JPH11104491A - Oxidation catalyst for co and nitrogen oxides - Google Patents

Oxidation catalyst for co and nitrogen oxides

Info

Publication number
JPH11104491A
JPH11104491A JP9287571A JP28757197A JPH11104491A JP H11104491 A JPH11104491 A JP H11104491A JP 9287571 A JP9287571 A JP 9287571A JP 28757197 A JP28757197 A JP 28757197A JP H11104491 A JPH11104491 A JP H11104491A
Authority
JP
Japan
Prior art keywords
active
zeolite
manganese dioxide
activated
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9287571A
Other languages
Japanese (ja)
Inventor
Ryohei Imamura
良平 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemical Industrial Co Ltd
Original Assignee
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemical Industrial Co Ltd filed Critical Nippon Chemical Industrial Co Ltd
Priority to JP9287571A priority Critical patent/JPH11104491A/en
Publication of JPH11104491A publication Critical patent/JPH11104491A/en
Pending legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To oxidize a lower oxide such as nitrogen monoxide and carbon monoxide efficiently by using an oxidation catalyst containing one kind of mixed powder of active manganese dioxide carrying copper, active zeolite having specified properties, and/or active alumina as an effective component. SOLUTION: An oxide catalyst contains at least one kind of mixed powder selected from active manganese dioxide carrying copper, active zeolite having properties of 0.2 g/ml or above in apparent density, 50 m<2> /g or above in BET specific surface area, 10 g/100 g or above (25 deg.C) in water absorption at relative humidity 50%, and active alumina as an effective component. The active manganese dioxide is porous manganese dioxide having a large specific surface area obtained at least by the wet oxidation decomposition of a manganese salt. The active zeolite is that activated by burning. As the active alumina, alumina of structure close to spinel structure of ρ, χ, γ, η, and δ is indicated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、排ガス中に含まれ
る有害な一酸化炭素や一酸化窒素等の低級の酸化物を低
温で酸化する能力の優れたCOおよびNOxの酸化触媒
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a CO and NOx oxidation catalyst excellent in the ability to oxidize harmful low-grade oxides such as carbon monoxide and nitrogen monoxide contained in exhaust gas at low temperatures.

【0002】[0002]

【従来の技術】近時、自動車などの内燃機関、ボイラ
ー、工業プラントから排出させる排ガス中には、有害な
一酸化窒素、一酸化炭素等の低級の酸化物の成分が含ま
れることから、これらの排ガス中の有害成分の除去が種
々の方面から検討されている。
2. Description of the Related Art Recently, exhaust gases discharged from internal combustion engines such as automobiles, boilers, and industrial plants contain harmful oxides such as harmful nitrogen monoxide and carbon monoxide. The removal of harmful components from flue gas has been studied from various aspects.

【0003】従来、排ガス中に含まれるこれらの有害物
質の浄化に関して、酸化触媒を用いた浄化方法が種々提
案されている。例えば、二酸化マンガン及び酸化鉄から
なる酸化触媒を用いる方法(特開昭49−45894号
公報)及び二酸化マンガン及び酸化鉛からなる酸化触媒
を用いる方法(特開昭50−62859号公報)等が提
案されている。
Conventionally, various purification methods using an oxidation catalyst have been proposed for purifying these harmful substances contained in exhaust gas. For example, a method using an oxidation catalyst composed of manganese dioxide and iron oxide (JP-A-49-45894) and a method using an oxidation catalyst composed of manganese dioxide and lead oxide (JP-A-50-62859) are proposed. Have been.

【0004】一方、一酸化炭素に関しては、スピネル構
造の担体にニッケル及び銅を担持した酸化触媒を用いる
方法(特開昭52−27085号公報)、触媒成分とし
てマンガン、コバルト又はクロムの酸化物の1種以上
と、チタン、鉄の酸化物とを用いる方法(特開昭53−
12768号公報)、アルミナ担体に鉄、マンガン、セ
リウムの1種以上と、パラジウムとを併用担持した酸化
触媒を用いる方法(特開昭62−14944号公報)、
粒状の熱可塑性樹脂の表面に、二酸化マンガンと他の金
属酸化物との混合粉末を担持したものを用いる方法(特
開昭63−178849号公報)等が提案されている。
On the other hand, with respect to carbon monoxide, a method using an oxidation catalyst in which nickel and copper are supported on a carrier having a spinel structure (Japanese Patent Application Laid-Open No. 52-27085), a method using manganese, cobalt or chromium oxide as a catalyst component. A method using one or more oxides of titanium and iron
No. 12768), a method using an oxidation catalyst in which at least one of iron, manganese, and cerium is supported on an alumina carrier in combination with palladium (Japanese Patent Application Laid-Open No. 62-14944).
A method has been proposed in which a mixture of manganese dioxide and another metal oxide is supported on the surface of a granular thermoplastic resin (JP-A-63-178849).

