JP2004154738A - Catalyst for combustion of hydrocarbon in exhaust gas and method of combusting hydrocarbon in exhaust gas - Google Patents

Catalyst for combustion of hydrocarbon in exhaust gas and method of combusting hydrocarbon in exhaust gas Download PDF

Info

Publication number
JP2004154738A
JP2004154738A JP2002325130A JP2002325130A JP2004154738A JP 2004154738 A JP2004154738 A JP 2004154738A JP 2002325130 A JP2002325130 A JP 2002325130A JP 2002325130 A JP2002325130 A JP 2002325130A JP 2004154738 A JP2004154738 A JP 2004154738A
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
composite oxide
oxide
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002325130A
Other languages
Japanese (ja)
Other versions
JP3940794B2 (en
Inventor
Yusuke Yamada
裕介 山田
Mitsuharu Tabuchi
光春 田渕
Atsushi Ueda
厚 上田
Tetsuhiko Kobayashi
哲彦 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002325130A priority Critical patent/JP3940794B2/en
Publication of JP2004154738A publication Critical patent/JP2004154738A/en
Application granted granted Critical
Publication of JP3940794B2 publication Critical patent/JP3940794B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To a highly active catalyst containing no noble metals such as palladium and platinum and reducing the used amount of chromium or magnesium high in an environmental load, and accelerating the combustion of hydrocarbon in an exhaust gas. <P>SOLUTION: The catalyst is expressed by the following composition formula in the exhaust gas: Li<SB>[(4-x)/3]-y</SB>Mn<SB>(2-2x)/3</SB>Fe<SB>x</SB>O<SB>2</SB>, wherein x satisfies 0.07≤x≤0.67, and y o≤y≤0.4, and is constituted of a lithium-manganese-iron compound oxide having a laminar rock salt type structure with the molecular ratio of Fe/(Fe+Mn) within 0.1 to 0.75, And, the above compound oxide is constituted of an oxide carrier carried by at least one kind of metal oxide selected from among magnesia, silica, titania, alumina, zirconia, zinc oxide and cerium oxide. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、排ガス中の炭化水素燃焼用触媒及び排ガス中の炭化水素燃焼方法に関する。
【0002】
【従来の技術】
自動車、火力発電所、各種工場等で用いられているガスエンジン、ガスタービン、ボイラー等では、燃焼ガスとして都市ガス、液化天然ガス、プロパンガス等を用いており、その燃焼効率や熱効率を高めるために、燃焼方式として、燃焼ガスに対して空気の比率を高めた希薄燃焼方式が採用されている。
【0003】
かかる燃焼方式では、燃焼排ガスには、未燃焼炭化水素が僅かに含まれると共に水蒸気も含まれているため、このような排ガスを浄化するためには、水蒸気共存下において未燃焼炭化水素を燃焼させる必要がある。
【0004】
従来、希薄炭化水素を燃焼除去するための触媒としては、例えば、パラジウム、白金又はその両方をゼオライト、アルミナ等の酸化物担体に担持したものが知られている。メザキ(Mezaki)らは、これら貴金属を含む触媒は活性が高く、例えば、0.5%Pd−アルミナの場合には、燃焼開始温度が210℃と低いことを報告している(非特許文献1参照)。
【0005】
しかしながら、パラジウム、白金等の貴金属は、資源量が少なく価格が高いという問題がある。例えば、1996年の白金及びパラジウム価格を基準に2000年の価格を見ると、白金は1.5倍、パラジウムは9倍にまで高騰している。また、これら貴金属の産出国がロシアや南アフリカに極端に偏っているため、将来の長期にわたる安定供給にも不安がある。
【0006】
このため、貴金属を含まない炭化水素燃焼用触媒の開発が進められており、例えば、SrFeOのようなペロブスカイト系触媒が報告されている(非特許文献2〜4参照)。
【0007】
しかしながら、この触媒は、貴金属を含む触媒と比べて活性がかなり低く、点火温度(反応開始温度)を比較すると、白金又はパラジウムを含む触媒では200℃前後であるのに対して、ペロブスカイト系触媒では300℃以上である。このため、ペロブスカイト系触媒を高活性化するためには、環境負荷の大きなマンガン、クロム等の使用が不可欠である。更に、ペロブスカイト系触媒では、単位質量あたりの比表面積を高めることが困難である上、水蒸気存在下での反応活性について未だ十分に解明されていない。
【0008】
【非特許文献1】
燃料協会編、「燃料協会誌」、1979年、第58巻、第625号、p.422−431
【0009】
【非特許文献2】
エヌ.グナセカラン(N. Gunasekaran)、外4名、「ソリッド ステート イオニクス(Solid State Ionics)」、オランダ、1995年、第81巻、p.243
【0010】
【非特許文献3】
エル.エー.イスポバ(L. A. Isupova)、外4名、「アプライド キャタリシス ビー−エンバイロメンタル(Applied Catalysis B−Environmental)」、オランダ、1999年、第21巻、p.171
【0011】
【非特許文献4】
ピー.サロモンソン(P. Salomonsson)、外2名、「アプライド キャタリシスエー−ジェネラル(Applied Catalysis A−General)」、オランダ、1993年、第104巻、p.175
【0012】
【発明が解決しようとする課題】
本発明は、パラジウム、白金等の貴金属を含まず、環境負荷の大きなクロム、マンガン等の使用量も低減された、排ガス中の炭化水素の燃焼を促進できる高活性な触媒を提供することを主な目的とする。
【0013】
【課題を解決するための手段】
本発明者は、上記した目的を達成すべく鋭意研究を重ねた結果、層状岩塩型構造を有する特定のリチウム−マンガン−鉄複合酸化物が上記目的を達成できることを見出し、本発明を完成するに至った。
【0014】
即ち、本発明は、下記の排ガス中の炭化水素燃焼用触媒及び排ガス中の炭化水素燃焼方法に係るものである。
【0015】
1.下記組成式:
Li[(4−x)/3]−yMn(2−2x)/3Fe
〔式中、xは0.07≦x≦0.67であり、yは0≦y≦0.4である。〕
で表され、Fe/(Fe+Mn)のモル比が0.1〜0.75の範囲内である層状岩塩型構造を有するリチウム−マンガン−鉄複合酸化物からなる排ガス中の炭化水素燃焼用触媒。
【0016】
2.下記組成式:
Li[(4−x)/3]−yMn(2−2x)/3Fe
〔式中、xは0.07≦x≦0.67であり、yは0≦y≦0.4である。〕
で表され、Fe/(Fe+Mn)のモル比が0.1〜0.75の範囲内である層状岩塩型構造を有するリチウム−マンガン−鉄複合酸化物が、マグネシア、シリカ、チタニア、アルミナ、ジルコニア、酸化亜鉛及び酸化セリウムから選ばれる少なくとも1種の金属酸化物に担持された酸化物担持体からなる排ガス中の炭化水素燃焼用触媒。
【0017】
3.炭化水素を含む排ガスを上記項1又は2に記載の炭化水素燃焼用触媒に接触させることを特徴とする排ガス中の炭化水素燃焼方法。
【0018】
4.炭化水素がメタンである上記項3に記載の排ガス中の炭化水素燃焼方法。
【0019】
【発明の実施の形態】
排ガス中の炭化水素燃焼用触媒
本発明の排ガス中の炭化水素燃焼用触媒は、下記組成式:
Li[(4−x)/3]−yMn(2−2x)/3Fe
〔式中、xは0.07≦x≦0.67であり、yは0≦y≦0.4である。〕
で表され、Fe/(Fe+Mn)のモル比が0.1〜0.75の範囲内である層状岩塩型構造を有するリチウム−マンガン−鉄複合酸化物を有効成分とするものである。このような複合酸化物は、排ガス中に含まれる炭化水素を燃焼させる反応に対して高活性を有し、排ガスを浄化するための触媒として有用性が高いものである。
【0020】
当該複合酸化物は、Li(Li1/3Mn2/3)Oを基本構造とする層状岩塩型構造の複合酸化物における(Li1/3Mn2/3)の一部がFeにより置換された置換型固溶体と考えることができる。当該複合酸化物は、Li(Li1/3Mn2/3)Oの(Li1/3Mn2/3)の一部がFeに置換されていることにより、環境負荷の大きいマンガンの使用量が低減されており、更にクロム等の環境負荷の大きな成分も含まないものである。当該複合酸化物は、従来のマンガン、クロム等を添加して高活性化したペロブスカイト系触媒と同程度の温度域で排ガス中の炭化水素を燃焼させることが可能である点で、非常に有用性が高い触媒である。
【0021】
上記組成式の概略について説明すると次のようになる。先ず、前記基本構造において、(Li1/3Mn2/3)の一部がFeに置換された構造を、Feのモル比をxとして表すと、Li{(Li1/3Mn2/31−xFe}Oとなる。式中、xは0.07〜0.67であり、0.07〜0.4であることが好ましい。
【0022】
次に、当該複合酸化物を合成する際の洗浄により、Liイオンが水素イオンやオキソニウムイオンと交換することにより生じ得るLiの欠損を考慮した構造について、欠損したLiのモル比をyとして表すと、Li1−y{(Li1/3Mn2/31−xFe}Oとなる。式中、yは0〜0.4である。この式を展開すると、上記組成式となる。
【0023】
なお、本発明触媒としては、上記組成式で表される複合酸化物は、Fe/(Fe+Mn)のモル比が0.1〜0.75であることが必須であり、その中でも、0.3〜0.5であることが好ましい。Li/(Fe+Mn)のモル比は特に限定されないが、0.5〜2の範囲内であることが好ましい。
【0024】
本発明触媒の有効成分であるリチウム−マンガン−鉄複合酸化物は、例えば、水熱反応法、焼成法等により製造できる。
【0025】
複合酸化物を水熱反応法により製造する場合には、例えば、マンガン化合物と鉄化合物とを含む水溶液又は水−アルコール混合溶液をアルカリ性、例えば、pH11以上にしてマンガン及び鉄を含む共沈物を得て、当該共沈物を酸化剤及びアルカリの共存下において、リチウム化合物と共に水熱反応させることにより製造できる。
【0026】
このような水熱反応法において、マンガン化合物としては、例えば、マンガンの塩化物、硝酸塩、硫酸塩、酢酸塩、水酸化物等の水溶性化合物が使用でき、鉄化合物としては、例えば、鉄の塩化物、硝酸塩、硫酸塩、酢酸塩、水酸化物等の水溶性化合物が使用できる。これらの化合物は、水溶液又は水−アルコール混合溶液の状態で使用でき、アルコールとしては、メタノール、エタノール等が使用できる。
【0027】
当該水溶液又は水−アルコール混合溶液における鉄及びマンガンの全濃度は、通常0.01〜2mol/l(無水物換算)程度、好ましくは0.1〜0.5mol/l程度となるように調整すればよい。また、鉄化合物及びマンガン化合物の使用量は、目的とする複合酸化物中のFe/(Fe+Mn)のモル比となるように調整すればよい。
【0028】
当該水溶液又は水−アルコール混合溶液をアルカリ性にするには、例えば、通常0.1〜20mol/l程度、好ましくは0.5〜10mol/l程度の水酸化カリウム、水酸化ナトリウム等を含むアルカリ水溶液を添加する方法が挙げられる。アルカリ水溶液の添加量は、当該水溶液又は水−アルコール混合溶液が完全にアルカリ性になるまで、例えば、pH11以上となるまで添加すればよい。
【0029】
上記方法によりマンガン及び鉄を含む共沈物が得られるが、必要に応じて、共沈物に、通常0〜150℃程度、好ましくは20〜100℃程度において、空気を吹き込みながら熟成処理を施してもよい。共沈物は、通常、蒸留水洗浄により過剰のアルカリ成分及び残留塩類を除去し、その後、溶液より濾別し、100℃程度で乾燥させた後に、蒸留水と混合した状態で水熱反応させればよい。
【0030】
共沈物を水熱反応させる際に用いる酸化剤としては、例えば、塩素酸カリウム、塩素酸ナトリウム、過酸化水素水等が使用できる。酸化剤の添加量は、添加後の溶液中において、通常0.1〜10mol/l程度、好ましくは1〜5mol/l程度となるように設定すればよい。また、アルカリとしては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、アンモニア水等が使用できる。アルカリの添加量は、添加後の溶液中において、通常0.1〜10mol/l程度、好ましくは1〜5mol/l程度となるように設定すればよい。水酸化リチウム以外のアルカリを用いることにより、硝酸リチウム、塩化リチウム等の中性又は酸性リチウム塩をリチウム源として用いることが可能となる。
【0031】
リチウム化合物としては、例えば、水酸化リチウム(無水物でも水和物でもよい)、塩化リチウム、硝酸リチウム等が使用できる。リチウム化合物の使用量は、目的とする複合酸化物中のLi/(Mn+Fe)のモル比となるように調整すればよい。過剰なリチウム化合物の添加は経済的に不利であり工業的に好ましくない。
【0032】
水熱反応は、上記の水熱反応原料を収容した容器を、例えば、オートクレーブのような水熱反応装置中に静置させて行うことができる。水熱反応条件は特に限定されないが、通常100〜300℃程度の温度で0.1〜150時間程度反応させればよく、好ましくは150〜250℃程度の温度で1〜100時間程度反応させればよい。水熱反応は、例えば、大気等の酸化雰囲気下で行うことができる。反応終了後、残存する余分な塩類等を除去するために、必要に応じて、反応生成物を水洗、濾過、乾燥させてもよい。このようにして、リチウム−マンガン−鉄複合酸化物が得られる。
【0033】
複合酸化物を焼成法により製造する場合には、例えば、マンガン化合物と鉄化合物とを含む水溶液又は水−アルコール混合溶液に、リチウム化合物を添加して沈殿物を得て、当該沈殿物を焼成することにより製造できる。また、当該水溶液又は水−アルコール混合溶液に、リチウム化合物を添加した後の溶液及び沈殿を蒸発乾固させることにより得た残渣を焼成することによっても製造できる。
【0034】
上記の焼成法において、マンガン化合物及び鉄化合物としては、前記した水熱反応で使用できる化合物がそのまま使用でき、それらは水溶液又は水−アルコール混合溶液の状態で使用できる。当該水溶液又は水−アルコール混合溶液における鉄及びマンガンの全濃度も、前記した水熱反応の場合と同様でよい。
【0035】
マンガン化合物及び鉄化合物の使用量は、目的とする複合酸化物中のFe/(Fe+Mn)のモル比となるように調整すればよい。
【0036】
リチウム化合物としても、水熱反応法と同様に、水酸化リチウム(無水物でも水和物でもよい)、塩化リチウム、硝酸リチウム等が使用できる。リチウム化合物の使用量は、目的とする複合酸化物中のLi/(Mn+Fe)のモル比となるように調整すればよい。過剰なリチウム化合物の添加は経済的に不利であり工業的に好ましくない。
【0037】
なお、リチウム化合物の添加により得られた沈殿物を焼成する場合には、沈殿物を溶液中から取り出したもの、例えば、水洗、濾過、乾燥させて取り出したものを焼成することができる。
【0038】
沈殿又は残渣の焼成条件は特に限定されず、通常200〜1000℃程度で1〜100時間程度、好ましくは300〜800℃程度で20〜60時間程度とすればよい。焼成雰囲気も特に限定されず、大気等の酸化雰囲気下でもよく、水素等の還元雰囲気下でもよい。焼成後、必要に応じて生成物を粉砕し、上記と同様の条件で焼成を繰り返してもよい。
【0039】
このような製造方法により製造されたリチウム−マンガン−鉄複合酸化物は、そのまま本発明触媒として使用できる。この場合に、本発明触媒の形状は特に限定されず、例えば、粒子状、粉末状、ペレット状、板状、柱状、格子状等の任意の形状で使用できる。なお、複合酸化物を上記の形状に加工する際に、必要に応じて、本発明触媒の効果に影響を与えない範囲でバインダー等を添加することもできる。
【0040】
上記した複合酸化物の大きさも特に限定されず、実際の使用態様を考慮して適宜設定できるが、例えば、粒子状で用いるのであれば、粒子の平均粒子径としては、通常0.1〜5mm程度が適当であり、1〜3mm程度が好ましい。また、粉末状で用いるのであれば、粉末の平均粒子径としては、通常0.1〜1000nm程度が適当であり、1〜100nm程度が好ましい。また、ペレット状で用いるのであれば、縦30mm、横30mm、高さ5mm程度、好ましくは縦10mm、横10mm、高さ3mm程度のペレットとすればよい。
【0041】
本発明触媒の比表面積は、排ガスとの接触面積を広く確保できる範囲であればよいが、通常10〜1000m/g程度が適当であり、50〜100m/g程度が好ましい。なお、本明細書における比表面積の値は、測定対象物の表面に窒素を吸着させることを特徴とするBET法により測定した値である。
【0042】
本発明触媒としては、当該複合酸化物を担体に担持させて用いてもよい。担体に担持させる場合には、前記したように当該複合酸化物をそのまま触媒として用いる場合と比べて、複合酸化物と排ガスとの接触面積をより広く確保することができる。従って、当該複合酸化物をそのまま触媒として用いる場合と比べて、複合酸化物の使用量を少なくしても同等の炭化水素燃焼効果が発揮できるため、環境負荷の大きなマンガンの使用量をより低減できる点で有利である。
【0043】
担体の種類は特に限定されないが、排ガスとの接触を考慮すると、耐熱性に優れたものが好ましい。担体としては、例えば、マグネシア、シリカ、チタニア、アルミナ、ジルコニア、酸化亜鉛、酸化セリウム、酸化カルシウム等の金属酸化物やこれらの複合酸化物等が挙げられる。この中でも、特に、マグネシア、酸化亜鉛、酸化カルシウム等の塩基性金属酸化物が好ましい。
【0044】
担体の形状は特に限定されないが、排ガスとの接触を考慮すると、比表面積が大きな形状、例えば、粒子状、ペレット状、ハニカム状等が好ましい。担体の大きさは特に限定されず、実際の使用態様を考慮して適宜設定できるが、粒子状であれば、平均粒子径は通常0.5〜3mmが適当であり、1〜2mm程度が好ましい。ペレット状であれば、縦30mm、横30mm、高さ30mm程度が適当であり、縦10mm、横10mm、高さ10mm程度が好ましい。
【0045】
担体に対する複合酸化物の担持量は特に限定されないが、担体100重量部に対して、通常1〜10重量部程度が適当であり、3〜5重量部程度が好ましい。担持させる複合酸化物としては、例えば、平均粒子径が通常0.1〜1000nm程度の粉末が好ましく、1〜100nm程度の粉末がより好ましい。
【0046】
担体に複合酸化物を担持させる方法は特に限定されず、例えば、担体と複合酸化物とを固体状態で混合する方法;担体と複合酸化物とを固体状態で混合したものに水を加えてよく撹拌した後、得られたスラリーを乾燥させる方法;担体又は複合酸化物のいずれか一方に水を加えたものに、他方を加えてよく撹拌した後、得られたスラリーを乾燥させる方法等により担持させることができる。また、複合酸化物と水からなるスラリーを、担体に塗布、噴霧等することによっても担持させることができる。
【0047】
本発明触媒の使用方法
本発明触媒は、排ガス中の炭化水素を燃焼させる用途に使用できる。即ち、排ガス中の炭化水素を燃焼させて排ガスを浄化する用途に好適に使用できる。
【0048】
