JPH08150336A - Waste gas purification material and method for purifying waste gas - Google Patents

Waste gas purification material and method for purifying waste gas

Info

Publication number
JPH08150336A
JPH08150336A JP6317633A JP31763394A JPH08150336A JP H08150336 A JPH08150336 A JP H08150336A JP 6317633 A JP6317633 A JP 6317633A JP 31763394 A JP31763394 A JP 31763394A JP H08150336 A JPH08150336 A JP H08150336A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
silver
active species
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6317633A
Other languages
Japanese (ja)
Other versions
JP3626999B2 (en
Inventor
Akira Abe
晃 阿部
Masataka Furuyama
雅孝 古山
Mika Saitou
美香 斎藤
Kiyohide Yoshida
清英 吉田
Tatsuo Miyadera
達雄 宮寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Riken Corp filed Critical Agency of Industrial Science and Technology
Priority to JP31763394A priority Critical patent/JP3626999B2/en
Priority to EP95307871A priority patent/EP0710499A3/en
Publication of JPH08150336A publication Critical patent/JPH08150336A/en
Priority to US08/883,082 priority patent/US5882607A/en
Priority to US08/890,641 priority patent/US5780002A/en
Application granted granted Critical
Publication of JP3626999B2 publication Critical patent/JP3626999B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PURPOSE: To obtain a purification material by which NOx is effectively reduced and removed by arranging a 1st catalyst obtd. by carrying silver on a porous inorg. oxide, a 2nd catalyst having a higher silver content and a 3rd catalyst obtd. by carrying copper oxide from the inflow side of waste gas to the outflow side. CONSTITUTION: A 1st catalyst is obtd. by carrying 0.2-12wt.% silver and/or silver compd. or mixture of them as active seeds on a porous inorg. oxide. A 2nd catalyst is similarly obtd. by carrying 0.5-15wt.% silver, etc. A 3rd catalyst is obtd. by carrying 0.2-30wt.% copper oxide and/or copper sulfate as active seeds on a porous inorg. oxide. The 1st, 2nd and 3rd catalysts are arranged from the inflow side of waste gas to the outflow side to obtain the objective purification material. When this material is used, NOx in waste gas contg. excess oxygen is efficiently removed in a wide temp. region.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は窒素酸化物と過剰の酸素
を含む燃焼排ガスから、窒素酸化物を効果的に還元除去
することのできる排ガス浄化材及びそれを用いた浄化方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying material capable of effectively reducing and removing nitrogen oxides from a combustion exhaust gas containing nitrogen oxides and excess oxygen, and a purification method using the same.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】自動車
用エンジン等の内燃機関や、工場等に設置された燃焼機
器、家庭用ファンヒーターなどから排出される各種の燃
焼排ガス中には、過剰の酸素とともに一酸化窒素、二酸
化窒素等の窒素酸化物が含まれている。ここで、「過剰
の酸素を含む」とは、その排ガス中に含まれる一酸化炭
素、水素、炭化水素等の未燃焼成分を燃焼するのに必要
な理論酸素量より多い酸素を含むことを意味する。ま
た、以下における窒素酸化物とは一酸化窒素及び/又は
二酸化窒素を指す。
2. Description of the Related Art Excessive combustion exhaust gas discharged from internal combustion engines such as automobile engines, combustion equipment installed in factories, household fan heaters, and the like is excessive. It contains nitrogen oxides such as nitric oxide and nitrogen dioxide together with oxygen. Here, "containing excess oxygen" means that the exhaust gas contains more oxygen than the theoretical amount of oxygen necessary to burn unburned components such as carbon monoxide, hydrogen, and hydrocarbons. I do. In the following, nitrogen oxide refers to nitric oxide and / or nitrogen dioxide.

【0003】この窒素酸化物は酸性雨の原因の一つとさ
れ、環境上の大きな問題となっている。そのため、各種
燃焼機器が排出する排ガス中の窒素酸化物を除去するさ
まざまな方法が検討されている。
[0003] This nitrogen oxide is one of the causes of acid rain and is a major environmental problem. Therefore, various methods for removing nitrogen oxides in exhaust gas discharged from various combustion equipments are being studied.

【0004】過剰の酸素を含む燃焼排ガスから窒素酸化
物を除去する方法として、特に大規模な固定燃焼装置
(工場等の大型燃焼機等)に対しては、アンモニアを用
いる選択的接触還元法が実用化されている。
[0004] As a method for removing nitrogen oxides from a combustion exhaust gas containing excess oxygen, a selective catalytic reduction method using ammonia is used particularly for a large-scale fixed combustion device (a large-scale combustor in a factory or the like). Has been put to practical use.

【0005】しかしながら、この方法においては、窒素
酸化物の還元剤として用いるアンモニアが高価であるこ
と、またアンモニアは毒性を有すること、そのために未
反応のアンモニアが排出しないように排ガス中の窒素酸
化物濃度を計測しながらアンモニア注入量を制御しなけ
ればならないこと、一般に装置が大型となること等の問
題点がある。
However, in this method, ammonia used as a reducing agent for nitrogen oxides is expensive, and ammonia is toxic. Therefore, the nitrogen oxides in the exhaust gas must be removed so that unreacted ammonia is not discharged. There are problems that the amount of injected ammonia must be controlled while measuring the concentration, and that the apparatus generally becomes large.

【0006】また、別な方法として、水素、一酸化炭
素、炭化水素等のガスを還元剤として用い、窒素酸化物
を還元する非選択的接触還元法があるが、この方法で
は、効果的な窒素酸化物の低減除去を実行するためには
排ガス中の酸素との理論反応量以上の還元剤を添加しな
ければならず、還元剤を多量に消費する欠点がある。こ
のため非選択的接触還元法は、実際上は、理論空燃比付
近で燃焼した残存酸素濃度の低い排ガスに対してのみ有
効となり、汎用性に乏しく実際的でない。
As another method, there is a non-selective catalytic reduction method in which a nitrogen oxide is reduced by using a gas such as hydrogen, carbon monoxide, or a hydrocarbon as a reducing agent. In order to reduce and remove nitrogen oxides, it is necessary to add a reducing agent in an amount equal to or more than a theoretical reaction amount with oxygen in exhaust gas, and there is a disadvantage that a large amount of the reducing agent is consumed. For this reason, the non-selective catalytic reduction method is practically effective only for exhaust gas having a low residual oxygen concentration burned near the stoichiometric air-fuel ratio, and is not practical because of poor versatility.

