 150-1,000 deg.C for CO, 150-1,000 deg.C for hydrocarbon, a room temp. -1,000 deg.C for SO2 or 70-480 deg.C for nitrogen oxide. The ratio of the removal is excellent in any case, i.e. at 70-100%.

Description

【発明の詳細な説明】 本発明は有害ガス浄化用触媒に関するものである。[Detailed description of the invention] The present invention relates to a catalyst for purifying harmful gases.

更に具体)1′、lに説明すると、燃料の燃焼時、内燃
機関、暖房器具等から発生する一酸化炭素(co)。
More specifically) 1' and 1. Carbon monoxide (co) is generated from internal combustion engines, heating equipment, etc. when fuel is combusted.

炭化水素(HC)、亜硫酸ガス(SO2)、窒素酸化物
(N(′]X)等の有害物賞を含むガスを浄化する/I
!i性を有する過マンガン酸カリ製造時に副生ずるマン
ガン鉱滓単独又は該マンガン鉱滓と粘結剤さよりなる経
済的で実用性に富む触媒を提供するこ吉を目的とするも
のである。
Purify gases containing harmful substances such as hydrocarbons (HC), sulfur dioxide gas (SO2), and nitrogen oxides (N(']X)/I
! The object of the present invention is to provide an economical and highly practical catalyst consisting of manganese slag alone or a binder together with manganese slag, which is a by-product during the production of potassium permanganate having i-character.

従来、内燃機関の排ガス、暖房器具の燃焼ガス等に含ま
れる一酸化炭素、炭化水素、二酸化炭素、二酸化硫黄、
−酸化窒素などの有害物賞を含むガスを浄化する触媒と
して提案されている代表的なものを示すと次の様なもの
が挙げられる。先ず、−酸化炭素、炭化水素、亜硫酸ガ
ス、琶素酸化物の浄化触媒として電解二酸化マンガン(
γ−Mn(’)2)、オキシ水酸化鉄(Fe00H)、
塩基性炭酸銅を」三成分とするもの、例えば酸化マンガ
ン、酸化鉄、酸化銅などにアルミナセメントを糺み合わ
せてl捏合し、これを水中および水蒸気養生した後35
0〜600℃で約5時間熱処理し−で調製したもの(特
開昭54−26984号)、および上記の触智ユの表面
を白金、パラジウム、ルテニウム、ロジウムなどの白金
族金属でコーテングした触媒を使用する方θミ(秘開昭
53−142993号)青がある。
Conventionally, carbon monoxide, hydrocarbons, carbon dioxide, sulfur dioxide, etc. contained in exhaust gas from internal combustion engines, combustion gas from heating equipment, etc.
- Typical catalysts proposed as catalysts for purifying gases containing harmful substances such as nitrogen oxide are as follows. First, electrolytic manganese dioxide (
γ-Mn(')2), iron oxyhydroxide (Fe00H),
Three components of basic copper carbonate, such as manganese oxide, iron oxide, and copper oxide, are kneaded together with alumina cement, and after curing in water and steam,
A catalyst prepared by heat treatment at 0 to 600°C for about 5 hours (Japanese Patent Application Laid-Open No. 54-26984), and a catalyst whose surface is coated with a platinum group metal such as platinum, palladium, ruthenium, or rhodium. There is a way to use θmi (Secret Kai No. 53-142993) blue.

しかし、上記の方法は画側な白金族金属の酸化物を使用
せねばならないしまた水中および水蒸気養生、商温加熱
処理などを必要とし、複雑な工程となり、コスト的に訓
価になる。また得られた触媒は使用温度範囲(250〜
65oc)が限定され、1史用温度が650′c以上に
なると急激に浄化効果が失なわれる。さらに上記の方法
は白金、パラジウムなどの貴金属触媒を使用することに
よって一酸化炭素及び炭化水素を酸化することができる
が、画側であり又触媒毒に弱い欠点がある。
However, the above method requires the use of oxides of platinum group metals, and also requires curing in water and steam, heat treatment at commercial temperatures, etc., resulting in a complicated process and a cost penalty. Moreover, the obtained catalyst has a working temperature range (250~
65 oc) is limited, and when the temperature for one history exceeds 650 oc, the purifying effect is rapidly lost. Furthermore, although the above method can oxidize carbon monoxide and hydrocarbons by using a noble metal catalyst such as platinum or palladium, it is disadvantageous in that it is oxidized and is susceptible to catalyst poisoning.