【0005】また、これらの有害な低級の酸化物を一括
して酸化して無害化する方法も提案されている。例え
ば、SiO2 /Al2 3 のモル比が特定以上であるゼ
オライトにコバルト及びアルカリ土類金属並びにPt及
び/又はMnを含有させた触媒を用いる方法(特開平4
−219146号公報)、SiO2 /Al2 3 のモル
比が特定以上であるゼオライトにコバルト及び希土類金
属並びにPt及び/又はMnを含有させた触媒を用いる
方法(特開平4−219149号公報)、SiO2 /A
2 3 のモル比が特定以上であるゼオライトにマンガ
ン及びアルカリ土類金属並びにPt及び/又はMnを含
有させた触媒を用いる方法(特開平4−21950号公
報)、触媒成分として白金とパラジウムのうち少なくと
も1種、活性アルミナと酸化セリウムを加えて、カリウ
ム、セシウム、ストロンチウム及びバリウムのうち少な
くとも1種類と、コバルトとマンガンのうち少なくとも
1種類を含む触媒成分担持層を有する一体構造型触媒を
用いる方法(特開平7−16466号公報)、耐火性担
体上に、発泡させた黒耀石に銅を含有させて成る銅−黒
耀石層を形成させた触媒を用いる方法(特開平8−19
2053号公報)等が提案されている。
A method has also been proposed in which these harmful lower oxides are collectively oxidized to render them harmless. For example, a method using a catalyst in which a zeolite having a SiO 2 / Al 2 O 3 molar ratio of not less than a specific value contains cobalt, an alkaline earth metal, and Pt and / or Mn (Japanese Patent Laid-Open No.
-219146 discloses), a method using a molar ratio of SiO 2 / Al 2 O 3 is obtained by incorporating cobalt and rare earth metals and Pt and / or Mn in the zeolite is specified above catalyst (JP-A-4-219149) , SiO 2 / A
a method of using a catalyst in which manganese, an alkaline earth metal and Pt and / or Mn are contained in a zeolite having a molar ratio of l 2 O 3 of not less than a specific value (JP-A-4-21950); Of at least one of activated alumina and cerium oxide to form a monolithic catalyst having a catalyst component supporting layer containing at least one of potassium, cesium, strontium and barium, and at least one of cobalt and manganese. (JP-A No. 7-16466), a method using a catalyst in which a copper-anodolite layer formed by adding copper to expanded illusionite on a refractory carrier is used (Japanese Patent Laid-Open No. 8-166). 19
No. 2053) has been proposed.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、これら
の酸化触媒を用いる方法は、高温域においてかなりの触
媒能が期待できるものの100℃以下の低温域において
は、触媒活性が著しく低下すると言った欠点がある。
However, the method using these oxidation catalysts has a drawback that, although a considerable catalytic activity can be expected in a high temperature range, the catalytic activity is significantly reduced in a low temperature range of 100 ° C. or less. is there.

【0007】本発明者らは、前記課題に鑑みて、排ガス
中の有害な一酸化窒素や一酸化炭素等の低級の酸化物を
比較的低温域において酸化することができる酸化触媒に
ついて鋭意研究を重ねた結果、銅を担持した活性二酸化
マンガンと、特定の見掛け密度、比表面積を有し、更に
水分吸着能が優れた活性ゼオライト及び/又は活性アル
ミナとの混合粉末が、比較的低温域において、効率よく
一酸化窒素や一酸化炭素の低級の酸化物を酸化すること
ができることを知見し、本発明を完成させるに至った。
In view of the above problems, the present inventors have made intensive studies on oxidation catalysts capable of oxidizing harmful low-grade oxides such as nitrogen monoxide and carbon monoxide in exhaust gas at a relatively low temperature range. As a result of the stacking, a mixed powder of activated manganese dioxide carrying copper, a specific apparent density, a specific surface area, and an activated zeolite and / or activated alumina having a superior water adsorption capacity, in a relatively low temperature range, The present inventors have found that it is possible to efficiently oxidize lower oxides of nitrogen monoxide and carbon monoxide, and have completed the present invention.

【0008】即ち、本発明は、100℃以下の低温域に
おいても、効率よく一酸化窒素や一酸化炭素等の低級の
酸化物を酸化することができるCOおよびNOxの酸化
触媒を提供することを目的とする。
That is, the present invention provides a CO and NOx oxidation catalyst capable of efficiently oxidizing lower oxides such as nitrogen monoxide and carbon monoxide even in a low temperature range of 100 ° C. or lower. Aim.

【0009】[0009]

【課題を解決するための手段】本発明が提供しようとす
るCO及びNOxの酸化触媒は、銅を担持した活性二酸
化マンガンと、見掛け密度が0.2g/ml以上、BE
T比表面積が50m2/g以上で、かつ相対湿度50%
における水分吸着量が10g/100g(25℃)以上
の性状特性を有する活性ゼオライト及び/又は活性アル
ミナとの混合粉末を有効成分とすることを構成上の特徴
とする。
The oxidation catalyst for CO and NOx to be provided by the present invention is composed of activated manganese dioxide carrying copper and BE having an apparent density of 0.2 g / ml or more.
T specific surface area of 50 m 2 / g or more and relative humidity of 50%
The composition is characterized in that a mixed powder with active zeolite and / or active alumina having a property of adsorbing water of 10 g / 100 g (25 ° C.) or more is used as an active ingredient.

【0010】前記銅を担持した活性二酸化マンガンと、
活性ゼオライト及び/又は活性アルミナの組成比が、重
量比率として1:2〜3:1の範囲が好ましい。
An activated manganese dioxide supporting the copper,
The composition ratio of activated zeolite and / or activated alumina is preferably in the range of 1: 2 to 3: 1 as a weight ratio.

