JPH0576753A - Adsorbent for nitrogen monoxide, its production and method for adsorbing and removing nitrogen monoxide - Google Patents

Adsorbent for nitrogen monoxide, its production and method for adsorbing and removing nitrogen monoxide

Info

Publication number
JPH0576753A
JPH0576753A JP3273332A JP27333291A JPH0576753A JP H0576753 A JPH0576753 A JP H0576753A JP 3273332 A JP3273332 A JP 3273332A JP 27333291 A JP27333291 A JP 27333291A JP H0576753 A JPH0576753 A JP H0576753A
Authority
JP
Japan
Prior art keywords
nitric oxide
adsorbent
adsorption
activated carbon
nitrogen monoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3273332A
Other languages
Japanese (ja)
Inventor
Yuji Horii
雄二 堀井
Takeshi Yamashita
岳史 山下
Kiyoshi Takei
精 武居
Isao Kinukawa
功 絹川
Mamoru Tamura
守 田村
Seiichi Tashiro
聖一 田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohwada Carbon Industrial Co Ltd
Kobe Steel Ltd
Original Assignee
Ohwada Carbon Industrial Co Ltd
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohwada Carbon Industrial Co Ltd, Kobe Steel Ltd filed Critical Ohwada Carbon Industrial Co Ltd
Priority to JP3273332A priority Critical patent/JPH0576753A/en
Publication of JPH0576753A publication Critical patent/JPH0576753A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

PURPOSE:To provide an adsorbent and its production method where the harmful nitrogen monoxide among nitrogen oxides being a cause of environmental pollution can be efficiently absorbed and removed as it is without oxidizing nitrogen monoxide into nitrogen dioxide and where the adsorbent can be repeatedly used by desorption regeneration. CONSTITUTION:This adsorbent for nitrogen monoxide consists of a porous carbonaceous material having fire pores of 4-10Angstrom diameter by >=0.05cm<3> per 1g adsorbent. Especially, an activated carbon obtd. from phenol resin as the source material has excellent adsorption activity even in the presence of water vapor and can be repeatedly used since it recovers the initial adsorption activity by desorption regeneration and can be repeatedly used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、大気中あるいは各種煙
道排気中に含まれる窒素酸化物、殊に化学的に不活性で
処理の困難な一酸化窒素を効率良く吸着除去することの
できる吸着剤及びその製法、並びに該吸着剤を用いて一
酸化窒素を吸着除去する方法に関するものである。
INDUSTRIAL APPLICABILITY The present invention is capable of efficiently adsorbing and removing nitrogen oxides contained in the atmosphere or various flue gas exhausts, particularly nitric oxide which is chemically inert and difficult to process. The present invention relates to an adsorbent, a method for producing the same, and a method for adsorbing and removing nitric oxide using the adsorbent.

【0002】[0002]

【従来の技術】窒素酸化物は代表的な大気汚染物質であ
り、これまでにも多くの処理技術が提案されている。吸
着除去法もその1つであり、活性炭を始めとして多数の
吸着剤が提供されており、比較的吸着活性の高い二酸化
窒素については一応の成果を得ている。ところが公知の
吸着剤は、低沸点で低活性の一酸化窒素に対する吸着性
能が乏しいので、従来は一酸化窒素を一旦二酸化窒素に
酸化してから吸着除去する方式を採用している。
2. Description of the Related Art Nitrogen oxide is a typical air pollutant, and many treatment techniques have been proposed so far. The adsorption removal method is one of them, and a large number of adsorbents such as activated carbon have been provided, and nitrogen dioxide, which has a relatively high adsorption activity, has been successfully obtained. However, since the known adsorbents have a poor boiling point and a low activity for adsorbing nitric oxide having low activity, conventionally, a method has been employed in which nitric oxide is once oxidized to nitrogen dioxide and then adsorbed and removed.

【0003】そのため、被処理ガスを予め酸化するため
のオゾン発生器を併設したり、あるいは酸化剤を吸着剤
もしくは担体に添着させておくことが必要であった(た
とえば「化学工場」18(5),9(1974)や「日
本化学会誌」1978(2),303など)。
Therefore, it was necessary to provide an ozone generator for oxidizing the gas to be treated in advance, or to attach an oxidizing agent to an adsorbent or a carrier (for example, "Chemical factory" 18 (5)). ), 9 (1974) and “Journal of the Chemical Society of Japan” 1978 (2), 303, etc.).

【0004】しかしこれらの方法では、オゾン発生器の
設備費及び運転経費が高くつくばかりでなく、余剰オゾ
ンの酸化作用により吸着剤の失活が加速されるという難
点があり、また酸化剤(亜塩素酸ナトリウムや過マンガ
ン酸カリウム等)を添着させる方法では、酸化剤の寿命
が非常に短く且つ吸着剤の再生が困難である等の問題が
あり、殆ど実用化されていないのが実情である。
However, these methods have the drawbacks that not only the equipment cost and operating cost of the ozone generator are high, but also the deactivation of the adsorbent is accelerated by the oxidizing action of the excess ozone, and the oxidizing agent ( In the method of impregnating sodium chlorate, potassium permanganate, etc.), there is a problem that the life of the oxidant is very short and the regeneration of the adsorbent is difficult. ..

【0005】また、大気汚染が深刻化し空気清浄化の必
要が高まるにつれて、自動車のトンネル排気や屋内駐車
場換気あるいは一般大気中の窒素酸化物の効率的除去法
について更に改良研究が進められており、たとえば「清
水建設研究報告」45,95(1987)には,アルカ
リを添着した活性炭により低濃度窒素酸化物を吸着除去
する方法も提案されている。しかしこの方法も、上記の
方法と同様に一酸化窒素を予め二酸化窒素に酸化してか
らでなければ満足のいく除去効率を得ることができず、
前述の問題を解消し得るものではない。
Further, as the air pollution becomes more serious and the need for air cleaning increases, further improvement researches are underway on tunnel exhaust of vehicles, ventilation of indoor parking lots, or efficient removal method of nitrogen oxides in general atmosphere. For example, in “Shimizu Research Report” 45, 95 (1987), a method of adsorbing and removing low-concentration nitrogen oxides with activated carbon impregnated with an alkali is also proposed. However, also in this method, similar to the above method, it is not possible to obtain a satisfactory removal efficiency unless the nitric oxide is previously oxidized to nitrogen dioxide.
It does not solve the above problems.