本発明はこの様な従米の触媒の欠点を除去するために鋭
意研究を行った結果、低温から高温の広い温度範囲にお
いて高活性を維持し、機械的強度、111141す・粍
性に優れた経済的な有害ガス浄1ヒ用触媒として過マン
ガン酸カリ製造時に副生ずるマンガン鉱滓が好個である
ことを知見し本発明の完成に至ったものである。
As a result of intensive research to eliminate the drawbacks of conventional catalysts, the present invention has developed an economical catalyst that maintains high activity in a wide temperature range from low to high temperatures, has excellent mechanical strength, 111141, and durability. It was discovered that manganese slag, which is a by-product during the production of potassium permanganate, is suitable as a catalyst for purifying harmful gases, leading to the completion of the present invention.

即ち、本発明は過マンガン酸カリ製造時に副生ずるマン
ガン鉱滓単独又は該マンガン鉱滓と粘結剤を成型してな
る有害ガス陣化用触媒である。
That is, the present invention is a catalyst for forming a harmful gas formed by molding manganese slag alone or the manganese slag and a binder, which are produced as a by-product during the production of potassium permanganate.

本発明において用いられるマンガン鉱滓は、マンガン鉱
に苛性カリを加え、空気を通じながら酸化焙焼し、マン
ガン酸カリウムをつくり、これを水で抽出して電解酸化
して過マンガン酸カリを製造する際に抽出残漬として副
生ずるものである。
The manganese slag used in the present invention is produced by adding caustic potassium to manganese ore, oxidizing and roasting it while passing air to create potassium manganate, which is extracted with water and electrolytically oxidized to produce potassium permanganate. It is a by-product as extraction residue.

このマンガン鉱滓の組成は大体第1表の通りである。The composition of this manganese slag is roughly as shown in Table 1.

第  1  表 世し、%は車量%を示し、組成分は酸化物で示した。Table 1 % indicates the weight of the vehicle, and the composition is expressed as an oxide.

この様な組成からなるマンガン鉱滓により浄化される自
害カスさして、−i化炭素、炭化水素。
The self-harming scum that is purified by manganese slag with such a composition is i-carbon and hydrocarbons.

二酸化硫黄及び墾累酸化物等が挙げられ、これ等のイj
害ガスはいずれも本発明のマンガン鉱滓が酸化触媒とし
作用し無害化されるのであり、その作用機構を示すと下
記の通りである。
Examples include sulfur dioxide and concentrated oxides.
All harmful gases are rendered harmless by the manganese slag of the present invention acting as an oxidation catalyst, and the mechanism of action is as follows.

自害ガスに含まれる一酸化炭素(CO)を大幅に低減さ
せる理由は、マンガン鉱滓に含まれるMnO2、F’e
203、At203.5i02等が過マンガン酸カリの
製造]−稈の高度の酸化雰囲気中で苛性カリの存在下で
酸化焙焼され、その後適度に加水分解されるので各々活
性なオキシ水酸化物となり、これが過マンガン酸力′す
製造時に添加される消石灰および苛性カリの一部吉共に
JIl!l!媒作用を発揮することにより一酸化炭素を
炭酸ガス(C02)に酸化するためと考えられる。
The reason for the significant reduction in carbon monoxide (CO) contained in self-harmful gas is the MnO2 and F'e contained in manganese slag.
203, At203.5i02, etc. are oxidized and roasted in the presence of caustic potash in a highly oxidizing atmosphere of the culm, and then moderately hydrolyzed to become active oxyhydroxides, This is combined with some of the slaked lime and caustic potash added during the production of permanganate acid. l! This is thought to be because carbon monoxide is oxidized to carbon dioxide gas (C02) by exerting a mediating effect.

有害ガスに含まれるエチレン等の炭化水素についても一
酸化炭素の場合と同様に考えられる。
Hydrocarbons such as ethylene contained in harmful gases can be considered in the same way as carbon monoxide.

有害ガスに含まれる二酸化硫黄(802)はマンガン鉱
滓中の消石灰〔Ca(OH)2 :l、炭酸カルシウム
(CaC03)および空気中の酸素(02)と反応して
硫酸カルシウム(CaSO4)となる。
Sulfur dioxide (802) contained in the harmful gas reacts with slaked lime [Ca(OH)2:l] in the manganese slag, calcium carbonate (CaC03), and oxygen (02) in the air to form calcium sulfate (CaSO4).