【0011】[0011]

【発明の実施の形態】以下、本発明を詳細に説明する。
本発明のCO及びNOxの酸化触媒は、銅を担持した活
性二酸化マンガンと、見掛け密度が0.2g/ml以
上、BET比表面積が50m2 /g以上で、かつ相対湿
度50%における水分吸着量が10g/100g(25
℃)以上の性状特性を有する活性ゼオライト及び活性ア
ルミナから選ばれた少なくとも一種との混合粉末を有効
成分とする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
The oxidation catalyst for CO and NOx according to the present invention comprises activated manganese dioxide carrying copper, an amount of water adsorbed at an apparent density of 0.2 g / ml or more, a BET specific surface area of 50 m 2 / g or more, and a relative humidity of 50%. Is 10 g / 100 g (25
The mixed powder with at least one selected from the group consisting of activated zeolite and activated alumina having the above-mentioned properties is used as an active ingredient.

【0012】本発明において活性二酸化マンガンとは、
マンガン塩を少なくとも湿式酸化分解して得られる比表
面積が大きな多孔質の二酸化マンガンを示し、電池用γ
−二酸化マンガンのような高密度タイプの比表面積が大
きなものとは材質が異なるものである。従って、一般式
MnOyで表した時、多くの場合、1.8<y<2.0
の範囲にあって、必ずしもMnO2 とならない。かかる
活性二酸化マンガンの組成性状としては、窒素吸着比表
面積(BET)が50m2 /g以上、好ましくは200
〜1000m2 /gのものが好適に使用される。
In the present invention, active manganese dioxide is
A porous manganese dioxide having a large specific surface area obtained by at least wet oxidative decomposition of a manganese salt indicates γ for a battery.
-The material is different from the high-density type such as manganese dioxide having a large specific surface area. Therefore, when represented by the general formula MnOy, in many cases, 1.8 <y <2.0.
And MnO 2 is not necessarily obtained. The composition of the activated manganese dioxide has a nitrogen adsorption specific surface area (BET) of 50 m 2 / g or more, preferably 200 m 2 / g or more.
Those having a size of up to 1000 m 2 / g are preferably used.

【0013】なお、本発明では、上記の活性二酸化マン
ガンに銅を担持したものが好適に用いられる。銅の担持
量はMn/Cuのモル比で0.9〜9.0、好ましくは
1.5〜7.5の範囲である。
In the present invention, the above-mentioned activated manganese dioxide having copper supported thereon is preferably used. The supported amount of copper is in the range of 0.9 to 9.0, preferably 1.5 to 7.5 in terms of Mn / Cu molar ratio.

【0014】銅としては、銅単体または銅の化合物でも
よく、銅の化合物としては酸化物が挙げられる。
Copper may be copper alone or a copper compound, and examples of the copper compound include oxides.

【0015】活性二酸化マンガンに銅を担持する方法
は、活性二酸化マンガンに第二銅塩の水溶液を含浸さ
せ、乾燥することにより担持する含浸法、第二銅塩水溶
液に活性二酸化マンガンを加え、撹拌しながらアルカリ
水溶液を加え、加熱処理を行なって担持する沈着法、マ
ンガンと銅の可溶性塩の混合溶液に酸化剤と過マンガン
酸塩を含むアルカリ溶液を添加して共沈させる共沈法で
行なえばよく、例えば特開平5−12981号公報記載
の方法が挙げられる。
The method of supporting copper on activated manganese dioxide is an impregnation method in which active manganese dioxide is impregnated with an aqueous solution of cupric salt and dried to carry the solution. Active manganese dioxide is added to the aqueous solution of cupric salt and stirred. A coprecipitation method in which an alkali aqueous solution is added to the mixture, and a heat treatment is carried out to support the mixture, and a co-precipitation method in which an alkali solution containing an oxidizing agent and a permanganate is added to a mixed solution of a soluble salt of manganese and copper and coprecipitated. For example, a method described in JP-A-5-12981 may be used.

【0016】本発明の酸化触媒は、上記活性二酸化マン
ガンの他の成分として、見掛け密度が0.2g/ml以
上、好ましくは0.3〜2g/mlで、BET比表面積
が50m2 /g以上、好ましくは200〜1000m2
/gで、相対湿度50%における水分吸着量が10g/
100g(25℃)以上、好ましくは15g/100g
以上の性状特性を有する活性ゼオライト及び/又は活性
アルミナを用いることが重要な要件となる。
The oxidation catalyst of the present invention comprises, as other components of the active manganese dioxide, an apparent density of 0.2 g / ml or more, preferably 0.3 to 2 g / ml, and a BET specific surface area of 50 m 2 / g or more. , Preferably 200 to 1000 m 2
/ G, the amount of water adsorbed at 50% relative humidity is 10 g /
100 g (25 ° C.) or more, preferably 15 g / 100 g
It is an important requirement to use activated zeolite and / or activated alumina having the above properties.

【0017】ここで、活性ゼオライトとは、ゼオライト
を200℃以上、好ましくは400℃で焼成処理して、
ゼオラィト結晶中の水分を実質的に存在しないまでに活
牲化したものを示す。
Here, the activated zeolite means that the zeolite is calcined at 200 ° C. or more, preferably at 400 ° C.
This shows that the water in the zeolite crystal was activated until it was substantially absent.

