JPS59120222A - Purification of non-oxidative gas - Google Patents

Purification of non-oxidative gas

Info

Publication number
JPS59120222A
JPS59120222A JP57232444A JP23244482A JPS59120222A JP S59120222 A JPS59120222 A JP S59120222A JP 57232444 A JP57232444 A JP 57232444A JP 23244482 A JP23244482 A JP 23244482A JP S59120222 A JPS59120222 A JP S59120222A
Authority
JP
Japan
Prior art keywords
gas
heavy metal
metal oxide
oxidizing
oxidative gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57232444A
Other languages
Japanese (ja)
Other versions
JPH0351450B2 (en
Inventor
Akira Enomoto
亮 榎本
Teruo Komori
照夫 小森
Tsugio Kobayashi
小林 次夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP57232444A priority Critical patent/JPS59120222A/en
Publication of JPS59120222A publication Critical patent/JPS59120222A/en
Publication of JPH0351450B2 publication Critical patent/JPH0351450B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Gas Separation By Absorption (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To obtain non-oxidative gas by inexpensively and easily removing CO, by oxidizing non-oxidative gas containing CO through contact with heavy metal oxide to absorb CO as CO2. CONSTITUTION:A gaseous mixture which is based on one or more non-oxidative gas selected from Ar, He, Ne or N2 and contains CO is brought into contact with heavy metal oxide at 200-800 deg.C, especially, at 300-700 deg.C to oxidize Co to CO2. Subsequently, this CO2 is removed by absorbing the same with one or more of an absorbent selected from NaOH, KOH and soda lime. By this method, CO can be efficiently removed without mixing oxidative gas in the gaseous mixture. As the aforementioned heavy metal oxide, a powdery or porous one having a specific surface area of 1m<2>/g or more is availably used. Further, the aforementioned non-oxidative gas is especially used as atmosphere conditioning gas in baking a carbide ceramic sintered body. In addition, as heavy metal oxide, for example, Cu2O or Fe2O3 can be availably used.

Description

【発明の詳細な説明】 本発明は、非酸化性ガス中に含有されるCOの除去方法
に係り、特に炭化物セラミックス焼結体の焼成時に雰囲
気調整ガスとして用いられる非酸化性ガス中に混入した
COをCO2化せしめた後除去する非酸化性ガスの精製
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for removing CO contained in a non-oxidizing gas, and particularly to a method for removing CO contained in a non-oxidizing gas mixed in the non-oxidizing gas used as an atmosphere adjustment gas during firing of a carbide ceramic sintered body. The present invention relates to a method for purifying non-oxidizing gas in which CO is converted into CO2 and then removed.

炭化物セラミックス焼結体は一般に化学的あるいは物理
的特性に優れたものが多く、なかでも炭化珪素焼結体は
硬度、熱伝導率、耐熱性、耐熱衝撃性、化学的安定性な
どに極めて優れた特性を有しており、ガスタービン部品
、熱交換器のような苛酷な条件下で使用される高温構造
物の〃1」き用途に対して好適である。
Carbide ceramic sintered bodies generally have excellent chemical or physical properties, and silicon carbide sintered bodies are particularly excellent in hardness, thermal conductivity, heat resistance, thermal shock resistance, chemical stability, etc. These characteristics make it suitable for use in high-temperature structures used under severe conditions, such as gas turbine parts and heat exchangers.

前記炭化珪素焼結体の製造方法としては、反応焼結法、
加圧焼結法あるいは無加圧焼結法が広く知られているが
、なかでも無加圧焼結法は高密度で複雑な形状をした焼
結体を量産することのできる利点を有しており、その実
用化が活発に進められている。
The method for producing the silicon carbide sintered body includes a reaction sintering method,
The pressure sintering method and the pressureless sintering method are widely known, but the pressureless sintering method has the advantage of being able to mass-produce sintered bodies with high density and complex shapes. Its practical application is being actively promoted.

ところで、炭化珪素焼結体の無加圧焼結法においては焼
結助剤として炭素質添加剤を使用することが必要であり
、焼結時に炭化珪素粉末中に含有される酸素と前記炭素
質添加剤として添加された戻素とが反応してCOが発生
する。
By the way, in the pressureless sintering method of silicon carbide sintered bodies, it is necessary to use a carbonaceous additive as a sintering aid, and during sintering, the oxygen contained in the silicon carbide powder and the carbonaceous additive are The return element added as an additive reacts to generate CO.

