JPH0132164B2 - - Google Patents

Info

Publication number
JPH0132164B2
JPH0132164B2 JP59245891A JP24589184A JPH0132164B2 JP H0132164 B2 JPH0132164 B2 JP H0132164B2 JP 59245891 A JP59245891 A JP 59245891A JP 24589184 A JP24589184 A JP 24589184A JP H0132164 B2 JPH0132164 B2 JP H0132164B2
Authority
JP
Japan
Prior art keywords
methane
carbon dioxide
reaction
catalyst
hydrocarbons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59245891A
Other languages
Japanese (ja)
Other versions
JPS61127613A (en
Inventor
Toyotaro Kawabe
Kisuke Sonoda
Akio Atsuse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP59245891A priority Critical patent/JPS61127613A/en
Priority to EP85308413A priority patent/EP0182649B1/en
Priority to DE8585308413T priority patent/DE3575905D1/en
Priority to KR1019850008700A priority patent/KR890001967B1/en
Publication of JPS61127613A publication Critical patent/JPS61127613A/en
Publication of JPH0132164B2 publication Critical patent/JPH0132164B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、二酸化炭素の精製方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] This invention relates to a method for purifying carbon dioxide.

〔従来の技術〕[Conventional technology]

二酸化炭素は液化炭酸ガスあるいはドライアイ
スの形で、魚類、バター、チーズ、アイスクリー
ム等の保存、低温輸送あるいは、冷却用、溶接
用、鋳物工業用、清涼飲料水の製造、消火剤等に
広く用いられている。
Carbon dioxide, in the form of liquefied carbon dioxide or dry ice, is widely used for preservation of fish, butter, cheese, ice cream, etc., low-temperature transportation, cooling, welding, foundry industry, soft drink production, fire extinguishing agent, etc. It is used.

液化炭酸ガス、ドライアイスの原料である粗二
酸化炭素原料ガスとして、工業的には天然ガス、
発酵ガス、石油精製の副生ガス、アンモニア合成
工程の副生ガスなどが用いられ、これらのガスか
ら純度の高い二酸化炭素を製造する技術は既に確
立されている。例えば、アンモニア製造工程で副
生する粗二酸化炭素は、含まれている不純物が主
としてメタン、水素であり、これらは二酸化炭素
の液化条件下では液化しないので、蒸留操作等で
容易に精製されている。
Industrially, natural gas,
Fermentation gas, by-product gas from petroleum refining, by-product gas from the ammonia synthesis process, etc. are used, and the technology for producing highly pure carbon dioxide from these gases has already been established. For example, crude carbon dioxide, which is produced as a by-product in the ammonia production process, contains impurities mainly methane and hydrogen, which do not liquefy under carbon dioxide liquefaction conditions, so they can be easily purified by distillation, etc. .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

一方、二酸化炭素源として、エチレンオキシド
の製造工程で副生する粗二酸化炭素を用いる場合
には、粗二酸化炭素中には、メタンのほか、エチ
レン、アセトアルデヒド等が不純物として含まれ
てくる。エチレンやアセトアルデヒド等は、二酸
化炭素の液化条件下で液化するため、液化二酸化
炭素に不純物として残存し、異臭を伴う。このよ
うな液化二酸化炭素は単に異臭の問題のみではな
く、人体に及ぼす悪影響からも、食品類の保存、
輸送用やあるいは清涼飲料等の添加物として用い
ることは不可能である。
On the other hand, when crude carbon dioxide produced as a by-product in the ethylene oxide manufacturing process is used as a carbon dioxide source, the crude carbon dioxide contains ethylene, acetaldehyde, etc. as impurities in addition to methane. Ethylene, acetaldehyde, and the like liquefy under carbon dioxide liquefaction conditions, so they remain in the liquefied carbon dioxide as impurities and are accompanied by an unpleasant odor. Liquefied carbon dioxide is not only a problem of bad odor, but also has a negative impact on the human body, making it difficult to preserve food,
It is impossible to use it for transportation or as an additive in soft drinks.

さらにドライアイスとして利用する場合には、
不純物として残存するエチレンは、ドライアイス
を製造する条件下(常圧、−78℃)でガス化する
ため、ドライアイスを圧縮成型しても成形品が爆
発的に破壊したりあるいは成形品の強度が極めて
低下し、取り扱い中に破壊する事態をひき起す。
Furthermore, when using it as dry ice,
Ethylene remaining as an impurity gasifies under the conditions used to produce dry ice (normal pressure, -78°C), so even if dry ice is compression molded, the molded product may explode or its strength may deteriorate. becomes extremely low, leading to breakage during handling.

