JPH0132164B2 - - Google Patents
Info
- Publication number
- JPH0132164B2 JPH0132164B2 JP59245891A JP24589184A JPH0132164B2 JP H0132164 B2 JPH0132164 B2 JP H0132164B2 JP 59245891 A JP59245891 A JP 59245891A JP 24589184 A JP24589184 A JP 24589184A JP H0132164 B2 JPH0132164 B2 JP H0132164B2
- Authority
- JP
- Japan
- Prior art keywords
- methane
- carbon dioxide
- reaction
- catalyst
- hydrocarbons
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 68
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 66
- 239000001569 carbon dioxide Substances 0.000 claims description 32
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 32
- 239000003054 catalyst Substances 0.000 claims description 24
- 238000006243 chemical reaction Methods 0.000 claims description 17
- 229930195733 hydrocarbon Natural products 0.000 claims description 12
- 150000002430 hydrocarbons Chemical class 0.000 claims description 12
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 12
- 238000007254 oxidation reaction Methods 0.000 claims description 12
- 239000007789 gas Substances 0.000 claims description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 9
- 239000001301 oxygen Substances 0.000 claims description 9
- 229910052760 oxygen Inorganic materials 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 claims description 6
- 239000005751 Copper oxide Substances 0.000 claims description 6
- 238000006555 catalytic reaction Methods 0.000 claims description 6
- 229910000431 copper oxide Inorganic materials 0.000 claims description 6
- 230000000737 periodic effect Effects 0.000 claims description 5
- 230000003647 oxidation Effects 0.000 claims description 3
- 238000000746 purification Methods 0.000 claims description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 18
- IKHGUXGNUITLKF-UHFFFAOYSA-N Acetaldehyde Chemical compound CC=O IKHGUXGNUITLKF-UHFFFAOYSA-N 0.000 description 12
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 10
- 239000005977 Ethylene Substances 0.000 description 10
- 229910052697 platinum Inorganic materials 0.000 description 9
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 7
- 239000012535 impurity Substances 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- 239000006227 byproduct Substances 0.000 description 4
- 235000011089 carbon dioxide Nutrition 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- 235000014214 soft drink Nutrition 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 230000010718 Oxidation Activity Effects 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 235000014121 butter Nutrition 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 235000013351 cheese Nutrition 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- -1 ethylene and butane Natural products 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 235000019688 fish Nutrition 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 235000015243 ice cream Nutrition 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 238000005504 petroleum refining Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000013076 target substance Substances 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Separation Of Gases By Adsorption (AREA)
- Carbon And Carbon Compounds (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、二酸化炭素の精製方法に関するも
のである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] This invention relates to a method for purifying carbon dioxide.
二酸化炭素は液化炭酸ガスあるいはドライアイ
スの形で、魚類、バター、チーズ、アイスクリー
ム等の保存、低温輸送あるいは、冷却用、溶接
用、鋳物工業用、清涼飲料水の製造、消火剤等に
広く用いられている。
Carbon dioxide, in the form of liquefied carbon dioxide or dry ice, is widely used for preservation of fish, butter, cheese, ice cream, etc., low-temperature transportation, cooling, welding, foundry industry, soft drink production, fire extinguishing agent, etc. It is used.
液化炭酸ガス、ドライアイスの原料である粗二
酸化炭素原料ガスとして、工業的には天然ガス、
発酵ガス、石油精製の副生ガス、アンモニア合成
工程の副生ガスなどが用いられ、これらのガスか
ら純度の高い二酸化炭素を製造する技術は既に確
立されている。例えば、アンモニア製造工程で副
生する粗二酸化炭素は、含まれている不純物が主
としてメタン、水素であり、これらは二酸化炭素
の液化条件下では液化しないので、蒸留操作等で
容易に精製されている。 Industrially, natural gas,
Fermentation gas, by-product gas from petroleum refining, by-product gas from the ammonia synthesis process, etc. are used, and the technology for producing highly pure carbon dioxide from these gases has already been established. For example, crude carbon dioxide, which is produced as a by-product in the ammonia production process, contains impurities mainly methane and hydrogen, which do not liquefy under carbon dioxide liquefaction conditions, so they can be easily purified by distillation, etc. .