前記焼結時の雰囲気中にCOが存在すると焼結体の焼成
収縮に大きな影響を及ぼし、焼結体を高密度化すること
が困難になることが知られており、特に高密度の焼結体
を製造するに際しては焼成時の雰囲気からCOを除去す
ることが極めて重要であり、通常前記COは非酸化性ガ
ス気流によって糸外へ排出される。
It is known that the presence of CO in the atmosphere during sintering has a large effect on the sintering shrinkage of the sintered body, making it difficult to increase the density of the sintered body. When manufacturing the yarn, it is extremely important to remove CO from the atmosphere during firing, and the CO is usually discharged out of the yarn by a non-oxidizing gas stream.

しかしながら、前記炭化珪素の無加圧焼結時の雰囲気ガ
スとして使用される非酸化性ガスは比較的高価で使い捨
てにすると不経済であるため、一旦使用してCOが混入
した非酸化性ガスはCOを除去精製して繰返し使用する
ことが好ましい。
However, the non-oxidizing gas used as the atmospheric gas during the pressureless sintering of silicon carbide is relatively expensive and uneconomical to dispose of. It is preferable to remove CO and purify it for repeated use.

ところで、COを含有する混合ガスよりCOを除去ある
いは分離する方法としては、例えば(1)ポルフィリン
金属錯体や活性灰などの吸着剤に吸着させる方法、(2
)塩化第1銅の塩酸浴1夜またはアンモニア浴液などの
吸収2夜に吸収させる方法、(3)接触酸化触媒を使用
してCOをCO2化せしめる方法等が知られている。し
かしながら、(1)の吸着剤に吸着させる方法では吸着
速度が比較的遅かったり、COの吸着と同時に離脱も生
ずるため効率的にCOを除去することが困難である。(
2)の吸収液に吸収させる方法では非酸化性ガス中に多
量の水分が必然的に混入する欠点を有する。(3)の接
触酸化触媒を使用してCOf C02化せしめる方法と
しては燃焼廃ガス中のCOを無害化する方法等が知られ
ているが、前記方法は燃焼廃ガス中に含有されているか
あるいは必要に応じて混合された酸イヒ性ガスによって
COをCO2化せしめる方法であり、炭化珪素の無加圧
焼結時の雰囲気ガスとして使J−ロされた混合ガスは酸
化性ガスを殆ど含有していないため前者の方法を適用す
ることはできず、一方後者の酸化性ガスを混入する方法
は反応後に未反応の酸化性ガスが残留することのないよ
う酸化性ガスの混入量を適正に制御することが困難で実
用的でない。−1=述の如く、従来知られた方法はいず
れも炭化珪素の無加圧焼結時に使用する非酸化性ガスの
精製方法として適用することは困難であった。
By the way, methods for removing or separating CO from a mixed gas containing CO include, for example, (1) a method of adsorbing it to an adsorbent such as a porphyrin metal complex or activated ash;
) A method of absorbing cuprous chloride in a hydrochloric acid bath for one night or an ammonia bath for two nights; and (3) a method of converting CO to CO2 using a catalytic oxidation catalyst are known. However, in the method (1) in which CO is adsorbed onto an adsorbent, the adsorption rate is relatively slow, and CO is adsorbed and desorbed at the same time, making it difficult to efficiently remove CO. (
The method of 2) in which the gas is absorbed into an absorption liquid has the disadvantage that a large amount of water is inevitably mixed into the non-oxidizing gas. (3) As a method of converting CO to CO2 using a catalytic oxidation catalyst, there is a known method that detoxifies CO in combustion waste gas, but this method does not contain CO contained in combustion waste gas or This is a method of converting CO to CO2 using an oxidizing gas mixed as necessary, and the mixed gas used as the atmospheric gas during pressureless sintering of silicon carbide contains almost no oxidizing gas. The former method cannot be applied because the oxidizing gas is not reacted properly, whereas the latter method of mixing oxidizing gas requires appropriate control of the amount of oxidizing gas mixed in so that no unreacted oxidizing gas remains after the reaction. difficult and impractical. -1 = As mentioned above, it was difficult to apply any of the conventionally known methods as a method for purifying non-oxidizing gas used during pressureless sintering of silicon carbide.