【0007】そこで、ゼオライト又はそれに遷移金属を
担持した触媒を用いて、排ガス中の酸素との理論反応量
以下の還元剤を添加して窒素酸化物を除去する方法が提
案された(たとえば、特開昭63-100919 号、同63-28372
7 号、特開平1-130735号等)。
In view of the above, a method has been proposed for removing nitrogen oxides by using a zeolite or a catalyst supporting a transition metal on the zeolite and adding a reducing agent having a theoretical reaction amount or less with oxygen in the exhaust gas (for example, Japanese Patent Application Laid-Open Publication No. H11-163873). No.63-100919, 63-28372
No. 7, JP-A No. 1-130735).

【0008】しかしながら、これらの方法では、効果的
な窒素酸化物の除去が狭い温度領域でしか得られず、ま
た、水分を含むような排ガスでは、窒素酸化物の除去率
が著しく低下する。つまり、10%程度の水分を含み、
運転条件によって温度変化の大きい車等からの排ガスに
対して、窒素酸化物の効果的除去は困難である。
However, in these methods, effective removal of nitrogen oxides can be obtained only in a narrow temperature range, and in an exhaust gas containing water, the removal rate of nitrogen oxides is significantly reduced. In other words, it contains about 10% water,
It is difficult to effectively remove nitrogen oxides from exhaust gas from a vehicle or the like whose temperature changes greatly depending on operating conditions.

【0009】したがって、本発明の目的は、固定燃焼装
置および酸素過剰条件で燃焼するガソリンエンジン、デ
ィーゼルエンジン等からの燃焼排ガスのように、窒素酸
化物や、一酸化炭素、水素、炭化水素等の未燃焼分に対
する理論反応量以上の酸素を含有する燃焼排ガスから、
効率良く窒素酸化物を還元除去することができる排ガス
浄化材及び排ガス浄化方法を提供することである。
Accordingly, it is an object of the present invention to provide a method for producing nitrogen oxides, carbon monoxide, hydrogen, hydrocarbons and the like, such as combustion exhaust gas from a fixed combustion device and a gasoline engine, a diesel engine or the like, which burns under oxygen excess conditions. From combustion exhaust gas containing more than the theoretical reaction amount for unburned components,
An object of the present invention is to provide an exhaust gas purifying material and an exhaust gas purifying method capable of efficiently reducing and removing nitrogen oxides.

【0010】[0010]

【課題を解決するための手段】上記課題に鑑み鋭意研究
の結果、本発明者は、多孔質無機酸化物に銀成分を担持
してなる触媒上で、エタノールなどの有機化合物が、酸
素及び窒素酸化物を含む排ガスと反応し、窒素酸化物を
窒素ガスに還元するとともに、副生成物として亜硝酸エ
ステル、アンモニアなどの含窒素化合物やアルデヒドを
生成していることを見出した。生成されたアルデヒドを
利用して効果的に窒素酸化物を除去できる第二の銀系触
媒をさらに設けて、副生成物である含窒素化合物を窒素
まで還元できる銅系又は銅、W系成分を担持してなる触
媒と白金系成分を担持してなる触媒とを混合し、二つの
銀系触媒と上記混合触媒とを組み合わせて形成される排
ガス浄化材を用い、排ガス中に炭化水素と炭素数2以上
の含酸素有機化合物のいずれか又はそれらを含む燃料を
添加し、特定の温度及び空間速度で上記の浄化材に排ガ
スを接触させれば、広い温度領域で窒素酸化物を効果的
に除去することができることを発見し、本発明を完成し
た。
Means for Solving the Problems In view of the above problems, as a result of intensive studies, the present inventor has found that an organic compound such as ethanol is converted to oxygen and nitrogen on a catalyst comprising a porous inorganic oxide carrying a silver component. It has been found that it reacts with exhaust gas containing oxides to reduce nitrogen oxides to nitrogen gas and to generate nitrogen-containing compounds such as nitrites and ammonia and aldehydes as by-products. A second silver-based catalyst capable of effectively removing nitrogen oxides by using the generated aldehyde is further provided, and a copper-based or copper-based or W-based component capable of reducing a nitrogen-containing compound as a by-product to nitrogen is further provided. The catalyst supported on the catalyst and the catalyst supported on the platinum-based component are mixed, and an exhaust gas purifying material formed by combining the two silver-based catalysts and the mixed catalyst is used. Either two or more oxygen-containing organic compounds or a fuel containing them is added, and the exhaust gas is contacted with the above-mentioned purifying material at a specific temperature and space velocity to effectively remove nitrogen oxides in a wide temperature range. It was discovered that the present invention can be performed, and the present invention was completed.

【0011】すなわち、窒素酸化物と、共存する未燃焼
成分に対する理論反応量より多い酸素とを含む燃焼排ガ
スから窒素酸化物を還元除去する本発明の第一の排ガス
浄化材は、多孔質の無機酸化物に活性種として銀及び/
又は銀化合物、又はそれらの混合物0.2〜12重量%
(銀元素換算値)を担持してなる第一の触媒と、多孔質
の無機酸化物に活性種として銀及び/又は銀化合物、又
はそれらの混合物0.5〜15重量%(銀元素換算値)
かつ前記第一の触媒の活性種の担持率より多い量を担持
してなる第二の触媒と、多孔質の無機酸化物に活性種と
して銅の酸化物及び/又は硫酸塩0.2〜30重量%
(銅元素換算値)を担持してなる第三の触媒とからな
り、浄化材の排ガス流入側から流出側へ順に前記第一の
触媒、前記第二の触媒及び前記第三の触媒を有すること
を特徴とする。
That is, the first exhaust gas purifying material of the present invention for reducing and removing nitrogen oxides from a combustion exhaust gas containing nitrogen oxides and oxygen that is larger than the theoretical reaction amount of coexisting unburned components is a porous inorganic material. Silver and / or
Or 0.2 to 12% by weight of a silver compound or a mixture thereof
(A silver element conversion value), and a porous inorganic oxide containing silver and / or a silver compound as an active species or a mixture thereof in an amount of 0.5 to 15% by weight (silver element conversion value). )
And a second catalyst supporting a larger amount of the active species than the first catalyst, and a porous inorganic oxide containing copper oxide and / or sulfate as an active species in an amount of 0.2 to 30. weight%
(A copper element conversion value), comprising the first catalyst, the second catalyst and the third catalyst in order from the exhaust gas inflow side to the outflow side of the purifying material. It is characterized by.