一方、二酸化炭素源として、エチレンオキシド
の製造工程で副生する粗二酸化炭素を用いる場合
には、粗二酸化炭素中には、メタンのほか、エチ
レン、アセトアルデヒド等が不純物として含まれ
てくる。エチレンやアセトアルデヒド等は、二酸
化炭素の液化条件下で液化するため、液化二酸化
炭素に不純物として残存し、異臭を伴う。このよ
うな液化二酸化炭素は単に異臭の問題のみではな
く、人体に及ぼす悪影響からも、食品類の保存、
輸送用やあるいは清涼飲料等の添加物として用い
ることは不可能である。
On the other hand, when crude carbon dioxide produced as a by-product in the ethylene oxide manufacturing process is used as a carbon dioxide source, the crude carbon dioxide contains ethylene, acetaldehyde, etc. as impurities in addition to methane. Ethylene, acetaldehyde, and the like liquefy under carbon dioxide liquefaction conditions, so they remain in the liquefied carbon dioxide as impurities and are accompanied by an unpleasant odor. Liquefied carbon dioxide is not only a problem of bad odor, but also has a negative impact on the human body, making it difficult to preserve food,
It is impossible to use it for transportation or as an additive in soft drinks.
さらにドライアイスとして利用する場合には、
不純物として残存するエチレンは、ドライアイス
を製造する条件下(常圧、−78℃)でガス化する
ため、ドライアイスを圧縮成型しても成形品が爆
発的に破壊したりあるいは成形品の強度が極めて
低下し、取り扱い中に破壊する事態をひき起す。 Furthermore, when using it as dry ice,
Ethylene remaining as an impurity gasifies under the conditions used to produce dry ice (normal pressure, -78°C), so even if dry ice is compression molded, the molded product may explode or its strength may deteriorate. becomes extremely low, leading to breakage during handling.
一般に、完全酸化用触媒として酸化活性が高
く、長期間にわたつて性能が維持できるような触
媒としては周期律表第8族金属、とくに金属白金
と金属パラジウムが大きな活性を示すものとして
知られている。しかしながら酸化すべき対象物質
により反応温度は大巾に相違があり、とくに、メ
タン、エチレン、アセトアルデヒドのような複数
の不純物を酸化反応により除去する場合には、反
応温度を慎重に選択し維持しなければならないと
いう困難さがある。即ち本発明が解決課題として
いるようなメタン及びメタン以外の炭化水素を含
有する粗二酸化炭素を精製するにあたり、メタン
は別な方法で分離し、メタン以外の炭化水素のみ
を酸化反応により二酸化炭素に変えるような場合
には、メタンの酸化反応を極力抑えながら、他の
酸化反応を完全に行なうという困難があり、また
しばしば反応が暴走する危険性があつて、万一の
事態に備え、高価な反応器材質を選択しなければ
ならないという問題点があつた。 In general, as catalysts for complete oxidation that have high oxidation activity and can maintain performance over a long period of time, metals from group 8 of the periodic table, especially metal platinum and metal palladium, are known to show high activity. There is. However, the reaction temperature varies widely depending on the target substance to be oxidized, and the reaction temperature must be carefully selected and maintained, especially when multiple impurities such as methane, ethylene, and acetaldehyde are to be removed by the oxidation reaction. There is a difficulty in not having to do this. That is, in refining crude carbon dioxide containing methane and hydrocarbons other than methane, which is the problem to be solved by the present invention, methane is separated by a different method, and only hydrocarbons other than methane are converted into carbon dioxide through an oxidation reaction. When changing the methane oxidation reaction, it is difficult to completely carry out other oxidation reactions while suppressing the oxidation reaction of methane as much as possible, and there is often a risk that the reaction will run out of control. There was a problem in that the material of the reactor had to be selected.