【0006】大気中あるいは通常の排気中に含まれる窒
素酸化物の大部分は一酸化窒素であるので、これを酸化
することなく、また水蒸気等の共存ガスの影響をあまり
受けることなく効率よく吸着し、且つ吸着・脱着を繰り
返した場合でもそれほど吸着活性が低下しない様な吸着
剤の開発が望まれる。こうした要望に沿うものとして、
特開昭64−85137号や特開平2−69311号に
は、活性炭素繊維に、一酸化窒素に対して化学的親和性
を有する銅その他の金属の酸化物や水酸化物よりなる微
粒子を分散させ、これにより吸着効率を高める方法が開
示されている。しかしこの方法は、金属酸化物や金属水
酸化物よりなる微粒子を活性炭素繊維にうまく分散添着
させることが困難であり、しかも金属酸化物等の添着に
よって吸着剤の親水性が増大し、水分の吸着により吸着
活性が短時間のうちに低下するという欠点がある。
Since most of the nitrogen oxides contained in the atmosphere or normal exhaust gas is nitric oxide, it is efficiently adsorbed without being oxidized and without being much affected by coexisting gases such as water vapor. In addition, it is desired to develop an adsorbent that does not significantly reduce the adsorption activity even when adsorption / desorption is repeated. To meet these needs,
In JP-A-64-85137 and JP-A-2-69311, fine particles made of oxides or hydroxides of copper and other metals having a chemical affinity for nitric oxide are dispersed in activated carbon fibers. And thereby increasing the adsorption efficiency. However, in this method, it is difficult to finely disperse and attach the fine particles of the metal oxide or the metal hydroxide to the activated carbon fiber, and further, the attachment of the metal oxide increases the hydrophilicity of the adsorbent, and There is a drawback that the adsorption activity decreases in a short time due to adsorption.

【0007】[0007]

【発明が解決しようとする課題】本発明は上記の様な事
情に着目してなされたものであって、その目的は、一酸
化窒素を主体とする窒素酸化物を、二酸化窒素に酸化す
ることなく直接且つ効率よく吸着することのできる吸着
剤及びその製法、並びにこの吸着法を用いて一酸化窒素
を効率良く吸着除去する方法を提供しようとするもので
ある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and its purpose is to oxidize a nitrogen oxide mainly containing nitric oxide into nitrogen dioxide. It is intended to provide an adsorbent capable of adsorbing directly and efficiently without any use, a method for producing the adsorbent, and a method for efficiently adsorbing and removing nitric oxide using the adsorption method.

【0008】[0008]

【課題を解決するための手段】上記課題を解決すること
のできた本発明に係る一酸化窒素吸着剤とは、4〜10Å
の細孔を吸着剤1g当たり0.05cm3 以上、より好ましく
は0.1cm3以上有する多孔性炭素質からなるものであると
ころに要旨を有するものである。尚、活性炭に存在する
細孔には略円形状の細孔とスリット状の細孔があるが、
本明細書における細孔の寸法とは細孔径及び細孔幅の両
方を意味するものである。
[Means for Solving the Problems] The nitric oxide adsorbent according to the present invention capable of solving the above problems is 4 to 10Å.
Pore adsorbent 1g per 0.05 cm 3 or more, and has a gist at more preferably made of a porous carbonaceous having 0.1 cm 3 or more. Incidentally, the pores present in the activated carbon include substantially circular pores and slit-shaped pores,
The size of the pores in the present specification means both the pore diameter and the pore width.

【0009】上記の多孔性炭素質は、上記寸法範囲の微
細孔を特定量含むものであればその原料物質は特に限定
されないが、中でも熱硬化性フェノール樹脂、より好ま
しくはレゾール型フェノール樹脂よりなる平均粒径が2
00μm以下の粉末もしくはその焼結物を炭化、賦活し
て得られるものは、一酸化窒素に対してより高い吸着活
性を示す。
The above-mentioned porous carbonaceous material is not particularly limited in its raw material as long as it contains a specific amount of fine pores in the above-mentioned size range, but among them, it is a thermosetting phenol resin, more preferably a resol type phenol resin. Average particle size is 2
A powder obtained by carbonizing and activating a powder of 00 μm or less or a sintered product thereof has higher adsorption activity for nitric oxide.

【0010】そしてこの様な高吸着活性の吸着剤は、熱
硬化性フェノール樹脂粉末もしくはその焼結物を、還元
性気体,不活性気体あるいは弱酸化性気体雰囲気中にお
いて400〜1200℃で1〜100時間熱処理して炭
化と賦活を行うことによって得ることができる。そして
この一酸化窒素吸着剤を用いた一酸化窒素の吸着は50
℃未満の温度で行い、また50〜200℃、より好まし
くは100〜150℃で脱着を行うことにより、一酸化
窒素の吸着・脱着を効率よく実施することができる。
Such an adsorbent having a high adsorption activity is obtained by thermosetting the thermosetting phenolic resin powder or its sintered product at 1 to 400 ° C. to 1200 ° C. in a reducing gas, inert gas or weakly oxidizing gas atmosphere. It can be obtained by performing heat treatment for 100 hours for carbonization and activation. And the adsorption of nitric oxide using this nitric oxide adsorbent is 50
Adsorption / desorption of nitric oxide can be efficiently carried out by performing the desorption at a temperature of lower than 0 ° C and at a temperature of 50 to 200 ° C, more preferably 100 to 150 ° C.