上述の如き観点から、本発明者らは非酸化性ガスを主体
とし、COを含有する混合ガスよりCOを効率的に除去
する方法について種々検討した結果、前記混合ガスを重
金属酸化物と一定の条件下で接触せしめることにより、
前記混合ガス中に酸化性ガスを全く混入させることなく
、しかも極めて効率的にCOをCOx化できることを知
見し、本発明を完成した。
From the above-mentioned viewpoint, the present inventors have studied various methods for efficiently removing CO from a mixed gas containing CO and mainly consisting of non-oxidizing gas. By bringing them into contact under certain conditions,
The present invention was completed based on the discovery that CO can be converted into COx extremely efficiently without mixing any oxidizing gas into the mixed gas.

本発明は非酸化性ガスを主体とし、COを含有する混合
ガスよりCOを安価にかつ容易に除去する方法を提供す
ることを目的とするものである。
An object of the present invention is to provide a method for easily and inexpensively removing CO from a mixed gas containing CO, which is mainly composed of non-oxidizing gas.

本発明によれば、非酸化性ガスを主体とし、COを含有
する混合ガスを重金属酸化物と接部■せしめることによ
り、前記COを酸化せ(〜めでCO2となし、次いで前
記CO!を吸収剤に吸収させて除去することを特徴とす
る非酸化性力スの精ホン方法により、前記目的を達成す
ることができる。
According to the present invention, by bringing a mixed gas mainly composed of a non-oxidizing gas and containing CO into contact with a heavy metal oxide, the CO is oxidized (converted to CO2 by ~), and then the CO! is absorbed. The above object can be achieved by a method for removing non-oxidizing substances, which is characterized by absorption and removal by a chemical agent.

次に本発明の詳細な説明する。Next, the present invention will be explained in detail.

本発明によれば、非酸化性ガスを主体とし、COを含有
する混合ガスを重金属酸化物と接触せしめることにより
、前記Coを酸化せしめてCO2となすことが必要であ
る。
According to the present invention, it is necessary to oxidize the Co into CO2 by contacting a mixed gas mainly consisting of a non-oxidizing gas and containing CO with a heavy metal oxide.

前記重金属酸化物としては、例えばCuzOlCubS
Fe;+Oz、Fe504、Mn;+(’)3、WLn
304、Pb3O4、PbO,CO3O4、Coo、N
iOあるいはそれらの複酸化物を使用することができ、
なかでも、CLI20、Fe2O3、Mn20a、Pb
xO<、CO3O4などがCOとの反応性に優れ、効率
的にCOをCO2化せしめることができ、有利に使用で
きる。
As the heavy metal oxide, for example, CuzOlCubS
Fe; +Oz, Fe504, Mn; +(')3, WLn
304, Pb3O4, PbO, CO3O4, Coo, N
iO or their double oxides can be used,
Among them, CLI20, Fe2O3, Mn20a, Pb
xO<, CO3O4, etc. have excellent reactivity with CO, can efficiently convert CO into CO2, and can be used advantageously.

前記重金屈酸化物は、反応性が劣化した場合には酸化性
雰囲気中で加熱して酸化せしめることにより、繰返し使
用することのでき乙利点を有する。
The heavy metal oxide has the advantage that when the reactivity deteriorates, it can be used repeatedly by oxidizing it by heating in an oxidizing atmosphere.

本発明によれば、重金属酸化物ばCOとの接触効率を高
く維持することが有効であり、少なくとも1m2/gの
比表面積を有する粉末状あるいは多孔質のものを使用す
ることが有利である。
According to the invention, it is effective to maintain a high contact efficiency with CO if the heavy metal oxide is used, and it is advantageous to use a powdered or porous material having a specific surface area of at least 1 m2/g.

本発明において、前記COを酸化せしめてCO2となす
理由は、先にも述べた如くCOの状態では吸着あるいは
吸収によって除去することが困難であるが、COを酸化
せしめてCO2となすことにより、他に不純物を混入さ
せることなく、吸収剤に吸収させることができ、谷筋に
かつ効率的に除去することができるからである。
In the present invention, the reason why the CO is oxidized to become CO2 is that as mentioned above, it is difficult to remove CO by adsorption or absorption, but by oxidizing CO to become CO2, This is because it can be absorbed into the absorbent without mixing other impurities, and it can be efficiently removed in the valleys.

