JPH05115751A - Method and catalyst for treating gas combustion exhaust gas - Google Patents

Method and catalyst for treating gas combustion exhaust gas

Info

Publication number
JPH05115751A
JPH05115751A JP3303761A JP30376191A JPH05115751A JP H05115751 A JPH05115751 A JP H05115751A JP 3303761 A JP3303761 A JP 3303761A JP 30376191 A JP30376191 A JP 30376191A JP H05115751 A JPH05115751 A JP H05115751A
Authority
JP
Japan
Prior art keywords
gas
catalyst
raw material
exhaust gas
mordenite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3303761A
Other languages
Japanese (ja)
Inventor
Yasuo Konishi
康雄 小西
Yukio Imazeki
幸男 今関
Kenichi Yamaseki
憲一 山関
Hiroshi Uchida
洋 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP3303761A priority Critical patent/JPH05115751A/en
Publication of JPH05115751A publication Critical patent/JPH05115751A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/32Direct CO2 mitigation

Abstract

PURPOSE:To simultaneously and efficiently remove nitrogen oxide, lower hydrocarbon and CO in exhaust gas with a single catalyst by catalytically reacting gas combustion exhaust gas generated under a condition wherein the ratio of raw material gas and air becomes the lean side of the raw material gas in the presence of a catalyst obtained by loading a metal such as Co or the like on a mordenite type zeolite carrier. CONSTITUTION:Gas combustion exhaust gas generated under such a condition that the ratio of raw material gas and air becomes the lean side of the raw material gas and containing nitrogen, oxygen, steam and CO2 as principal components and lower hydrocarbon, especially, methane, nitrogen oxide and CO as small amount components is catalytically reacted in the presence of a catalyst obtained by making a mordenite type zeolite carrier carry a metal selected from Co, Mn, Rh, platinum and Pd. As a result, a small amount of nitrogen oxide, lower hydrocarbon, especially, methane and CO contained in the gas combustion gas containing a relatively large amount of oxygen and steam at the same time in a gas engine can be simultaneously and efficiently removed using the single catalyst.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガス燃焼排ガスの処理
方法および該方法に用いられる触媒に関し、詳しくは、
原料ガスと空気との比率が原料ガスリーン側となる条件
下での、ガスエンジン、ガスタービン等の排気ガスを浄
化・処理する方法および該方法に用いられる触媒に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating a gas combustion exhaust gas and a catalyst used in the method.
The present invention relates to a method for purifying and treating exhaust gas from a gas engine, a gas turbine, etc., and a catalyst used in the method under the condition that the ratio of raw material gas to air is on the lean side of the raw material gas.

【0002】[0002]

【従来の技術およびその課題】従来、メタン、エタン、
プロパン、ブタンなどからなる原料ガスを用いるガスエ
ンジン、ガスタービン、ボイラー、加熱炉などにおい
て、燃焼効率あるいは熱効率を高めるために、原料ガス
と空気との比率を原料ガスリーン側、すなわち原料ガス
の完全燃焼に必要な理論空気量の1.0〜5.0倍、特
に1.0〜3.0倍(以下空気比という)の条件とする
ことが望ましいが、その場合排ガス中に、少量の低級炭
化水素、特にメタン、酸化窒素および一酸化炭素と共に
多量の酸素および水蒸気が共存することになる。
2. Description of the Related Art Methane, ethane,
In gas engines, gas turbines, boilers, heating furnaces, etc. that use raw material gas consisting of propane, butane, etc., in order to improve combustion efficiency or thermal efficiency, the ratio of raw material gas to air is set to the lean side of raw material gas, that is, complete combustion of raw material gas. It is desirable to set the condition of 1.0 to 5.0 times, especially 1.0 to 3.0 times (hereinafter, referred to as air ratio) of the theoretical air amount required for the above. A large amount of oxygen and water vapor will coexist with hydrogen, especially methane, nitric oxide and carbon monoxide.

【0003】従来、上記した少量の低級炭化水素、特に
メタン、酸化窒素および一酸化炭素を除去してガス燃焼
排ガスを浄化する方法としてアンモニア添加による選択
還元脱硝法あるいは三元触媒による浄化法が採用されて
いるが、アンモニアによる方法では毒性の強いアンモニ
アのハンドリング、三元触媒による方法では空気比が
1.0付近の酸素がほとんどない条件でのみ有効である
などの問題があり、その改善が要望されている。
Conventionally, a selective reduction denitration method by addition of ammonia or a purification method by a three-way catalyst has been adopted as a method for purifying gas combustion exhaust gas by removing a small amount of the above-mentioned lower hydrocarbons, particularly methane, nitrogen oxides and carbon monoxide. However, there is a problem that the ammonia method is very toxic for handling ammonia, and the three-way catalyst method is effective only under conditions where there is almost no oxygen at an air ratio of around 1.0. Has been done.