【0011】[0011]

【作用】本発明者らは、殆どの被処理ガス中には少なか
らず水蒸気が含まれていることを考慮し、共存水蒸気の
影響を避けるためには疎水性の炭素質吸着剤が有効であ
ると考え、代表的な炭素質吸着剤である活性炭を対象と
して、一酸化窒素に対する吸着性能に与える諸因子につ
いて研究を行った。
The present inventors consider that most of the gas to be treated contains a large amount of water vapor, and a hydrophobic carbonaceous adsorbent is effective in avoiding the influence of coexisting water vapor. Therefore, we investigated various factors that affect the adsorption performance for nitric oxide, targeting activated carbon, which is a typical carbonaceous adsorbent.

【0012】そして、特に活性炭の細孔径分布が一酸化
窒素の吸着性能に及ぼす影響を明らかにするため、細孔
径分布の異なる様々の活性炭を購入あるいは試作し、夫
々について一酸化窒素に対する吸・脱着試験を行なっ
た。なお活性炭の細孔径分布の測定については、直径6
0Å以上の細孔は水銀圧入法で、また20〜60Åの細
孔は窒素吸着法により、更に10Å以下の微細孔は、分
子量、即ち分子径の異なるアルコール等を順次吸着させ
各吸着容量の違いから求める分子プローブ法によって夫
々測定し、また10〜20Åの範囲の細孔は、上記方法
によって得た細孔容積の和と総細孔容積の差として算出
した。
In order to clarify the effect of the pore size distribution of activated carbon on the adsorption performance of nitric oxide, various activated carbons having different pore size distributions were purchased or prototyped, and adsorption / desorption of nitric oxide was conducted for each. The test was conducted. For the measurement of the pore size distribution of activated carbon, the diameter 6
The pores of 0 Å or more are made by the mercury injection method, the pores of 20 to 60 Å are made by the nitrogen adsorption method, and the fine pores of 10 Å or less are made to adsorb alcohols with different molecular weights, that is, different molecular diameters in order, and the difference in adsorption capacity The pores in the range of 10 to 20Å were calculated as the sum of the pore volumes obtained by the above method and the difference between the total pore volumes.

【0013】そして細孔分布の異なる夫々の活性炭を充
填した吸着層に、約5ppmの一酸化窒素を含む乾燥空
気もしくは湿潤空気(相対湿度60%)を0〜50℃で
供給し、出口空気中の一酸化窒素濃度を測定することに
より、各活性炭の吸着性能を比較した。また上記方法に
より一酸化窒素を吸着した各活性炭に加熱空気を送って
一酸化窒素の脱着試験を行い、脱着時の温度依存性を調
べると共に、吸着活性を低下させることなく吸・脱着を
繰り返すことができるか否かを調べた。
Then, dry air or wet air (relative humidity 60%) containing about 5 ppm of nitric oxide was supplied at 0 to 50 ° C. to the adsorption layers filled with the activated carbons having different pore distributions, and the air was discharged from the outlet air. The adsorption performance of each activated carbon was compared by measuring the nitric oxide concentration. In addition, by sending heated air to each activated carbon that has adsorbed nitric oxide by the above method, a desorption test of nitric oxide is conducted, and temperature dependence during desorption is investigated, and adsorption / desorption is repeated without lowering adsorption activity. I investigated whether I could do it.

【0014】その結果は後記実施例によって明らかにす
るが、結論として、4〜10Åの細孔を0.05cm3 /g以
上有する活性炭は、それ以外の細孔径分布を有するもの
に比べて一酸化窒素に対し優れた吸・脱着性能を発揮し
得ることが確認された。また活性炭の中でも、フェノー
ル樹脂、殊に平均粒子径が200μm以下の同樹脂粉末
あるいはその焼結物を炭化、賦活して得た活性炭は、と
りわけ優れた吸着活性を有していることが分かった。し
かも上記フェノール樹脂粉末の焼結物を、還元性気体,
不活性気体あるいは弱酸化性気体雰囲気中、400〜1
200℃で1〜100時間熱処理することによって炭化
と賦活を行えば、一酸化窒素の吸着に最適な4〜10Å
の細孔容積率を著しく高いものとすることができ、その
結果として非常に優れた一酸化窒素吸着性を発揮するこ
とを見出した。
The results will be clarified by the examples described later, but in conclusion, activated carbon having pores of 4 to 10 Å of 0.05 cm 3 / g or more is more nitric oxide than those having other pore size distributions. It was confirmed that excellent adsorption / desorption performance could be exhibited. Further, among the activated carbons, it was found that the activated carbon obtained by carbonizing and activating the phenol resin, in particular, the resin powder having an average particle size of 200 μm or less or the sintered product thereof has a particularly excellent adsorption activity. .. Moreover, the sintered product of the above-mentioned phenol resin powder is converted into a reducing gas,
400 to 1 in an inert gas or weakly oxidizing gas atmosphere
If carbonization and activation are carried out by heat treatment at 200 ° C for 1 to 100 hours, the optimum 4 to 10Å for nitric oxide adsorption
It has been found that the pore volume ratio of can be made extremely high, and as a result, a very excellent nitric oxide adsorbing property is exhibited.