【0012】窒素酸化物と、共存する未燃焼成分に対す
る理論反応量より多い酸素とを含む燃焼排ガスから窒素
酸化物を還元除去する本発明の第二の排ガス浄化材は、
多孔質の無機酸化物に活性種として銀及び/又は銀化合
物、又はそれらの混合物0.2〜12重量%(銀元素換
算値)を担持してなる第一の触媒と、多孔質の無機酸化
物に活性種として銀及び/又は銀化合物、又はそれらの
混合物0.5〜15重量%(銀元素換算値)かつ前記第
一の触媒の活性種の担持率より多い量を担持してなる第
二の触媒と、多孔質の無機酸化物に活性種として銅の酸
化物及び/又は硫酸塩0.2〜30重量%(銅元素換算
値)と、W、V、Moからなる群より選ばれた少なくと
も一種の元素の酸化物又は硫酸塩30重量%以下(金属
元素換算値)とを担持してなる第三の触媒とからなり、
浄化材の排ガス流入側から流出側へ順に前記第一の触
媒、前記第二の触媒及び前記第三の触媒を有することを
特徴とする。
The second exhaust gas purifying material of the present invention for reducing and removing nitrogen oxides from a combustion exhaust gas containing nitrogen oxides and oxygen in an amount larger than the theoretical reaction amount for coexisting unburned components,
A first catalyst in which silver and / or a silver compound or a mixture thereof as an active species is supported on a porous inorganic oxide by 0.2 to 12% by weight (in terms of silver element); Silver and / or a silver compound, or a mixture thereof, in an amount of 0.5 to 15% by weight (in terms of silver element) as an active species and larger than the active catalyst loading rate of the first catalyst. The catalyst is selected from the group consisting of W, V, and Mo, and an oxide of copper and / or sulfate as an active species in the porous inorganic oxide. And at least 30% by weight or less of an oxide or sulfate of at least one element (in terms of a metal element).
It is characterized by having the first catalyst, the second catalyst, and the third catalyst in order from the exhaust gas inflow side to the outflow side of the purification material.

【0013】窒素酸化物と、共存する未燃焼成分に対す
る理論反応量より多い酸素とを含む燃焼排ガスから窒素
酸化物を還元除去する本発明の第三の排ガス浄化材は、
多孔質の無機酸化物に活性種として銀及び/又は銀化合
物、又はそれらの混合物0.2〜12重量%(銀元素換
算値)を担持してなる第一の触媒と、多孔質の無機酸化
物に活性種として銀及び/又は銀化合物、又はそれらの
混合物0.5〜15重量%(銀元素換算値)かつ前記第
一の触媒の活性種の担持率より多い量を担持してなる第
二の触媒と、多孔質の無機酸化物に活性種として銅の酸
化物及び/又は硫酸塩0.2〜30重量%(銅元素換算
値)を担持してなる第三の触媒と、多孔質の無機酸化物
に活性種としてPt、Pd、Ru、Rh、Ir及びAuからなる群よ
り選ばれた少なくとも1種の元素0.01〜5重量%
(金属元素換算値)を担持してなる第四の触媒とからな
り、前記第三の触媒と前記第四の触媒とが混合されてお
り、浄化材の排ガス流入側から流出側へ順に前記第一の
触媒、前記第二の触媒、前記混合触媒を有することを特
徴とする
[0013] A third exhaust gas purifying material of the present invention for reducing and removing nitrogen oxides from a combustion exhaust gas containing nitrogen oxides and oxygen in an amount larger than the theoretical reaction amount for coexisting unburned components,
A first catalyst in which silver and / or a silver compound or a mixture thereof as an active species is supported on a porous inorganic oxide by 0.2 to 12% by weight (in terms of silver element); Silver and / or a silver compound, or a mixture thereof, in an amount of 0.5 to 15% by weight (in terms of silver element) as an active species and larger than the active catalyst loading rate of the first catalyst. A second catalyst, a third catalyst in which a porous inorganic oxide carries copper oxide and / or sulfate as an active species in an amount of 0.2 to 30% by weight (in terms of copper element), and a porous catalyst. At least one element selected from the group consisting of Pt, Pd, Ru, Rh, Ir and Au as active species in the inorganic oxide of 0.01 to 5% by weight
(A metal element conversion value), and the third catalyst and the fourth catalyst are mixed, and the fourth catalyst is sequentially mixed from the exhaust gas inflow side to the outflow side of the purification material. It has one catalyst, the second catalyst, and the mixed catalyst.

【0014】窒素酸化物と、共存する未燃焼成分に対す
る理論反応量より多い酸素とを含む燃焼排ガスから窒素
酸化物を還元除去する本発明の第四の排ガス浄化材は、
多孔質の無機酸化物に活性種として銀及び/又は銀化合
物、又はそれらの混合物0.2〜12重量%(銀元素換
算値)を担持してなる第一の触媒と、多孔質の無機酸化
物に活性種として銀及び/又は銀化合物、又はそれらの
混合物0.5〜15重量%(銀元素換算値)かつ前記第
一の触媒の活性種の担持率より多い量を担持してなる第
二の触媒と、多孔質の無機酸化物に活性種として銅の酸
化物及び/又は硫酸塩0.2〜30重量%(銅元素換算
値)と、W、V、Moからなる群より選ばれた少なくと
も一種の元素の酸化物又は硫酸塩30重量%以下(金属
元素換算値)とを担持してなる第三の触媒と、多孔質の
無機酸化物に活性種としてPt、Pd、Ru、Rh、Ir及びAuか
らなる群より選ばれた少なくとも1種の元素0.01〜
5重量%(金属元素換算値)を担持してなる第四の触媒
とからなり、前記第三の触媒と前記第四の触媒とが混合
されており、浄化材の排ガス流入側から流出側へ順に前
記第一の触媒、前記第二の触媒、前記混合触媒を有する
ことを特徴とする
A fourth exhaust gas purifying material of the present invention for reducing and removing nitrogen oxides from a combustion exhaust gas containing nitrogen oxides and oxygen in an amount larger than the theoretical reaction amount of coexisting unburned components,
A first catalyst in which silver and / or a silver compound or a mixture thereof as an active species is supported on a porous inorganic oxide by 0.2 to 12% by weight (in terms of silver element); Silver and / or a silver compound, or a mixture thereof, in an amount of 0.5 to 15% by weight (in terms of silver element) as an active species and larger than the active catalyst loading rate of the first catalyst. The catalyst is selected from the group consisting of W, V, and Mo, and an oxide of copper and / or sulfate as an active species in the porous inorganic oxide. A third catalyst carrying 30% by weight or less of an oxide or sulfate of at least one element (in terms of a metal element); and Pt, Pd, Ru, Rh as active species on a porous inorganic oxide. , At least one element selected from the group consisting of Ir and Au
A fourth catalyst supporting 5% by weight (in terms of a metal element), wherein the third catalyst and the fourth catalyst are mixed, and the purifying material flows from the exhaust gas inflow side to the outflow side; Characterized by having the first catalyst, the second catalyst, and the mixed catalyst in order.