【0004】例えば、既に、66ス・シーエーティーエ
スジェー・ミーティング・アブストラクツ(66th
CATSJ Meeting Abstracts)N
o.2L404、Vol.32 No.6 1990
年、430〜433頁には、O2 及びSO2 存在下での
炭化水素によるNOの選択還元について報告されてい
る。
For example, already, 66th CASJ Meeting Abstracts (66th
CATSJ Meeting Abstracts) N
o. 2L404, Vol. 32 No. 6 1990
Year, the pages 430 to 433, have been reported for the selective reduction of NO by hydrocarbons in the O 2 and SO 2 presence.

【0005】しかしながら、上記報告には、ガスエンジ
ンなどにおいて、原料ガスと空気との比率を原料ガスリ
ーン側とした場合に生ずるガス燃焼排ガスの浄化方法、
具体的には比較的多量の酸素および水蒸気の存在下にお
いて該ガス燃焼排ガス中に含有される窒素酸化物、低級
炭化水素、特にメタン、および一酸化炭素を同時に効率
よく除去する方法については、何ら記載されていない。
However, in the above report, in a gas engine or the like, a method for purifying gas combustion exhaust gas generated when the ratio of raw material gas to air is on the lean side of the raw material gas,
Specifically, there is nothing about a method for simultaneously and efficiently removing nitrogen oxides, lower hydrocarbons, especially methane, and carbon monoxide contained in the gas combustion exhaust gas in the presence of a relatively large amount of oxygen and water vapor. Not listed.

【0006】特開平2−265649号公報には、自動
車等から排出される排ガスの浄化方法であって、酸素が
過剰に存在する酸化雰囲気でNOx、COおよび炭化水
素を効率よく浄化できる方法が開示されているが、パラ
ジウムなどの酸化触媒のみではNOxの浄化は全く行な
うことができず、NOx、COおよび炭化水素を同時に
浄化するためには、銅シリケート触媒とパラジウムなど
の酸化触媒との組合せからなる触媒系を使用する必要が
ある旨、教示されているに過ぎない。しかも上記炭化水
素について具体的に記載されていない。
Japanese Unexamined Patent Publication No. 2-265649 discloses a method for purifying exhaust gas discharged from an automobile or the like, which is capable of efficiently purifying NOx, CO and hydrocarbons in an oxidizing atmosphere in which oxygen is excessively present. However, it is impossible to purify NOx at all with only an oxidation catalyst such as palladium, and in order to purify NOx, CO and hydrocarbons at the same time, a combination of a copper silicate catalyst and an oxidation catalyst such as palladium is used. It is only taught that it is necessary to use a different catalyst system. Moreover, the above hydrocarbon is not specifically described.

【0007】本発明は、ガスエンジン、ガスタービン、
ガスボイラー、加熱炉、ガスストーブなどにおいて、原
料ガスと空気との比率を原料ガスリーン側とした場合に
発生し、比較的多量の酸素および水蒸気を同時に含有す
るガス燃焼排ガス中に含有される少量の窒素酸化物、低
級炭化水素特にメタンおよび一酸化炭素を、単一の触媒
を用いて同時に効率よく除去しうる前記ガス燃焼排ガス
の浄化・処理方法および該方法に用いられる高活性かつ
耐久性に優れた触媒を提供することを目的としている。
The present invention relates to a gas engine, a gas turbine,
In a gas boiler, heating furnace, gas stove, etc., it occurs when the ratio of raw material gas to air is set to the lean side of the raw material gas, and a small amount of gas contained in the gas combustion exhaust gas containing a relatively large amount of oxygen and water vapor at the same time. Nitrogen oxides, lower hydrocarbons, especially methane and carbon monoxide, can be efficiently removed at the same time by using a single catalyst, and a method for purifying and treating the above gas combustion exhaust gas, and high activity and excellent durability used in the method. The purpose is to provide a catalyst.

【0008】[0008]

【問題点を解決するための手段】すなわち、本発明は、
原料ガスと空気との比率が原料ガスリーン側となる条件
下に発生し、主要成分として窒素、酸素、水蒸気および
炭酸ガスを含有し、少量成分として低級炭化水素、特に
メタン、窒素酸化物および一酸化炭素を含有するガス燃
焼排ガスを、コバルト、マンガン、ロジウム、白金また
はパラジウムから選ばれる金属をモルデナイト型ゼオラ
イト担体に担持してなる触媒の存在下に接触的に反応さ
せることを特徴とするガス燃焼排ガスの処理方法および
該方法に用いられる触媒を提供するものである。
[Means for Solving the Problems] That is, the present invention is
It is generated under the condition that the ratio of raw material gas to air is on the lean side of the raw material gas, contains nitrogen, oxygen, steam and carbon dioxide as major components, and contains lower hydrocarbons as minor components, especially methane, nitrogen oxides and monoxide. Gas combustion exhaust gas containing carbon, gas combustion exhaust gas characterized by catalytically reacting in the presence of a catalyst in which a metal selected from cobalt, manganese, rhodium, platinum or palladium is supported on a mordenite type zeolite carrier And a catalyst used in the method.