【0018】活性ゼオライトとしては、ナトリウムA型
ゼオライト、カリウムA型ゼオライト等のアルカリ金属
A型ゼオライト、カルシウムA型ゼオライト等のアルカ
リ土類金属A型ゼオライト、ナトリウムP型ゼオラト、
カリウムP型ゼオライト等のアルカリ金属P型ゼオライ
ト、カルシウムP型ゼオライト等のアルカリ土類金属P
型ゼオライト、ナトリウムY型ゼオライト、カリウムY
型ゼオライト等のアルカリ金属Y型ゼオライト、カルシ
ウムY型ゼオライト等のアルカリ土類金属Y型ゼオライ
ト、ナトリウムX型ゼオライト、カリウムX型ゼオライ
ト等のアリカリ金属X型ゼオライト、カルシウムX型ゼ
オライト等のアルカリ土類金属X型ゼオライト等が挙げ
られる。
Examples of the active zeolite include alkali metal A zeolite such as sodium A zeolite and potassium A zeolite, alkaline earth metal A zeolite such as calcium A zeolite, sodium P zeolite, and the like.
Alkaline metal P-type zeolite such as potassium P-type zeolite, alkaline earth metal P such as calcium P-type zeolite
Zeolite, sodium Y zeolite, potassium Y
Alkali metal Y zeolite such as zeolite, alkaline earth metal Y zeolite such as calcium Y zeolite, alkali metal X zeolite such as sodium X zeolite and potassium X zeolite, alkaline earth such as calcium X zeolite Metal X-type zeolite and the like can be mentioned.

【0019】活性アルミナとしては、結晶構造の相違か
ら、ρ、χ、γ、η、δのスピネル構造に近い構造のア
ルミナが挙げられる。また、これら活性ゼオライトと活
性アルミナは1種又は2種以上で用いられる。
As the activated alumina, alumina having a structure close to the spinel structure of ρ, χ, γ, η, and δ is cited due to the difference in crystal structure. These active zeolites and activated alumina are used alone or in combination of two or more.

【0020】活性ゼオライト及び活性アルミナは、活性
二酸化マンガンの酸化反応をより効率化するための成分
である。即ち、排ガス中の水分を選択的に吸着して、発
熱し、その発熱による熱を効率を良く蓄熱して、活性二
酸化マンガンの反応活性を高めるものである。
Activated zeolite and activated alumina are components for making the oxidation reaction of activated manganese dioxide more efficient. That is, it selectively adsorbs moisture in the exhaust gas, generates heat, and efficiently stores the heat resulting from the heat generation to enhance the reaction activity of the active manganese dioxide.

【0021】見掛け密度を0.2g/ml以上に限定す
る理由は、見掛け密度が0.2g/mlより小さくなる
と、放熱し易くなって、活性二酸化マンガンの触媒活性
が劣る傾向があるからである。本発明において、見掛け
密度とは、JIS−K−5101に記載された方法に基
づいて、静置法により下記式により求められるものであ
る。
The reason why the apparent density is limited to 0.2 g / ml or more is that if the apparent density is less than 0.2 g / ml, heat is easily released, and the catalytic activity of active manganese dioxide tends to be inferior. . In the present invention, the apparent density is determined by the following equation by a static method based on the method described in JIS-K-5101.

【0022】[0022]

【数1】見掛け密度(g/ml)=F/V (式中、F;受器内の処理した試料の質量(g)、V;
受器の容量(ml)を示す。)
## EQU1 ## Apparent density (g / ml) = F / V (where F: mass (g) of the processed sample in the receiver, V;
Indicates the capacity (ml) of the receiver. )

【0023】水分吸着量は、試料を予め400℃で1時
間加熱排気した後に重量W2(g)を測定し、その後に
25℃で相対湿度50%に調整した水蒸気を導入して水
分を吸着した重量W1(g)を測定し、その時の重量差
[W1(g)−W2(g)]から試料100g当りの水分
吸着量を、式[W1(g)−W2(g)]÷[W1(g)
/100(g)]から求めたものである。
The amount of adsorbed water is determined by measuring the weight W 2 (g) after heating and exhausting the sample at 400 ° C. for 1 hour in advance and then introducing water vapor adjusted to a relative humidity of 50% at 25 ° C. to adsorb the water. The measured weight W 1 (g) was measured, and the weight difference [W 1 (g) −W 2 (g)] at that time was used to determine the amount of water adsorbed per 100 g of the sample by the formula [W 1 (g) −W 2 (g )] ÷ [W 1 (g)
/ 100 (g)].

【0024】また、相対湿度50%における水分吸着量
を10g/100g(25℃)に限定する理由は、相対
湿度50%における水分吸着量が10g/100gより
小さくなると、発生する吸着熱を効率よく利用できなく
なって、活性二酸化マンガンの反応活性が低くなる傾向
があるためである。
The reason why the amount of water adsorbed at 50% relative humidity is limited to 10 g / 100 g (25 ° C.) is that if the amount of water adsorbed at 50% relative humidity is smaller than 10 g / 100 g, the generated heat of adsorption is efficiently reduced. This is because the reaction activity of the active manganese dioxide tends to be low because it cannot be used.

【0025】比表面積を50m/g以上に限定する理
由は、比表面積が50m/gより小さくなると、水分
吸着能が劣り、好ましくないからである。
The reason for limiting the specific surface area to 50 m 2 / g or more is that if the specific surface area is less than 50 m 2 / g, the water adsorbing ability is inferior, which is not preferable.