一般に、完全酸化用触媒として酸化活性が高
く、長期間にわたつて性能が維持できるような触
媒としては周期律表第8族金属、とくに金属白金
と金属パラジウムが大きな活性を示すものとして
知られている。しかしながら酸化すべき対象物質
により反応温度は大巾に相違があり、とくに、メ
タン、エチレン、アセトアルデヒドのような複数
の不純物を酸化反応により除去する場合には、反
応温度を慎重に選択し維持しなければならないと
いう困難さがある。即ち本発明が解決課題として
いるようなメタン及びメタン以外の炭化水素を含
有する粗二酸化炭素を精製するにあたり、メタン
は別な方法で分離し、メタン以外の炭化水素のみ
を酸化反応により二酸化炭素に変えるような場合
には、メタンの酸化反応を極力抑えながら、他の
酸化反応を完全に行なうという困難があり、また
しばしば反応が暴走する危険性があつて、万一の
事態に備え、高価な反応器材質を選択しなければ
ならないという問題点があつた。
In general, as catalysts for complete oxidation that have high oxidation activity and can maintain performance over a long period of time, metals from group 8 of the periodic table, especially metal platinum and metal palladium, are known to show high activity. There is. However, the reaction temperature varies widely depending on the target substance to be oxidized, and the reaction temperature must be carefully selected and maintained, especially when multiple impurities such as methane, ethylene, and acetaldehyde are to be removed by the oxidation reaction. There is a difficulty in not having to do this. That is, in refining crude carbon dioxide containing methane and hydrocarbons other than methane, which is the problem to be solved by the present invention, methane is separated by a different method, and only hydrocarbons other than methane are converted into carbon dioxide through an oxidation reaction. When changing the methane oxidation reaction, it is difficult to completely carry out other oxidation reactions while suppressing the oxidation reaction of methane as much as possible, and there is often a risk that the reaction will run out of control. There was a problem in that the material of the reactor had to be selected.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者は、前記問題点を解決するための鋭意
研究を行い、本発明を完成するに至つたものであ
る。
The present inventor has conducted intensive research to solve the above-mentioned problems and has completed the present invention.

すなわち本発明は、 メタン及びメタン以外の炭化水素を含有する粗
二酸化炭素を酸化触媒の存在下に酸素又は酸素含
有ガスと接触反応せしめてメタン以外の炭化水素
を二酸化炭素に酸化した後メタンを除去する二酸
化炭素の精製方法において、該接触反応が二酸化
マンガン及び酸化銅を含有する触媒により反応を
開始せしめ、次いで周期律表第8族金属を担持し
た触媒により実質的に反応を完結せしめる接触反
応であることを特徴とする二酸化炭素の精製方法
である。
That is, the present invention involves catalytically reacting crude carbon dioxide containing methane and hydrocarbons other than methane with oxygen or an oxygen-containing gas in the presence of an oxidation catalyst to oxidize hydrocarbons other than methane to carbon dioxide, and then removing methane. In the method for purifying carbon dioxide, the catalytic reaction is a catalytic reaction in which the reaction is initiated by a catalyst containing manganese dioxide and copper oxide, and then the reaction is substantially completed by a catalyst supporting a group 8 metal of the periodic table. This is a carbon dioxide purification method characterized by the following.

本発明において先ずメタン及びメタン以外の炭
化水素を含有する粗二酸化炭素と、酸素又は酸素
含有ガスとの酸化反応は2種類の触媒反応工程で
行われる。一つは二酸化マンガン及び酸化銅を含
有する触媒を用いた反応工程である。これにより
着火温度を下げることが可能となる。次いで、周
期律表第8族金属を担持した触媒を用いた反応工
程である。周期律表第8族金属としては、好まし
くはパラジウム、白金が選ばれ、とくに白金触媒
が好ましい。担体は種々のものを用いうるが、と
くにγ―アルミナが好適である。2つの反応工程
を別々の反応器で行つてもよいが、一つの反応器
の触媒層を2層として実施するのが好ましい方法
である。
In the present invention, first, the oxidation reaction between methane and crude carbon dioxide containing hydrocarbons other than methane and oxygen or an oxygen-containing gas is performed in two types of catalytic reaction steps. One is a reaction process using a catalyst containing manganese dioxide and copper oxide. This makes it possible to lower the ignition temperature. Next is a reaction step using a catalyst supporting a Group 8 metal of the periodic table. As the Group 8 metal of the periodic table, palladium and platinum are preferably selected, and platinum catalysts are particularly preferred. Although various carriers can be used, γ-alumina is particularly suitable. Although the two reaction steps may be carried out in separate reactors, it is preferable to carry out the process using two catalyst layers in one reactor.