本発明触媒が対象とする排ガスは、炭化水素を含むものであれば限定されず、例えば、ガスエンジン、ガスタービン、ボイラー、ガスファンヒーター、ガス湯沸かし器等から排出される排ガスを対象とできる。上記の排ガスには、炭化水素以外に、一般に水蒸気、窒素酸化物、硫黄酸化物、酸素等が含まれている。
【0049】
燃焼対象とする炭化水素も特に限定されず、例えば、メタン、エタン、プロパン、ブタン等が挙げられる。本発明触媒は、炭化水素の中でも、特にメタン燃焼用として好適に使用できる。
【0050】
本発明触媒が対象とする排ガス中の炭化水素濃度は特に限定されないが、炭化水素濃度10000ppm以下、特に2500ppm以下のような希薄炭化水素も対象とすることができる。従って、希薄燃焼方式を採用し、排ガス中の炭化水素濃度が低いガスエンジン、ガスタービン、ボイラー等の排ガスに含まれる炭化水素の燃焼用としても好適に使用できる。
【0051】
排ガス中の炭化水素を燃焼させるには、例えば、本発明触媒を充填した反応管に排ガスを流通させることにより、排ガスに含まれる炭化水素を燃焼させることができる。反応管の形状、大きさ等は、実際の使用態様を考慮して適宜設定できる。このような反応管は、例えば、石英製ガラス、ステンレス等の耐熱性材料で作製されたものが使用できる。
【0052】
触媒使用量は特に限定されないが、ガス時間当たり空間速度(SV)に換算して、1000〜100000ml/h・g−catの範囲が適当であり、1000〜10000ml/h・g−catの範囲が好ましい。触媒使用量が少なすぎる場合には、炭化水素燃焼率が不十分となる。触媒使用量が多すぎる場合には、炭化水素燃焼率は向上するが、使用量に見合った触媒性能の向上が得られないため経済的に不利となる。
【0053】
本発明触媒の高い活性を有効利用するためには、排ガス処理温度としては、通常200〜1000℃が適当であり、300〜500℃程度が好ましい。排ガス処理温度が低すぎる場合には、炭化水素燃焼率が不十分となる。排ガス処理温度が高すぎる場合には、触媒の耐久性が低下し易くなる。
【0054】
【発明の効果】
本発明触媒は、排ガス中の炭化水素の燃焼を促進できる。特に、希薄燃焼方式により排出される炭化水素濃度の低い排ガスを対象とする場合にも、炭化水素の燃焼を促進できる点で、非常に有用性が高い触媒である。このような本発明触媒は、特にメタン燃焼用として好適に使用できる。
【0055】
本発明触媒は、パラジウム、白金等の貴金属や環境負荷の大きなクロムを含まず、しかもマンガン使用量も低減されている。このような本発明触媒は、より少量のマンガンしか用いずに、従来のマンガン又はクロムを多く含むペロブスカイト系触媒とほぼ同程度の温度域で、燃焼排ガス中の炭化水素を燃焼させることができる。また、貴金属を含まない点において、製造コストを削減でき、しかも原料を安定供給できるという利点もある。
【0056】
また、本発明触媒は十分な耐久性を有しており、触媒の交換頻度を抑えることもでき、排ガス処理システム自体を低コスト化することもできる。更に、その酸化により発熱を伴うため、熱回収が可能である。
【0057】
【実施例】
以下、実施例及び比較例を示し、本発明をより具体的に説明する。但し、本発明はこれらの実施例に限定されるものではない。
【0058】
実施例1
硝酸マンガン(II)六水和物64.58g及び硝酸鉄(III)九水和物10.1gを蒸留水400mlに溶解させてFe−Mn混合水溶液(全量0.25mol、Fe/(Fe+Mn)のモル比0.1)を調製した。
【0059】
混合水溶液に、室温まで冷却した水酸化カリウム水溶液400ml(水酸化カリウム50gを蒸留水400mlに溶解したもの)を2〜3時間かけて、水溶液がpH11以上となるまで撹拌しながら滴下してFe−Mn共沈物を得た。共沈物を撹拌しつつ空気酸化した後、密閉容器に入れて50℃で2〜3日熟成させた。
【0060】
次いで、共沈物を蒸留水で洗浄濾過して残留アルカリ成分を除去後、共沈物を100℃で乾燥させた。PTFE製ビーカーに乾燥させた共沈物、蒸留水200ml、水酸化リチウム一水和物40g及び塩素酸カリウム40gを入れてよく撹拌した。PTFE製ビーカーをオートクレーブ内に静置し、内容物を220℃で5時間水熱反応させた。
【0061】
反応終了後、室温まで自然冷却してからPTFE製ビーカーを取り出し、反応生成物を蒸留水で洗浄濾過して過剰のリチウム塩を除去した。固形分を100℃で乾燥させて粒子状のリチウム−マンガン−鉄複合酸化物を得た。
【0062】
複合酸化物は、Li/(Fe+Mn)のモル比が1.69であり、Fe/(Fe+Mn)のモル比が0.1であった。組成式は、Li1.16Fe0.07Mn0.62であった。複合酸化物の形状は粒子状であり、BET比表面積は22m/gであり、粒子径は10〜500nmであった。なお、本明細書における複合酸化物の組成は、誘導結合プラズマ(ICP)測定により決定した結果である。
【0063】
実施例2
硝酸マンガン(II)六水和物50.23g及び硝酸鉄(III)九水和物30.3gを蒸留水400mlに溶解させてFe−Mn混合水溶液(全量0.25mol、Fe/(Fe+Mn)のモル比0.3)を調製した。
【0064】
混合水溶液に、室温まで冷却した水酸化カリウム水溶液400ml(水酸化カリウム50gを蒸留水400mlに溶解したもの)を2〜3時間かけて、水溶液がpH11以上となるまで撹拌しながら滴下してFe−Mn共沈物を得た。共沈物を撹拌しつつ空気酸化した後、密閉容器にいれて50℃で2〜3日熟成させた。
【0065】
次いで、共沈物を蒸留水で洗浄濾過して残留アルカリ成分を除去後、共沈物を100℃で乾燥させた。PTFE製ビーカーに乾燥させた共沈物、蒸留水200ml、水酸化リチウム一水和物40g及び塩素酸カリウム40gを入れてよく撹拌した。PTFE製ビーカーをオートクレーブ内に静置し、内容物を220℃で5時間水熱反応させた。
【0066】
反応終了後、室温まで自然冷却してからPTFE製ビーカーを取り出し、反応生成物を蒸留水で洗浄濾過して過剰のリチウム塩を除去した。固形分を100℃で乾燥させて粒子状のリチウム−マンガン−鉄複合酸化物を得た。
【0067】
複合酸化物は、Li/(Fe+Mn)のモル比が1.4であり、Fe/(Fe+Mn)のモル比が0.3であった。組成式は、Li1.04(Fe0.22Mn0.52)Oであった。複合酸化物の形状は粒子状であり、BET比表面積は44m/gであり、粒子径は10〜500nmであった。
【0068】
実施例3
硝酸マンガン(II)六水和物35.88g及び硝酸鉄(III)九水和物50.5gを蒸留水400mlに溶解させてFe−Mn混合水溶液(全量0.25mol、Fe/(Fe+Mn)のモル比0.5)を調製した。
【0069】
混合水溶液に、室温まで冷却した水酸化カリウム水溶液400ml(水酸化カリウム50gを蒸留水400mlに溶解したもの)を2〜3時間かけて、水溶液がpH11以上となるまで撹拌しながら滴下してFe−Mn共沈物を得た。共沈物を撹拌しつつ空気酸化した後、密閉容器に入れて50℃で2〜3日間熟成させた。
【0070】
次いで、共沈物を蒸留水で洗浄濾過して残留アルカリ成分を除去後、共沈物を100℃で乾燥させた。PTFE製ビーカーに乾燥させた共沈物、蒸留水200ml、水酸化リチウム一水和物40g及び塩素酸カリウム40gを入れてよく撹拌した。PTFE製ビーカーをオートクレーブ内に静置し、内容物を220℃で5時間水熱反応させた。
【0071】
反応終了後、室温まで自然冷却してからPTFE製ビーカーを取り出し、反応生成物を蒸留水で洗浄濾過して過剰のリチウム塩を除去した。固形分を100℃で乾燥させて粒子状のリチウム−マンガン−鉄複合酸化物を得た。
【0072】
複合酸化物は、Li/(Fe+Mn)のモル比が1.28であり、Fe/(Fe+Mn)のモル比が0.47であった。組成式は、Li1.01(Fe0.37Mn0.42)Oであった。複合酸化物の形状は粒子状であり、BET比表面積は53m/gであり、粒子径は50〜100nmであった。
【0073】
実施例4
実施例3で得られた複合酸化物50mgと平均粒子径0.05mmの粉末状マグネシア1gとを固体状態で混合した。
【0074】
混合物に蒸留水1mlを加えて超音波洗浄機槽中で30分間よく混合した。得られたスラリーを100℃で一晩乾燥させた後、得られた粉末を600℃で5時間焼成し、複合酸化物を5重量部担持したマグネシアを得た。
【0075】
実施例5
実施例3で得られた複合酸化物50mgと平均粒子径0.05mmの粉末状ジルコニア1gとを固体状態で混合した。
【0076】
混合物に蒸留水1mlを加えて超音波洗浄機槽中で30分間よく混合した。得られたスラリーを100℃で一晩乾燥させた後、得られた粉末を600℃で5時間焼成し、複合酸化物を5重量部担持したジルコニアを得た。
【0077】
実施例6
実施例2で得られた複合酸化物を50mgと平均粒子径0.05mmの粉末状セリア1gとを固体状態で混合した。
【0078】
混合物に蒸留水1mlを加えて超音波洗浄機槽中で30分間よく混合した。得られたスラリーを100℃で一晩乾燥させた後、得られた粉末を600℃で5時間焼成し、複合酸化物を5重量部担持したセリアを得た。
【0079】
実施例7
実施例2で得られた複合酸化物を50mgと平均粒子径0.1mmの粉末状アルミナ1gとを固体状態で混合した。
【0080】
混合物に蒸留水1mlを加えて超音波洗浄機槽中で30分間よく混合した。得られたスラリーを100℃で一晩乾燥させた後、得られた粉末を600℃で5時間焼成し、複合酸化物を5重量部担持したアルミナを得た。
【0081】
実施例8
実施例2で得られた複合酸化物を50mgと平均粒子径0.2mmの粉末状酸化亜鉛1gとを固体状態で混合した。
【0082】
混合物に蒸留水1mlを加えて超音波洗浄機槽中で30分間よく混合した。得られたスラリーを100℃で一晩乾燥させた後、得られた粉末を600℃で5時間焼成し、複合酸化物を5重量部担持した酸化亜鉛を得た。
【0083】
実施例9
実施例2で得られた複合酸化物を50mgと平均粒子径0.1mmの粉末状チタニア1gとを固体状態で混合した。
【0084】
混合物に蒸留水1mlを加えて超音波洗浄機槽中で30分間よく混合した。得られたスラリーを100℃で一晩乾燥させた後、得られた粉末を600℃で5時間焼成し、複合酸化物を5重量部担持したチタニアを得た。
【0085】
実施例10
実施例2で得られた複合酸化物を50mgと粒子径0.063〜0.2mmの粉末状アモルファスシリカ1gとを固体状態で混合した。
【0086】
混合物に蒸留水1mlを加えて超音波洗浄機槽中で30分間よく混合した。得られたスラリーを100℃で一晩乾燥させた後、得られた粉末を600℃で5時間焼成し、複合酸化物を5重量部担持したアモルファスシリカを得た。
【0087】
実施例11
実施例2で得られた複合酸化物を50mgと平均粒子径0.3mmの粉末状メソポーラスシリカ1gとを固体状態で混合した。
【0088】
混合物に蒸留水1mlを加えて超音波洗浄機槽中で30分間よく混合した。得られたスラリーを100℃で一晩乾燥させた後、得られた粉末を600℃で5時間焼成し、複合酸化物を5重量部担持したメソポーラスシリカを得た。
【0089】
比較例1
二酸化マンガン3gをPTFE製ビーカーに入れ、蒸留水200mlを加えてよく分散させ、更に水酸化リチウム一水和物50gを加えてよく撹拌した。
【0090】
PTFE製ビーカーをオートクレーブ内に静置し、内容物を220℃で7時間水熱反応させた。
【0091】
反応終了後、室温まで自然冷却してからPTFE製ビーカーを取り出し、反応生成物を蒸留水で洗浄濾過して過剰のリチウム塩を除去した。固形分を100℃で乾燥させてリチウム−マンガン複合酸化物を得た。
【0092】
複合酸化物のLi/Mnのモル比は1.35であった。組成式は、Li0.9Mn0.67であった。複合酸化物の形状は粒子状であり、BET比表面積は30m/gであった。
【0093】
比較例2
硫酸鉄(II)七水和物69.51gを蒸留水400mlに溶解させて硫酸鉄(II)水溶液を調製した。
【0094】
水溶液に、室温まで冷却した水酸化カリウム水溶液400ml(水酸化カリウム50gを蒸留水400mlに溶解したもの)を2〜3時間かけて、水溶液がpH11以上となるまで撹拌しながら滴下して水酸化鉄の沈殿を得た。沈殿物を撹拌しながら空気酸化した後、密閉容器に入れて50℃で2〜3日熟成させた。
【0095】
次いで、沈殿物を蒸留水で洗浄濾過して残留アルカリ成分を除去後、沈殿物を100℃で乾燥させた。PTFE製ビーカーに乾燥させた沈殿物、蒸留水200ml、水酸化リチウム一水和物40g及び塩素酸カリウム40gを入れてよく撹拌した。PTFE製ビーカーをオートクレーブ内に静置し、内容物を220℃で5時間水熱反応させた。
【0096】
反応終了後、室温まで自然冷却してからPTFE製ビーカーを取り出し、反応生成物を蒸留水で洗浄濾過して過剰のリチウム塩を除去した。固形分を100℃で乾燥させて粒子状のリチウム−鉄複合酸化物を得た。
【0097】
複合酸化物は、X線回折分析によりα−LiFeOであった。複合酸化物の形状は粒子状であり、BET比表面積は6m/gであった。
【0098】
触媒性能試験1
実施例1〜3及び比較例1〜2で得られたそれぞれの複合酸化物の触媒性能を確認した。触媒性能の確認は、5種類の複合酸化物それぞれについて、複合酸化物300mgを内径12mmの石英製ガラス管に充填し、常圧下、固定床流通式反応装置を用いてガラス管に反応ガスを流通させ、反応ガス中に含まれるメタンの転化率を調べることにより確認した。
【0099】
反応ガスとしては、2500ppm(容積)のメタン及び20%の酸素を含む窒素ガスを用いた。反応ガスの流通速度は、毎分50mlとした(SV=10,000ml/h・g−cat)。反応温度は300℃から50℃づつ昇温させて550℃まで変化させた。
【0100】
触媒性能の指標となるメタン転化率の値は、ガスクロマトグラフ分析装置により反応ガス中に含まれるメタン、一酸化炭素及び二酸化炭素の濃度を測定した上で、下記式に基づいて算出した。
メタン転化率(%)=(C−C)/C×100
:反応開始前のメタン濃度
:反応後のメタン濃度。
【0101】
5種類の複合酸化物それぞれの反応温度とメタン転化率との関係を示すグラフを図1に示す。
【0102】
図1の結果からは、マンガンに対する鉄の割合が増加するにつれてメタン転化率が大きくなり、触媒性能が高くなることが分かる。
【0103】
また、マンガン又は鉄しか含まない複合酸化物と比較して、Fe/(Fe+Mn)のモル比0.5である複合酸化物は、より良好な触媒性能を発揮することも分かる。
【0104】
なお、触媒性能の長期安定性を確認するため、Fe/(Fe+Mn)のモル比0.5である複合酸化物からなる触媒を450℃で13時間連続反応させたが、メタン添加率の低下は認められなかった。
【0105】
触媒性能試験2
実施例4〜11で得られた金属酸化物担体に実施例3で得られた複合酸化物を担持した材料の触媒性能を確認した。性能試験の方法は、触媒性能試験1と同じである。
【0106】
各材料それぞれの反応温度とメタン転化率との関係を示すグラフを図2に示す。
【0107】
図2の結果からは、マグネシア、酸化亜鉛等の塩基性金属酸化物担体に複合酸化物を担持した場合に、特に触媒性能が向上することが分かる。これらの金属酸化物担体に担持することにより、マンガンの使用量を抑制することができる。
【0108】
触媒性能試験3
反応ガスとして2400ppm(容積)のメタン及び19.2%の酸素を含む窒素ガスを用いた他は、触媒性能試験1と同じ条件にて、実施例3で得られた複合酸化物の触媒性能を確認した。反応ガスは乾燥状態である。反応温度とメタン転化率との関係を示すグラフを図3に示す。
【0109】
また、反応ガスとして4%水蒸気、2400ppm(容積)のメタン及び19.2%の酸素を含む窒素ガスを用いた他は、触媒性能試験1と同じ条件にて、実施例3で得られた複合酸化物の触媒性能を確認した。反応ガスは水蒸気を含んでいる。反応温度とメタン転化率の関係を示すグラフを図3に示す。
【0110】
図3の結果からは、実施例3で得られた複合酸化物は、水蒸気存在下でも高いメタン転化率を確保できることが分かる。
【図面の簡単な説明】
【図1】実施例1〜3及び比較例1〜2で得られた複合酸化物を炭化水素燃焼用触媒として用いてメタンを燃焼させた場合における、反応温度とメタン転化率との関係を示すグラフである。
【図2】実施例3で得られた、Fe/(Fe+Mn)のモル比0.47である複合酸化物を各種金属酸化物担体に担持してなる酸化物担持体を、炭化水素燃焼用触媒として用いてメタンを燃焼させた場合における、反応温度とメタン転化率との関係を示すグラフである。
【図3】実施例3で得られた、Fe/(Fe+Mn)のモル比0.47である複合酸化物を炭化水素燃焼用触媒として用いてメタンを燃焼させた場合において、反応ガスが乾燥している場合と水蒸気を含む場合とを比較した、反応温度とメタン転化率との関係を示すグラフである。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a catalyst for burning hydrocarbons in exhaust gas and a method for burning hydrocarbons in exhaust gas.
[0002]
[Prior art]
Gas engines, gas turbines, boilers, etc. used in automobiles, thermal power plants, various factories, etc. use city gas, liquefied natural gas, propane gas, etc. as the combustion gas to improve their combustion efficiency and thermal efficiency. In addition, as a combustion method, a lean combustion method in which the ratio of air to combustion gas is increased is employed.
[0003]
In such a combustion method, since the combustion exhaust gas contains a small amount of unburned hydrocarbons and also contains steam, in order to purify such exhaust gas, unburned hydrocarbons are burned in the presence of steam. There is a need.
[0004]
Conventionally, as a catalyst for burning and removing a dilute hydrocarbon, for example, a catalyst in which palladium, platinum, or both are supported on an oxide carrier such as zeolite or alumina is known. Mezaki et al. Report that catalysts containing these noble metals have high activity, for example, in the case of 0.5% Pd-alumina, the combustion start temperature is as low as 210 ° C. (Non-Patent Document 1). reference).
[0005]
However, noble metals such as palladium and platinum have a problem in that the amount of resources is small and the price is high. For example, looking at the price of platinum and palladium in 1996 and the price in 2000, platinum has soared 1.5 times and palladium has soared 9 times. In addition, since the producing countries of these precious metals are extremely biased toward Russia and South Africa, there is concern about long-term stable supply in the future.
[0006]
For this reason, the development of a catalyst for hydrocarbon combustion containing no noble metal has been promoted. For example, SrFeO3Such perovskite-based catalysts have been reported (see Non-Patent Documents 2 to 4).
[0007]