【0015】さらに、窒素酸化物と、共存する未燃焼成
分に対する理論反応量より多い酸素とを含む燃焼排ガス
から窒素酸化物を還元除去する本発明の排ガス浄化方法
は、上記の排ガス浄化材を用い、前記排ガス浄化材を排
ガス導管の途中に設置し、前記浄化材の上流側で炭化水
素及び/又は含酸素有機化合物を添加した排ガスを、1
50〜600℃において前記浄化材に接触させ、もって
前記排ガス中の炭化水素及び/又は含酸素有機化合物と
の反応により前記窒素酸化物を除去することを特徴とす
る。
Further, an exhaust gas purifying method of the present invention for reducing and removing nitrogen oxides from a combustion exhaust gas containing nitrogen oxides and oxygen in an amount larger than a theoretical reaction amount for coexisting unburned components uses the above exhaust gas purifying material. The exhaust gas purifying material is installed in the middle of an exhaust gas conduit, and the exhaust gas to which hydrocarbons and / or oxygen-containing organic compounds are added upstream of the purifying material is
The nitrogen oxides are removed by contacting the purifying material at 50 to 600 ° C. and reacting with the hydrocarbons and / or oxygen-containing organic compounds in the exhaust gas.

【0016】以下、本発明を詳細に説明する。本発明の
第一の排ガス浄化材は、多孔質の無機酸化物に活性種と
して銀及び/又は銀化合物、又はそれらの混合物0.2
〜12重量%(銀元素換算値)を担持してなる第一の触
媒と、多孔質の無機酸化物に活性種として銀及び/又は
銀化合物、又はそれらの混合物0.5〜15重量%(銀
元素換算値)かつ前記第一の触媒の活性種の担持率より
多い量を担持してなる第二の触媒と、多孔質の無機酸化
物に活性種として銅の酸化物及び/又は硫酸塩を担持し
てなる第三の触媒とからなる。
Hereinafter, the present invention will be described in detail. The first exhaust gas purifying material of the present invention comprises a porous inorganic oxide containing silver and / or a silver compound as an active species, or a mixture thereof.
And a silver and / or silver compound as an active species on a porous inorganic oxide, or a mixture of 0.5 to 15% by weight of the first catalyst (to a value of silver element) supported on a porous inorganic oxide. A second catalyst supporting a larger amount than the active species of the first catalyst and an oxide of copper and / or sulfate as an active species on a porous inorganic oxide. And a third catalyst carrying the same.

【0017】本発明の第二の排ガス浄化材は、多孔質の
無機酸化物に活性種として銀及び/又は銀化合物、又は
それらの混合物0.2〜12重量%(銀元素換算値)を
担持してなる第一の触媒と、多孔質の無機酸化物に活性
種として銀及び/又は銀化合物、又はそれらの混合物
0.5〜15重量%(銀元素換算値)かつ前記第一の触
媒の活性種の担持率より多い量を担持してなる第二の触
媒と、多孔質の無機酸化物に活性種として銅の酸化物及
び/又は硫酸塩0.2〜30重量%(銅元素換算値)
と、W、V、Moからなる群より選ばれた少なくとも一
種の元素の酸化物又は硫酸塩30重量%以下(金属元素
換算値)とを担持してなる第三の触媒とからなる。
In the second exhaust gas purifying material of the present invention, a porous inorganic oxide carries 0.2 to 12% by weight (in terms of silver element) of silver and / or a silver compound or a mixture thereof as active species. And a silver and / or silver compound as an active species in a porous inorganic oxide or a mixture thereof in an amount of 0.5 to 15% by weight (in terms of silver element) and A second catalyst supporting a larger amount of the active species than the supported amount, and 0.2 to 30% by weight of copper oxide and / or sulfate as active species on the porous inorganic oxide (in terms of copper element) )
And a third catalyst supporting 30% by weight or less (in terms of metal element) of an oxide or sulfate of at least one element selected from the group consisting of W, V, and Mo.

【0018】第一の排ガス浄化材及び第二の排ガス浄化
材では、浄化材の排ガス流入側から流出側へ順に前記第
一の触媒、前記第二の触媒及び前記第三の触媒を有する
排ガス浄化材を排ガス導管中に設置し、浄化材の設置位
置より上流側で炭化水素と炭素数2以上の含酸素有機化
合物のいずれか又はそれを含む燃料を添加した排ガスを
この浄化材に接触させて、排ガス中の窒素酸化物を還元
除去する。このような配置とすることによって、広い排
ガス温度領域で窒素酸化物を効果的に還元除去すること
ができる。
In the first exhaust gas purifying material and the second exhaust gas purifying material, an exhaust gas purifying material having the first catalyst, the second catalyst, and the third catalyst in order from the exhaust gas inflow side to the outflow side of the purification material. The material is installed in an exhaust gas conduit, and an exhaust gas to which a hydrocarbon and / or an oxygen-containing organic compound having 2 or more carbon atoms or a fuel containing the same has been added is brought into contact with the purification material on the upstream side of the installation position of the purification material. To reduce and remove nitrogen oxides in the exhaust gas. With such an arrangement, nitrogen oxides can be effectively reduced and removed in a wide exhaust gas temperature range.