【0026】通常これら活性ゼオライトおよび活性アル
ミナは、活性二酸化マンガンの担持体として知られてい
るが、本発明では、これら多孔質の無機粉末を担持体と
して用いるものではない。即ち、担持体として用いる方
法は、上記活性ゼオライト及び活性アルミナの表面に活
性二酸化マンガンを分散処理して、多孔質の無機粉末表
面に保持して、活性二酸化マンガンの被酸化ガスに対す
る接触面積を大きくするものである。一方、本発明に係
るCOおよびNOxの酸化触媒は、活性二酸化マンガン
と上記の性状物性を有する活性ゼオライトと活性アルミ
ナとの混合粉末から構成され、活性ゼオライトと活性ア
ルミナは排ガス中の水分を選択的に吸着して発熱し、そ
の発熱による熱を効率を良く蓄熱して、活性二酸化マン
ガンの反応活性を高めるものである。これらの物性的な
相違は、電子顕微鏡による観察分析により確認すること
ができる。
Usually, these activated zeolites and activated aluminas are known as carriers of activated manganese dioxide, but in the present invention, these porous inorganic powders are not used as carriers. That is, the method of using as a support, the active manganese dioxide is dispersed on the surface of the active zeolite and the active alumina, held on the surface of the porous inorganic powder, to increase the contact area of the active manganese dioxide to the oxidized gas. Is what you do. On the other hand, the oxidation catalyst for CO and NOx according to the present invention is composed of a mixed powder of activated manganese dioxide, activated zeolite having the above properties and activated alumina, and activated zeolite and activated alumina selectively remove water in exhaust gas. The manganese dioxide absorbs heat and generates heat, and the heat generated by the heat is efficiently stored to increase the reaction activity of the active manganese dioxide. These physical property differences can be confirmed by observation analysis using an electron microscope.

【0027】MnO2 と活性ゼオライト及び/又は活性
アルミナとの重量比率は、それぞれの物性に応じて変化
させることができ、多くの場合、1:2〜3:1、好ま
しくは1:1〜2:1の範囲である。この理由は、1:
2〜3:1の範囲以外では、急激に活性二酸化マンガン
の排ガスに対する酸化性能が低くなる傾向があるからで
ある。
The weight ratio of MnO 2 to activated zeolite and / or activated alumina can be varied according to the respective physical properties, and in many cases is 1: 2 to 3: 1, preferably 1: 1 to 2 : 1 range. The reason is:
If the ratio is outside the range of 2-3: 1, the oxidizing performance of the active manganese dioxide against the exhaust gas tends to rapidly decrease.

【0028】本発明のCOおよびNOxの酸化触媒の製
造方法は、上記二成分を所望の割合で、配合した後、所
望の結合剤と混練および成形、乾燥することにより、排
ガスの酸化触媒として所望の用途に利用することができ
る。
In the method for producing a CO and NOx oxidation catalyst of the present invention, the above two components are blended in a desired ratio, then kneaded with a desired binder, molded and dried to obtain a desired catalyst for oxidation of exhaust gas. It can be used for applications.

【0029】結合剤とてしは、例えば、粘土、セメン
ト、シリカゾル、アルミナゾル、珪酸ソーダ、水溶性高
分子などが挙げられる。本発明では、上記の二成分の
他、必要に応じて銅イオンを担持した上記以外のゼオラ
イト、銅酸化物等の成分が配合されても差し支えない。
Examples of the binder include clay, cement, silica sol, alumina sol, sodium silicate, and a water-soluble polymer. In the present invention, in addition to the above two components, other components such as zeolite and copper oxide supporting copper ions may be blended as required.

【0030】銅イオンを担持した上記以外のゼオライト
は、ゼオライトのイオン交換を利用して銅イオンをゼオ
ライトカチオンと置換担持させたものであるが、担体と
なるゼオライトとしては、ゼオライトA、ゼオライト
L、ゼオライトX、ゼオライトY、ゼオライトP、クリ
ノプチロライト、モルデナイト等を挙げることができる
が、性能及びコストの面からゼオライトAを用いること
が最も好ましい。銅イオンは、通常Cu2+であるが、錯
イオンであっても差し支えない。銅イオンの担持量は、
特に限定はないが、ゼオライトのカチオン交換量に対し
て少なくとも30%以上であることが望ましい。
Other zeolites supporting copper ions are those in which copper ions are replaced and supported by zeolite cations by utilizing ion exchange of zeolites. Zeolite A, zeolite L, Zeolite X, zeolite Y, zeolite P, clinoptilolite, mordenite and the like can be mentioned, but zeolite A is most preferably used in terms of performance and cost. The copper ion is usually Cu 2+ , but may be a complex ion. The supported amount of copper ions is
Although not particularly limited, it is desirable that the amount is at least 30% or more based on the amount of cation exchange of the zeolite.

【0031】銅酸化物としては、例えば酸化銅、亜酸化
銅、水酸化銅、塩基性酸化銅などが挙げられる。
Examples of the copper oxide include copper oxide, cuprous oxide, copper hydroxide, and basic copper oxide.

【0032】本発明が対象とする排ガスは、硝酸製造工
場、金属表面処理工場、金属溶解過程を伴う工場等で排
出されるもの、道路トンネル、シェルター付道路、大深
度地下空間、道路交差点などにおける換気ガス、大気ま
たは家庭内で使用される燃料機器から排出されるCO及
びNOの如き低級の酸化物である。
The exhaust gas targeted by the present invention is discharged from a nitric acid production plant, a metal surface treatment plant, a plant having a metal melting process, etc., a road tunnel, a road with a shelter, a deep underground space, a road intersection, and the like. Low-grade oxides such as CO and NO emitted from ventilation equipment, air or fuel equipment used at home.