However, the activity of this catalyst is considerably lower than that of a catalyst containing a noble metal. When the ignition temperature (reaction initiation temperature) is compared, the catalyst containing platinum or palladium is around 200 ° C., whereas the catalyst containing perovskite is about 200 ° C. 300 ° C. or higher. Therefore, in order to highly activate the perovskite-based catalyst, it is indispensable to use manganese, chromium, or the like that has a large environmental load. Furthermore, in the case of perovskite-based catalysts, it is difficult to increase the specific surface area per unit mass, and the reaction activity in the presence of steam has not yet been sufficiently elucidated.
[0008]
[Non-patent document 1]
Japan Fuel Association, "Fuel Association Journal", 1979, Vol. 58, No. 625, p. 422-431
[0009]
[Non-patent document 2]
N. N. Gunasekaran, 4 others, "Solid State Ionics", The Netherlands, 1995, Vol. 81, p. 243
[0010]
[Non-Patent Document 3]
El. A. LA Isupova, 4 others, "Applied Catalysis B-Environmental", Netherlands, 1999, Vol. 21, p. 171
[0011]
[Non-patent document 4]
P. P. Salomonsson, two others, "Applied Catalysis A-General", Netherlands, 1993, vol. 104, p. 175
[0012]
[Problems to be solved by the invention]
The present invention mainly provides a highly active catalyst which does not contain precious metals such as palladium and platinum and has a reduced amount of chromium and manganese which have a large environmental load and can promote combustion of hydrocarbons in exhaust gas. Purpose.
[0013]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to achieve the above object, and as a result, have found that a specific lithium-manganese-iron composite oxide having a layered rock-salt structure can achieve the above object, and completed the present invention. Reached.
[0014]
That is, the present invention relates to the following catalyst for combustion of hydrocarbons in exhaust gas and a method for burning hydrocarbons in exhaust gas.
[0015]
1. The following composition formula:
Li[(4-x) / 3] -yMn(2-2x) / 3FexO2
[Where x is 0.07 ≦ x ≦ 0.67, and y is 0 ≦ y ≦ 0.4. ]
And a catalyst for burning hydrocarbons in exhaust gas comprising a lithium-manganese-iron composite oxide having a layered rock-salt structure having a molar ratio of Fe / (Fe + Mn) in the range of 0.1 to 0.75.
[0016]
2. The following composition formula:
Li[(4-x) / 3] -yMn(2-2x) / 3FexO2
[Where x is 0.07 ≦ x ≦ 0.67, and y is 0 ≦ y ≦ 0.4. ]
And a lithium-manganese-iron composite oxide having a layered rock-salt structure in which the molar ratio of Fe / (Fe + Mn) is in the range of 0.1 to 0.75 is magnesia, silica, titania, alumina, zirconia A catalyst for burning hydrocarbons in exhaust gas, comprising an oxide carrier supported on at least one metal oxide selected from zinc oxide and cerium oxide.
[0017]
3. 3. A method for burning hydrocarbons in exhaust gas, comprising contacting an exhaust gas containing hydrocarbons with the hydrocarbon combustion catalyst according to item 1 or 2.
[0018]
4. Item 4. The method for combusting hydrocarbons in exhaust gas according to the above item 3, wherein the hydrocarbon is methane.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Catalyst for combustion of hydrocarbons in exhaust gas
The hydrocarbon combustion catalyst in the exhaust gas of the present invention has the following composition formula:
Li[(4-x) / 3] -yMn(2-2x) / 3FexO2
[Where x is 0.07 ≦ x ≦ 0.67, and y is 0 ≦ y ≦ 0.4. ]
And a lithium-manganese-iron composite oxide having a layered rock-salt structure having a molar ratio of Fe / (Fe + Mn) in the range of 0.1 to 0.75 as an active ingredient. Such a composite oxide has high activity against a reaction of burning hydrocarbons contained in exhaust gas, and is highly useful as a catalyst for purifying exhaust gas.
[0020]
The composite oxide is Li (Li1/3Mn2/3) O2(Li) in complex oxides with a layered rock-salt structure based on1/3Mn2/3) Can be considered as a substitutional solid solution in which part of the substitution is replaced by Fe. The composite oxide is Li (Li1/3Mn2/3) O2(Li1/3Mn2/3By substituting a part of ()) with Fe, the amount of manganese having a large environmental load is reduced, and further, a component having a large environmental load such as chromium is not contained. The composite oxide is extremely useful in that it can burn hydrocarbons in exhaust gas in the same temperature range as conventional perovskite-based catalysts that have been activated by adding manganese, chromium, etc. Is a high catalyst.
[0021]
The outline of the above composition formula is as follows. First, in the basic structure, (Li1/3Mn2/3) Is replaced by Fe, and the molar ratio of Fe is represented by x, Li {(Li1/3Mn2/3)1-xFex} O2Becomes In the formula, x is 0.07 to 0.67, preferably 0.07 to 0.4.
[0022]
Next, with respect to a structure in which Li ions can be exchanged with hydrogen ions or oxonium ions by washing when synthesizing the composite oxide, a loss ratio of Li which has been taken into consideration is expressed as y. And Li1-y{(Li1/3Mn2/3)1-xFex} O2Becomes In the formula, y is 0 to 0.4. When this equation is developed, it becomes the above composition equation.
[0023]
As the catalyst of the present invention, it is essential that the composite oxide represented by the above composition formula has a molar ratio of Fe / (Fe + Mn) of 0.1 to 0.75. It is preferably from 0.5 to 0.5. The molar ratio of Li / (Fe + Mn) is not particularly limited, but is preferably in the range of 0.5 to 2.
[0024]
The lithium-manganese-iron composite oxide, which is an active ingredient of the catalyst of the present invention, can be produced, for example, by a hydrothermal reaction method, a calcination method, or the like.
[0025]
In the case where the composite oxide is produced by a hydrothermal reaction method, for example, an aqueous solution containing a manganese compound and an iron compound or a water-alcohol mixed solution is made alkaline, for example, a coprecipitate containing manganese and iron at pH 11 or higher. Then, the coprecipitate can be produced by a hydrothermal reaction with a lithium compound in the presence of an oxidizing agent and an alkali.
[0026]
In such a hydrothermal reaction method, as the manganese compound, for example, water-soluble compounds such as manganese chloride, nitrate, sulfate, acetate, and hydroxide can be used, and as the iron compound, for example, iron Water-soluble compounds such as chlorides, nitrates, sulfates, acetates and hydroxides can be used. These compounds can be used in the form of an aqueous solution or a mixed solution of water and alcohol, and as the alcohol, methanol, ethanol and the like can be used.
[0027]
The total concentration of iron and manganese in the aqueous solution or the water-alcohol mixed solution is usually adjusted to be about 0.01 to 2 mol / l (in terms of anhydride), preferably about 0.1 to 0.5 mol / l. Just fine. Further, the amounts of the iron compound and the manganese compound to be used may be adjusted so as to have a molar ratio of Fe / (Fe + Mn) in the target composite oxide.
[0028]
To make the aqueous solution or the water-alcohol mixed solution alkaline, for example, an alkaline aqueous solution containing usually about 0.1 to 20 mol / l, preferably about 0.5 to 10 mol / l, containing potassium hydroxide, sodium hydroxide, or the like Is added. The amount of the alkaline aqueous solution added may be added until the aqueous solution or the water-alcohol mixed solution becomes completely alkaline, for example, until the pH becomes 11 or more.
[0029]
A coprecipitate containing manganese and iron can be obtained by the above method. If necessary, the coprecipitate is usually subjected to an aging treatment while blowing air at about 0 to 150 ° C, preferably about 20 to 100 ° C. You may. The coprecipitate is usually washed with distilled water to remove excess alkali components and residual salts, then filtered off from the solution, dried at about 100 ° C., and then subjected to a hydrothermal reaction in a state mixed with distilled water. Just do it.
[0030]
As the oxidizing agent used when the coprecipitate is subjected to a hydrothermal reaction, for example, potassium chlorate, sodium chlorate, aqueous hydrogen peroxide and the like can be used. The amount of the oxidizing agent to be added may be set so as to be usually about 0.1 to 10 mol / l, preferably about 1 to 5 mol / l, in the solution after the addition. In addition, as the alkali, for example, lithium hydroxide, sodium hydroxide, potassium hydroxide, aqueous ammonia and the like can be used. The amount of the alkali added may be set so as to be usually about 0.1 to 10 mol / l, preferably about 1 to 5 mol / l, in the solution after the addition. By using an alkali other than lithium hydroxide, a neutral or acidic lithium salt such as lithium nitrate or lithium chloride can be used as a lithium source.
[0031]
As the lithium compound, for example, lithium hydroxide (which may be anhydrous or hydrate), lithium chloride, lithium nitrate and the like can be used. The amount of the lithium compound to be used may be adjusted so as to be a molar ratio of Li / (Mn + Fe) in the target composite oxide. Excessive addition of a lithium compound is economically disadvantageous and industrially undesirable.
[0032]