【0009】本発明方法において用いられる原料ガスの
例として、メタン、天然ガス;メタン、エタン、プロパ
ンおよびブタンを含む都市ガス;プロパン、ブタンなど
のLPGなどがあげられる。
Examples of the raw material gas used in the method of the present invention include methane, natural gas; city gas containing methane, ethane, propane and butane; LPG such as propane and butane.

【0010】本発明におけるガス燃焼排ガスは、ガスエ
ンジン、ガスタービン、ガスボイラー、加熱炉、ガスス
トーブなどにおいて、原料ガスと空気との比率を原料ガ
スリーン側とした場合、例えば空気比を1.0〜5.
0、好ましくは1.0〜3.0の条件下とした場合に発
生するガスを意味する。
In the gas combustion engine, gas turbine, gas boiler, heating furnace, gas stove, etc., the gas combustion exhaust gas in the present invention has an air ratio of 1.0 when the ratio of the raw material gas to the air is the raw material gas lean side. ~ 5.
It means a gas generated under the condition of 0, preferably 1.0 to 3.0.

【0011】上記低級炭化水素は、炭素数1〜16の炭
化水素、好ましくはメタン、エタン、プロパン、ブタ
ン、これらの混合物およびメタンを主成分としてエタ
ン、プロパン、ブタンなどを含有する混合物であり、そ
の含有量が不充分である場合には、必要に応じて別途補
充するのが好ましい。
The lower hydrocarbon is a hydrocarbon having 1 to 16 carbon atoms, preferably methane, ethane, propane, butane, a mixture thereof, and a mixture containing ethane, propane, butane as a main component of methane, If the content is insufficient, it is preferably supplemented separately as needed.

【0012】本発明方法に用いられる触媒は、コバル
ト、マンガン、ロジウム、白金またはパラジウムから選
ばれる金属をモルデナイト型ゼオライト担体に担持して
なるものである。
The catalyst used in the method of the present invention comprises a metal selected from cobalt, manganese, rhodium, platinum or palladium supported on a mordenite type zeolite carrier.

【0013】上記金属の担持量は、通常0.1〜40重
量%、好ましくは0.5〜20重量%の範囲にあり、そ
の担持量が0.1重量%未満では触媒活性が十分でない
ので好ましくなく、該担持量が40重量%を超えると担
体のモルデナイト型ゼオライトの効果が減少するので好
ましくない。
The supported amount of the above metal is usually in the range of 0.1 to 40% by weight, preferably 0.5 to 20% by weight. If the supported amount is less than 0.1% by weight, the catalytic activity is not sufficient. It is not preferable, and if the supported amount exceeds 40% by weight, the effect of the mordenite type zeolite as the carrier decreases, which is not preferable.

【0014】上記金属のうち、ロジウムおよび白金は、
高活性であるため特に好ましく、マンガン、パラジウム
およびロジウムは、低級炭化水素、特にメタンの除去活
性が高いため特に好ましい。
Of the above metals, rhodium and platinum are
Particularly preferred are manganese, palladium and rhodium because of their high activity, and manganese, palladium and rhodium are particularly preferred because of their high activity of removing lower hydrocarbons, especially methane.

【0015】本発明における触媒の活性成分を担持する
担体として用いられるモルデナイト型ゼオライトは、ゼ
オライト中のSiO2 とAl2 3 のモル比(以下ケイ
バン比という)が10〜100、好ましくは13〜50
の範囲のものである。該モル比が10未満では安定した
モルデナイト結晶構造ができにくく、耐熱性が劣るため
好ましくなく、該モル比が100を超えるとモルデナイ
トの酸強度が低下し、触媒活性が低下するため好ましく
ない。上記モルデナイト型ゼオライト担体の具体例とし
て、HSZ−650HOA(東ソー社製、商品名)およ
びHSZ−640NAA(東ソー社製、商品名)があげ
られ、Na型モルデナイトおよびH型モルデナイトを使
用することができる。
The mordenite-type zeolite used as a carrier for supporting the active component of the catalyst of the present invention has a molar ratio of SiO 2 and Al 2 O 3 in the zeolite (hereinafter referred to as “Cayvan ratio”) of 10 to 100, preferably 13 to 10. Fifty
It is in the range of. When the molar ratio is less than 10, it is not preferable because a stable mordenite crystal structure is difficult to form and heat resistance is poor, and when the molar ratio exceeds 100, the acid strength of the mordenite decreases and the catalytic activity decreases, which is not preferable. Specific examples of the mordenite type zeolite carrier include HSZ-650HOA (manufactured by Tosoh Corporation, trade name) and HSZ-640NAA (manufactured by Tosoh Corporation, trade name), and Na type mordenite and H type mordenite can be used. ..