本発明によれば、前記混合ガスと前記重金属酸化物とを
200〜800℃の範囲内の温度で接触させることが好
ましい。その理由は、前記温度が200°Cより低いと
混合ガスに含有されるCOをCO2化せしめる反応速度
が遅く効率的でないからであり、一方800℃より高い
と−13−生成したCOzが分解して再びCOになった
り、前記重金属酸化物の焼結反応が進行して比表面積が
減少し、反応性が劣化するばかりでなく、さらには再生
して繰返し使用することが困難になるからであり、80
0〜700°Cの範囲内で最も好適な結果を得ることが
できる。
According to the present invention, it is preferable that the mixed gas and the heavy metal oxide are brought into contact at a temperature within a range of 200 to 800°C. The reason for this is that if the temperature is lower than 200°C, the reaction rate for converting CO contained in the mixed gas into CO2 is slow and inefficient, while if it is higher than 800°C, the -13-generated COz will decompose. This is because the sintering reaction of the heavy metal oxide progresses and the specific surface area decreases, which not only deteriorates the reactivity but also makes it difficult to regenerate and use repeatedly. , 80
The most suitable results can be obtained within the range of 0 to 700°C.

本発明によれば、非酸化性ガスを主体とし、COを含有
する混合ガスは炭化物セラミックス焼結体を焼成する際
に使用された鋸囲剣ガスであり、前記混合ガス中に含有
されるCOガス含有量は炭化物セラミックス焼結体の焼
結性を考慮すると5%以下に維持することが有利である
。前記混合ガス中のCOガス含有量が5%より多くなる
と焼結性が著しく劣化し、高密度の焼結体を得ることが
困難になる。
According to the present invention, the mixed gas mainly composed of non-oxidizing gas and containing CO is a sawtooth gas used when firing a carbide ceramic sintered body, and the CO contained in the mixed gas is Considering the sinterability of the carbide ceramic sintered body, it is advantageous to maintain the gas content at 5% or less. If the CO gas content in the mixed gas exceeds 5%, the sinterability will deteriorate significantly, making it difficult to obtain a high-density sintered body.

なお、本発明による非酸化性ガスの精製方法は炭化珪素
焼結体を製造する際に使用される雰囲完調整ガスの精製
方法として極めて好適に利用することができる。
Note that the method for purifying non-oxidizing gas according to the present invention can be very suitably used as a method for purifying atmosphere-adjusted gas used in manufacturing a silicon carbide sintered body.

本発明によれば、前記非酸化性ガスとしては焼結体およ
び焼結設備に対して不活性なガスが使用され、Ar、H
e、NeあるいはN2のなかから選ばれるいずれか少な
くとも1種を使用することが好ましい。
According to the present invention, a gas inert to the sintered body and sintering equipment is used as the non-oxidizing gas, and Ar, H
It is preferable to use at least one selected from e, Ne, and N2.

本発明によれば、CO2の吸収剤としては水酸化ナトリ
ウム、水酸化カリウム、水酸化リチウム、ソーダ石灰よ
り選ばれるいずれか少なくとも1種を使用することが好
ましい。
According to the present invention, it is preferable to use at least one selected from sodium hydroxide, potassium hydroxide, lithium hydroxide, and soda lime as the CO2 absorbent.

なお、本発明によれば、COの除去率をさらに向上させ
るために前述の如き非酸化性ガスの精製操作を2回以上
繰返し実施することもできる。
In addition, according to the present invention, in order to further improve the CO removal rate, the above-described non-oxidizing gas purification operation can be repeated two or more times.

次に本発明を実施例について説明する。Next, the present invention will be explained with reference to examples.

実施例1 第1図に示した如き装置を使用して、アルゴンガス中に
COガスを1%の割合で混入し、次いで400℃に維持
された酸化炉を5l/minの割合で15分間通過せし
め、ガス中のCOを002化した後、吸収剤にCO2を
選択的に吸収させ除去した。
Example 1 Using the apparatus shown in Figure 1, CO gas was mixed into argon gas at a rate of 1%, and then passed through an oxidation furnace maintained at 400°C at a rate of 5 l/min for 15 minutes. After converting the CO in the gas to 002, the absorbent selectively absorbed and removed CO2.

酸化炉は内径30mmφの管状エレマ炉を使用し、  
     □吸収管は内径20mmφカルシウム管を使
用した。
The oxidation furnace uses a tubular EREMA furnace with an inner diameter of 30 mmφ.
□A calcium tube with an inner diameter of 20 mm was used as the absorption tube.