The hydrothermal reaction can be carried out by leaving the container containing the above hydrothermal reaction raw materials in a hydrothermal reactor such as an autoclave, for example. The hydrothermal reaction conditions are not particularly limited, but the reaction may be usually performed at a temperature of about 100 to 300 ° C for about 0.1 to 150 hours, preferably at a temperature of about 150 to 250 ° C for about 1 to 100 hours. Just fine. The hydrothermal reaction can be performed, for example, in an oxidizing atmosphere such as air. After the completion of the reaction, the reaction product may be washed with water, filtered, and dried as necessary in order to remove the remaining excess salts and the like. Thus, a lithium-manganese-iron composite oxide is obtained.
[0033]
When the composite oxide is produced by a firing method, for example, an aqueous solution containing a manganese compound and an iron compound or a water-alcohol mixed solution, a lithium compound is added to obtain a precipitate, and the precipitate is fired. It can be manufactured by Further, it can also be produced by baking the residue obtained by evaporating the solution and the precipitate after adding the lithium compound to the aqueous solution or the water-alcohol mixed solution to dryness.
[0034]
In the above-mentioned firing method, as the manganese compound and the iron compound, the compounds that can be used in the above-described hydrothermal reaction can be used as they are, and they can be used in the form of an aqueous solution or a water-alcohol mixed solution. The total concentration of iron and manganese in the aqueous solution or the mixed solution of water and alcohol may be the same as in the case of the above-described hydrothermal reaction.
[0035]
The amounts of the manganese compound and the iron compound may be adjusted so that the molar ratio of Fe / (Fe + Mn) in the target composite oxide is obtained.
[0036]
As the lithium compound, lithium hydroxide (which may be anhydrous or hydrated), lithium chloride, lithium nitrate and the like can be used as in the case of the hydrothermal reaction method. The amount of the lithium compound to be used may be adjusted so as to be a molar ratio of Li / (Mn + Fe) in the target composite oxide. Excessive addition of a lithium compound is economically disadvantageous and industrially undesirable.
[0037]
When the precipitate obtained by adding the lithium compound is baked, a precipitate obtained by taking out the precipitate from the solution, for example, a product obtained by washing with water, filtering and drying can be baked.
[0038]
The conditions for firing the precipitate or the residue are not particularly limited, and may be generally about 200 to 1000 ° C. for about 1 to 100 hours, preferably about 300 to 800 ° C. for about 20 to 60 hours. The firing atmosphere is not particularly limited, and may be an oxidizing atmosphere such as the air or a reducing atmosphere such as hydrogen. After the calcination, the product may be pulverized, if necessary, and the calcination may be repeated under the same conditions as described above.
[0039]
The lithium-manganese-iron composite oxide produced by such a production method can be used as it is as the catalyst of the present invention. In this case, the shape of the catalyst of the present invention is not particularly limited, and for example, it can be used in any shape such as a particle, a powder, a pellet, a plate, a column, and a lattice. When processing the composite oxide into the above-described shape, a binder or the like can be added as needed, as long as the effect of the catalyst of the present invention is not affected.
[0040]
The size of the composite oxide is not particularly limited, and can be appropriately set in consideration of an actual use mode. For example, if the composite oxide is used in the form of particles, the average particle diameter of the particles is usually 0.1 to 5 mm. The degree is appropriate, and preferably about 1 to 3 mm. When used in the form of a powder, the average particle diameter of the powder is usually about 0.1 to 1000 nm, and preferably about 1 to 100 nm. In the case of using pellets, pellets having a length of about 30 mm, a width of about 30 mm, and a height of about 5 mm, preferably about 10 mm in length, about 10 mm in width, and about 3 mm in height may be used.
[0041]
The specific surface area of the catalyst of the present invention may be any range as long as it can secure a wide contact area with the exhaust gas.2/ G is appropriate, and 50-100 m2/ G is preferred. In addition, the value of the specific surface area in the present specification is a value measured by a BET method characterized in that nitrogen is adsorbed on the surface of an object to be measured.
[0042]
The catalyst of the present invention may be used by supporting the composite oxide on a carrier. When the composite oxide is supported on a carrier, a wider contact area between the composite oxide and the exhaust gas can be secured than in the case where the composite oxide is used as a catalyst as described above. Therefore, compared to the case where the composite oxide is used as it is as a catalyst, the same hydrocarbon combustion effect can be exhibited even if the amount of the composite oxide is reduced, so that the amount of manganese having a large environmental load can be further reduced. This is advantageous.
[0043]
The type of the carrier is not particularly limited, but a carrier having excellent heat resistance is preferable in consideration of contact with exhaust gas. Examples of the carrier include magnesia, silica, titania, alumina, zirconia, zinc oxide, cerium oxide, calcium oxide, and other metal oxides, and composite oxides thereof. Among them, basic metal oxides such as magnesia, zinc oxide and calcium oxide are particularly preferable.
[0044]
Although the shape of the carrier is not particularly limited, a shape having a large specific surface area, for example, a particle shape, a pellet shape, a honeycomb shape, or the like is preferable in consideration of contact with exhaust gas. The size of the carrier is not particularly limited, and can be appropriately set in consideration of the actual use mode. If it is particulate, the average particle size is usually 0.5 to 3 mm, and preferably about 1 to 2 mm. . If it is in the form of a pellet, it is suitably about 30 mm long, 30 mm wide and about 30 mm high, and preferably about 10 mm long, 10 mm wide and about 10 mm high.
[0045]
The amount of the composite oxide supported on the carrier is not particularly limited, but usually about 1 to 10 parts by weight, and preferably about 3 to 5 parts by weight, per 100 parts by weight of the carrier. As the composite oxide to be supported, for example, a powder having an average particle diameter of usually about 0.1 to 1000 nm is preferable, and a powder having an average particle diameter of about 1 to 100 nm is more preferable.
[0046]
The method for supporting the composite oxide on the carrier is not particularly limited, for example, a method of mixing the carrier and the composite oxide in a solid state; water may be added to a mixture of the carrier and the composite oxide in a solid state. After stirring, a method of drying the obtained slurry; a method in which water is added to either the carrier or the composite oxide, the other is added, and the resulting slurry is thoroughly stirred, and then the obtained slurry is dried. Can be done. Further, the slurry can also be supported by applying, spraying, or the like, a slurry composed of the composite oxide and water.
[0047]
Method for using the catalyst of the present invention
The catalyst of the present invention can be used for burning hydrocarbons in exhaust gas. That is, it can be suitably used for purifying exhaust gas by burning hydrocarbons in the exhaust gas.
[0048]
The exhaust gas targeted by the catalyst of the present invention is not limited as long as it contains hydrocarbons, and can be, for example, exhaust gas discharged from a gas engine, a gas turbine, a boiler, a gas fan heater, a gas water heater or the like. The above-mentioned exhaust gas generally contains water vapor, nitrogen oxides, sulfur oxides, oxygen and the like in addition to hydrocarbons.
[0049]
The hydrocarbon to be burned is not particularly limited, and examples thereof include methane, ethane, propane, and butane. The catalyst of the present invention can be suitably used especially for methane combustion among hydrocarbons.
[0050]
The hydrocarbon concentration in the exhaust gas targeted by the catalyst of the present invention is not particularly limited, but a lean hydrocarbon having a hydrocarbon concentration of 10,000 ppm or less, particularly 2500 ppm or less can also be targeted. Therefore, it can be suitably used for combustion of hydrocarbons contained in exhaust gas from gas engines, gas turbines, boilers, and the like that employ a lean burn system and have a low hydrocarbon concentration in the exhaust gas.
[0051]
In order to burn hydrocarbons in the exhaust gas, for example, the hydrocarbons contained in the exhaust gas can be burned by flowing the exhaust gas through a reaction tube filled with the catalyst of the present invention. The shape, size, and the like of the reaction tube can be appropriately set in consideration of the actual use mode. As such a reaction tube, for example, a tube made of a heat-resistant material such as quartz glass or stainless steel can be used.
[0052]