【0015】この様に細孔径4〜10Åのものが一酸化
窒素に対して高い吸着活性を示す理由は、次の様に考え
ることができる。すなわち一酸化窒素の分子径は約3Å
であり、4Å未満の極微細孔では、細孔内への一酸化窒
素の侵入抵抗が大きくなるため吸着自体が起こり難くな
り、一方細孔径が大きくなり過ぎると、細孔内への一酸
化窒素の侵入は起こるものの、細孔壁への吸着力が小さ
いため、十分な強度で吸着することができず、有効な吸
着剤としての機能を果たし難くなくなるためと考えられ
る。
The reason why the pore size of 4 to 10 Å shows a high adsorption activity for nitric oxide can be considered as follows. That is, the molecular diameter of nitric oxide is about 3Å
Therefore, with ultrafine pores of less than 4 Å, adsorption of nitric oxide into the pores becomes large, so that adsorption itself becomes difficult to occur. On the other hand, if the pore diameter becomes too large, the nitric oxide in the pores becomes too large. It is considered that although the invasion of the carbon dioxide occurs, it cannot adsorb with sufficient strength because it has a small adsorptive power to the pore walls, and it becomes difficult to fulfill the function as an effective adsorbent.

【0016】これに対し4〜10Åの細孔内では、一酸
化窒素はせいぜい2〜3層の吸着層を形成するだけであ
り、細孔壁の吸着場に拡散侵入してきた一酸化窒素が当
該吸着場に対して直接的な作用を受け、これにより確実
に吸着捕捉されるためと思われる。従ってこうした吸着
捕捉効果を実用規模で有効に発揮させるには、上記好適
細孔径範囲の細孔がある程度以上存在しなければなら
ず、その基準として、本発明では4〜10Åの細孔容量
を活性炭1g当たり0.05cm3 以上、より好ましくは0.1c
m3以上と定めた。ちなみに該細孔容積量が0.05cm3 /g
未満のものは、例えば5ppmの一酸化窒素の吸着容量
にして常温で約0.5 重量%未満であり、吸着能が早期に
破過してしまうからである。そして工業的規模での吸・
脱着を効率よく遂行するための吸着容量は1重量%以上
であると考えられることから、4〜10Åの細孔容積量
は0.1cm3/g以上にすることが望まれる。尚この細孔容
積率に上限はなく、実現可能な限り高いものの方が優れ
た吸着性能を発揮する。
On the other hand, in the pores of 4 to 10 liters, nitric oxide only forms at most 2 to 3 adsorption layers, and the nitric oxide which has diffused and penetrated into the adsorption field of the pore walls is concerned. It is considered that this is because it has a direct effect on the adsorption field and thus is surely adsorbed and captured. Therefore, in order to effectively exert such an adsorption and trapping effect on a practical scale, the pores in the above-mentioned preferable pore diameter range must be present to some extent or more, and in the present invention, the pore volume of 4 to 10 Å is used as the standard. More than 0.05 cm 3 per 1 g, more preferably 0.1 c
It was defined as m 3 or more. By the way, the pore volume is 0.05 cm 3 / g
If less than 5% by weight, for example, the adsorption capacity of 5 ppm of nitric oxide is less than about 0.5% by weight at room temperature, and the adsorption capacity will break through early. And sucking on an industrial scale
Since the adsorption capacity for efficiently performing desorption is considered to be 1% by weight or more, it is desired that the pore volume of 4 to 10 Å be 0.1 cm 3 / g or more. There is no upper limit to the volume ratio of the pores, and the higher the volume ratio, the better the adsorption performance.

【0017】上記の様に本発明では、炭素質吸着剤にお
ける特定細孔径範囲のものの容積量を特定したところに
特徴を有するものであり、こうした要件を満たすもの
は、炭素質源の如何を問わず上記要件を外れるものに比
べると一酸化窒素に対して優れた吸着活性を示す。しか
しながらそれらの中でもフェノール樹脂を炭素質源とす
る活性炭は、一酸化窒素に対して格別に優れた吸着性能
を発揮し得ることが確認された。この理由は明白でない
が、フェノール樹脂に由来する細孔壁の表面構造の特異
性が吸着能の向上に何らかの影響を及ぼしているためと
考えられる。例えば、本発明者らが確認したところによ
ると、フェノール樹脂を起源とする活性炭に一酸化窒素
を含む空気を供給し続けると、出口側に部分的二酸化窒
素が認められる様になり、こうした現象は他の活性炭で
は認められない。しかも酸素ガスを含まない一酸化窒素
含有気体を用いた場合は、フェノール樹脂起源の活性炭
を含めていずれの活性炭でも一酸化窒素吸着能は良くな
い。これらのことからフェノール樹脂起源の活性炭は、
共存する酸素により一酸化窒素を酸化する触媒作用も発
揮しているものと考えられる。更に疎水性の炭素質とい
えどもフェノール樹脂起源の活性炭以外の活性炭は、高
湿度下で一酸化窒素吸着能がかなり低下するが、フェノ
ール樹脂起源の活性炭は高湿度下での吸着能の低下も軽
微であり、これらの点は、フェノール樹脂起源の活性炭
の化学的特異性を表わすものと考えられ、またそのこと
は、実用性の高さにもつながっている。
As described above, the present invention is characterized in that the volume amount of the carbonaceous adsorbent having the specific pore diameter range is specified, and the carbonaceous source can satisfy any of these requirements. Moreover, it exhibits an excellent adsorption activity for nitric oxide as compared with those that deviate from the above requirements. However, among them, it has been confirmed that activated carbon containing a phenolic resin as a carbonaceous source can exhibit exceptionally excellent adsorption performance for nitric oxide. The reason for this is not clear, but it is considered that the specificity of the surface structure of the pore wall derived from the phenol resin has some influence on the improvement of the adsorption ability. For example, according to the confirmation by the present inventors, when the air containing nitrogen monoxide is continuously supplied to the activated carbon originating from the phenol resin, partial nitrogen dioxide is observed at the outlet side, and such a phenomenon occurs. Not found with other activated carbons. Moreover, when a nitric oxide-containing gas containing no oxygen gas is used, the nitric oxide adsorbing ability is not good in any activated carbon including the activated carbon derived from the phenol resin. From these things, activated carbon derived from phenolic resin is
It is considered that the coexisting oxygen also exerts a catalytic action of oxidizing nitric oxide. Furthermore, even though it is a hydrophobic carbonaceous material, activated carbon other than activated carbon derived from phenol resin has a considerably reduced nitric oxide adsorption capacity under high humidity, but activated carbon derived from phenol resin also has a reduced adsorption capacity under high humidity. These points are minor, and these points are considered to represent the chemical specificity of the activated carbon derived from the phenolic resin, which also leads to high practicality.