Oa((’)H)2 +s02+ ’5’−z 02 
= CaSO4+ H20CaOO3+ 802 + 
/202 = 0aSO4+ 002また有害ガスに含
まれる一酸化窒素(NO)はマンガン鉱滓中の二酸化マ
ンガン(MnO2)および空気中の酸素(0□)き反応
して硝酸マンガンしMn(No3)2’)となるものと
考えられる。
Oa((')H)2 +s02+ '5'-z 02
= CaSO4+ H20CaOO3+ 802 +
/202 = 0aSO4+ 002 Also, nitrogen monoxide (NO) contained in the harmful gas reacts with manganese dioxide (MnO2) in the manganese slag and oxygen (0□) in the air to form manganese nitrate (Mn(No3)2') It is considered that

2NO+ MnO2+02 = Mn (NO3)2マ
ンガン鉱滓の上記組成中の各成分が一酸化炭素および炭
化水素の酸化触媒として作用し、二酸化硫黄および一酸
化窒素を化学反応により固ボ化する作用をし、定箪的に
上記有害ガスを無害化することに本発明の特徴があり、
該作用が有効に1−jわれるためにはマンガン鉱滓の利
成が前記第1表の範囲内にあることが必要であり、該範
囲を逸脱すると本発明の効果を期待出来ない。
2NO+ MnO2+02 = Mn (NO3)2 Each component in the above composition of manganese slag acts as an oxidation catalyst for carbon monoxide and hydrocarbons, solidifies sulfur dioxide and nitrogen monoxide through chemical reaction, and stabilizes them. The present invention is characterized by easily rendering the above-mentioned harmful gas harmless.
In order for this effect to be effectively achieved, it is necessary that the yield of manganese slag falls within the range shown in Table 1, and if it deviates from this range, the effects of the present invention cannot be expected.

本発明に用いられるマンガン鉱滓は元来粉径(1,1〜
0001μのコロイド状であるため微細で比表面積も犬
きく触媒として有利である。したがって、そのまま原料
さして]更用することも可能であり、また乾燥後粉砕し
て原料として1更用するこLもてきる。この場合、二次
凝固の影響をなくするため微粉化することが必要であり
、60メッシュリ、−トに粉砕して1更用するのが好ま
しい。
The manganese slag used in the present invention originally has a powder diameter (1,1 to
Since it is in the form of a colloid with a diameter of 0,001 μm, it is fine and has a large specific surface area, making it advantageous as a catalyst. Therefore, it is possible to use it as it is as a raw material, or it can be dried and pulverized and used again as a raw material. In this case, it is necessary to pulverize it to eliminate the influence of secondary coagulation, and it is preferable to pulverize it to 60 mesh and use it once.

しかし1史用目的によっては微粉状のマンガン鉱滓では
機械的強度が小さいので使用にあたり強度をもたせるた
めに粘結剤を添加し、成形、乾燥することにより球状、
ペレット状、棒状或いはハニカム状等の種々の形状に加
工することにより触媒性能、寿命および機械的強度の優
れた哨ミ媒とすることが出来る。
However, depending on the purpose of use, fine powdered manganese slag has low mechanical strength, so a binder is added to give it strength, and by shaping and drying it, it becomes spherical.
By processing it into various shapes such as pellets, rods, or honeycomb shapes, it can be made into a sentry medium with excellent catalytic performance, service life, and mechanical strength.

本発明において用いられる粘結剤としては、天然届のベ
ントナイト、酸性白土、カオリナイト、各釉粘土等の粘
土U、物、アルミナセメント、高炉セメント、ポートラ
ンドセメント等の、セメント類、珪酸、珪砂、トバモラ
イト、ペルモライト、ゼオライト、アロフェン等の珪酸
又はその塩、消石灰、水酸化マグネシウム等のアルカリ
土類金属類その他石膏、けいそう土及びアルミナのうち
から選はれた一種又は二種以上の混合物が用いられる。
The binders used in the present invention include natural bentonite, acid clay, kaolinite, clays such as various glazed clays, cements such as alumina cement, blast furnace cement, and Portland cement, silicic acid, and silica sand. , silicic acid or its salts such as tobermorite, permolite, zeolite, allophane, alkaline earth metals such as slaked lime, magnesium hydroxide, gypsum, diatomaceous earth, and alumina, or a mixture of two or more thereof. used.

上記の各種の粘結剤の中で特に、ベントナイト、酸性白
土等の粘土質のものは触媒の成形性および機械的強度の
向上、触媒寿命の向上および表面積の増大に有効であり
、又セメント類ではアルミナセメントが好ましくその作
用は粘土質と同様に良好である上、さらに熱的強度が太
きく好適である。
Among the above-mentioned various binders, clayey ones such as bentonite and acid clay are particularly effective in improving the formability and mechanical strength of the catalyst, extending the life of the catalyst, and increasing the surface area. In this case, alumina cement is preferable because its action is as good as that of clay, and it also has higher thermal strength.