The amount of the catalyst used is not particularly limited, but is preferably in the range of 1000 to 100000 ml / hg-cat, and in the range of 1000 to 10000 ml / hg-cat in terms of gas hourly space velocity (SV). preferable. If the amount of the catalyst used is too small, the hydrocarbon combustion rate will be insufficient. If the amount of catalyst used is too large, the combustion rate of hydrocarbons is improved, but it is economically disadvantageous because catalyst performance cannot be improved in proportion to the amount used.
[0053]
In order to effectively utilize the high activity of the catalyst of the present invention, the exhaust gas treatment temperature is usually 200 to 1000 ° C, and preferably about 300 to 500 ° C. If the exhaust gas treatment temperature is too low, the hydrocarbon combustion rate will be insufficient. If the exhaust gas treatment temperature is too high, the durability of the catalyst tends to decrease.
[0054]
【The invention's effect】
The catalyst of the present invention can promote the combustion of hydrocarbons in exhaust gas. In particular, it is a very useful catalyst in that it can promote the combustion of hydrocarbons even in the case of exhaust gas with a low hydrocarbon concentration discharged by the lean burn method. Such a catalyst of the present invention can be suitably used particularly for methane combustion.
[0055]
The catalyst of the present invention does not contain precious metals such as palladium and platinum and chromium, which has a large environmental load, and has a reduced amount of manganese. Such a catalyst of the present invention can burn hydrocarbons in flue gas in a temperature range substantially the same as that of a conventional perovskite-based catalyst containing a large amount of manganese or chromium, using a smaller amount of manganese. In addition, since no precious metal is contained, there is an advantage that the production cost can be reduced and the raw material can be stably supplied.
[0056]
Further, the catalyst of the present invention has sufficient durability, the frequency of catalyst replacement can be suppressed, and the cost of the exhaust gas treatment system itself can be reduced. Furthermore, heat is generated by the oxidation, so that heat can be recovered.
[0057]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples. However, the present invention is not limited to these examples.
[0058]
Example 1
64.58 g of manganese (II) nitrate hexahydrate and 10.1 g of iron (III) nitrate nonahydrate were dissolved in 400 ml of distilled water, and a mixed aqueous solution of Fe—Mn (total amount: 0.25 mol, Fe / (Fe + Mn)) was dissolved. A molar ratio of 0.1) was prepared.
[0059]
To the mixed aqueous solution, 400 ml of an aqueous potassium hydroxide solution (50 g of potassium hydroxide dissolved in 400 ml of distilled water) cooled to room temperature was added dropwise over 2 to 3 hours while stirring until the pH of the aqueous solution became 11 or more. An Mn coprecipitate was obtained. The coprecipitate was air-oxidized while stirring, then placed in a closed container and aged at 50 ° C for 2 to 3 days.
[0060]
Next, the coprecipitate was washed and filtered with distilled water to remove residual alkali components, and then the coprecipitate was dried at 100 ° C. The dried coprecipitate, 200 ml of distilled water, 40 g of lithium hydroxide monohydrate and 40 g of potassium chlorate were placed in a PTFE beaker, followed by thorough stirring. The PTFE beaker was left in an autoclave, and the contents were hydrothermally reacted at 220 ° C. for 5 hours.
[0061]
After the reaction was completed, the reaction mixture was naturally cooled to room temperature, taken out of the PTFE beaker, and the reaction product was washed with distilled water and filtered to remove excess lithium salt. The solid content was dried at 100 ° C. to obtain a particulate lithium-manganese-iron composite oxide.
[0062]
In the composite oxide, the molar ratio of Li / (Fe + Mn) was 1.69, and the molar ratio of Fe / (Fe + Mn) was 0.1. The composition formula is Li1.16Fe0.07Mn0.62O2Met. The shape of the composite oxide is particulate, and the BET specific surface area is 22 m2/ G, and the particle size was 10 to 500 nm. Note that the composition of the composite oxide in this specification is a result determined by inductively coupled plasma (ICP) measurement.
[0063]
Example 2
50.23 g of manganese (II) nitrate hexahydrate and 30.3 g of iron (III) nitrate nonahydrate were dissolved in 400 ml of distilled water, and a mixed aqueous solution of Fe-Mn (total amount 0.25 mol, Fe / (Fe + Mn) A molar ratio of 0.3) was prepared.
[0064]
To the mixed aqueous solution, 400 ml of an aqueous potassium hydroxide solution (50 g of potassium hydroxide dissolved in 400 ml of distilled water) cooled to room temperature was added dropwise over 2 to 3 hours while stirring until the pH of the aqueous solution became 11 or more. An Mn coprecipitate was obtained. The coprecipitate was air-oxidized while stirring, and then placed in a closed container and aged at 50 ° C. for 2 to 3 days.
[0065]
Next, the coprecipitate was washed and filtered with distilled water to remove residual alkali components, and then the coprecipitate was dried at 100 ° C. The dried coprecipitate, 200 ml of distilled water, 40 g of lithium hydroxide monohydrate and 40 g of potassium chlorate were placed in a PTFE beaker, followed by thorough stirring. The PTFE beaker was left in an autoclave, and the contents were hydrothermally reacted at 220 ° C. for 5 hours.
[0066]
After the reaction was completed, the reaction mixture was naturally cooled to room temperature, taken out of the PTFE beaker, and the reaction product was washed with distilled water and filtered to remove excess lithium salt. The solid content was dried at 100 ° C. to obtain a particulate lithium-manganese-iron composite oxide.
[0067]
In the composite oxide, the molar ratio of Li / (Fe + Mn) was 1.4, and the molar ratio of Fe / (Fe + Mn) was 0.3. The composition formula is Li1.04(Fe0.22Mn0.52) O2Met. The composite oxide has a particle shape and a BET specific surface area of 44 m.2/ G, and the particle size was 10 to 500 nm.
[0068]
Example 3
35.88 g of manganese (II) nitrate hexahydrate and 50.5 g of iron (III) nitrate nonahydrate were dissolved in 400 ml of distilled water, and a mixed aqueous solution of Fe-Mn (total amount 0.25 mol, Fe / (Fe + Mn)) was dissolved. A molar ratio of 0.5) was prepared.
[0069]
To the mixed aqueous solution, 400 ml of an aqueous potassium hydroxide solution (50 g of potassium hydroxide dissolved in 400 ml of distilled water) cooled to room temperature was added dropwise over 2 to 3 hours while stirring until the pH of the aqueous solution became 11 or more. An Mn coprecipitate was obtained. The coprecipitate was air-oxidized while stirring, then placed in a closed container and aged at 50 ° C for 2 to 3 days.
[0070]
Next, the coprecipitate was washed and filtered with distilled water to remove residual alkali components, and then the coprecipitate was dried at 100 ° C. The dried coprecipitate, 200 ml of distilled water, 40 g of lithium hydroxide monohydrate and 40 g of potassium chlorate were placed in a PTFE beaker, followed by thorough stirring. The PTFE beaker was left in an autoclave, and the contents were hydrothermally reacted at 220 ° C. for 5 hours.
[0071]
After the reaction was completed, the reaction mixture was naturally cooled to room temperature, taken out of the PTFE beaker, and the reaction product was washed with distilled water and filtered to remove excess lithium salt. The solid content was dried at 100 ° C. to obtain a particulate lithium-manganese-iron composite oxide.
[0072]
In the composite oxide, the molar ratio of Li / (Fe + Mn) was 1.28, and the molar ratio of Fe / (Fe + Mn) was 0.47. The composition formula is Li1.01(Fe0.37Mn0.42) O2Met. The composite oxide is in the form of particles and has a BET specific surface area of 53 m.2/ G, and the particle size was 50 to 100 nm.
[0073]
Example 4
50 mg of the composite oxide obtained in Example 3 and 1 g of powdered magnesia having an average particle diameter of 0.05 mm were mixed in a solid state.
[0074]
1 ml of distilled water was added to the mixture, and the mixture was mixed well in an ultrasonic washing tank for 30 minutes. After the obtained slurry was dried at 100 ° C. overnight, the obtained powder was fired at 600 ° C. for 5 hours to obtain magnesia supporting 5 parts by weight of the composite oxide.
[0075]
Example 5
50 mg of the composite oxide obtained in Example 3 and 1 g of powdery zirconia having an average particle diameter of 0.05 mm were mixed in a solid state.
[0076]
1 ml of distilled water was added to the mixture, and the mixture was mixed well in an ultrasonic washing tank for 30 minutes. After the obtained slurry was dried at 100 ° C. overnight, the obtained powder was fired at 600 ° C. for 5 hours to obtain zirconia supporting 5 parts by weight of the composite oxide.
[0077]
Example 6
50 mg of the composite oxide obtained in Example 2 and 1 g of powdered ceria having an average particle diameter of 0.05 mm were mixed in a solid state.
[0078]
1 ml of distilled water was added to the mixture, and the mixture was mixed well in an ultrasonic washing tank for 30 minutes. After the obtained slurry was dried at 100 ° C. overnight, the obtained powder was fired at 600 ° C. for 5 hours to obtain ceria supporting 5 parts by weight of the composite oxide.
[0079]
Example 7
50 mg of the composite oxide obtained in Example 2 and 1 g of powdery alumina having an average particle diameter of 0.1 mm were mixed in a solid state.
[0080]