酸化炉には酸化第1銅粉末100gを酸化剤として充て
んし、吸収管には1〜5mmに整粒した水酸(tナトリ
ウム粒を100g充てんした。
The oxidation furnace was filled with 100 g of cuprous oxide powder as an oxidizing agent, and the absorption tube was filled with 100 g of hydroxide (t sodium particles) sized to 1 to 5 mm.

吸収管を通過させた後のアルゴンガス中に含有されてい
るCO濃度は約100ppmと極めて効率的にCOを精
製除去することができた。
The concentration of CO contained in the argon gas after passing through the absorption tube was about 100 ppm, and CO could be purified and removed very efficiently.

実施例2・比較例1 実施例1と同様であるが、第1表に示した如く酸化剤お
よび反応温度を変化させてアルゴンガス中のCOガスを
除去した。
Example 2/Comparative Example 1 This was the same as Example 1, but the oxidizing agent and reaction temperature were changed as shown in Table 1 to remove CO gas in the argon gas.

結果は第1表に示した。The results are shown in Table 1.

第1表 実施例8 第2図に示した如き非酸化性ガス精製装置を使用して炭
化珪素無加圧焼結体を焼成する際に使用した雰囲気調整
排ガス中のCOを除去精製した。
Table 1 Example 8 A non-oxidizing gas purification apparatus as shown in FIG. 2 was used to remove and purify CO in the atmosphere-controlled exhaust gas used when firing a pressureless sintered silicon carbide body.

酸化炉は内径が60朋φの竪型管状エレマ炉を使用し、
500°Cに保持された均熱帯には酸化剤としてMn3
O4を主成分とする酸化マンガン粉末200yを装入し
、吸収管には0.8〜0.6間の粒径範囲に整粒した水
酸化ナトリウムを200y装入した。
The oxidation furnace uses a vertical tubular EREMA furnace with an inner diameter of 60mm.
In the soaking zone maintained at 500°C, Mn3 is used as an oxidizing agent.
200 y of manganese oxide powder containing O4 as a main component was charged, and 200 y of sodium hydroxide sized to a particle size range of 0.8 to 0.6 was charged to the absorption tube.

焼結炉より排出される雰囲気調整ガス中に含有されるC
Oの含有率は焼成1品度が#?]155o°Cに到  
 達した時点で最大となり、3.7%であることが確認
された。なお、雰囲気調整ガスはアルゴンガスを使用し
、2sl/sinの割合で焼成炉中−装入した。
C contained in the atmosphere adjustment gas discharged from the sintering furnace
Is the content of O in the firing grade #? ] Reached 155o°C
It reached its maximum at 3.7%. Note that argon gas was used as the atmosphere adjustment gas, and was charged into the firing furnace at a rate of 2 sl/sin.

精製後のアルゴンガス中に含有されるCOの含有率は常
に200 ppm以下であり、極めて効率よくCOを除
去することができ、再利用することができた。
The content of CO contained in the purified argon gas was always below 200 ppm, and CO could be removed extremely efficiently and reused.

7tお、本実施例で焼成された次代珪素無加圧焼結体は
収縮性も良好で極めて緻密質であった。
The next-generation silicon pressureless sintered body fired in this example had good shrinkability and was extremely dense.