この接触酸化反応によりメタン以外の炭化水素
が二酸化炭素へと酸化除去された粗二酸化炭素は
蒸留、液化等の常法によつてメタンを分離して極
めて純度の高い精二酸化炭素へと精製される。
Through this catalytic oxidation reaction, hydrocarbons other than methane are oxidized and removed to carbon dioxide, and the crude carbon dioxide is purified to extremely pure refined carbon dioxide by separating methane using conventional methods such as distillation and liquefaction. .

なお、本発明でメタン以外の炭化水素とはエチ
レン、ブタン等の飽和及び不飽和の炭化水素のみ
ならず、炭化水素の低級酸化物であるアセトアル
デヒド等のアルデヒド、酢酸などの脂肪酸も含む
ものである。
In the present invention, hydrocarbons other than methane include not only saturated and unsaturated hydrocarbons such as ethylene and butane, but also aldehydes such as acetaldehyde, which are lower oxides of hydrocarbons, and fatty acids such as acetic acid.

〔実施例〕〔Example〕

以下本発明を実施例により具体的に説明する。 The present invention will be specifically explained below using examples.

実施例: 縦型の反応器に触媒を2層に充填した。第1層
には二酸化マンガン及び酸化銅の混合触媒MTC
―101(東洋シーシーアイ社製商品名)20を、第
2層にはγ―アルミナに担持した白金触媒
DASH―220(エンゲルハルト社製商品名)180
を充填した。
Example: A vertical reactor was packed with catalyst in two layers. The first layer contains MTC, a mixed catalyst of manganese dioxide and copper oxide.
-101 (product name manufactured by Toyo CCI) 20, the second layer is a platinum catalyst supported on γ-alumina.
DASH-220 (Product name manufactured by Engelhard) 180
filled with.

メタン2300ppm、エチレン5600ppm、アセトア
ルデヒド350ppmを含有する粗二酸化炭素25N
m3/minに酸素0.5Nm3/minを混じたガスを反応
器に供給した。反応器入口付近の温度は約150℃
とした。反応器出口のガス温度は約290℃だつた。
反応出口ガス中のメタンは、2260ppm、エチレン
は及びアセトアルデヒドは不検出であつた。この
反応ガスを常法により液化し、メタンを分離して
精二酸化炭素を得た。純度は99.97%だつた。
Crude carbon dioxide 25N containing methane 2300ppm, ethylene 5600ppm, acetaldehyde 350ppm
A gas containing 0.5 Nm 3 /min of oxygen and 0.5 Nm 3 /min of oxygen was supplied to the reactor. The temperature near the reactor inlet is approximately 150℃
And so. The gas temperature at the reactor outlet was approximately 290°C.
Methane in the reaction outlet gas was 2260 ppm, and ethylene and acetaldehyde were not detected. This reaction gas was liquefied by a conventional method, and methane was separated to obtain purified carbon dioxide. The purity was 99.97%.

比較例: 実施例と同様に、ただ触媒をγ―アルミナに担
持した白金触媒DASH―220 200のみとし反応
を行つた。
Comparative Example: In the same manner as in the example, a reaction was carried out using only the platinum catalyst DASH-220 200 supported on γ-alumina.

反応器出口温度は約340℃で実施例に比べて約
50℃高く、反応ガス中のメタンは2100ppmで実施
例に比べて減少し、エチレン及びアセトアルデヒ
ドは不検出であつた。得られた二酸化炭素の純度
は99.97%であつた。
The reactor outlet temperature was approximately 340℃, which was approximately 340℃ compared to the example.
The temperature was 50°C higher, methane in the reaction gas was 2100 ppm, which was reduced compared to the example, and ethylene and acetaldehyde were not detected. The purity of the carbon dioxide obtained was 99.97%.