本発明者は、前記問題点を解決するための鋭意
研究を行い、本発明を完成するに至つたものであ
る。
The present inventor has conducted intensive research to solve the above-mentioned problems and has completed the present invention.
すなわち本発明は、
メタン及びメタン以外の炭化水素を含有する粗
二酸化炭素を酸化触媒の存在下に酸素又は酸素含
有ガスと接触反応せしめてメタン以外の炭化水素
を二酸化炭素に酸化した後メタンを除去する二酸
化炭素の精製方法において、該接触反応が二酸化
マンガン及び酸化銅を含有する触媒により反応を
開始せしめ、次いで周期律表第8族金属を担持し
た触媒により実質的に反応を完結せしめる接触反
応であることを特徴とする二酸化炭素の精製方法
である。 That is, the present invention involves catalytically reacting crude carbon dioxide containing methane and hydrocarbons other than methane with oxygen or an oxygen-containing gas in the presence of an oxidation catalyst to oxidize hydrocarbons other than methane to carbon dioxide, and then removing methane. In the method for purifying carbon dioxide, the catalytic reaction is a catalytic reaction in which the reaction is initiated by a catalyst containing manganese dioxide and copper oxide, and then the reaction is substantially completed by a catalyst supporting a group 8 metal of the periodic table. This is a carbon dioxide purification method characterized by the following.
本発明において先ずメタン及びメタン以外の炭
化水素を含有する粗二酸化炭素と、酸素又は酸素
含有ガスとの酸化反応は2種類の触媒反応工程で
行われる。一つは二酸化マンガン及び酸化銅を含
有する触媒を用いた反応工程である。これにより
着火温度を下げることが可能となる。次いで、周
期律表第8族金属を担持した触媒を用いた反応工
程である。周期律表第8族金属としては、好まし
くはパラジウム、白金が選ばれ、とくに白金触媒
が好ましい。担体は種々のものを用いうるが、と
くにγ―アルミナが好適である。2つの反応工程
を別々の反応器で行つてもよいが、一つの反応器
の触媒層を2層として実施するのが好ましい方法
である。 In the present invention, first, the oxidation reaction between methane and crude carbon dioxide containing hydrocarbons other than methane and oxygen or an oxygen-containing gas is performed in two types of catalytic reaction steps. One is a reaction process using a catalyst containing manganese dioxide and copper oxide. This makes it possible to lower the ignition temperature. Next is a reaction step using a catalyst supporting a Group 8 metal of the periodic table. As the Group 8 metal of the periodic table, palladium and platinum are preferably selected, and platinum catalysts are particularly preferred. Although various carriers can be used, γ-alumina is particularly suitable. Although the two reaction steps may be carried out in separate reactors, it is preferable to carry out the process using two catalyst layers in one reactor.
この接触酸化反応によりメタン以外の炭化水素
が二酸化炭素へと酸化除去された粗二酸化炭素は
蒸留、液化等の常法によつてメタンを分離して極
めて純度の高い精二酸化炭素へと精製される。 Through this catalytic oxidation reaction, hydrocarbons other than methane are oxidized and removed to carbon dioxide, and the crude carbon dioxide is purified to extremely pure refined carbon dioxide by separating methane using conventional methods such as distillation and liquefaction. .
なお、本発明でメタン以外の炭化水素とはエチ
レン、ブタン等の飽和及び不飽和の炭化水素のみ
ならず、炭化水素の低級酸化物であるアセトアル
デヒド等のアルデヒド、酢酸などの脂肪酸も含む
ものである。 In the present invention, hydrocarbons other than methane include not only saturated and unsaturated hydrocarbons such as ethylene and butane, but also aldehydes such as acetaldehyde, which are lower oxides of hydrocarbons, and fatty acids such as acetic acid.
以下本発明を実施例により具体的に説明する。 The present invention will be specifically explained below using examples.