【0019】本発明の第三の排ガス浄化材は、多孔質の
無機酸化物に活性種として銀及び/又は銀化合物、又は
それらの混合物0.2〜12重量%(銀元素換算値)を
担持してなる第一の触媒と、多孔質の無機酸化物に活性
種として銀及び/又は銀化合物、又はそれらの混合物
0.5〜15重量%(銀元素換算値)かつ前記第一の触
媒の活性種の担持率より多い量を担持してなる第二の触
媒と、多孔質の無機酸化物に活性種として銅の酸化物及
び/又は硫酸塩を担持してなる第三の触媒と、多孔質の
無機酸化物に活性種としてPt、Pd、Ru、Rh、Ir及びAuか
らなる群より選ばれた少なくとも1種の元素0.01〜
5重量%(金属元素換算値)を担持してなる第四の触媒
とからなる。
In the third exhaust gas purifying material of the present invention, a porous inorganic oxide carries 0.2 to 12% by weight (in terms of silver element) of silver and / or a silver compound or a mixture thereof as active species. And a silver and / or silver compound as an active species in a porous inorganic oxide or a mixture thereof in an amount of 0.5 to 15% by weight (in terms of silver element) and A second catalyst supporting a larger amount of the active species than the supporting rate, a third catalyst supporting copper oxide and / or sulfate as the active species on the porous inorganic oxide, At least one element selected from the group consisting of Pt, Pd, Ru, Rh, Ir and Au as active species in the inorganic oxide of high quality 0.01 to
And a fourth catalyst supporting 5% by weight (in terms of metal element).

【0020】本発明の第四の排ガス浄化材は、多孔質の
無機酸化物に活性種として銀及び/又は銀化合物、又は
それらの混合物0.2〜12重量%(銀元素換算値)を
担持してなる第一の触媒と、多孔質の無機酸化物に活性
種として銀及び/又は銀化合物、又はそれらの混合物
0.5〜15重量%(銀元素換算値)かつ前記第一の触
媒の活性種の担持率より多い量を担持してなる第二の触
媒と、多孔質の無機酸化物に活性種として銅の酸化物及
び/又は硫酸塩0.2〜30重量%(銅元素換算値)
と、W、V、Moからなる群より選ばれた少なくとも一
種の元素の酸化物又は硫酸塩30重量%以下(金属元素
換算値)とを担持してなる第三の触媒と、多孔質の無機
酸化物に活性種としてPt、Pd、Ru、Rh、Ir及びAuからな
る群より選ばれた少なくとも1種の元素0.01〜5重
量%(金属元素換算値)を担持してなる第四の触媒とか
らなる。
In the fourth exhaust gas purifying material of the present invention, silver and / or a silver compound or a mixture thereof is contained as an active species in a porous inorganic oxide in an amount of 0.2 to 12% by weight (in terms of silver element). And a silver and / or silver compound as an active species in a porous inorganic oxide or a mixture thereof in an amount of 0.5 to 15% by weight (in terms of silver element) and A second catalyst supporting a larger amount of the active species than the supported amount, and 0.2 to 30% by weight of copper oxide and / or sulfate as active species on the porous inorganic oxide (in terms of copper element) )
A third catalyst supporting 30% by weight or less (in terms of a metal element) of an oxide or sulfate of at least one element selected from the group consisting of W, V, and Mo; A fourth method in which at least one element selected from the group consisting of Pt, Pd, Ru, Rh, Ir, and Au as an active species is supported on the oxide in an amount of 0.01 to 5% by weight (in terms of a metal element). And a catalyst.

【0021】第三の排ガス浄化材及び第四の排ガス浄化
材では、前記第三の触媒と前記第四の触媒とが混合され
ており、浄化材の排ガス流入側から流出側へ順に前記第
一の触媒、前記第二の触媒、前記混合触媒を有する排ガ
ス浄化材を排ガス導管中に設置し、浄化材の設置位置よ
り上流側で炭化水素と炭素数2以上の含酸素有機化合物
のいずれか又はそれを含む燃料を添加した排ガスをこの
浄化材に接触させて、排ガス中の窒素酸化物を還元除去
する。
In the third exhaust gas purifying material and the fourth exhaust gas purifying material, the third catalyst and the fourth catalyst are mixed, and the first and the fourth catalysts are sequentially mixed from the exhaust gas inflow side to the outflow side of the purification material. The exhaust gas purifying material having the catalyst, the second catalyst, and the mixed catalyst is installed in an exhaust gas conduit, and either one of a hydrocarbon and an oxygen-containing organic compound having 2 or more carbon atoms upstream of the installation position of the purifying material or The exhaust gas to which the fuel containing it is added is brought into contact with the purifying material to reduce and remove nitrogen oxides in the exhaust gas.

【0022】本発明の排ガス浄化材の第一の好ましい形
態は、粉末状の多孔質無機酸化物に触媒活性種を担持し
てなる触媒を浄化材基体にコートしてなる浄化材であ
る。浄化材の基体を形成するセラミックス材料として
は、γ−アルミナ及びその酸化物(γ−アルミナ−チタ
ニア、γ−アルミナ−シリカ、γ−アルミナ−ジルコニ
ア等)、ジルコニア、チタニア−ジルコニアなどの多孔
質で表面積の大きい耐熱性のものが挙げられる。高耐熱
性が要求される場合、コージェライト、ムライト、アル
ミナ及びその複合物等を用いるのが好ましい。また、排
ガス浄化材の基体に公知の金属材料を用いることもでき
る。
The first preferred embodiment of the exhaust gas purifying material of the present invention is a purifying material obtained by coating a purifying material base with a catalyst comprising a powdery porous inorganic oxide carrying catalytically active species. Examples of the ceramic material forming the substrate of the purifying material include porous materials such as γ-alumina and its oxides (γ-alumina-titania, γ-alumina-silica, γ-alumina-zirconia, etc.), zirconia, titania-zirconia, and the like. A heat-resistant material having a large surface area can be used. When high heat resistance is required, it is preferable to use cordierite, mullite, alumina and a composite thereof. In addition, a known metal material can be used for the base of the exhaust gas purifying material.

【0023】排ガス浄化材の基体の形状及び大きさは、
目的に応じて種々変更できる。実用的には、入口部分、
中間部分及び出口部分等、二つ以上の部分からなること
が好ましい。またその構造としては、ハニカム構造型、
フォーム型、繊維状耐火物からなる三次元網目構造型、
あるいは顆粒状、ペレット状等が挙げられる。
The shape and size of the substrate of the exhaust gas purifying material are as follows:
Various changes can be made according to the purpose. Practically, at the entrance,
It is preferred that it comprises two or more parts, such as an intermediate part and an outlet part. In addition, as its structure, honeycomb structure type,
Foam type, three-dimensional network structure type made of fibrous refractory,
Alternatively, granules, pellets and the like can be mentioned.