本発明の触媒は過マンガン酸カリ製造時に副74Hする
微細なマンガン鉱滓と粘結剤を混合し、水と混練した混
合物を押し出し成型機、造粒機その他の成型機に入れて
棒状、粒状又はハニカム状等の所望の形状に成型し、乾
燥することにより容易に得ることが出来る。
The catalyst of the present invention is produced by mixing fine manganese slag and a binder, which are used as sub-74H during the production of potassium permanganate, and kneading the mixture with water. It can be easily obtained by molding into a desired shape such as a honeycomb shape and drying.

本発明の触媒はマンガン鉱滓50乃至100止量%で残
部が粘結剤よりなる配合物であることが好ましく、マン
ガン鉱滓50車量%未満では前記有害ガスの浄化性能が
低下する傾向であり好ましくない。
The catalyst of the present invention is preferably a composition consisting of 50 to 100% by weight of manganese slag and the remainder is a binder, and if the amount of manganese slag is less than 50% by weight, the purification performance of the harmful gas tends to decrease, so it is preferable. do not have.

この様にして得られた本発明の有害ガス浄化用の触媒は
温度特性に優れ広範囲の温度において高い触媒活性を&
、jll持することが出来、その具体例を示する、イ1
害ガス除去の適温は一酸化炭素では】50乃至1000
℃以上、炭化水素では150乃至1000℃以上、二酸
化硫黄では室温乃至1000℃す、上、酸化窒素(No
)では70乃至480Cにおいて除去率はいずれの場合
にも70乃至100%で良好である。。
The thus obtained catalyst for purifying harmful gases of the present invention has excellent temperature characteristics and exhibits high catalytic activity over a wide range of temperatures.
, jll can be held, and a specific example is shown below.
The optimum temperature for removing harmful gases is 50 to 1000 for carbon monoxide.
℃ or higher, 150 to 1000℃ or higher for hydrocarbons, room temperature to 1000℃ for sulfur dioxide, nitrogen oxide (No.
), the removal rate is good at 70 to 100% in all cases at 70 to 480C. .

す、下、本発明の効果を列挙する。Below, the effects of the present invention are listed.

(1)  従来の有害ガス浄1ヒ用触媒(酸化触媒)は
画側な釜属酸化物および貴金属を1吏用せざるを得なか
ったが、本発明により過マンガン酸カリ製造の際に副生
ずる副生マンガン鉱滓を有効に利用することが出来るの
できわめて経済的で実用性に富むものである。
(1) Conventional catalysts (oxidation catalysts) for purifying harmful gases had to use expensive metal oxides and precious metals, but with the present invention, they can be used to produce potassium permanganate. Since the resulting by-product manganese slag can be used effectively, it is extremely economical and highly practical.

(2111I!14媒を製造成形後、特別な養生および
加熱処理の必要がなく簡単に作ることができ高度の技術
を必要としない。
(After manufacturing and molding the 2111I!14 medium, there is no need for special curing or heat treatment, and it can be easily produced and does not require advanced technology.

(3)  触媒性能として有害ガスに含まれる一酸化炭
素、炭化水素、二酸化硫黄、−酸化窒素などの除去効果
は低温より高温寸で広い範囲に亘って効果があり適用温
度範囲が広い。
(3) In terms of catalytic performance, the removal effect of carbon monoxide, hydrocarbons, sulfur dioxide, -nitrogen oxide, etc. contained in harmful gases is effective over a wide range at high temperatures rather than low temperatures, and the applicable temperature range is wide.

(4)高温で使用しても触媒自体の崩壊、および劣化は
認められず、反応物への汚染の心配が殆んどない。
(4) Even when used at high temperatures, no collapse or deterioration of the catalyst itself is observed, and there is almost no concern about contamination of reactants.

(5)再使用しても触媒性能の劣化が少なく、くり返し
て使用が可能である。
(5) Even if it is reused, there is little deterioration in catalyst performance, and it can be used repeatedly.

(6)  自動車などの内燃機関の排ガス、石油ス)−
プ、燻炭等の暖房器具等の燃焼ガス等に含まれる一酸化
炭素、炭化水素、亜硫酸ガス、酸化窒素(NOx)等の
有害成分を接触浄化して無害ガスに変えることができる
(6) Exhaust gas from internal combustion engines such as automobiles, petroleum gas)
Harmful components such as carbon monoxide, hydrocarbons, sulfur dioxide gas, and nitrogen oxide (NOx) contained in combustion gas from heating appliances such as smoked charcoal and smoked charcoal can be catalytically purified and converted into harmless gases.