以上述べた如く、本発明によれば、炭化物セラミックス
焼結体の焼成時に雰囲気調整ガスとして用いられる非酸
化性ガス中に混入したCOを容易にかつ安価に除去精製
し、再利用することを可能にするものであって、産業に
寄与する効果は極めて大きい。
As described above, according to the present invention, it is possible to easily and inexpensively remove and purify CO mixed in the non-oxidizing gas used as an atmosphere adjustment gas when firing a carbide ceramic sintered body, and reuse it. The effect of contributing to industry is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施例1において使用した実験装置
の模式図、第2図は、本発明の実施例において使用した
非酸化性ガス精製装置の模式図である。 1・・・・・・・・・アルゴンガヌボンベ、2・・・・
・・・・・COガスボンベ、3・・・・・・・・・流量
計、4・・・・・・・・・ガス混合機、5・・・・・・
・・・配管、6・・・・・・・・・管状エレマ炉、7・
・・・・・・・・酸化剤、8・・・・・・・・・吸収管
、9・・・・・・・・・吸収削、10・・・・・・・・
・焼成炉、11・・・・・・・・・ブロアー、12・・
・・・・・・・/くy 7− 、 1B・・・・・・・
・・パージ用バルブ。 特許出願人 イビデン株式会社 代表者多賀潤一部 ン2E ( 3/2   ン/
FIG. 1 is a schematic diagram of the experimental apparatus used in Example 1 of the present invention, and FIG. 2 is a schematic diagram of the non-oxidizing gas purification apparatus used in the Example of the present invention. 1...Argonganu bombe, 2...
...CO gas cylinder, 3...Flowmeter, 4...Gas mixer, 5...
...Piping, 6...Tubular erema furnace, 7.
・・・・・・・・・Oxidizing agent, 8・・・・・・Absorption pipe, 9・・・・・・Absorption cutting, 10・・・・・・・・・
・Firing furnace, 11...Blower, 12...
....../kuy 7-, 1B...
...Purge valve. Patent applicant IBIDEN Co., Ltd. Representative Junichi Taga Tun 2E (3/2 N/

Claims (1)

【特許請求の範囲】 1、非酸化性ガスを主体と17、COを含有する混合ガ
スを重金属酸化物と接触せしめることにより、lJ記C
Oを酸化せしめてCO2となし、次いで前記CO2を吸
収させて除去することを特徴とする非酸化性ガスの精製
方法。 2、前記重金属酸化物はCu、Fe、Pb、Mn、Co
、Niより選ばれるいずれか少なくとも1種の酸化物で
ある特許請求の範囲第1項記載の方法。 3、前記混合ガスは、炭化物セラミックス焼結体を焼成
する際に雰囲気調整ガスとして使用されたものである特
許請求の範囲第1あるいは2項記載の方法。 4、前記炭化物セラミックス焼結体は炭化珪素焼結体で
ある特許請求の範囲第3項記載の方法。 5、前記非酸化性ガスはAr、He、NeあるいはN2
のなかから選ばれるいずれか少なくとも1種である特許
請求の範囲第1〜4項のいずれかに記載の方法。 6、前記混合ガスと前記重金属酸化物とを200〜80
0℃の温度範囲内で接触させる特許請求の範囲第1〜5
項のいずれかに記載の方法。 7、前記吸収剤は水酸化ナトリウム、水酸化カリウム、
水酸化リチウム、ソーダ石灰より選ばれるいずれか少な
くとも1種である特許請求の範囲第1〜6項のいずれか
に記載の方法。
[Claims] 1. By bringing a mixed gas containing mainly non-oxidizing gas and 17. CO into contact with a heavy metal oxide,
A method for purifying a non-oxidizing gas, which comprises oxidizing O to CO2, and then absorbing and removing the CO2. 2. The heavy metal oxides include Cu, Fe, Pb, Mn, Co
The method according to claim 1, wherein the oxide is at least one kind of oxide selected from Ni. 3. The method according to claim 1 or 2, wherein the mixed gas is used as an atmosphere adjusting gas when firing a carbide ceramic sintered body. 4. The method according to claim 3, wherein the carbide ceramic sintered body is a silicon carbide sintered body. 5. The non-oxidizing gas is Ar, He, Ne or N2
The method according to any one of claims 1 to 4, which is at least one selected from the following. 6. The mixed gas and the heavy metal oxide are mixed at a ratio of 200 to 80%
Claims 1 to 5 in which the contact is made within a temperature range of 0°C.
The method described in any of the paragraphs. 7. The absorbent is sodium hydroxide, potassium hydroxide,
The method according to any one of claims 1 to 6, wherein at least one selected from lithium hydroxide and soda lime is used.
JP57232444A 1982-12-27 1982-12-27 Purification of non-oxidative gas Granted JPS59120222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57232444A JPS59120222A (en) 1982-12-27 1982-12-27 Purification of non-oxidative gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57232444A JPS59120222A (en) 1982-12-27 1982-12-27 Purification of non-oxidative gas

Publications (2)

Publication Number Publication Date
JPS59120222A true JPS59120222A (en) 1984-07-11
JPH0351450B2 JPH0351450B2 (en) 1991-08-06

Family

ID=16939364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57232444A Granted JPS59120222A (en) 1982-12-27 1982-12-27 Purification of non-oxidative gas

Country Status (1)