1 ml of distilled water was added to the mixture, and the mixture was mixed well in an ultrasonic washing tank for 30 minutes. After the obtained slurry was dried at 100 ° C. overnight, the obtained powder was fired at 600 ° C. for 5 hours to obtain alumina supporting 5 parts by weight of the composite oxide.
[0081]
Example 8
50 mg of the composite oxide obtained in Example 2 and 1 g of powdered zinc oxide having an average particle diameter of 0.2 mm were mixed in a solid state.
[0082]
1 ml of distilled water was added to the mixture, and the mixture was mixed well in an ultrasonic washing tank for 30 minutes. After the obtained slurry was dried at 100 ° C. overnight, the obtained powder was fired at 600 ° C. for 5 hours to obtain zinc oxide supporting 5 parts by weight of the composite oxide.
[0083]
Example 9
50 mg of the composite oxide obtained in Example 2 and 1 g of powdered titania having an average particle diameter of 0.1 mm were mixed in a solid state.
[0084]
1 ml of distilled water was added to the mixture, and the mixture was mixed well in an ultrasonic washing tank for 30 minutes. After the obtained slurry was dried at 100 ° C. overnight, the obtained powder was fired at 600 ° C. for 5 hours to obtain titania supporting 5 parts by weight of the composite oxide.
[0085]
Example 10
50 mg of the composite oxide obtained in Example 2 and 1 g of powdery amorphous silica having a particle diameter of 0.063 to 0.2 mm were mixed in a solid state.
[0086]
1 ml of distilled water was added to the mixture, and the mixture was mixed well in an ultrasonic washing tank for 30 minutes. After the obtained slurry was dried at 100 ° C. overnight, the obtained powder was fired at 600 ° C. for 5 hours to obtain amorphous silica carrying 5 parts by weight of the composite oxide.
[0087]
Example 11
50 mg of the composite oxide obtained in Example 2 and 1 g of powdery mesoporous silica having an average particle diameter of 0.3 mm were mixed in a solid state.
[0088]
1 ml of distilled water was added to the mixture, and the mixture was mixed well in an ultrasonic washing tank for 30 minutes. After the obtained slurry was dried at 100 ° C. overnight, the obtained powder was calcined at 600 ° C. for 5 hours to obtain mesoporous silica supporting 5 parts by weight of the composite oxide.
[0089]
Comparative Example 1
3 g of manganese dioxide was placed in a PTFE beaker, 200 ml of distilled water was added to disperse well, and 50 g of lithium hydroxide monohydrate was further added and stirred well.
[0090]
The PTFE beaker was left in an autoclave, and the contents were hydrothermally reacted at 220 ° C. for 7 hours.
[0091]
After the reaction was completed, the reaction mixture was naturally cooled to room temperature, taken out of the PTFE beaker, and the reaction product was washed with distilled water and filtered to remove excess lithium salt. The solid was dried at 100 ° C. to obtain a lithium-manganese composite oxide.
[0092]
The molar ratio of Li / Mn of the composite oxide was 1.35. The composition formula is Li0.9Mn0.67O2Met. The shape of the composite oxide is particulate, and the BET specific surface area is 30 m2/ G.
[0093]
Comparative Example 2
69.51 g of iron (II) sulfate heptahydrate was dissolved in 400 ml of distilled water to prepare an aqueous solution of iron (II) sulfate.
[0094]
To the aqueous solution, 400 ml of an aqueous potassium hydroxide solution (50 g of potassium hydroxide dissolved in 400 ml of distilled water) cooled to room temperature was added dropwise over 2 to 3 hours while stirring until the aqueous solution became pH 11 or higher. Was obtained. The precipitate was air-oxidized while stirring, then placed in a closed container and aged at 50 ° C for 2 to 3 days.
[0095]
Next, the precipitate was washed and filtered with distilled water to remove residual alkaline components, and then the precipitate was dried at 100 ° C. The dried precipitate, 200 ml of distilled water, 40 g of lithium hydroxide monohydrate and 40 g of potassium chlorate were put in a PTFE beaker, and the mixture was thoroughly stirred. The PTFE beaker was left in an autoclave, and the contents were hydrothermally reacted at 220 ° C. for 5 hours.
[0096]
After the reaction was completed, the reaction mixture was naturally cooled to room temperature, taken out of the PTFE beaker, and the reaction product was washed with distilled water and filtered to remove excess lithium salt. The solid content was dried at 100 ° C. to obtain a particulate lithium-iron composite oxide.
[0097]
The composite oxide was converted to α-LiFeO by X-ray diffraction analysis.2Met. The composite oxide has a particle shape and a BET specific surface area of 6 m.2/ G.
[0098]
Catalyst performance test 1
The catalytic performance of each of the composite oxides obtained in Examples 1 to 3 and Comparative Examples 1 and 2 was confirmed. To confirm the catalyst performance, for each of the five types of composite oxides, 300 mg of the composite oxide was filled into a quartz glass tube having an inner diameter of 12 mm, and the reaction gas was passed through the glass tube under normal pressure using a fixed-bed flow reactor. It was confirmed by examining the conversion of methane contained in the reaction gas.
[0099]
As a reaction gas, a nitrogen gas containing 2,500 ppm (volume) of methane and 20% of oxygen was used. The flow rate of the reaction gas was 50 ml per minute (SV = 10,000 ml / hg-cat). The reaction temperature was increased from 300 ° C. by 50 ° C. to 550 ° C.
[0100]
The value of the methane conversion rate, which is an index of the catalyst performance, was calculated based on the following equation after measuring the concentrations of methane, carbon monoxide and carbon dioxide contained in the reaction gas with a gas chromatograph analyzer.
Methane conversion (%) = (C0-C1) / C0× 100
C0: Methane concentration before the start of the reaction
C1: Methane concentration after reaction.
[0101]
FIG. 1 is a graph showing the relationship between the reaction temperature of each of the five types of composite oxides and the methane conversion.
[0102]
From the results of FIG. 1, it can be seen that as the ratio of iron to manganese increases, the methane conversion increases and the catalyst performance increases.
[0103]
Also, it can be seen that the composite oxide having a Fe / (Fe + Mn) molar ratio of 0.5 exhibits better catalytic performance than the composite oxide containing only manganese or iron.
[0104]
In order to confirm the long-term stability of the catalyst performance, a composite oxide catalyst having a molar ratio of Fe / (Fe + Mn) of 0.5 was continuously reacted at 450 ° C. for 13 hours. I was not able to admit.
[0105]
Catalyst performance test 2
The catalytic performance of a material in which the composite oxide obtained in Example 3 was supported on the metal oxide supports obtained in Examples 4 to 11 was confirmed. The method of the performance test is the same as the catalyst performance test 1.
[0106]
FIG. 2 is a graph showing the relationship between the reaction temperature of each material and the methane conversion.
[0107]
From the results shown in FIG. 2, it can be seen that the catalytic performance is particularly improved when the composite oxide is supported on a basic metal oxide carrier such as magnesia or zinc oxide. By supporting on these metal oxide carriers, the amount of manganese used can be suppressed.
[0108]
Catalyst performance test 3
Except for using a nitrogen gas containing 2400 ppm (volume) of methane and 19.2% oxygen as a reaction gas, the catalytic performance of the composite oxide obtained in Example 3 was measured under the same conditions as in the catalytic performance test 1. confirmed. The reaction gas is in a dry state. FIG. 3 is a graph showing the relationship between the reaction temperature and the methane conversion.
[0109]
The composite obtained in Example 3 under the same conditions as in the catalyst performance test 1 except that a nitrogen gas containing 4% steam, 2400 ppm (volume) of methane and 19.2% of oxygen was used as a reaction gas. The catalytic performance of the oxide was confirmed. The reaction gas contains water vapor. FIG. 3 is a graph showing the relationship between the reaction temperature and the methane conversion.
[0110]
The results in FIG. 3 indicate that the composite oxide obtained in Example 3 can secure a high methane conversion even in the presence of steam.
[Brief description of the drawings]
FIG. 1 shows the relationship between reaction temperature and methane conversion when methane is combusted using the composite oxides obtained in Examples 1 to 3 and Comparative Examples 1 and 2 as a catalyst for burning hydrocarbons. It is a graph.
FIG. 2 shows an oxide carrier obtained by supporting a composite oxide obtained in Example 3 having a molar ratio of Fe / (Fe + Mn) of 0.47 on various metal oxide carriers, as a hydrocarbon combustion catalyst. 4 is a graph showing the relationship between the reaction temperature and the methane conversion when methane is burned by using the method.
FIG. 3 is a diagram showing a reaction gas dried when methane is burned using the composite oxide having a molar ratio of Fe / (Fe + Mn) of 0.47 obtained in Example 3 as a catalyst for burning hydrocarbons. 6 is a graph showing the relationship between the reaction temperature and the methane conversion, comparing the case where the temperature is higher than the case where the water vapor is included.