次に実施例を掲げて本発明をさらに具体的に説明するが
、本発明はこれらに限定されるものではない・ 実施例1 副生マンガン鉱滓を乾燥し、60メツシユ以下に粉砕し
たものを250y−1天然産ベントナイト2811水1
40rnQを採取し、よく混合した後押し出し成型機に
て直径3ν〃X長さ10乃至20 MLの人きさに造粒
し、次いで120Cで約10時間乾燥し調整した。この
円柱状の造粒物の1粒当りの強度は5.5Kg 7粒子
であった。上記触媒造粒物を第1図に示す触媒試験装置
の燃焼管1の触媒充Jg音1(2に約85ゴ充填し、グ
ラスウール3にて両y;11:部を固定し、触媒体を充
填した燃焼管を横型加熱炉4に設置し、一定温度に加熱
しつつ標準ガスボンベ5より試料ガスをエアポンプ6よ
りの人気ガスで希釈しながら流量計7を介して一定の流
量で供給し加熱された触媒体に接触、転化せしめて系外
にυ1出させた。ガス人口8およびガス出u 9よりガ
スの一部をシリコンゴ六伍で分析装置(図示せず)に畔
人し、切換えコック1oにて各々のガス濃度を分析して
除去率を測音した。
Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto. Example 1 By-product manganese slag was dried and crushed to 60 mesh or less. -1 Natural bentonite 2811 water 1
40rnQ was collected and granulated with a well-mixed push-pull molding machine to a size of 3ν in diameter and 10 to 20 ML in length, and then dried and adjusted at 120C for about 10 hours. The strength of each columnar granule was 5.5 kg and 7 particles. Approximately 85 grams of the catalyst granules were packed into the combustion tube 1 of the catalyst testing device shown in Figure 1, and the catalyst body was fixed with glass wool 3 at both ends. The filled combustion tube is placed in a horizontal heating furnace 4, and while being heated to a constant temperature, a sample gas from a standard gas cylinder 5 is diluted with a popular gas from an air pump 6 and supplied at a constant flow rate via a flow meter 7, and heated. A portion of the gas from gas outlet 8 and gas outlet u9 was transferred to an analyzer (not shown) using a silicon gas tank, and a portion of the gas was transferred to an analyzer (not shown) through a switching cock 1o. The removal rate was measured by analyzing the concentration of each gas.

この場合、処理ガスの空間速度Sv (](r ’ )
を−にとし、反応温度を室温から1000’Cまで選び
晶11度と除去率との関係を求めた。
In this case, the space velocity of the processing gas Sv (](r')
was set to -, the reaction temperature was selected from room temperature to 1000'C, and the relationship between crystallinity 11 degrees and removal rate was determined.

供給ガスとして人口濃度750 ppmの一酸化炭素を
含む空気を1史用した場合の各捗温度における除去率を
第2図に示した。
Figure 2 shows the removal rate at each temperature when air containing carbon monoxide at a population concentration of 750 ppm was used as the supply gas for one period.

供給ガスとして人口mWjOOppmのエチレンを含む
空気を使用した場合の各種温度における除去率を第3図
に示した。
FIG. 3 shows the removal rate at various temperatures when air containing ethylene with a population of mWjOOppm was used as the supply gas.

供給ガスとして入口濃度100 ppmの二酸化傭1黄
を含む空気を1吏用した場合の各欅温度における除去率
を第4図に示した。
FIG. 4 shows the removal rate at each zelkova temperature when one liter of air containing 100 ppm of nitric oxide at the inlet concentration was used as the supply gas.

供給ガスとして人口濃度50 ppmの一酸化窒素を含
む空気を使用した場合の各神温度における除去率を第5
図に示した。
The removal rate at each temperature when air containing nitrogen monoxide with a population concentration of 50 ppm is used as the supply gas is
Shown in the figure.

第1図乃至第5図において、曲線Aは実施例1の結果で
ある。
In FIGS. 1 to 5, curve A is the result of Example 1.

比較例1 触媒の活性成分さしての副生マンガン鉱滓を]車用セす
、天然産ベントナイトのみを原料として実施例1と同じ
方法で円柱状造粒物を調整し、実施例1と同じ触媒試験
装置を用いて温度対除去率の関係を第2図および第4図
の曲線Bに示した。なお、供給ガスの入口濃度は実施例
1と同じてあった。
Comparative Example 1 By-product manganese slag as an active component of catalyst] A cylindrical granule was prepared in the same manner as in Example 1 using only naturally produced bentonite as a raw material, and the same catalyst test as in Example 1 was carried out. The relationship between temperature and removal rate using the apparatus is shown in curve B in FIGS. 2 and 4. Note that the inlet concentration of the supply gas was the same as in Example 1.