【0018】炭素源となるフェノール樹脂の種類として
は、熱硬化性のノボラック型フェノール樹脂及びレゾー
ル型フェノール樹脂あるいはそれらの各種変性樹脂が挙
げられるが、これらの中でも特に好ましいのはレゾール
型フェノール樹脂である。またフェノール樹脂を用いた
活性炭の製造に当たっては、平均粒径が200μm以下
のフェノール樹脂を使用し、その粉末もしくはその焼結
物を二酸化炭素もしくは水蒸気を含む気体雰囲気中、4
00〜1200℃で1〜100時間熱処理して炭化と賦
活を行なうことにより、4〜10Åの細孔容積率の高い
吸着活性の優秀な活性炭を得ることができる。
Examples of the type of phenolic resin serving as a carbon source include thermosetting novolac type phenolic resins and resol type phenolic resins and various modified resins thereof. Among these, particularly preferable are resol type phenolic resins. is there. In the production of activated carbon using a phenol resin, a phenol resin having an average particle size of 200 μm or less is used, and its powder or its sintered product is used in a gas atmosphere containing carbon dioxide or water vapor.
By carrying out carbonization and activation by heat treatment at 00 to 1200 ° C. for 1 to 100 hours, activated carbon having a high pore volume ratio of 4 to 10 Å and excellent adsorption activity can be obtained.

【0019】平均粒径の大きいフェノール樹脂が活性炭
源として好ましくない理由は良く分からないが、熱処理
時の表面積が小さくなるため細孔の発達及び賦活化が十
分に進みにくくなるためと推察している。また熱処理時
には、通常の活性炭の賦活に用いられている水蒸気ある
いは二酸化炭素等の弱酸化性気体を用いることができる
が、それ以外にも水素等の還元性気体あるいは窒素,ア
ルゴン等の不活性気体を用いることもできる。しかし、
空気のような強酸化性気体を用いるとたとえ細孔径が妥
当であっても、性能は非常に悪くなる。これは含酸素官
能基の種類と濃度等の表面化学構造が大きく影響してい
るためと考えられる。また熱処理温度が400℃未満で
は炭化と賦活化が不十分になることがあり、一方120
0℃を超える高温になると、材料の収縮が起こり、細孔
径が小さくなり過ぎて吸着性能を失うため好ましくな
い。より好ましい熱処理温度は450〜800℃であ
る。
The reason why a phenol resin having a large average particle size is not preferable as a source of activated carbon is not clear, but it is presumed that the development and activation of pores are difficult to proceed sufficiently due to the small surface area during heat treatment. .. Further, during heat treatment, a weak oxidizing gas such as steam or carbon dioxide which is usually used for activation of activated carbon can be used, but in addition to this, a reducing gas such as hydrogen or an inert gas such as nitrogen or argon. Can also be used. But,
Using a strongly oxidizing gas such as air will result in very poor performance, even if the pore size is reasonable. It is considered that this is because the surface chemical structure such as the type and concentration of the oxygen-containing functional group has a great influence. If the heat treatment temperature is lower than 400 ° C, carbonization and activation may be insufficient, while 120
When the temperature is higher than 0 ° C., the material shrinks, the pore size becomes too small, and the adsorption performance is lost, which is not preferable. A more preferable heat treatment temperature is 450 to 800 ° C.

【0020】次に本発明の吸着剤を用いて一酸化窒素の
吸着除去を行なうに当たっては、被処理ガス温度を50
℃未満に抑えることが望まれる。しかして一酸化窒素の
吸着能は温度が高くなるほど低下し、50℃で吸着処理
を行った時の吸着容量は25℃で処理した場合の約1/
2に低下し、吸着除去率も50℃前後で明らかに低下す
るからである。
Next, in adsorbing and removing nitric oxide using the adsorbent of the present invention, the temperature of the gas to be treated is set to 50.
It is desirable to keep the temperature below ° C. However, the adsorption capacity of nitric oxide decreases as the temperature rises, and the adsorption capacity when the adsorption treatment is performed at 50 ° C is about 1/100 of that when treated at 25 ° C.
This is because the adsorption removal rate drops to about 2 at about 50 ° C.

【0021】また吸着後の脱着処理は50〜200℃で
行なうのがよく、50℃未満では送給ガスを変えても脱
着不足となり、また200℃を超えると活性炭の酸化反
応等による消耗・劣化あるいは発火の恐れが出てくる。
尚一酸化窒素の脱着は100℃以上の温度で著しく活発
となり、また通常は150℃程度で数時間保持すること
により殆ど全てを脱着することができる。従って実用化
に当たっては、常温付近での吸着と100〜150℃程
度での脱着・再生を繰り返せばよく、それにより被処理
ガス中に含まれる数ppm程度の一酸化窒素でも効率良
く吸着除去することが可能となる。また吸・脱着を連続
的に行う場合は、常法に従って吸着塔を複数個並設し、
吸着と脱着再生を交互に行う様にすればよい。
The desorption treatment after adsorption is preferably carried out at 50 to 200 ° C. If the temperature is lower than 50 ° C., desorption will be insufficient even if the feed gas is changed, and if it exceeds 200 ° C., the exhaustion and deterioration due to the oxidation reaction of activated carbon will occur. Or there is a fear of ignition.
The desorption of nitric oxide becomes remarkably active at a temperature of 100 ° C. or higher, and usually almost all can be desorbed by holding at about 150 ° C. for several hours. Therefore, for practical use, it is sufficient to repeat adsorption around room temperature and desorption / regeneration at about 100 to 150 ° C., thereby efficiently adsorbing and removing even a few ppm of nitric oxide contained in the gas to be treated. Is possible. In addition, when performing adsorption and desorption continuously, install a plurality of adsorption towers in parallel according to the usual method,
Adsorption and desorption regeneration may be performed alternately.