Claims (4)

下記組成式:
Li[(4−x)/3]−yMn(2−2x)/3Fe
〔式中、xは0.07≦x≦0.67であり、yは0≦y≦0.4である。〕
で表され、Fe/(Fe+Mn)のモル比が0.1〜0.75の範囲内である層状岩塩型構造を有するリチウム−マンガン−鉄複合酸化物からなる排ガス中の炭化水素燃焼用触媒。
The following composition formula:
Li [(4-x) / 3] -y Mn (2-2x) / 3 Fe x O 2
[Where x is 0.07 ≦ x ≦ 0.67, and y is 0 ≦ y ≦ 0.4. ]
And a catalyst for burning hydrocarbons in exhaust gas comprising a lithium-manganese-iron composite oxide having a layered rock salt structure having a molar ratio of Fe / (Fe + Mn) in the range of 0.1 to 0.75.
下記組成式:
Li[(4−x)/3]−yMn(2−2x)/3Fe
〔式中、xは0.07≦x≦0.67であり、yは0≦y≦0.4である。〕
で表され、Fe/(Fe+Mn)のモル比が0.1〜0.75の範囲内である層状岩塩型構造を有するリチウム−マンガン−鉄複合酸化物が、マグネシア、シリカ、チタニア、アルミナ、ジルコニア、酸化亜鉛及び酸化セリウムから選ばれる少なくとも1種の金属酸化物に担持された酸化物担持体からなる排ガス中の炭化水素燃焼用触媒。
The following composition formula:
Li [(4-x) / 3] -y Mn (2-2x) / 3 Fe x O 2
[Where x is 0.07 ≦ x ≦ 0.67, and y is 0 ≦ y ≦ 0.4. ]
And a lithium-manganese-iron composite oxide having a layered rock-salt structure in which the molar ratio of Fe / (Fe + Mn) is in the range of 0.1 to 0.75 is magnesia, silica, titania, alumina, zirconia A catalyst for burning hydrocarbons in exhaust gas, comprising an oxide carrier supported on at least one metal oxide selected from zinc oxide and cerium oxide.
炭化水素を含む排ガスを請求項1又は2に記載の炭化水素燃焼用触媒に接触させることを特徴とする排ガス中の炭化水素燃焼方法。A method for burning hydrocarbons in exhaust gas, comprising contacting the exhaust gas containing hydrocarbons with the catalyst for hydrocarbon combustion according to claim 1 or 2. 炭化水素がメタンである請求項3に記載の排ガス中の炭化水素燃焼方法。The method for burning hydrocarbons in exhaust gas according to claim 3, wherein the hydrocarbons are methane.
JP2002325130A 2002-11-08 2002-11-08 Catalyst for burning hydrocarbons in exhaust gas and method for burning hydrocarbons in exhaust gas Expired - Lifetime JP3940794B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002325130A JP3940794B2 (en) 2002-11-08 2002-11-08 Catalyst for burning hydrocarbons in exhaust gas and method for burning hydrocarbons in exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002325130A JP3940794B2 (en) 2002-11-08 2002-11-08 Catalyst for burning hydrocarbons in exhaust gas and method for burning hydrocarbons in exhaust gas