【0024】本発明の排ガス浄化材の第二の好ましい形
態は、ペレット状又は顆粒状粉末状の多孔質無機酸化物
に触媒活性種を担持してなる触媒、又は触媒活性種をそ
れぞれ担持した粉末状多孔質無機酸化物をペレット状又
は顆粒状に成形したものを所望形状のケーシングに充填
してなる浄化材である。
The second preferred form of the exhaust gas purifying material of the present invention is a catalyst comprising a porous inorganic oxide in the form of a pellet or a granular powder carrying a catalytically active species, or a powder comprising a catalytically active species, respectively. It is a purifying material obtained by molding a porous inorganic oxide into pellets or granules into a casing having a desired shape.

【0025】本発明の浄化材には以下の触媒が形成され
ている。 (1)第一の触媒及び第二の触媒 第一の触媒及び第二の触媒は、多孔質無機酸化物に銀及
び/又は銀化合物、又はそれらの混合物を担持してな
り、排ガスの流入側に形成され、広い温度領域での窒素
酸化物除去に作用する。銀化合物は銀の酸化物、ハロゲ
ン化銀、硫酸銀及び燐酸銀などからなる群より選ばれた
少なくとも一種であり、好ましくは銀の酸化物、塩化銀
及び硫酸銀のいずれか一種以上であり、更に好ましくは
銀の酸化物及び/又は塩化銀である。多孔質の無機酸化
物としては、アルミナ、チタニアのいずれか又はそれら
を含む複合酸化物を用いるのが好ましい。アルミナ、チ
タニア又はそれらの複合酸化物を用いることにより、添
加した炭化水素、含酸素有機化合物及び/又は排ガス中
の残留炭化水素と排ガス中の窒素酸化物との反応が効率
良く起こる。
The following catalyst is formed on the purifying material of the present invention. (1) First catalyst and second catalyst The first catalyst and the second catalyst are formed by supporting silver and / or a silver compound or a mixture thereof on a porous inorganic oxide, and on the inflow side of the exhaust gas. And acts to remove nitrogen oxides in a wide temperature range. The silver compound is at least one selected from the group consisting of silver oxide, silver halide, silver sulfate, silver phosphate, and the like, and is preferably one or more of silver oxide, silver chloride, and silver sulfate, More preferred are silver oxide and / or silver chloride. As the porous inorganic oxide, it is preferable to use either alumina or titania or a composite oxide containing them. By using alumina, titania or a composite oxide thereof, the reaction between the added hydrocarbons, oxygen-containing organic compounds and / or residual hydrocarbons in the exhaust gas and nitrogen oxides in the exhaust gas occurs efficiently.

【0026】第一の触媒及び第二の触媒で用いるアルミ
ナなどの多孔質の無機酸化物の比表面積は10m2 /g
以上であるのが好ましい。比表面積が10m2 /g未満
であると、排ガスと無機酸化物(及びこれに担持した銀
成分)との接触面積が小さくなり、良好な窒素酸化物の
除去が行えない。より好ましい多孔質無機酸化物の比表
面積は30m2 /g以上である。
The specific surface area of the porous inorganic oxide such as alumina used for the first catalyst and the second catalyst is 10 m 2 / g.
It is preferable that this is the case. If the specific surface area is less than 10 m 2 / g, the contact area between the exhaust gas and the inorganic oxide (and the silver component carried thereon) becomes small, and good nitrogen oxides cannot be removed. More preferred specific surface area of the porous inorganic oxide is 30 m 2 / g or more.

【0027】第一の触媒では、上記したγ−アルミナ等
の無機酸化物に活性種として担持する銀成分の担持量
は、無機酸化物100重量%に対して0.2〜12重量
%(銀元素換算値)とする。0.2重量%未満では窒素
酸化物の除去率が低下する。また、12重量%を超す量
の銀成分を担持すると炭化水素及び/又は含酸素有機化
合物自身の燃焼が起きやすく、窒素酸化物の除去率はか
えって低下する。好ましい銀成分の担持量は0.5〜1
0重量%である。
In the first catalyst, the amount of the silver component supported as an active species on the inorganic oxide such as γ-alumina is 0.2 to 12% by weight (100% by weight of the inorganic oxide). (Element conversion value). If the amount is less than 0.2% by weight, the removal rate of nitrogen oxides decreases. If the silver component is carried in an amount exceeding 12% by weight, the combustion of the hydrocarbon and / or the oxygen-containing organic compound itself tends to occur, and the nitrogen oxide removal rate is rather lowered. A preferable silver component loading is 0.5 to 1
0% by weight.

【0028】第二の触媒では、上記したγ−アルミナ等
の無機酸化物に活性種として担持する銀成分の担持量
は、無機酸化物100重量%に対して0.5〜15重量
%(銀元素換算値)で、かつ第一の触媒の活性種の担持
率より多い量とする。つまり、第二の触媒上の銀成分の
含有率を常に第一の触媒上のものより大きくする。0.
5重量%未満又は第一の触媒の活性種の担持率以下で
は、第一の触媒で生成したアルデヒドを用いた窒素酸化
物の除去が行われない。また、15重量%を超す量の銀
成分を担持すると炭化水素及び/又は含酸素有機化合物
自身の燃焼が起きやすく、窒素酸化物の除去率はかえっ
て低下する。好ましい第二触媒における銀成分の担持量
は1〜12重量%である。
In the second catalyst, the amount of the silver component supported as an active species on the inorganic oxide such as γ-alumina is 0.5 to 15% by weight (100% by weight of the inorganic oxide). (In terms of element) and more than the loading rate of the active species of the first catalyst. That is, the content of the silver component on the second catalyst is always higher than that on the first catalyst. 0.
If it is less than 5% by weight or less than the active catalyst loading of the first catalyst, the removal of nitrogen oxides using the aldehyde generated by the first catalyst is not performed. If the silver component is carried in an amount exceeding 15% by weight, the combustion of the hydrocarbon and / or the oxygen-containing organic compound itself tends to occur, and the nitrogen oxide removal rate is rather lowered. The loading amount of the silver component in the preferred second catalyst is 1 to 12% by weight.