【0016】本発明方法に用いられる触媒は、具体的に
は、例えば、コバルト、マンガン、ロジウム、白金また
はパラジウムの硝酸塩、塩化物、酢酸塩などの溶液を調
製した後、それらを含浸法、イオン交換法、混練法など
により前記担体に担持させ、次いで焼成することにより
得られる。かくして得られた触媒は、粒状、ペレット
状、球状、ハニカムなどに成形して使用される。これら
の成形には、例えば、ハニカムなどでは、コーデュライ
トの基体にモルデナイト型ゼオライトをアルミナと共に
ウオッシュコートしてから、上記活性金属を担持する方
法も採用することができる。
The catalyst used in the method of the present invention is specifically prepared, for example, by preparing a solution of cobalt, manganese, rhodium, platinum or palladium nitrate, chloride, acetate, etc., and then impregnating them with an ion. It can be obtained by supporting it on the carrier by an exchange method, a kneading method, or the like, and then firing it. The catalyst thus obtained is used by being formed into a granular shape, a pellet shape, a spherical shape, a honeycomb or the like. For these moldings, for example, in the case of a honeycomb or the like, it is possible to adopt a method in which a mordenite-type zeolite is wash-coated with alumina on a cordurite substrate and then the active metal is supported.

【0017】本発明方法における接触反応は、反応温度
200〜900℃、好ましくは300〜600℃の条件
下に行なわれる。
The catalytic reaction in the method of the present invention is carried out at a reaction temperature of 200 to 900 ° C, preferably 300 to 600 ° C.

【0018】上記反応温度が、200℃未満では十分な
活性が示されないので好ましくなく、長時間にわたって
900℃を超えると熱的劣化を示すので好ましくない。
When the reaction temperature is lower than 200 ° C., sufficient activity is not exhibited, which is not preferable.

【0019】[0019]

【発明の効果】本発明によれば、ガスエンジン、ガスタ
ービン、ガスボイラー、加熱炉、ガスストーブなどにお
いて、原料ガスと空気との比率を原料ガスリーン側とし
た場合に発生し、比較的多量の酸素および水蒸気を同時
に含有するガス燃焼排ガス中に少量含有される窒素酸化
物、低級炭化水素、特にメタンおよび一酸化炭素を、単
一の触媒を用いて同時に効率よく除去しうる前記ガス燃
焼排ガスの浄化・処理方法および該方法に用いられる高
活性かつ耐久性にすぐれた触媒が提供される。
According to the present invention, in a gas engine, a gas turbine, a gas boiler, a heating furnace, a gas stove, etc., this occurs when the ratio of raw material gas to air is set to the raw material gas lean side, and a relatively large amount occurs. Nitrogen oxides, lower hydrocarbons, especially methane and carbon monoxide, which are contained in a small amount in a gas combustion exhaust gas containing oxygen and water vapor at the same time, can be efficiently removed simultaneously by using a single catalyst. A purification / treatment method and a highly active and durable catalyst used in the method are provided.

【0020】[0020]

【実施例】以下実施例および比較例により本発明をさら
に詳しく説明する。
The present invention will be described in more detail with reference to Examples and Comparative Examples.

【0021】実施例1 原料ガスとして、例えば都市ガス(メタン88.5容量
%、エタン4.6容量%、プロパン5.4容量%および
ブタン1.5容量%)を用い、空気比が1.7に相当す
る原料ガスリーン側となる条件下に発生するガス燃焼排
ガスに実質上相当するものとして、窒素82容量%、酸
素10容量%、水蒸気10容量%、炭酸ガス7容量%、
酸化窒素(NO)200ppm 、一酸化炭素1000ppm
およびメタン2700ppm よりなる混合ガス(以下排ガ
ス1と略称することがある)を調製した(以上水蒸気を
除きいずれもドライベースの含有量である。)。
Example 1 As a raw material gas, for example, city gas (methane 88.5% by volume, ethane 4.6% by volume, propane 5.4% by volume and butane 1.5% by volume) was used, and the air ratio was 1. The gas combustion exhaust gas generated under the condition of the raw material gas corresponding to 7 is substantially equivalent to 82% by volume of nitrogen, 10% by volume of oxygen, 10% by volume of steam, 7% by volume of carbon dioxide,
Nitric oxide (NO) 200ppm, carbon monoxide 1000ppm
A mixed gas of 2700 ppm of methane and 2700 ppm of methane was prepared (hereinafter, may be abbreviated as “exhaust gas 1”) (all contents are dry base contents except steam).