【0033】本発明の酸化触媒で適用できる排ガス中の
CO及びNOの如き低級の酸化物の濃度は、排ガスの発
生源によっても異なるが、多くの場合、5〜10,00
0ppm、好ましくは10〜500ppm程度である。
The concentration of lower oxides such as CO and NO in the exhaust gas applicable to the oxidation catalyst of the present invention varies depending on the source of the exhaust gas.
0 ppm, preferably about 10 to 500 ppm.

【0034】なお、本発明におけるNOxとは、xが1
/2〜5/2の範囲の酸化窒素であり、例えばN2O、
NO、N 23、N 24、N 25等が挙げられる。
It should be noted that NOx in the present invention means that x is 1
/ 2 to 5/2, for example, N 2TwoO,
NO, N TwoOThree, N TwoOFour, N TwoOFiveAnd the like.

【0035】本発明に係る酸化触媒の設定温度は、通常
30〜100℃、好ましくは60〜100℃である。接
触時間は、使用する触媒の組成によっても異なるが、通
常0.036〜3.6秒、好ましくは0.072〜0.
72秒と非常に短時間でよい。上記条件で酸化分解され
た酸化物は、活性炭、ゼオライトの如き吸着剤に吸着さ
せるか、又はアルカリ水溶液に溶解させればよい。
The set temperature of the oxidation catalyst according to the present invention is usually 30 to 100 ° C., preferably 60 to 100 ° C. The contact time varies depending on the composition of the catalyst used, but is usually 0.036 to 3.6 seconds, preferably 0.072 to 0.3.
It can be as short as 72 seconds. The oxide oxidatively decomposed under the above conditions may be adsorbed on an adsorbent such as activated carbon or zeolite, or may be dissolved in an aqueous alkaline solution.

【0036】本発明のCO及びNOxの酸化触媒の酸化
機構は、明らかでないが、銅を担持した活性二酸化マン
ガンの強力な酸化作用と、活性ゼオライト及び/又は活
性アルミナの水分を選択的に吸着して発熱し、その熱を
熱源として、銅を担持した活性二酸化マンガンの酸化作
用をより効果的に助長する作用とが相埃って、排ガス中
のCO及びNOの如き低級の酸化物を比較的低温におい
ても効率よく酸化するものと考えられる。
Although the oxidation mechanism of the oxidation catalyst for CO and NOx of the present invention is not clear, the strong oxidation of copper-supported activated manganese dioxide and the selective adsorption of water from activated zeolite and / or activated alumina are considered. It generates heat and uses the heat as a heat source to effectively promote the oxidizing action of the active manganese dioxide carrying copper, and relatively reduces low-grade oxides such as CO and NO in the exhaust gas. It is considered that oxidation occurs efficiently even at low temperatures.

【0037】[0037]

【実施例】以下、本発明を実施例により詳細に説明する
が、本発明は、これらに限定されるものではない。
EXAMPLES Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.

【0038】実施例1〜2 特開平5−12981号公報記載の方法で調整したCu
Oを21.2重量%含有する窒素吸着比表面積(BE
T)268m2 /gの活性二酸化マンガン100重量部
に、表1に示す性状特性を有する活性アルミナを表1に
示した量添加し、次いでベントナイト5重量部を加えて
混練し、押し出し成形後、乾燥してペレット(直径3m
m、長さ4〜8mmの円柱状)とした。
Examples 1-2 Cu adjusted by the method described in JP-A-5-12981
Nitrogen adsorption specific surface area containing 21.2% by weight of O (BE
T) To 100 parts by weight of activated manganese dioxide of 268 m 2 / g, an activated alumina having the properties shown in Table 1 was added in the amount shown in Table 1, then 5 parts by weight of bentonite was added and kneaded. Dry and pellet (3m diameter
m, 4-8 mm long columnar shape).

【0039】実施例3〜4 特開平5−12981号公報記載の方法で調整したCu
Oを21.2重量%含有する窒素吸着比表面積(BT
E)268m2 /gの活性二酸化マンガン100重量部
に、表1に示す性状特性を有するナトリウムA型ゼオラ
イト(ゼオライトA)を表1に示した量添加し、次いで
ベントナイト5重量部を加えて混練し、押し出し成形
後、乾燥してペレットとした。
Examples 3 and 4 Cu prepared by the method described in JP-A-5-12981
Nitrogen adsorption specific surface area containing 21.2% by weight of O (BT)
E) To 100 parts by weight of activated manganese dioxide of 268 m 2 / g, sodium A-type zeolite having the properties shown in Table 1 (zeolite A) was added in the amount shown in Table 1, and then 5 parts by weight of bentonite was added and kneaded. After extrusion molding, the pellets were dried to obtain pellets.

【0040】比較例1 特開平5−12981号公報記載の方法で調整したCu
Oを22.8重量%含有する窒素吸着比表面積(BE
T)268m2 /gの活性二酸化マンガン100重量部
に、ベントナイト5量部を加えて混練し、押し出し成形
後、乾燥してペレットとした。
Comparative Example 1 Cu prepared by the method described in JP-A-5-12981
Nitrogen adsorption specific surface area containing 22.8% by weight of O (BE
T) 5 parts by weight of bentonite was added to 100 parts by weight of 268 m 2 / g active manganese dioxide, kneaded, extruded, and dried to obtain pellets.