参考例: この反応を更に明確に解析するため、触媒出口
温度と、メタン、エチレン、アセトアルデヒドの
除去率の関係を求めた。結果を第1図及び第2図
に示す。第1図は、本発明の方法に基き第1層に
二酸化マンガンと酸化銅の混合触媒を用い、第2
層にγ―アルミナに担持した白金触媒を用いた場
合の結果である。第2図は、γ―アルミナに担持
した白金触媒のみを用いた場合の結果である。
Reference example: In order to analyze this reaction more clearly, the relationship between the catalyst outlet temperature and the removal rate of methane, ethylene, and acetaldehyde was determined. The results are shown in FIGS. 1 and 2. Figure 1 shows that a mixed catalyst of manganese dioxide and copper oxide is used in the first layer based on the method of the present invention, and a mixed catalyst of manganese dioxide and copper oxide is used in the second layer.
These are the results when a platinum catalyst supported on γ-alumina was used in the layer. FIG. 2 shows the results when only the platinum catalyst supported on γ-alumina was used.

なお反応条件は触媒として第1図の場合には実
施例と同じMTC―101を5mlとDASH―220を45
ml用い、第2図の場合はDASH―220を50ml用
い、供給ガスとしてはいずれもメタン2930ppm、
エチレン6270ppm及びアセトアルデヒド341ppm
を含む粗二酸化炭素826/hrと酸素36.5/hr
の混合を用いた。
In the case of Figure 1, the reaction conditions were as follows: 5 ml of MTC-101 and 45 ml of DASH-220, the same as in the example.
In the case of Figure 2, 50ml of DASH-220 is used, and the supply gas is methane 2930ppm,
Ethylene 6270ppm and acetaldehyde 341ppm
including crude carbon dioxide 826/hr and oxygen 36.5/hr
A mixture of

この図より、本発明の方法は、γ―アルミナに
担持した白金触媒単独に比べて同一のメタン以外
の炭化水素除去率を得る温度が約50℃低いことが
わかる。
From this figure, it can be seen that in the method of the present invention, the temperature at which the same removal rate of hydrocarbons other than methane is obtained is about 50° C. lower than when using only the platinum catalyst supported on γ-alumina.

〔発明の効果〕〔Effect of the invention〕

本発明の方法によれば、粗二酸化炭素中に含ま
れるメタンの酸化反応を防止しつゝ、メタン以外
の炭化水素は反応温度が低くても完全に酸化され
るので、メタンの酸化反応による暴走を抑制で
き、反応条件の制御が容易となり、安全性が確保
され、異常反応に対する配慮をした材質の選択を
行うことも不要となり、工業的に有利に二酸化炭
素の精製を行うことが出来る。
According to the method of the present invention, while preventing the oxidation reaction of methane contained in crude carbon dioxide, hydrocarbons other than methane are completely oxidized even at low reaction temperatures, thereby preventing runaway methane oxidation reaction. This makes it possible to suppress reaction conditions, ensure safety, eliminate the need to select materials with consideration for abnormal reactions, and purify carbon dioxide with industrial advantage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の効果の一例を示す触媒層出
口温度と除去率の関係を示すものである。第2図
は、γ―アルミナに担持した白金触媒のみを用い
た場合の触媒層出口温度と除去率の関係を示すも
のである。
FIG. 1 shows the relationship between catalyst bed outlet temperature and removal rate, showing an example of the effects of the present invention. FIG. 2 shows the relationship between catalyst layer outlet temperature and removal rate when only platinum catalyst supported on γ-alumina is used.

Claims (1)

【特許請求の範囲】[Claims] 1 メタン及びメタン以外の炭化水素を含有する
粗二酸化炭素を酸化触媒の存在下に酸素又は酸素
含有ガスと接触反応せしめてメタン以外の炭化水
素を二酸化炭素に酸化した後メタンを除去する二
酸化炭素の精製方法において、該接触反応が二酸
化マンガン及び酸化銅を含有する触媒により反応
を開始せしめ、次いで周期律表第8族金属を担持
した触媒により実質的に反応を完結せしめる接触
反応であることを特徴とする二酸化炭素の精製方
法。
1. A method of removing carbon dioxide by subjecting crude carbon dioxide containing methane and hydrocarbons other than methane to a catalytic reaction with oxygen or an oxygen-containing gas in the presence of an oxidation catalyst to oxidize hydrocarbons other than methane to carbon dioxide and then removing methane. The purification method is characterized in that the catalytic reaction is a catalytic reaction in which the reaction is initiated by a catalyst containing manganese dioxide and copper oxide, and then the reaction is substantially completed by a catalyst supporting a Group 8 metal of the periodic table. A method for purifying carbon dioxide.
JP59245891A 1984-11-22 1984-11-22 Purifying method of carbon dioxide Granted JPS61127613A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59245891A JPS61127613A (en) 1984-11-22 1984-11-22 Purifying method of carbon dioxide
EP85308413A EP0182649B1 (en) 1984-11-22 1985-11-19 Process for purifying carbon dioxide
DE8585308413T DE3575905D1 (en) 1984-11-22 1985-11-19 METHOD FOR PURIFYING CARBON DIOXIDE.
KR1019850008700A KR890001967B1 (en) 1984-11-22 1985-11-21 Process for purifiying carbon dioxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59245891A JPS61127613A (en) 1984-11-22 1984-11-22 Purifying method of carbon dioxide