【0022】モルデナイト型ゼオライト(SiO2 /A
lO2 モル比=15)(以下モルデナイトと略称する
ことがある)を20〜42メッシュに整粒した。この整
粒されたモルデナイトおよび硝酸コバルトを、金属コ
バルトがモルデナイトに対して重量比で5%になるよ
うにそれぞれ秤量し(モルデナイト20gに対して硝
酸コバルト4.939gを秤取った)、秤量した硝酸コ
バルトに純水100mlを加えて水溶液とした。次いでロ
ータリーエバポレーターのナス型フラスコ(500ml)
の中にモルデナイトおよび硝酸コバルト水溶液を移し
た。フラスコ内を真空ポンプで減圧に排気しながら、フ
ラスコを50〜60℃の湯浴中で回転させることによ
り、水分を120分間で蒸発除去し、フラスコのまま1
20℃の乾燥器内で一晩乾燥させ、次いで電気炉に入
れ、5時間で500℃まで昇温し、500℃で3時間焼
成を行ない、3時間で室温まで降温してCo(5重量
%)/モルデナイト触媒(以下触媒1ということがあ
る)を得た。
Mordenite type zeolite (SiO 2 / A
lO 2 molar ratio = 15) (and sieved to the following mordenite and is sometimes abbreviated) to 20 to 42 mesh. The sized mordenite and cobalt nitrate were weighed so that metallic cobalt was 5% by weight ratio to mordenite (cobalt nitrate 4.939 g was weighed with respect to mordenite 20 g) and weighed nitric acid An aqueous solution was prepared by adding 100 ml of pure water to cobalt. Next, eggplant-shaped flask (500 ml) of rotary evaporator
The mordenite and the cobalt nitrate aqueous solution were transferred into the flask. While evacuating the inside of the flask to a reduced pressure with a vacuum pump, the flask was rotated in a hot water bath at 50 to 60 ° C. to evaporate and remove water in 120 minutes, leaving the flask as it is.
It was dried overnight in a dryer at 20 ° C, then placed in an electric furnace, heated to 500 ° C in 5 hours, calcined at 500 ° C for 3 hours, and cooled to room temperature in 3 hours to cool Co (5% by weight). ) / Mordenite catalyst (hereinafter sometimes referred to as catalyst 1) was obtained.

【0023】上記Co(5重量%)/モルデナイト触
媒を充填したマイクロリアクター(固定床流通型反応装
置)に、上記排ガス1を通し、反応温度400℃、SV
40000h-1および触媒層入口部における反応圧力
0.4kg/cm2 ・Gの条件下に接触反応を行わせた結
果、NOx、NO、COおよびCH4 の除去率は、それ
ぞれ表1に示す通りであった。
The exhaust gas 1 was passed through a microreactor (fixed bed flow reactor) filled with the Co (5% by weight) / mordenite catalyst, and the reaction temperature was 400 ° C. and SV was applied.
As a result of carrying out the catalytic reaction under the conditions of 40,000 h −1 and a reaction pressure of 0.4 kg / cm 2 · G at the inlet of the catalyst layer, the removal rates of NOx, NO, CO and CH 4 are as shown in Table 1, respectively. Met.

【0024】実施例2 実施例1における触媒1の硝酸コバルトの代わりに酢酸
マンガン4.462gを秤量する以外は、触媒1と同様
の方法で得られたMn(5重量%)/モルデナイト触
媒(以下触媒2ということがある)を用いる以外実施例
1と同様の実験を行なった。得られた結果を表1に示
す。
Example 2 Mn (5% by weight) / mordenite catalyst (hereinafter referred to as “catalyst 1”) obtained by the same method as that of catalyst 1 except that 4.462 g of manganese acetate was weighed instead of cobalt nitrate of catalyst 1 in Example 1. The same experiment as in Example 1 was carried out except that (Catalyst 2) was used. The results obtained are shown in Table 1.

【0025】実施例3 実施例1における触媒1の調製に代えて、20〜42メ
ッシュに整粒したモルデナイト19.5gをナス型フ
ラスコに入れた。一方塩化ロジウム1gをメスフラスコ
内で純水に溶かし、100mlの水溶液をつくり、ホール
ピペットを用いて、50mlの塩化ロジウム水溶液を取
り、上記ナス型フラスコに移し、フラスコ内を真空ポン
プで減圧に排気しながら、フラスコを50〜60℃の湯
浴中で回転させることにより、水分を40〜50分間で
蒸発除去し、フラスコのまま120℃の乾燥器内で一晩
乾燥させた。次いで電気炉を用い、6時間で500℃ま
で昇温し、500℃で3時間焼成し、3時間で室温まで
降温してRh(1重量%)/モルデナイト触媒(以下
触媒3ということがある)を得た。かくして得られた触
媒3を用いる以外、実施例1と同様の実験を行なった。
得られた結果を表1に示す。
Example 3 In place of the preparation of the catalyst 1 in Example 1, 19.5 g of mordenite whose particle size was adjusted to 20 to 42 mesh was placed in an eggplant type flask. On the other hand, 1 g of rhodium chloride was dissolved in pure water in a volumetric flask to make 100 ml of an aqueous solution, 50 ml of the rhodium chloride aqueous solution was taken with a Hall pipette, transferred to the eggplant-shaped flask, and the inside of the flask was evacuated to a reduced pressure with a vacuum pump. On the other hand, the flask was rotated in a hot water bath at 50 to 60 ° C to evaporate and remove water in 40 to 50 minutes, and the flask was dried in a dryer at 120 ° C overnight. Then, using an electric furnace, the temperature was raised to 500 ° C. in 6 hours, the firing was carried out at 500 ° C. for 3 hours, the temperature was lowered to room temperature in 3 hours, and Rh (1 wt%) / mordenite catalyst (hereinafter sometimes referred to as catalyst 3) Got The same experiment as in Example 1 was carried out except that the catalyst 3 thus obtained was used.
The results obtained are shown in Table 1.