【0022】[0022]

【実施例】以下、実施例によって本発明を具体的に説明
するが、本発明はもとより下記実施例に限定されるもの
ではない。実施例1 原料及び細孔分布の異なる種々の活性炭を、25℃に保
った円筒容器に8cmの高さに充填し、これに一酸化窒
素を5ppm添加した乾燥空気を、大気圧下に流速0.
2m/sで流し、出口の窒素酸化物濃度の経時変化を化
学発光式窒素酸化物分析計で測定した。尚各活性炭の製
造条件は表1に示す通りである。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the following examples. Example 1 A raw material and various activated carbons having different pore distributions were filled in a cylindrical container kept at 25 ° C. at a height of 8 cm, and dry air containing 5 ppm of nitric oxide was added thereto under atmospheric pressure at a flow rate of 0. .
The flow rate was 2 m / s, and the change with time in the nitrogen oxide concentration at the outlet was measured by a chemiluminescence type nitrogen oxide analyzer. The production conditions for each activated carbon are as shown in Table 1.

【0023】結果を表2に示す。ここで除去率とは、
「1−{(出口一酸化窒素濃度+出口二酸化窒素濃度)
/入口一酸化窒素濃度}」であり、測定した細孔径は、
水を吸着する細孔径(3Å弱)までであり、水を吸着で
きない細孔には、水よりも大きな一酸化窒素も吸着しな
いので、表2には4Å以下と記載した。またこの実験で
用いた吸着剤はいずれも0.18cm3 /g以上の細孔
容積(25℃の水蒸気の飽和吸着容量から求めた)を有
しているので、10Å以下の細孔容積が大幅に下回って
いる吸着剤は、10Å以上の細孔を主体とするものであ
る。
The results are shown in Table 2. Here, the removal rate is
"1-{(outlet nitric oxide concentration + outlet nitrogen dioxide concentration)
/ Inlet nitric oxide concentration} ", and the measured pore size is
Since it is up to a pore diameter of adsorbing water (a little less than 3Å) and pores that cannot adsorb water do not adsorb nitric oxide larger than water, it is described in Table 2 as 4Å or less. In addition, since all the adsorbents used in this experiment have a pore volume of 0.18 cm 3 / g or more (determined from the saturated adsorption capacity of water vapor at 25 ° C), a pore volume of 10 Å or less is significantly large. The adsorbent that is lower than that is mainly composed of pores of 10 Å or more.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】表2からも明らかである様に、原料の種類
によって活性炭の一酸化窒素除去率はかなり変わってく
るが、4〜10Åの細孔容積が0.05cm3/g 以上であ
るもの(実施例)は、それ未満のもの(比較例)に比べ
て相対的に除去率が高く、このことはNo.1,2とN
o.3〜7(フェノール樹脂原料)、No.8とNo.
9(石炭原料)、No.10,11とNo.12,13
(ポリ塩化ビニリデン原料)、No.14とNo.15
(フルフリルアルコール樹脂原料)を夫々対比すれば明
白である。
As is clear from Table 2, the nitric oxide removal rate of activated carbon varies considerably depending on the type of raw material, but the pore volume of 4 to 10 Å is 0.05 cm 3 / g or more ( The example) has a relatively higher removal rate than the ones smaller than that (comparative example). 1, 2 and N
o. 3 to 7 (phenolic resin raw material), No. 8 and No.
No. 9 (coal raw material), No. No. 10, 11 and No. 12, 13
(Polyvinylidene chloride raw material), No. 14 and No. 15
This is clear when the (furfuryl alcohol resin raw materials) are compared with each other.

【0027】また実施例の中でもフェノール樹脂起源の
活性炭(No.3〜6)は、初期活性及び活性持続性の
いずれにおいても優れた値を示している。尚この活性炭
を用いた場合は、吸着塔出口から排出されるガス中に少
量の二酸化窒素(一酸化窒素の約10〜20モル%)が
認められた。またNo.16〜22はいずれも極く一般
的な活性炭(市販品:炭化・賦活化条件等は不明)であ
って、細孔径はいずれも10Å以上でその大部分は20
Å以上であり、一酸化窒素除去率が劣悪である。
Among the examples, the activated carbon derived from the phenolic resin (Nos. 3 to 6) shows excellent values in both initial activity and activity sustainability. When this activated carbon was used, a small amount of nitrogen dioxide (about 10 to 20 mol% of nitric oxide) was found in the gas discharged from the adsorption tower outlet. In addition, No. 16 to 22 are all very general activated carbons (commercial products: carbonization and activation conditions are unknown), all of which have pore diameters of 10 Å or more and most of them are 20
Å or more, and the nitric oxide removal rate is poor.

【0028】実施例2 次に、上記実施例1のNo.4,7,9,10及び19
で用いたのと同じ活性炭を使用し、相対湿度60%の加
湿空気を使用した以外は全く同様にして吸着実験を行な
った。結果は表3に示す通りであり、フェノール樹脂起
源の活性炭は加湿条件下においても優れた吸着活性を有
していることが分かる。
Embodiment 2 Next, No. 1 of the above-mentioned Embodiment 1 will be described. 4, 7, 9, 10 and 19
The adsorption experiment was conducted in exactly the same manner except that the same activated carbon as used in 1. was used and humidified air having a relative humidity of 60% was used. The results are shown in Table 3, and it can be seen that the activated carbon derived from the phenol resin has excellent adsorption activity even under humidified conditions.