その結果、マンガン鉱滓を使用した方が有害物資の除去
効果があることが認められた。
As a result, it was found that using manganese slag was more effective in removing harmful substances.

実施例2 副生マンガン鉱滓のみを水で混練した後実施例1と同様
に円柱状造粒物を調製して触媒を作った。
Example 2 After kneading only by-product manganese slag with water, cylindrical granules were prepared in the same manner as in Example 1 to prepare a catalyst.

0の触媒を1更用して有害ガス成分とじC−酸化炭素を
含み、人口濃度が実施例1と同じである供給ガスの浄化
試験を実施した。その温度対除去率の関係を第2図の曲
線Cに示した。
A purification test was carried out on a feed gas containing C-carbon oxide as a harmful gas component and having the same population concentration as in Example 1 by using the same catalyst as in Example 1. The relationship between temperature and removal rate is shown in curve C in FIG.

実施例3 実施例1て使用した同じ原料である副生マンカッ鉱滓と
粘結剤として天然産ベントナイトとを車量比で5:5の
割合で混合した配合物を水で混練した後円柱状造粒物を
調整、4シて触媒を作った。この触媒を使用して有害ガ
ス成分として一酸化炭素を含み、人1」濃度が実施例1
と同じ供給ガスの浄化試験を実施した。その温度対除去
率の関係を第2図曲線l〕に示した。
Example 3 A mixture of by-product manka slag, which is the same raw material used in Example 1, and naturally produced bentonite as a binder at a ratio of 5:5 by volume was kneaded with water, and then formed into a cylindrical shape. The granules were adjusted and processed to make a catalyst. Using this catalyst, carbon monoxide is included as a harmful gas component, and the concentration is 1" in Example 1.
The same feed gas purification test was conducted. The relationship between temperature and removal rate is shown in curve 1 in Figure 2.

実施例4 実施例1で用いた天然産ベントナイトの代りにアルミナ
セメントを用い、副生マンガン鉱滓とアルミナセメント
とを重量比2:lの割合で混合した配合物を水で混練し
た後円柱状造粒物を作成して触媒を作った。この円柱状
造粒物の一粒強度は1、2 Kq 7粒子てあった。
Example 4 Alumina cement was used instead of the naturally produced bentonite used in Example 1, and a mixture of by-product manganese slag and alumina cement at a weight ratio of 2:1 was kneaded with water and then formed into a cylindrical shape. A catalyst was made by creating granules. The strength of each cylindrical granule was 1.2 Kq 7 grains.

上記円柱状造粒物を実施例1と同様の装置を用いて有害
成分として一酸化炭素を含み、人1」濃度が実施例1と
同じ供給ガスと接触させ温度対除去率の関係を求めた。
The above cylindrical granules were brought into contact with a supply gas containing carbon monoxide as a harmful component and having the same concentration as in Example 1 to determine the relationship between temperature and removal rate. .

その結果を第2図曲線Eに示した。The results are shown in curve E in Figure 2.

実施例5 実施例4と同様の触媒成分および配合割合の原料を用い
て直径5鴎の球状の触媒を調製した。これを実施例1と
同じ方法で有害成分として一酸化炭素を含み、人ua度
が実施例1と同じ供給ガスと接触させて温度対除去率の
関係を求めた結果、第2図曲線Eと同様の結果が得られ
た。
Example 5 A spherical catalyst with a diameter of 5 mm was prepared using the same catalyst components and raw materials in the same mixing ratio as in Example 4. This was brought into contact with a supply gas containing carbon monoxide as a harmful component and having the same human UA as in Example 1 in the same manner as in Example 1, and the relationship between temperature and removal rate was determined. Similar results were obtained.