実施例:
縦型の反応器に触媒を2層に充填した。第1層
には二酸化マンガン及び酸化銅の混合触媒MTC
―101(東洋シーシーアイ社製商品名)20を、第
2層にはγ―アルミナに担持した白金触媒
DASH―220(エンゲルハルト社製商品名)180
を充填した。Example: A vertical reactor was packed with catalyst in two layers. The first layer contains MTC, a mixed catalyst of manganese dioxide and copper oxide.
-101 (product name manufactured by Toyo CCI) 20, the second layer is a platinum catalyst supported on γ-alumina.
DASH-220 (Product name manufactured by Engelhard) 180
filled with.
メタン2300ppm、エチレン5600ppm、アセトア
ルデヒド350ppmを含有する粗二酸化炭素25N
m3/minに酸素0.5Nm3/minを混じたガスを反応
器に供給した。反応器入口付近の温度は約150℃
とした。反応器出口のガス温度は約290℃だつた。
反応出口ガス中のメタンは、2260ppm、エチレン
は及びアセトアルデヒドは不検出であつた。この
反応ガスを常法により液化し、メタンを分離して
精二酸化炭素を得た。純度は99.97%だつた。 Crude carbon dioxide 25N containing methane 2300ppm, ethylene 5600ppm, acetaldehyde 350ppm
A gas containing 0.5 Nm 3 /min of oxygen and 0.5 Nm 3 /min of oxygen was supplied to the reactor. The temperature near the reactor inlet is approximately 150℃
And so. The gas temperature at the reactor outlet was approximately 290°C.
Methane in the reaction outlet gas was 2260 ppm, and ethylene and acetaldehyde were not detected. This reaction gas was liquefied by a conventional method, and methane was separated to obtain purified carbon dioxide. The purity was 99.97%.
比較例:
実施例と同様に、ただ触媒をγ―アルミナに担
持した白金触媒DASH―220 200のみとし反応
を行つた。Comparative Example: In the same manner as in the example, a reaction was carried out using only the platinum catalyst DASH-220 200 supported on γ-alumina.
反応器出口温度は約340℃で実施例に比べて約
50℃高く、反応ガス中のメタンは2100ppmで実施
例に比べて減少し、エチレン及びアセトアルデヒ
ドは不検出であつた。得られた二酸化炭素の純度
は99.97%であつた。 The reactor outlet temperature was approximately 340℃, which was approximately 340℃ compared to the example.
The temperature was 50°C higher, methane in the reaction gas was 2100 ppm, which was reduced compared to the example, and ethylene and acetaldehyde were not detected. The purity of the carbon dioxide obtained was 99.97%.
参考例:
この反応を更に明確に解析するため、触媒出口
温度と、メタン、エチレン、アセトアルデヒドの
除去率の関係を求めた。結果を第1図及び第2図
に示す。第1図は、本発明の方法に基き第1層に
二酸化マンガンと酸化銅の混合触媒を用い、第2
層にγ―アルミナに担持した白金触媒を用いた場
合の結果である。第2図は、γ―アルミナに担持
した白金触媒のみを用いた場合の結果である。Reference example: In order to analyze this reaction more clearly, the relationship between the catalyst outlet temperature and the removal rate of methane, ethylene, and acetaldehyde was determined. The results are shown in FIGS. 1 and 2. Figure 1 shows that a mixed catalyst of manganese dioxide and copper oxide is used in the first layer based on the method of the present invention, and a mixed catalyst of manganese dioxide and copper oxide is used in the second layer.
These are the results when a platinum catalyst supported on γ-alumina was used in the layer. FIG. 2 shows the results when only the platinum catalyst supported on γ-alumina was used.
なお反応条件は触媒として第1図の場合には実
施例と同じMTC―101を5mlとDASH―220を45
ml用い、第2図の場合はDASH―220を50ml用
い、供給ガスとしてはいずれもメタン2930ppm、
エチレン6270ppm及びアセトアルデヒド341ppm
を含む粗二酸化炭素826/hrと酸素36.5/hr
の混合を用いた。 In the case of Figure 1, the reaction conditions were as follows: 5 ml of MTC-101 and 45 ml of DASH-220, the same as in the example.