【0029】[0029]

【表3】 [Table 3]

【0030】実施例3 実施例1のNo.4で用いたのと同じ活性炭を使用し、
吸着温度を0℃,25℃,35℃,50℃に変えた以外
は全く同様にして吸着実験を行った。結果は表4に示す
通りであり、低温側ほど高い除去率が得られている。ま
たこれらの結果より、吸着温度が50℃を超えると、除
去率はかなり低下すると思われるので、吸着温度は50
℃未満に抑えることが望まれる。
Example 3 No. 1 of Example 1. Using the same activated carbon used in 4,
An adsorption experiment was conducted in exactly the same manner except that the adsorption temperature was changed to 0 ° C, 25 ° C, 35 ° C and 50 ° C. The results are shown in Table 4, and the higher the removal rate is, the lower the temperature is. Further, from these results, it is considered that the removal rate is considerably lowered when the adsorption temperature exceeds 50 ° C. Therefore, the adsorption temperature is 50%.
It is desirable to keep the temperature below ° C.

【0031】[0031]

【表4】 [Table 4]

【0032】実施例4 実施例1のNo.4で使用したのと同じ活性炭を使用
し、同様の条件で15〜20時間吸着処理を行なった
後、一酸化窒素を含まない乾燥空気を吸着時と同一流量
で供給しつつ、145±5℃に6時間保って脱着再生を
行う。この吸着と脱着再生を24回繰り返し、各回毎の
除去率を測定した。結果は表5に示す通りであり、脱着
再生による吸着能の低下は殆ど認められない。
Example 4 No. 1 of Example 1. Using the same activated carbon as used in 4 above, after performing adsorption treatment for 15 to 20 hours under the same conditions, while supplying dry air containing no nitric oxide at the same flow rate as during adsorption, 145 ± 5 ° C. Hold for 6 hours to perform desorption and regeneration. This adsorption and desorption regeneration were repeated 24 times, and the removal rate was measured each time. The results are as shown in Table 5, and almost no decrease in adsorption capacity due to desorption regeneration was observed.

【0033】[0033]

【表5】 [Table 5]

【0034】実施例5 フェノール樹脂の炭化・賦活に及ぼす雰囲気ガスの種類
の影響を調べた。その結果は表6に示す通りであり、還
元性雰囲気(水素で代表させた)、不活性雰囲気(窒素
で代表させた)及び弱酸化性雰囲気(水蒸気,二酸化炭
素)においては大差のない結果が得られたのに対して、
強酸化性雰囲気(空気で代表させた)においては4〜1
0Åの細孔をほぼ同容積含むにも拘らず、急激な性能低
下が認められた。
Example 5 The effect of the type of atmospheric gas on the carbonization and activation of phenol resin was investigated. The results are shown in Table 6, and there is no great difference in the reducing atmosphere (represented by hydrogen), the inert atmosphere (represented by nitrogen) and the weakly oxidizing atmosphere (steam, carbon dioxide). While obtained,
4 to 1 in strong oxidizing atmosphere (represented by air)
Although the pores of 0 Å were contained in almost the same volume, a sharp drop in performance was observed.

【0035】[0035]

【表6】 [Table 6]

【0036】[0036]

【発明の効果】本発明は以上の様に構成されており、共
存水蒸気を予め除去し、且つ一酸化窒素を一旦二酸化窒
素に変えるといった予備処理を行なうことなくそのまま
の状態で一酸化窒素を効率良く吸着除去することがで
き、自動車トンネル排気や屋内駐車場排気等の処理に利
用することによって環境浄化に役立てることができる。
しかも低温側で吸着された一酸化窒素は150℃程度に
加熱することによってほぼ完全に脱着し、吸着剤の活性
は回復されるので、多数回に亘って繰返し使用すること
ができる。
EFFECTS OF THE INVENTION The present invention is configured as described above, and it is possible to efficiently remove nitric oxide as it is without performing a pretreatment such as removing coexisting water vapor in advance and once converting nitric oxide into nitrogen dioxide. It can be adsorbed and removed well, and it can be used for environmental purification by using it for the treatment of automobile tunnel exhaust and indoor parking lot exhaust.
Moreover, since the nitric oxide adsorbed on the low temperature side is almost completely desorbed by heating at about 150 ° C. and the activity of the adsorbent is restored, it can be repeatedly used many times.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 絹川 功 大阪市都島区網島町12−5−410 (72)発明者 田村 守 枚方市津田元町1−34−9 (72)発明者 田代 聖一 大阪市淀川区三国本町2−5−23 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Isao Kinukawa 12-5-410 Amishimacho, Miyakojima-ku, Osaka (72) Inventor Mamoru Tamura 1-3-4-9 Tsudamotomachi, Hirakata (72) Inventor Seiichi Tashiro Osaka 2-5-23 Mikuni Honcho, Yodogawa-ku, Yokohama