Publications (2)

Publication Number Publication Date
JPS61127613A JPS61127613A (en) 1986-06-14
JPH0132164B2 true JPH0132164B2 (en) 1989-06-29

Family

ID=17140347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59245891A Granted JPS61127613A (en) 1984-11-22 1984-11-22 Purifying method of carbon dioxide

Country Status (1)

Country Link
JP (1) JPS61127613A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101284395B1 (en) * 2002-02-19 2013-07-09 프랙스에어 테크놀로지, 인코포레이티드 Method for removing contaminants from gases
JP7017897B2 (en) * 2017-10-05 2022-02-09 住友精化株式会社 Catalyzed oxidation system and carbon dioxide purification method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5242492A (en) * 1975-08-04 1977-04-02 Uop Inc Method of initiating and controlling dense bed oxidation of coke and catlytic oxidation of co to co2 in fcc regeneration area
JPS5784744A (en) * 1980-11-17 1982-05-27 Showa Denko Kk Catalyst for removing carbon monooxide used in gas mask
JPS5849610A (en) * 1981-07-17 1983-03-23 ザ・ハルコン・エス・デイ−・グル−プ・インコ−ポレ−テツド Method of selectively oxidizing carbon monoxide into carbon dioxide in gaseous phase
JPS59120222A (en) * 1982-12-27 1984-07-11 Ibiden Co Ltd Purification of non-oxidative gas

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5242492A (en) * 1975-08-04 1977-04-02 Uop Inc Method of initiating and controlling dense bed oxidation of coke and catlytic oxidation of co to co2 in fcc regeneration area
JPS5784744A (en) * 1980-11-17 1982-05-27 Showa Denko Kk Catalyst for removing carbon monooxide used in gas mask
JPS5849610A (en) * 1981-07-17 1983-03-23 ザ・ハルコン・エス・デイ−・グル−プ・インコ−ポレ−テツド Method of selectively oxidizing carbon monoxide into carbon dioxide in gaseous phase
JPS59120222A (en) * 1982-12-27 1984-07-11 Ibiden Co Ltd Purification of non-oxidative gas

Also Published As

Publication number Publication date
JPS61127613A (en) 1986-06-14

Similar Documents

Publication Publication Date Title
EP1091922B1 (en) Method of purifying aromatic dicarboxylic acids
EP0222499B1 (en) Purification of terephthalic acid to relatively low levels of 4-carboxybenzaldehyde and catalyst therefor
US4455395A (en) Process for the production of unsaturated hydro-carbons
JPS59163340A (en) Manufacture of acrylic acid from propane
EP0318205B1 (en) Process for the production of nitriles and anhydrides
EP1296925A1 (en) Process for the production of vinyl acetate
JPH0240653B2 (en)
JPS6041056B2 (en) Cyclohexane oxidation method
JP2011116789A (en) Alkene separation method
KR100529204B1 (en) Method of processing reaction mixture obtained from the oxidation of cyclohexane
KR890001967B1 (en) Process for purifiying carbon dioxide
JPS6410444B2 (en)
JPH0132164B2 (en)
KR101006038B1 (en) Process for the production of an alkenyl carboxylate or an alkyl carboxylate
RU2356884C2 (en) Oxidation method of producing carboxylic acids and alkenes and optionally alkenylcarboxylate or alkylcarboxylate
WO2000006528A1 (en) Process for producing adipic acid
US6750374B2 (en) Manufacture of cyclohexane from benzene and a hydrogen source containing impurities
JP2001515535A (en) Purification of material flow
JPS6160061B2 (en)
JP2918285B2 (en) Manufacturing method of nitriles
JPH07157305A (en) Refining method of crude carbon dioxide gas
JPH02121946A (en) Continuous production of succinic acid
SU565910A1 (en) Method of obtaining tetralone-1
JPS6025414B2 (en) Manufacturing method of diacetylbenzene
JPS6125016B2 (en)