【0041】[0041]

【表1】 [Table 1]

【0042】<COガス酸化試験>直径25mm、長さ
30mmのカラムに実施例1〜5及び比較例1で得られ
た試料を126mm充填した。次いで、高濃度標準ガス
を湿度50%に調整した大気で希釈して30ppmCO
ガスとし、これをカラムに流入させた。カラムの入口、
出口のCO濃度を測定してCOガスの酸化率を求め、そ
の結果を図1に示した。
<CO Gas Oxidation Test> A column having a diameter of 25 mm and a length of 30 mm was filled with the samples obtained in Examples 1 to 5 and Comparative Example 1 by 126 mm. Next, the high-concentration standard gas was diluted with an atmosphere adjusted to a humidity of 50% to obtain 30 ppm CO2.
It was gaseous and flowed into the column. Column inlet,
The CO concentration at the outlet was measured to determine the oxidation rate of the CO gas, and the results are shown in FIG.

【0043】測定条件をまとめると表2のとおりであ
る。
Table 2 summarizes the measurement conditions.

【0044】[0044]

【表2】 [Table 2]

【0045】<NOガス酸化試験>NOガス酸化試験は
次の2種類の方法で評価した。NOガス酸化試験−1 直径25mm、長さ30mmのカラムに実施例1〜5及
び比較例1で得られた各試料を126mm充填した。次
いで、高濃度標準ガスを湿度50%に調整した大気で希
釈して30ppmNOガスとし、これをカラムに流入し
た。カラムの入口及び出口のNO濃度を測定してNOガ
ス酸化率を求め、その結果を図2に示した。測定条件を
まとめると表3の通りである。
<NO gas oxidation test> The NO gas oxidation test was evaluated by the following two methods. NO gas oxidation test-1 A column having a diameter of 25 mm and a length of 30 mm was filled with 126 mm of each sample obtained in Examples 1 to 5 and Comparative Example 1. Next, the high-concentration standard gas was diluted with air adjusted to a humidity of 50% to obtain 30 ppm NO gas, which was introduced into the column. The NO concentration at the inlet and outlet of the column was measured to determine the NO gas oxidation rate, and the results are shown in FIG. Table 3 summarizes the measurement conditions.

【0046】[0046]

【表3】 [Table 3]

【0047】NOガス酸化試験−2 リボンヒーターを巻いた直径25mm、長さ30mmの
カラムに実施例1〜5及び比較例1で得られた各試料を
126mm充填した後、100℃に保持した。次いで、
高濃度標準ガスを湿度50%に調整した大気で希釈して
30ppmNOガスとし、これを100℃に保持したカ
ラムに流入させた。カラムの入口及び出口のNO濃度を
測定してNOガスの酸化率を求めた。その結果を図3に
示した。測定条件をまとめると表4のとおりである。
NO Gas Oxidation Test-2 Each of the samples obtained in Examples 1 to 5 and Comparative Example 1 was filled with 126 mm into a column having a diameter of 25 mm and a length of 30 mm around which a ribbon heater was wound, and then maintained at 100 ° C. Then
The high-concentration standard gas was diluted with air adjusted to a humidity of 50% to obtain a 30 ppm NO gas, which was introduced into a column maintained at 100 ° C. The NO concentration at the inlet and outlet of the column was measured to determine the oxidation rate of NO gas. The result is shown in FIG. Table 4 summarizes the measurement conditions.

【0048】[0048]

【表4】 [Table 4]

【0049】[0049]

【発明の効果】以上説明した様に、本発明のCOおよび
NOxの酸化触媒によれば、100℃以下の低温域にお
いても、有害な一酸化窒素や一酸化炭素等の低級の酸化
物を効率良く酸化することができるので、一酸化窒素及
び一酸化炭素等の分解剤としての利用価値は極めて大で
ある。
As described above, according to the oxidation catalyst for CO and NOx of the present invention, even at a low temperature range of 100 ° C. or lower, harmful lower oxides such as nitrogen monoxide and carbon monoxide can be efficiently produced. Since it can be oxidized well, its utility as a decomposer for nitric oxide and carbon monoxide is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例におけるCOガス酸化試験結果
を示す図である。
FIG. 1 is a diagram showing the results of a CO gas oxidation test in an example of the present invention.

【図2】本発明の実施例におけるNOガス酸化試験−1
によるNOガス酸化試験結果を示す図である。
FIG. 2 is an NO gas oxidation test in an example of the present invention-1.
FIG. 5 is a view showing the results of a NO gas oxidation test by using FIG.

【図3】本発明の実施例におけるNOガス酸化試験−2
によるNOガス酸化試験結果を示す図である。
FIG. 3 is a NO gas oxidation test in an example of the present invention-2.
FIG. 5 is a view showing the results of a NO gas oxidation test by using FIG.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 銅を担持した活性二酸化マンガンと、見
掛け密度が0.2g/ml以上、BET比表面積が50
2 /g以上で、かつ相対湿度50%における水分吸着
量が10g/100g(25℃)以上の性状特性を有す
る活性ゼオライト及び/又は活性アルミナとの混合粉末
を有効成分とすることを特徴とするCO及びNOxの酸
化触媒。
1. An active manganese dioxide supporting copper, having an apparent density of 0.2 g / ml or more and a BET specific surface area of 50 g / ml.
The active ingredient is a mixed powder with active zeolite and / or active alumina having a property of not less than m 2 / g and a water adsorption amount at a relative humidity of 50% of not less than 10 g / 100 g (25 ° C.). CO and NOx oxidation catalyst.
【請求項2】 前記銅を担持した活性二酸化マンガン
と、活性ゼオライト及び/又は活性アルミナの組成比
が、重量比率として1:2〜3:1である請求項1記載
のCOおよびNOxの酸化触媒。
2. The oxidation catalyst for CO and NOx according to claim 1, wherein the composition ratio of the activated manganese dioxide supporting copper and the activated zeolite and / or activated alumina is 1: 2 to 3: 1 as a weight ratio. .
JP9287571A 1997-10-06 1997-10-06 Oxidation catalyst for co and nitrogen oxides Pending JPH11104491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9287571A JPH11104491A (en) 1997-10-06 1997-10-06 Oxidation catalyst for co and nitrogen oxides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9287571A JPH11104491A (en) 1997-10-06 1997-10-06 Oxidation catalyst for co and nitrogen oxides