実施例6 実施例4と同様な触媒成分および配合割合を用いてハニ
カム状の触媒を調整した。これを実施例1と同様な方法
てイ1害成分として一酸1ヒ炭素を含み、人1」濃度が
実施例1と同じ供給ガスと接触させて211u’1度対
除去率の関係を求めた結果、第2図曲線Eと同様の良好
な結果を得た。なお、冷却後再び2M度を上Hさせ、酸
化率を求めたが、触媒性能は始んど劣化することなく再
現性は良好であった。
Example 6 A honeycomb-shaped catalyst was prepared using the same catalyst components and blending ratio as in Example 4. Using the same method as in Example 1, this was brought into contact with a supply gas containing carbon monoxide and arsenic as harmful components and having the same concentration as in Example 1, and the relationship between 211u'1 degrees and the removal rate was determined. As a result, good results similar to curve E in FIG. 2 were obtained. After cooling, the temperature was raised to 2M degrees again and the oxidation rate was determined, but the catalyst performance did not deteriorate from the beginning and the reproducibility was good.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の有害ガス浄化用触媒試験装置の説明図
、第2図は本発明の触媒による一酸化炭素についてのt
i1i’を度対除去率の関係を示す触媒効果を示すグラ
フ、第3図はエチレンについての温度対除去率の関係を
示す触媒効果を示すグラフ、第4図は二酸化硫黄につい
ての温度対除去率の関係を示す触媒効果を示すグラフ、
第5図は一酸化菫素についての温度対除去率の関係を示
す触媒効果を示すグラフである。 1・磁製燃焼管、2・触媒充填部、3・・触媒固〆用グ
ラスウール、4 横型加熱炉、5・・標準ガスボンベ、
6・・エアポンプ、7・・・流量計、8・・・燃焼管へ
のガス人1−1.9・・・燃焼管からのガス出口、10
・・・入口、出口ガス濃度測定用切換えコック出 願 
人  ]二]本化学工業株式会相代理人 豊 1)善 
雄 第1図 第2図 第3図 湿  度じC)
Fig. 1 is an explanatory diagram of the catalyst test device for purifying harmful gases of the present invention, and Fig. 2 is an explanatory diagram of the catalyst testing device for purifying harmful gases of the present invention.
Figure 3 is a graph showing the catalytic effect showing the relationship between temperature and removal rate for ethylene, and Figure 4 is a graph showing the catalytic effect showing the relationship between temperature and removal rate for sulfur dioxide. A graph showing the catalytic effect showing the relationship between
FIG. 5 is a graph showing the catalytic effect showing the relationship between temperature and removal rate for phosphor monoxide. 1. Porcelain combustion tube, 2. Catalyst filling section, 3. Glass wool for solidifying the catalyst, 4. Horizontal heating furnace, 5. Standard gas cylinder,
6...Air pump, 7...Flow meter, 8...Gas person to combustion pipe 1-1.9...Gas outlet from combustion pipe, 10
...Application for switching cock for inlet and outlet gas concentration measurement
Person ] 2] Hon Kagaku Kogyo Co., Ltd. Minister Representative Yutaka 1) Zen
Figure 1 Figure 2 Figure 3 Humidity C)

Claims (3)

【特許請求の範囲】[Claims] (1)過マンガン酸カリ製造時に副生ずるマンガン鉱滓
単独又は該マンガン鉱滓と粘結剤を成型してなる有害ガ
ス浄jヒ用用東媒。
(1) A toxic gas purifying medium made by molding manganese slag alone or a binder with the manganese slag produced as a by-product during the production of potassium permanganate.
(2)  粘結i1Jが粘土鉱物、セメント、珪酸又は
その塩、 /l’l右灰2石灰2石、りいそう士及びア
ルミナのうちから選ばれた一種又は二押以上である特許
A?I求の範囲第1項記載の有害ガス浄化用触媒。
(2) Patent A in which the caking i1J is one or more selected from clay minerals, cement, silicic acid or its salts, /l'l right ash 2 lime 2 stones, lithium ash, and alumina? The catalyst for purifying harmful gases according to item 1.
(3)自害ガスが一酸化炭素、炭化水素、二酸化117
iL黄及び窒素酸化物のうちから選ばれた一種又は二1
ψ以上である特許、:h求の範囲第1項又は第2項記載
の有害ガス浄化用触媒。
(3) Self-harmful gases such as carbon monoxide, hydrocarbons, and 117 dioxide
One or two selected from iL yellow and nitrogen oxides
The catalyst for harmful gas purification according to the first or second item of the patent, wherein the desired range is ψ or more.
JP57096283A 1982-06-07 1982-06-07 Catalyst for purifying noxious gas Granted JPS58214341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57096283A JPS58214341A (en) 1982-06-07 1982-06-07 Catalyst for purifying noxious gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57096283A JPS58214341A (en) 1982-06-07 1982-06-07 Catalyst for purifying noxious gas

Publications (2)

Publication Number Publication Date
JPS58214341A true JPS58214341A (en) 1983-12-13
JPS6251135B2 JPS6251135B2 (en) 1987-10-28