【0029】アルミナ等の無機酸化物に銀を担持する方
法としては、公知の含浸法、沈澱法等を用いることがで
きる。含浸法を用いる際、銀の硝酸塩、塩化物、硫酸
塩、炭酸塩等の水溶液又はアンモニア性水溶液に多孔質
無機酸化物を浸漬する。又は硝酸銀水溶液に多孔質無機
酸化物を浸漬し、乾燥後、塩化アンモニウム又は硫酸ア
ンモニウムの水溶液に再び浸漬する。沈澱法では硝酸銀
とハロゲン化アンモニウムとを反応させて、ハロゲン化
銀として多孔質無機酸化物上に沈澱させる。これを50
〜150℃、特に70℃程度で乾燥後、100〜600
℃で段階的に昇温して焼成するのが好ましい。焼成は、
空気中、酸素を含む窒素気流下や水素ガス気流下で行う
のが好ましい。水素ガス気流下で行う場合には、最後に
300〜650℃で酸化処理するのが好ましい。
As a method for supporting silver on an inorganic oxide such as alumina, a known impregnation method, precipitation method, or the like can be used. When using the impregnation method, the porous inorganic oxide is immersed in an aqueous solution of silver nitrate, chloride, sulfate, carbonate, or the like, or an aqueous ammonia solution. Alternatively, the porous inorganic oxide is immersed in an aqueous solution of silver nitrate, dried, and then immersed again in an aqueous solution of ammonium chloride or ammonium sulfate. In the precipitation method, silver nitrate is reacted with ammonium halide to precipitate silver halide on the porous inorganic oxide. This is 50
After drying at about 150 ° C, especially about 70 ° C, 100 to 600
It is preferred to raise the temperature stepwise at a temperature of ° C. and to perform firing. Firing
It is preferable to carry out in air, under a flow of nitrogen containing oxygen or under a flow of hydrogen gas. When the treatment is performed under a hydrogen gas stream, it is preferable to perform the oxidation treatment at 300 to 650 ° C. at last.

【0030】硝酸銀等の水溶液を用いて多孔質無機酸化
物に担持された銀成分は酸化雰囲気下で焼成すると円状
集合体を形成することが観測されている。本発明の浄化
材では、銀成分集合体の平均直径を10〜10000n
mとするのが好ましい。一般的には、銀成分集合体の直
径が小さいほど、反応特性が高いが、平均直径が10n
m未満であると、還元剤である炭化水素及び/又は含酸
素有機化合物の酸化反応のみが進み、窒素酸化物の除去
率が低下する。一方、平均直径が10000nmを越え
ると、銀成分の反応特性が低減し、窒素酸化物の除去率
が下がる。好ましい銀成分集合体の平均直径は10〜5
000nm、更に好ましくは10〜2000nmとす
る。なお、ここで言う平均とは算術平均のことを意味す
る。
It has been observed that a silver component supported on a porous inorganic oxide using an aqueous solution of silver nitrate or the like forms a circular aggregate when fired in an oxidizing atmosphere. In the purification material of the present invention, the average diameter of the silver component aggregate is 10 to 10,000 n
m is preferable. In general, the smaller the diameter of the silver component aggregate, the higher the reaction characteristics, but the average diameter is 10n.
If it is less than m, only the oxidation reaction of the hydrocarbon and / or the oxygen-containing organic compound as the reducing agent proceeds, and the nitrogen oxide removal rate decreases. On the other hand, when the average diameter exceeds 10,000 nm, the reaction characteristics of the silver component are reduced, and the nitrogen oxide removal rate is reduced. The average diameter of the preferred silver component aggregate is 10 to 5
000 nm, more preferably 10 to 2000 nm. Here, the average means an arithmetic average.

【0031】なお、浄化材の形態を上述した第一の好ま
しい形態とする場合、浄化材基体上に設ける第一の触媒
及び第二の触媒の厚さは、一般に、基体材と、この触媒
との熱膨張特性の違いから制限される場合が多い。浄化
材基体上に設ける触媒の厚さを300μm以下とするの
がよい。このような厚さとすれば、使用中に熱衝撃等で
浄化材が破損することを防ぐことができる。浄化材基体
の表面に触媒を形成する方法は公知のウォシュコート法
等によって行われる。
When the form of the purifying material is the first preferred embodiment described above, the thicknesses of the first catalyst and the second catalyst provided on the purifying material base are generally the same as those of the base material and this catalyst. Are often limited due to differences in thermal expansion characteristics. The thickness of the catalyst provided on the purifying material base is preferably 300 μm or less. With such a thickness, it is possible to prevent the purifying material from being damaged by thermal shock or the like during use. A method for forming a catalyst on the surface of the purifying material base is performed by a known washcoat method or the like.

【0032】また、浄化材基体の表面上に設ける第一触
媒及び第二の触媒の量は、それぞれ浄化材基体の20〜
300g/リットルとするのが好ましい。触媒の量が2
0g/リットル未満では良好なNOx の除去が行えない。
一方、触媒の量が300g/リットルを超えると除去特
性はそれほど上がらず、圧力損失が大きくなる。より好
ましくは、浄化材基体の表面上に設ける第一の触媒及び
第二の触媒をそれぞれ浄化材基体の50〜200g/リ
ットルとする。
The amount of the first catalyst and the amount of the second catalyst provided on the surface of the purifying material base are respectively 20 to
Preferably it is 300 g / l. The amount of catalyst is 2
If it is less than 0 g / liter, good NOx removal cannot be performed.
On the other hand, when the amount of the catalyst exceeds 300 g / liter, the removal characteristics do not increase so much and the pressure loss increases. More preferably, the first catalyst and the second catalyst provided on the surface of the purifying material base are each 50 to 200 g / liter of the purifying material base.

【0033】(2)第三の触媒 第三の触媒は、多孔質無機酸化物に触媒活性種を担持し
てなる。多孔質無機酸化物としては、アルミナ、チタニ
ア及びゼオライトのいずれか又はそれらを含む複合酸化
物又はそれらの混合酸化物を用いるのが好ましい。第一
の触媒と同様に、多孔質の無機酸化物の比表面積は10
2 /g以上であることが好ましい。
(2) Third Catalyst The third catalyst comprises a porous inorganic oxide carrying a catalytically active species. As the porous inorganic oxide, it is preferable to use any of alumina, titania and zeolite, a composite oxide containing them, or a mixed oxide thereof. As in the first catalyst, the specific surface area of the porous inorganic oxide is 10
It is preferably at least m 2 / g.