In the case of Figure 2, 50ml of DASH-220 is used, and the supply gas is methane 2930ppm,
Ethylene 6270ppm and acetaldehyde 341ppm
including crude carbon dioxide 826/hr and oxygen 36.5/hr
A mixture of
この図より、本発明の方法は、γ―アルミナに
担持した白金触媒単独に比べて同一のメタン以外
の炭化水素除去率を得る温度が約50℃低いことが
わかる。 From this figure, it can be seen that in the method of the present invention, the temperature at which the same removal rate of hydrocarbons other than methane is obtained is about 50° C. lower than when using only the platinum catalyst supported on γ-alumina.
本発明の方法によれば、粗二酸化炭素中に含ま
れるメタンの酸化反応を防止しつゝ、メタン以外
の炭化水素は反応温度が低くても完全に酸化され
るので、メタンの酸化反応による暴走を抑制で
き、反応条件の制御が容易となり、安全性が確保
され、異常反応に対する配慮をした材質の選択を
行うことも不要となり、工業的に有利に二酸化炭
素の精製を行うことが出来る。
According to the method of the present invention, while preventing the oxidation reaction of methane contained in crude carbon dioxide, hydrocarbons other than methane are completely oxidized even at low reaction temperatures, thereby preventing runaway methane oxidation reaction. This makes it possible to suppress reaction conditions, ensure safety, eliminate the need to select materials with consideration for abnormal reactions, and purify carbon dioxide with industrial advantage.
第1図は、本発明の効果の一例を示す触媒層出
口温度と除去率の関係を示すものである。第2図
は、γ―アルミナに担持した白金触媒のみを用い
た場合の触媒層出口温度と除去率の関係を示すも
のである。
FIG. 1 shows the relationship between catalyst bed outlet temperature and removal rate, showing an example of the effects of the present invention. FIG. 2 shows the relationship between catalyst layer outlet temperature and removal rate when only platinum catalyst supported on γ-alumina is used.
Claims (1)
粗二酸化炭素を酸化触媒の存在下に酸素又は酸素
含有ガスと接触反応せしめてメタン以外の炭化水
素を二酸化炭素に酸化した後メタンを除去する二
酸化炭素の精製方法において、該接触反応が二酸
化マンガン及び酸化銅を含有する触媒により反応
を開始せしめ、次いで周期律表第8族金属を担持
した触媒により実質的に反応を完結せしめる接触
反応であることを特徴とする二酸化炭素の精製方
法。1. A method of removing carbon dioxide by subjecting crude carbon dioxide containing methane and hydrocarbons other than methane to a catalytic reaction with oxygen or an oxygen-containing gas in the presence of an oxidation catalyst to oxidize hydrocarbons other than methane to carbon dioxide and then removing methane. The purification method is characterized in that the catalytic reaction is a catalytic reaction in which the reaction is initiated by a catalyst containing manganese dioxide and copper oxide, and then the reaction is substantially completed by a catalyst supporting a Group 8 metal of the periodic table. A method for purifying carbon dioxide.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59245891A JPS61127613A (en) | 1984-11-22 | 1984-11-22 | Purifying method of carbon dioxide |
EP85308413A EP0182649B1 (en) | 1984-11-22 | 1985-11-19 | Process for purifying carbon dioxide |
DE8585308413T DE3575905D1 (en) | 1984-11-22 | 1985-11-19 | METHOD FOR PURIFYING CARBON DIOXIDE. |
KR1019850008700A KR890001967B1 (en) | 1984-11-22 | 1985-11-21 | Process for purifiying carbon dioxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59245891A JPS61127613A (en) | 1984-11-22 | 1984-11-22 | Purifying method of carbon dioxide |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61127613A JPS61127613A (en) | 1986-06-14 |
JPH0132164B2 true JPH0132164B2 (en) | 1989-06-29 |
Family
ID=17140347
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59245891A Granted JPS61127613A (en) | 1984-11-22 | 1984-11-22 | Purifying method of carbon dioxide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61127613A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101284395B1 (en) * | 2002-02-19 | 2013-07-09 | 프랙스에어 테크놀로지, 인코포레이티드 | Method for removing contaminants from gases |