【0026】実施例4 触媒3の塩化ロジウムの代りに硝酸パラジウム1gを用
い、モルデナイト18.9gを用いる以外は、触媒3
と同様の方法により、Pd(1重量%)/モルデナイト
触媒(以下触媒4ということがある)。かくして得ら
れた触媒4を用いる以外、実施例1と同様の実験を行な
った。得られた結果を表1に示す。
Example 4 Catalyst 3 except that 1 g of palladium nitrate was used instead of rhodium chloride in Catalyst 3 and 18.9 g of mordenite was used.
Pd (1% by weight) / mordenite catalyst (hereinafter sometimes referred to as catalyst 4) in the same manner as in. The same experiment as in Example 1 was conducted except that the thus obtained catalyst 4 was used. The results obtained are shown in Table 1.

【0027】実施例5 実施例1の排ガス1におけるメタン2700ppm に代え
て、13Aガス(メタン88.5容量%、エタン4.6
容量%、プロパン5.4容量%およびブタン1.5容量
%よりなる混合ガス)をC1 換算で2800ppmを含有
してなる混合ガス(以下排ガス2と略称することがあ
る)を調製した。実施例1の排ガス1に代えて上記排ガ
ス2を用いる以外、実施例1と同様の実験を行なった。
得られた結果を表1に示す。
Example 5 Instead of 2700 ppm of methane in the exhaust gas 1 of Example 1, 13A gas (methane 88.5% by volume, ethane 4.6) was used.
A mixed gas (hereinafter, may be abbreviated as exhaust gas 2) containing 2800 ppm of C 1 in terms of C 1 of a mixed gas composed of vol.%, Propane 5.4 vol.% And butane 1.5 vol.% Was prepared. An experiment similar to that of Example 1 was performed, except that the above exhaust gas 2 was used instead of the exhaust gas 1 of Example 1.
The results obtained are shown in Table 1.

【0028】実施例6 実施例1の排ガス1におけるメタン2700ppm に代え
てプロピレン820ppm を含有してなる混合ガス(以下
排ガス3と略称することがある)を調製した。実施例1
の排ガス1に代えて上記排ガス3を用いる以外、実施例
1と同様の実験を行なった。得られた結果を表1に示
す。
Example 6 A mixed gas containing 820 ppm of propylene instead of 2700 ppm of methane in the exhaust gas 1 of Example 1 (hereinafter sometimes referred to as exhaust gas 3) was prepared. Example 1
An experiment similar to that of Example 1 was performed, except that the exhaust gas 3 was used instead of the exhaust gas 1. The results obtained are shown in Table 1.

【0029】実施例7 実施例5の触媒1に代えて触媒3を用いた以外、実施例
5と同様の実験を行なった。得られた結果を表1に示
す。
Example 7 An experiment similar to that of Example 5 was conducted, except that the catalyst 3 was used instead of the catalyst 1 of Example 5. The results obtained are shown in Table 1.

【0030】実施例8 実施例1の排ガス1における炭酸ガス7容量%を4容量
%としてなる混合ガス(以下排ガス4と略称することが
ある)を調製した。上記排ガス4を用い、SV9000
-1の条件とした以外、実施例1と同様の実験を行なっ
た。得られた結果を表1に示す。
Example 8 A mixed gas (hereinafter sometimes abbreviated as exhaust gas 4) in which 7% by volume of carbon dioxide gas in the exhaust gas 1 of Example 1 was 4% by volume was prepared. Using the above exhaust gas 4, SV9000
An experiment similar to that of Example 1 was performed except that the condition of h −1 was used. The results obtained are shown in Table 1.

【0031】実施例9 実施例8の触媒1に代えて触媒3を用いた以外、実施例
8と同様の実験を行なった。得られた結果を表1に示
す。
Example 9 The same experiment as in Example 8 was conducted except that the catalyst 3 was used in place of the catalyst 1 in Example 8. The results obtained are shown in Table 1.