Family

ID=14160777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57096283A Granted JPS58214341A (en) 1982-06-07 1982-06-07 Catalyst for purifying noxious gas

Country Status (1)

Country Link
JP (1) JPS58214341A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61293547A (en) * 1985-06-21 1986-12-24 Nippon Chem Ind Co Ltd:The Air purifying agent
CN102000563A (en) * 2010-10-29 2011-04-06 重庆大学 Method for preparing SCR (Selective Catalytic Reduction) denitration catalyst by slag and catalyst thereof
JP2013223851A (en) * 2012-04-19 2013-10-31 Nagamine Seisakusho:Kk Material for cleaning nitrogen oxide
CN103820174A (en) * 2014-03-19 2014-05-28 王宝根 Purification treatment agent for tail gas pollutant of combustion equipment of internal combustion engine and preparation method thereof
CN108855124A (en) * 2018-07-11 2018-11-23 武汉理工大学 A method of SCR denitration is prepared with manganese ore using steel-making sintering ash

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61293547A (en) * 1985-06-21 1986-12-24 Nippon Chem Ind Co Ltd:The Air purifying agent
JPH0329456B2 (en) * 1985-06-21 1991-04-24
CN102000563A (en) * 2010-10-29 2011-04-06 重庆大学 Method for preparing SCR (Selective Catalytic Reduction) denitration catalyst by slag and catalyst thereof
JP2013223851A (en) * 2012-04-19 2013-10-31 Nagamine Seisakusho:Kk Material for cleaning nitrogen oxide
CN103820174A (en) * 2014-03-19 2014-05-28 王宝根 Purification treatment agent for tail gas pollutant of combustion equipment of internal combustion engine and preparation method thereof
CN108855124A (en) * 2018-07-11 2018-11-23 武汉理工大学 A method of SCR denitration is prepared with manganese ore using steel-making sintering ash
CN108855124B (en) * 2018-07-11 2021-03-23 武汉理工大学 Method for preparing SCR denitration catalyst by utilizing steelmaking sintering ash and manganese ore

Also Published As

Publication number Publication date
JPS6251135B2 (en) 1987-10-28

Similar Documents

Publication Publication Date Title
JP5598421B2 (en) Method for desulfurization / denitration of exhaust gas from sintering furnace and method for producing carbon monoxide oxidation catalyst
US20240001332A1 (en) Noxious gas purificant and its preparation and purification method thereof
JP4625952B2 (en) Method for producing oxidation catalyst
RU2258030C2 (en) N2o decomposition catalyst, use and a method for preparation thereof
KR20220112802A (en) Sodium ferrite particle powder and its manufacturing method
JP4746457B2 (en) Carbon dioxide absorber, carbon dioxide separator and reformer
JPS58214341A (en) Catalyst for purifying noxious gas
CN105727964A (en) Three-dimensional composite oxide catalyst for removing NO and coal smoke particles simultaneously and preparation method and application thereof
JP2007038155A (en) Catalyst for selective reduction nitrogen oxide by carbon monoxide and its preparing method
Ivanenko et al. Use of metal oxide-modified aerated concrete for cleaning flue gases from carbon monoxide
JPH11104491A (en) Oxidation catalyst for co and nitrogen oxides
TW201402195A (en) Selective catalytic reduction plate catalyst and method of making the same
JP2001079346A (en) Method and device for treating gas and method for regenerating honeycomb activated carbon
JPH08173796A (en) Nitrogen oxide oxidizing adsorbent and nitrogen oxide removing method
JPS59120222A (en) Purification of non-oxidative gas
JP4217784B2 (en) Cobalt oxide supported aluminosilicate catalyst and process for producing the same
CN108435237A (en) A kind of middle low temperature NH3SCR catalyst and the preparation method and application thereof
JPH09299806A (en) Catalyst for nox-containing waste gas purification and its purification method
CN106823564A (en) A kind of exhaust gas from diesel vehicle treatment preparation method of porous cordierite ceramicses filtering bodies
JP4189624B2 (en) Combustion catalyst for decomposition of volatile organic compounds
CN1326619C (en) Process for preparing chlorine blended metal oxide catalyst
JP2004154738A (en) Catalyst for combustion of hydrocarbon in exhaust gas and method of combusting hydrocarbon in exhaust gas
RU2061543C1 (en) Cellular block catalyst for nitrogen oxides reduction with ammonia
KR100429825B1 (en) Catalyst for purifying exhaust gas of automobil and method for manufacturing the same
RU2156164C2 (en) Carbon monoxide oxidation catalyst