JP7017897B2 (en) * | 2017-10-05 | 2022-02-09 | 住友精化株式会社 | Catalyzed oxidation system and carbon dioxide purification method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5242492A (en) * | 1975-08-04 | 1977-04-02 | Uop Inc | Method of initiating and controlling dense bed oxidation of coke and catlytic oxidation of co to co2 in fcc regeneration area |
JPS5784744A (en) * | 1980-11-17 | 1982-05-27 | Showa Denko Kk | Catalyst for removing carbon monooxide used in gas mask |
JPS5849610A (en) * | 1981-07-17 | 1983-03-23 | ザ・ハルコン・エス・デイ−・グル−プ・インコ−ポレ−テツド | Method of selectively oxidizing carbon monoxide into carbon dioxide in gaseous phase |
JPS59120222A (en) * | 1982-12-27 | 1984-07-11 | Ibiden Co Ltd | Purification of non-oxidative gas |
-
1984
- 1984-11-22 JP JP59245891A patent/JPS61127613A/en active Granted
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5242492A (en) * | 1975-08-04 | 1977-04-02 | Uop Inc | Method of initiating and controlling dense bed oxidation of coke and catlytic oxidation of co to co2 in fcc regeneration area |
JPS5784744A (en) * | 1980-11-17 | 1982-05-27 | Showa Denko Kk | Catalyst for removing carbon monooxide used in gas mask |
JPS5849610A (en) * | 1981-07-17 | 1983-03-23 | ザ・ハルコン・エス・デイ−・グル−プ・インコ−ポレ−テツド | Method of selectively oxidizing carbon monoxide into carbon dioxide in gaseous phase |
JPS59120222A (en) * | 1982-12-27 | 1984-07-11 | Ibiden Co Ltd | Purification of non-oxidative gas |
Also Published As
Publication number | Publication date |
---|---|
JPS61127613A (en) | 1986-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1091922B1 (en) | Method of purifying aromatic dicarboxylic acids | |
EP0222499B1 (en) | Purification of terephthalic acid to relatively low levels of 4-carboxybenzaldehyde and catalyst therefor | |
US4455395A (en) | Process for the production of unsaturated hydro-carbons | |
JPS59163340A (en) | Manufacture of acrylic acid from propane | |
EP0318205B1 (en) | Process for the production of nitriles and anhydrides | |
EP1296925A1 (en) | Process for the production of vinyl acetate | |
JPH0240653B2 (en) | ||
JPS6041056B2 (en) | Cyclohexane oxidation method | |
JP2011116789A (en) | Alkene separation method | |
KR100529204B1 (en) | Method of processing reaction mixture obtained from the oxidation of cyclohexane | |
KR890001967B1 (en) | Process for purifiying carbon dioxide | |
JPS6410444B2 (en) | ||
JPH0132164B2 (en) | ||
KR101006038B1 (en) | Process for the production of an alkenyl carboxylate or an alkyl carboxylate | |
RU2356884C2 (en) | Oxidation method of producing carboxylic acids and alkenes and optionally alkenylcarboxylate or alkylcarboxylate | |
WO2000006528A1 (en) | Process for producing adipic acid | |
US6750374B2 (en) | Manufacture of cyclohexane from benzene and a hydrogen source containing impurities | |
JP2001515535A (en) | Purification of material flow | |
JPS6160061B2 (en) | ||
JP2918285B2 (en) | Manufacturing method of nitriles | |
JPH07157305A (en) | Refining method of crude carbon dioxide gas | |
JPH02121946A (en) | Continuous production of succinic acid | |
SU565910A1 (en) | Method of obtaining tetralone-1 | |
JPS6025414B2 (en) | Manufacturing method of diacetylbenzene | |
JPS6125016B2 (en) |