Publications (1)

Publication Number Publication Date
JPH11104491A true JPH11104491A (en) 1999-04-20

Family

ID=17719063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9287571A Pending JPH11104491A (en) 1997-10-06 1997-10-06 Oxidation catalyst for co and nitrogen oxides

Country Status (1)

Country Link
JP (1) JPH11104491A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7121087B2 (en) 2000-11-06 2006-10-17 Nissan Motor Co., Ltd. Exhaust emission control device of internal combustion engine
JP2006289248A (en) * 2005-04-08 2006-10-26 Toyota Central Res & Dev Lab Inc Material for removing nitrogen oxide
JP2007529300A (en) * 2004-03-17 2007-10-25 ジーエム・グローバル・テクノロジー・オペレーションズ・インコーポレーテッド Catalyst for improving the efficiency of NOx reduction in automobiles
US7329627B2 (en) 2002-11-08 2008-02-12 Sud-Chemie Ag Ce/Cu/Mn-catalysts
JP2010029865A (en) * 2002-08-09 2010-02-12 Mitsubishi Electric Corp Gas purifying apparatus
CN104549275A (en) * 2013-10-12 2015-04-29 王颖华 Transition metal-doped solid catalyst, preparation method thereof and water treatment method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7121087B2 (en) 2000-11-06 2006-10-17 Nissan Motor Co., Ltd. Exhaust emission control device of internal combustion engine
JP2010029865A (en) * 2002-08-09 2010-02-12 Mitsubishi Electric Corp Gas purifying apparatus
US7329627B2 (en) 2002-11-08 2008-02-12 Sud-Chemie Ag Ce/Cu/Mn-catalysts
JP2007529300A (en) * 2004-03-17 2007-10-25 ジーエム・グローバル・テクノロジー・オペレーションズ・インコーポレーテッド Catalyst for improving the efficiency of NOx reduction in automobiles
JP2006289248A (en) * 2005-04-08 2006-10-26 Toyota Central Res & Dev Lab Inc Material for removing nitrogen oxide
CN104549275A (en) * 2013-10-12 2015-04-29 王颖华 Transition metal-doped solid catalyst, preparation method thereof and water treatment method
CN104549275B (en) * 2013-10-12 2018-06-15 王颖华 Transient metal doped solid catalyst, preparation method and the method for handling water

Similar Documents

Publication Publication Date Title
CN101602018B (en) Method for preparing rare-earth element doped composite metal oxide mercury removal catalyst
JP2002507478A (en) A method for catalytically treating contaminant-containing gases while preventing capillary condensation.
AU650698B2 (en) Catalyst for purifying exhaust gas
JPH11104491A (en) Oxidation catalyst for co and nitrogen oxides
EP0754493A2 (en) Catalyst for purifying exhaust gases and process for producing the same
US7514384B2 (en) Inorganic compound containing active oxygen and process for producing the same
US5880059A (en) Catalyst for deep oxidation of carbon oxide and organic compounds
JP3457953B2 (en) Nitrogen oxide and / or sulfur oxide adsorbent
JP3660080B2 (en) Nitrogen oxide adsorbent and method for removing nitrogen oxide
JP2005111436A (en) Method for catalytically eliminating nitrogen oxide and device therefor
JP3031824B2 (en) Nitrogen oxide adsorbent and method for removing nitrogen oxide using the adsorbent
JP3244520B2 (en) Nitrogen oxide adsorbent and method for removing nitrogen oxide using the adsorbent
JPH05277376A (en) Nox removing catalyst and nox removing method utilizing the catalyst
JP3031823B2 (en) Nitrogen oxide adsorbent and method for removing nitrogen oxide using the adsorbent
JP5318396B2 (en) Exhaust gas purification material and exhaust gas purification filter
JP3634795B2 (en) Nitrogen oxide and / or sulfur oxide adsorbent
JP2001058130A (en) Catalyst for nitrogen oxide decomposition
JP3433137B2 (en) Nitrogen oxide and / or sulfur oxide adsorbent
JP3705933B2 (en) Nitrogen oxide and / or sulfur oxide adsorbent and method for removing nitrogen oxide and / or sulfur oxide using the adsorbent
JPH0687943B2 (en) Exhaust gas purification method
JP3760076B2 (en) Adsorbent such as nitrogen oxide, method for producing the same, and method for removing nitrogen oxide and the like
JP3569295B2 (en) Method for producing nitrogen oxide absorbent
JP2004082070A (en) Denitrification catalyst
JPS6251135B2 (en)
JPH0673613B2 (en) Exhaust gas purification method