Publications (2)

Publication Number Publication Date
JP2004154738A true JP2004154738A (en) 2004-06-03
JP3940794B2 JP3940794B2 (en) 2007-07-04

Family

ID=32804451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002325130A Expired - Lifetime JP3940794B2 (en) 2002-11-08 2002-11-08 Catalyst for burning hydrocarbons in exhaust gas and method for burning hydrocarbons in exhaust gas

Country Status (1)

Country Link
JP (1) JP3940794B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007160297A (en) * 2005-11-21 2007-06-28 Kumamoto Univ Oxidation catalyst for burning pm and cleaning method for diesel engine exhaust gas, filter and cleaning device using the same
KR20090091754A (en) * 2006-11-15 2009-08-28 바스프 카탈리스트 엘엘씨 Catalysts for dual oxidation of ammonia and carbon monoxide with low to no nox formation
JP2012091982A (en) * 2010-10-28 2012-05-17 National Institute Of Advanced Industrial Science & Technology Lithium-manganese compound oxide having cubic rock salt structure and process for producing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007160297A (en) * 2005-11-21 2007-06-28 Kumamoto Univ Oxidation catalyst for burning pm and cleaning method for diesel engine exhaust gas, filter and cleaning device using the same
KR20090091754A (en) * 2006-11-15 2009-08-28 바스프 카탈리스트 엘엘씨 Catalysts for dual oxidation of ammonia and carbon monoxide with low to no nox formation
JP2010510049A (en) * 2006-11-15 2010-04-02 ビーエーエスエフ、カタリスツ、エルエルシー NOx forming catalyst with little or no ammonia and carbon monoxide double oxidation catalyst
KR101634390B1 (en) * 2006-11-15 2016-06-28 바스프 카탈리스트 엘엘씨 CATALYSTS FOR DUAL OXIDATION OF AMMONIA AND CARBON MONOXIDE WITH LOW TO NO NOx FORMATION
JP2012091982A (en) * 2010-10-28 2012-05-17 National Institute Of Advanced Industrial Science & Technology Lithium-manganese compound oxide having cubic rock salt structure and process for producing the same

Also Published As

Publication number Publication date
JP3940794B2 (en) 2007-07-04

Similar Documents

Publication Publication Date Title
Dhal et al. Preparation and application of effective different catalysts for simultaneous control of diesel soot and NO x emissions: An overview
JP6474353B2 (en) Precipitation and calcination compositions based on zirconium oxide and cerium oxide
Dey et al. A review of synthesis, structure and applications in hopcalite catalysts for carbon monoxide oxidation
JP5864443B2 (en) Exhaust gas purification catalyst
JP2013505830A (en) Mixed metal oxide catalyst for nitrogen oxide decomposition
CN105727964A (en) Three-dimensional composite oxide catalyst for removing NO and coal smoke particles simultaneously and preparation method and application thereof
JP5274802B2 (en) Oxygen removal method
JP3940794B2 (en) Catalyst for burning hydrocarbons in exhaust gas and method for burning hydrocarbons in exhaust gas
CN115430433B (en) Catalyst with high-efficiency activity and preparation method thereof
JP5318396B2 (en) Exhaust gas purification material and exhaust gas purification filter
JP2006122793A (en) Catalyst and its manufacturing method, catalyst for shift reaction of water gas, method for producing water gas, and catalyst and method for cleaning exhaust gas
Peng et al. Surface properties and catalytic performance of La0. 8K0. 2CuxMn1–xO3 for simultaneous removal of NOx and soot
JP5585805B2 (en) PM oxidation catalyst and production method thereof
Zhao et al. La 2 O 2 CO 3-Induced phase composition oscillation in La–Cu mixed oxides during repeated catalytic soot combustion
JP5812788B2 (en) Nitrous oxide decomposition catalyst, method for producing nitrous oxide decomposition catalyst, and method for treating nitrous oxide-containing gas
JP2011050855A (en) Exhaust gas purifying apparatus
JP5812789B2 (en) Nitrous oxide decomposition catalyst, method for producing nitrous oxide decomposition catalyst
JPH10174886A (en) Waste gas cleaning catalyst layer, waste gas cleaning catalyst covered structural body and waste gas cleaning method
JPH11342336A (en) Catalyst a for removal of nitrogen oxides by decomposition and method
JPH05115751A (en) Method and catalyst for treating gas combustion exhaust gas
WO2005063364A1 (en) Catalyst for conversion of gases, a method for its production and use of the same
JPH05272719A (en) Catalyst combustion method of methane
Kumar et al. Promotional effect of Au on γ-Al2O3 supported cobalt based catalyst for total oxidation of methane
KR100429825B1 (en) Catalyst for purifying exhaust gas of automobil and method for manufacturing the same
JP4588134B2 (en) Nitrogen oxide purification catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070306

R150 Certificate of patent or registration of utility model

Ref document number: 3940794

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term