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 4〜10Åの細孔を、吸着剤1g当たり
0.05cm3以上有する多孔性炭素質からなるもので
あることを特徴とする一酸化窒素吸着剤。
1. A nitric oxide adsorbent characterized by comprising a porous carbonaceous material having pores of 4 to 10 Å in an amount of 0.05 cm 3 or more per 1 g of adsorbent.
【請求項2】 多孔性炭素質が、フェノール樹脂の炭化
物である請求項1記載の一酸化窒素吸着剤。
2. The nitric oxide adsorbent according to claim 1, wherein the porous carbonaceous material is a carbide of a phenol resin.
【請求項3】 フェノール樹脂からなる平均粒径が20
0μm以下の粉末もしくはその焼結体を、還元性気体,
不活性気体あるいは弱酸化性気体雰囲気中、400〜1
200℃で1〜100時間熱処理して炭化と賦活を行う
ことを特徴とする一酸化窒素吸着剤の製法。
3. The average particle size of the phenol resin is 20.
A powder of 0 μm or less or a sintered body thereof is treated with a reducing gas,
400 to 1 in an inert gas or weakly oxidizing gas atmosphere
A method for producing a nitric oxide adsorbent characterized by performing carbonization and activation by heat treatment at 200 ° C. for 1 to 100 hours.
【請求項4】 請求項1または2に記載された一酸化窒
素吸着剤を処理容器に充填し、該処理容器に、50℃未
満の温度で一酸化窒素含有気体を通して一酸化窒素を吸
着せしめ、次いで当該処理容器を50〜200℃に加熱
しつつ脱着用気体を供給し、吸着した一酸化窒素を脱離
させることを特徴とする一酸化窒素の吸着除去法。
4. A treatment container is filled with the nitric oxide adsorbent according to claim 1 or 2, and the nitric oxide-containing gas is passed through the treatment container at a temperature of less than 50 ° C. to adsorb nitric oxide. Next, a method for adsorbing and removing nitric oxide, characterized in that a desorption gas is supplied while heating the processing container to 50 to 200 ° C. to desorb adsorbed nitric oxide.
JP3273332A 1991-09-24 1991-09-24 Adsorbent for nitrogen monoxide, its production and method for adsorbing and removing nitrogen monoxide Withdrawn JPH0576753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3273332A JPH0576753A (en) 1991-09-24 1991-09-24 Adsorbent for nitrogen monoxide, its production and method for adsorbing and removing nitrogen monoxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3273332A JPH0576753A (en) 1991-09-24 1991-09-24 Adsorbent for nitrogen monoxide, its production and method for adsorbing and removing nitrogen monoxide

Publications (1)

Publication Number Publication Date
JPH0576753A true JPH0576753A (en) 1993-03-30

Family

ID=17526414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3273332A Withdrawn JPH0576753A (en) 1991-09-24 1991-09-24 Adsorbent for nitrogen monoxide, its production and method for adsorbing and removing nitrogen monoxide

Country Status (1)

Country Link
JP (1) JPH0576753A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63166163A (en) * 1986-12-26 1988-07-09 Japan Storage Battery Co Ltd Open type alkaline storage battery
US5670124A (en) * 1995-03-01 1997-09-23 Takeda Chemical Industries, Ltd. Nitrogen-containing molecular sieving carbon, a process for preparing the same and use thereof
US6814948B1 (en) 1995-06-28 2004-11-09 Mitsubishi Jukogyo Kabushiki Kaisha Exhaust gas treating systems
JP2011147895A (en) * 2010-01-22 2011-08-04 Tohoku Electric Power Co Inc Method for manufacturing of adsorbent for nitrogen monoxide
CN102836614A (en) * 2012-09-14 2012-12-26 四川四通欧美环境工程有限公司 System and method for adsorbing nitrogen oxides by use of mordenite

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63166163A (en) * 1986-12-26 1988-07-09 Japan Storage Battery Co Ltd Open type alkaline storage battery
JPH0821422B2 (en) * 1986-12-26 1996-03-04 日本電池株式会社 Open type alkaline storage battery
US5670124A (en) * 1995-03-01 1997-09-23 Takeda Chemical Industries, Ltd. Nitrogen-containing molecular sieving carbon, a process for preparing the same and use thereof
US6814948B1 (en) 1995-06-28 2004-11-09 Mitsubishi Jukogyo Kabushiki Kaisha Exhaust gas treating systems
JP2011147895A (en) * 2010-01-22 2011-08-04 Tohoku Electric Power Co Inc Method for manufacturing of adsorbent for nitrogen monoxide
CN102836614A (en) * 2012-09-14 2012-12-26 四川四通欧美环境工程有限公司 System and method for adsorbing nitrogen oxides by use of mordenite

Similar Documents

Publication Publication Date Title
JP7203110B2 (en) Catalyst for catalyzing formaldehyde oxidation and its preparation and use
KR100186680B1 (en) Absorbent for removal of trace oxygen from inert gases
TW200520833A (en) Purification of hydride gases
JPH0157045B2 (en)
JP2002520136A (en) Method and catalyst / adsorbent for treating exhaust gas containing sulfur compounds
CN101695651B (en) Copper and iron-loaded modified activated carbon absorbent and method for preparing same
JP3725196B2 (en) Nitrogen-containing molecular sieve activated carbon, its production method and use
CN109603820A (en) The monatomic method for preparing catalyst of room temperature degradation of formaldehyde under a kind of Oxygen Condition
WO1997012671A1 (en) Heat treated activated carbon for denitration, process for preparing the same, method of denitration using the same, and system of denitration using the same
CN113101898A (en) Porous granular molecular sieve VOCs adsorbent and preparation method thereof
CN111375422A (en) Catalyst for catalytic oxidation of formaldehyde and preparation method thereof
CN102000547A (en) Cuprous chloride-modified honeycomb activated carbon adsorbing material and preparation method thereof
JPH0576753A (en) Adsorbent for nitrogen monoxide, its production and method for adsorbing and removing nitrogen monoxide
CN111167281A (en) Manganese cerium oxide/active carbon composite material for formaldehyde decomposition and preparation method thereof
JP3947285B2 (en) Manufacturing method of activated carbon for desulfurization and denitration with high denitration performance
JP3339204B2 (en) Nitrogen oxide oxidation adsorbent and nitrogen oxide removal method
JPH05253435A (en) Nitrogen monoxide adsorbent and production thereof
JPH05154339A (en) Removal of nitrogen oxide
JP2670972B2 (en) How to remove trace acetaldehyde from air
KR102392961B1 (en) Exhaust gas treatment apparatus and method
KR102382524B1 (en) Exhaust gas treatment apparatus and method
JP2633511B2 (en) Exhaust gas purification method
KR102382523B1 (en) Exhaust gas treatment apparatus and method
JP3083915B2 (en) Removal method of low concentration nitrogen oxides
KR102643454B1 (en) Adsorbent for removal of hazardous gas and methode of manufacturing the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981203