Country Link
JP (1) JPS59120222A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127613A (en) * 1984-11-22 1986-06-14 Mitsui Toatsu Chem Inc Purifying method of carbon dioxide
JPS61236603A (en) * 1985-04-10 1986-10-21 Nippon Cement Co Ltd Continuous synthesizing device for nonoxide powder
US4623524A (en) * 1985-02-08 1986-11-18 Hitachi, Ltd. Process and apparatus for recovering inert gas
JPS62119104A (en) * 1985-11-15 1987-05-30 Nippon Sanso Kk Method for recovering high-purity argon from exhaust gas of single crystal producing furnace
KR20020096026A (en) * 2002-10-16 2002-12-28 장성진 Method and apparatus for producing basic or inert gases of a high degree of purity
JP2008137847A (en) * 2006-12-01 2008-06-19 Air Liquide Japan Ltd Xenon retrieval system and retrieval device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5147568A (en) * 1974-10-22 1976-04-23 Sunao Yamagata

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5147568A (en) * 1974-10-22 1976-04-23 Sunao Yamagata

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61127613A (en) * 1984-11-22 1986-06-14 Mitsui Toatsu Chem Inc Purifying method of carbon dioxide
JPH0132164B2 (en) * 1984-11-22 1989-06-29 Mitsui Toatsu Chemicals
US4623524A (en) * 1985-02-08 1986-11-18 Hitachi, Ltd. Process and apparatus for recovering inert gas
JPS61236603A (en) * 1985-04-10 1986-10-21 Nippon Cement Co Ltd Continuous synthesizing device for nonoxide powder
JPS62119104A (en) * 1985-11-15 1987-05-30 Nippon Sanso Kk Method for recovering high-purity argon from exhaust gas of single crystal producing furnace
KR20020096026A (en) * 2002-10-16 2002-12-28 장성진 Method and apparatus for producing basic or inert gases of a high degree of purity
JP2008137847A (en) * 2006-12-01 2008-06-19 Air Liquide Japan Ltd Xenon retrieval system and retrieval device

Also Published As

Publication number Publication date
JPH0351450B2 (en) 1991-08-06

Similar Documents

Publication Publication Date Title
TWI323182B (en) Verfahren zum reinigen von abgasen eines sinterprozesses von erzen und/oder anderen metallhaltigen materialien in der metalllerzeugung
Lu et al. Adsorption properties of fly ash particles for NOx removal from flue gases
JP2009106812A (en) Carbon dioxide absorber, carbon dioxide separator, reformer and producing method of carbon dioxide absorber
US5000930A (en) Method and installation for the purification of combustion gas from domestic heatings, combustion engines or similar heatings
JPS59120222A (en) Purification of non-oxidative gas
KR101099073B1 (en) Composition for removing sox in exhausted gas
JP4746457B2 (en) Carbon dioxide absorber, carbon dioxide separator and reformer
US4440551A (en) Method for the adsorptive removal of hydrogen sulfide from gas mixtures
CN109603506A (en) A kind of flue gas desulfurization and denitrification composition and preparation method thereof
CN112642396B (en) Modified activated carbon and composite material as well as preparation method and application thereof
JPH07185342A (en) Catalyst and method for decomposing nitrogen oxide
JP2633886B2 (en) Desulfurizing agent and method for treating hydrogen sulfide-containing gas using it
JP2633511B2 (en) Exhaust gas purification method
JP3947285B2 (en) Manufacturing method of activated carbon for desulfurization and denitration with high denitration performance
JPH0687943B2 (en) Exhaust gas purification method
JPH0720533B2 (en) Exhaust gas purification method
JP2000093798A (en) Catalyst for decomposing organic chlorine compound, its production, and method for treating exhaust gas
JPH0673613B2 (en) Exhaust gas purification method
CN115178234B (en) Composite hierarchical pore catalytic-adsorption material and preparation method thereof
RU2040312C1 (en) Method and apparatus to purify drainage gasses from nitrogen oxides
JPH0576753A (en) Adsorbent for nitrogen monoxide, its production and method for adsorbing and removing nitrogen monoxide
JP3569295B2 (en) Method for producing nitrogen oxide absorbent
JPH0771614B2 (en) Exhaust gas purification method
JPH0771613B2 (en) Exhaust gas purification method
JPH01180222A (en) Production of molded body for cleaning up exhaust gas