【0032】実施例10 実施例8の触媒1に代えて触媒4を用いた以外、実施例
8と同様の実験を行なった。得られた結果を表1に示
す。
Example 10 The same experiment as in Example 8 was conducted except that the catalyst 4 was used in place of the catalyst 1 of Example 8. The results obtained are shown in Table 1.

【0033】実施例11〜15 それぞれ表1に示される触媒を用いた以外実施例1と同
様の実験を行なった。得られた結果を表1に示す。
Examples 11 to 15 The same experiment as in Example 1 was conducted except that the catalysts shown in Table 1 were used. The results obtained are shown in Table 1.

【0034】比較例1〜11 表1にそれぞれ示される触媒を用いた以外実施例1と同
様の実験を行なった。得られた結果を表1に示す。
Comparative Examples 1 to 11 The same experiment as in Example 1 was conducted except that the catalysts shown in Table 1 were used. The results obtained are shown in Table 1.

【0035】[0035]

【表1】 [Table 1]

【0036】表1において、モルデナイトは、SiO
2 /AlO2 モル比=210のモルデナイト型ゼオライ
ト担体を意味する。表1において、モルデナイトは、
SiO2 /AlO2 モル比(ケイバン比)=25)のモ
ルデナイト型ゼオライト担体を意味する。表1におい
て、NOxおよびNOの除去率は、それぞれ下記の式で
定義されるものである。
In Table 1, mordenite is SiO
A mordenite type zeolite carrier having a 2 / AlO 2 molar ratio of 210 is meant. In Table 1, mordenite is
A mordenite type zeolite carrier having a SiO 2 / AlO 2 molar ratio (Cayvan ratio) = 25) is meant. In Table 1, NOx and NO removal rates are defined by the following equations, respectively.

【0037】[0037]

【数1】 表1において、NOxは具体的には化学発光法(ケミル
ミ)によって測定されたNOおよびNO2 の合計量を意
味する。
[Equation 1] In Table 1, NOx specifically means the total amount of NO and NO 2 measured by the chemiluminescence method (Chemilmi).

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 原料ガスと空気との比率が原料ガスリー
ン側となる条件下に発生し、主要成分として窒素、酸
素、水蒸気および炭酸ガスを含有し、少量成分として低
級炭化水素、窒素酸化物および一酸化炭素を含有するガ
ス燃焼排ガスを、コバルト、マンガン、ロジウム、白金
またはパラジウムから選ばれる金属をモルデナイト型ゼ
オライト担体に担持してなる触媒の存在下に接触的に反
応させることを特徴とするガス燃焼排ガスの処理方法。
1. A raw material gas is generated under the condition that the ratio of air to air is on the lean side of the raw material gas, contains nitrogen, oxygen, steam and carbon dioxide gas as main components and contains lower hydrocarbons, nitrogen oxides and Gas combustion exhaust gas containing carbon monoxide, a gas characterized by catalytically reacting in the presence of a catalyst in which a metal selected from cobalt, manganese, rhodium, platinum or palladium is supported on a mordenite type zeolite carrier. Combustion exhaust gas treatment method.
【請求項2】 原料ガスの完全燃焼に必要な理論空気量
の1.0〜5.0倍の空気を使用した請求項1記載の処
理方法。
2. The treatment method according to claim 1, wherein 1.0 to 5.0 times the theoretical amount of air required for complete combustion of the raw material gas is used.
【請求項3】 ガス燃焼排ガス中の酸素および水蒸気の
含有量がそれぞれ、酸素0.1〜20容量%、および水
蒸気0.1〜25容量%の範囲にある請求項1記載の処
理方法。
3. The processing method according to claim 1, wherein the contents of oxygen and water vapor in the gas combustion exhaust gas are in the ranges of 0.1 to 20% by volume of oxygen and 0.1 to 25% by volume of water vapor, respectively.
【請求項4】 該低級炭化水素が、メタンまたはメタン
を主成分とする混合物である請求項1記載の処理方法。
4. The processing method according to claim 1, wherein the lower hydrocarbon is methane or a mixture containing methane as a main component.
【請求項5】 該接触反応が、反応温度200〜900
℃の条件下に行なわれる請求項1記載の処理方法。
5. The reaction temperature of the catalytic reaction is 200 to 900.
The processing method according to claim 1, which is carried out under the condition of ° C.
【請求項6】 請求項1ないし5の何れかに記載の処理
方法に用いられる、コバルト、マンガン、ロジウム、白
金またはパラジウムから選ばれる金属をモルデナイト型
ゼオライト担体に担持してなる触媒。
6. A catalyst comprising a mordenite-type zeolite carrier carrying a metal selected from the group consisting of cobalt, manganese, rhodium, platinum and palladium, which is used in the treatment method according to any one of claims 1 to 5.
【請求項7】 該モルデナイト型ゼオライト担体がゼオ
ライト中のSiO2とAlO2 のモル比が10〜100
の範囲である請求項6記載の触媒。
7. The mordenite-type zeolite carrier has a molar ratio of SiO 2 and AlO 2 in the zeolite of 10 to 100.
The catalyst according to claim 6, which is in the range of.
JP3303761A 1991-10-24 1991-10-24 Method and catalyst for treating gas combustion exhaust gas Pending JPH05115751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3303761A JPH05115751A (en) 1991-10-24 1991-10-24 Method and catalyst for treating gas combustion exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3303761A JPH05115751A (en) 1991-10-24 1991-10-24 Method and catalyst for treating gas combustion exhaust gas

Publications (1)

Publication Number Publication Date
JPH05115751A true JPH05115751A (en) 1993-05-14

Family

ID=17924958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3303761A Pending JPH05115751A (en) 1991-10-24 1991-10-24 Method and catalyst for treating gas combustion exhaust gas

Country Status (1)

Country Link
JP (1) JPH05115751A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5433933A (en) * 1989-12-21 1995-07-18 Toyota Jidosha Kabushiki Kaisha Method of purifying oxygen-excess exhaust gas
WO1998015339A1 (en) * 1996-10-10 1998-04-16 Gaz De France Catalyst, in particular for reducing nox, and method for reducing no¿x?
NL1021116C2 (en) * 2002-07-19 2004-01-20 Stichting Energie Process for the removal of NOx and catalyst therefor.
US8575054B2 (en) * 2004-07-15 2013-11-05 Nikki-Universal Co., Ltd. Catalyst for purifying organic nitrogen compound-containing exhaust gas and method for purifying the exhaust gas

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5433933A (en) * 1989-12-21 1995-07-18 Toyota Jidosha Kabushiki Kaisha Method of purifying oxygen-excess exhaust gas
WO1998015339A1 (en) * 1996-10-10 1998-04-16 Gaz De France Catalyst, in particular for reducing nox, and method for reducing no¿x?
FR2754468A1 (en) * 1996-10-10 1998-04-17 Gaz De France CATALYST, ESPECIALLY NOX REDUCTION, AND NOX REDUCTION METHOD
EP0946264B1 (en) * 1996-10-10 2001-04-25 Gaz De France CATALYST, IN PARTICULAR FOR REDUCING NOx, AND METHOD FOR REDUCING NOx
NL1021116C2 (en) * 2002-07-19 2004-01-20 Stichting Energie Process for the removal of NOx and catalyst therefor.
WO2004009220A1 (en) * 2002-07-19 2004-01-29 Stichting Energieonderzoek Centrum Nederland Method for the removal of nox and catalyst therefor
US7459135B2 (en) * 2002-07-19 2008-12-02 Stichting Energieonderzoek Centrum Nederland Method for the removal of NOx and catalyst therefor
US8575054B2 (en) * 2004-07-15 2013-11-05 Nikki-Universal Co., Ltd. Catalyst for purifying organic nitrogen compound-containing exhaust gas and method for purifying the exhaust gas

Similar Documents

Publication Publication Date Title
EP0719580A1 (en) Exhaust gas cleaner and method for cleaning exhaust gas
EP0661089A2 (en) Device and method for cleaning exhaust gas
EP0667182A2 (en) Exhaust gas cleaner and method for cleaning exhaust gas
JP3952617B2 (en) Exhaust gas purification device, exhaust gas purification method and exhaust gas purification catalyst for internal combustion engine
JP2529739B2 (en) Exhaust gas purification catalyst and method
JPH0938464A (en) Catalyst for purification of exhaust gas and purifying method of exhaust gas
JPH05115751A (en) Method and catalyst for treating gas combustion exhaust gas
JP3276678B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JP3510908B2 (en) Exhaust gas purification catalyst
WO2002055194A1 (en) Catalyst for clarification of nitrogen oxides
JPH06126177A (en) Catalyst for removing nitrous oxide in exhaust gas
JPH04193347A (en) Catalyst for purification of exhaust gas
JPH08150336A (en) Waste gas purification material and method for purifying waste gas
JP2700386B2 (en) Exhaust gas purifying material and exhaust gas purifying method
JP3257686B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JP2010184171A (en) Catalyst and method for purification of exhaust gas
JPH0753976A (en) Oxidation of methane
JPH07328448A (en) Exhaust gas purification catalyst and device for purifying exhaust gas
JPH08117558A (en) Formation of nitrogen dioxide
JP3242946B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JP2649217B2 (en) Exhaust gas purifying material and exhaust gas purifying method
JP3366342B2 (en) Exhaust gas purification catalyst and exhaust gas purification method using the same
JPH0838902A (en) Catalyst for purification of exhaust gas and device therefor
JPH04367724A (en) Catalyst and method for removing nitrogen oxide
JPH08168674A (en) Material and process for purifying exhaust gas