【0034】本発明の第一及び第三の排ガス浄化材で
は、上記の第三の触媒の活性種としては銅の酸化物及び
/又は硫酸塩を用いる。多孔質無機酸化物を100重量
%として、銅の酸化物及び/又は硫酸銅の担持量は0.
2〜30重量%(金属元素換算値)である。好ましい担
持量が0.5〜25重量%(金属元素換算値)である。
In the first and third exhaust gas purifying materials of the present invention, copper oxide and / or sulfate is used as the active species of the third catalyst. Assuming that the porous inorganic oxide is 100% by weight, the supported amount of copper oxide and / or copper sulfate is 0.1%.
It is 2 to 30% by weight (value in terms of metal element). The preferred loading is 0.5 to 25% by weight (in terms of metal element).

【0035】本発明の第二及び第四の排ガス浄化材で
は、上記の第三の触媒の活性種としては銅の酸化物及び
/又は硫酸塩と、W、V、Moからなる群より選ばれた
少なくとも一種の元素の酸化物又は硫酸塩とを用いる。
W、V、Moのうち、W及び/又はVを用いるのが好ま
しい。多孔質無機酸化物を100重量%として、銅の酸
化物及び/又は硫酸銅の担持量は0.2〜30重量%
(金属元素換算値)であり、W系成分の担持量は30重
量%以下(金属元素換算値)である。また銅成分とW系
成分との合計担持量は0.2〜60重量%(金属元素換
算値)(金属元素換算値)である。銅成分の好ましい担
持量が0.5〜25重量%(金属元素換算値)であり、
W系成分の好ましい担持量は25重量%以下(金属元素
換算値)であり、銅成分とW系成分との好ましい合計担
持量は0.5〜50重量%(金属元素換算値)とする。
第三の触媒を用いることにより、窒素酸化物や第一触媒
で生じる亜硝酸エステル、アンモニアなどの含窒素化合
物を窒素まで還元して、窒素酸化物の除去が可能にな
る。
In the second and fourth exhaust gas purifying materials of the present invention, the active species of the third catalyst is selected from the group consisting of copper oxides and / or sulfates and W, V and Mo. And oxides or sulfates of at least one element.
Of W, V and Mo, it is preferable to use W and / or V. Assuming that the porous inorganic oxide is 100% by weight, the supported amount of copper oxide and / or copper sulfate is 0.2 to 30% by weight.
(Converted to metal element), and the amount of the W-based component carried is 30% by weight or less (converted to metal element). The total amount of the copper component and the W-based component is 0.2 to 60% by weight (converted to metal element) (converted to metal element). The preferred loading amount of the copper component is 0.5 to 25% by weight (in terms of a metal element),
The preferred loading of the W-based component is 25% by weight or less (in terms of a metal element), and the preferred total loading of the copper component and the W-based component is 0.5 to 50% by weight (in terms of a metal element).
By using the third catalyst, nitrogen oxides can be reduced by reducing nitrogen oxides and nitrogen-containing compounds generated by the first catalyst, such as nitrites and ammonia, to nitrogen.

【0036】第三の触媒における活性種の担持は、公知
の含浸法、沈殿法等を用いることができる。含浸法を用
いる際、触媒活性種元素の炭酸塩、硝酸塩、酢酸塩、硫
酸塩等の水溶液に多孔質無機酸化物を浸漬する。銅成分
の場合、硫酸銅、硝酸銅などの水溶液を用いる。W、
V、Moの場合、各元素のアンモニウム塩、しゅう酸塩
等の水溶液に多孔質無機酸化物を浸漬して用いる。50
〜150℃、特に70℃で乾燥後、100〜600℃で
段階的に昇温して焼成することによって行われる。この
焼成は空気中、酸素を含む窒素気流下で行う。また、チ
タニアの代わりにメタチタン酸(含水酸化チタン)を出
発物質として用い、V、W、Moを担持することも有効
な方法である。
For supporting the active species on the third catalyst, a known impregnation method, precipitation method or the like can be used. When using the impregnation method, the porous inorganic oxide is immersed in an aqueous solution of a carbonate, nitrate, acetate, sulfate or the like of the catalytically active species element. In the case of a copper component, an aqueous solution such as copper sulfate or copper nitrate is used. W,
In the case of V or Mo, a porous inorganic oxide is immersed in an aqueous solution of an ammonium salt, oxalate or the like of each element for use. 50
After drying at ~ 150 ° C, especially at 70 ° C, the temperature is raised stepwise at 100-600 ° C and firing is performed. This calcination is performed in air under a nitrogen stream containing oxygen. It is also an effective method to use metatitanic acid (hydrous titanium oxide) as a starting material instead of titania and to carry V, W, and Mo.

【0037】なお、浄化材の形態を上述した第一の好ま
しい形態とする場合、浄化材基体上に設ける第三の触媒
の厚さを300μm以下とするのがよい。また、浄化材
基体の表面上に設ける第三の触媒の量は、浄化材基体の
20〜300g/リットルとするのが好ましい。
When the form of the purifying material is the above-described first preferred embodiment, the thickness of the third catalyst provided on the purifying material base is preferably 300 μm or less. Further, the amount of the third catalyst provided on the surface of the purifying material base is preferably 20 to 300 g / liter of the purifying material base.

【0038】(3)第四の触媒 第四の触媒は、多孔質無機酸化物に触媒活性種を担持し
てなり、排ガスの流出側に形成され、低い温度領域にお
ける窒素酸化物の除去に作用するとともに、一酸化炭素
や炭化水素の酸化除去を行う。多孔質無機酸化物として
は、アルミナ、チタニア、ジルコニア、シリカ、ゼオラ
イトからなる群より選ばれた一種以上の酸化物又は複合
酸化物を用いるのが好ましい。第一の触媒と同様に、多
孔質の無機酸化物の比表面積は10m2 /g以上である
ことが好ましい。
(3) Fourth Catalyst The fourth catalyst comprises a porous inorganic oxide carrying catalytically active species and is formed on the exhaust gas outflow side, and acts to remove nitrogen oxides in a low temperature region. And at the same time, oxidize and remove carbon monoxide and hydrocarbons. As the porous inorganic oxide, it is preferable to use one or more oxides or composite oxides selected from the group consisting of alumina, titania, zirconia, silica, and zeolite. Similar to the first catalyst, the specific surface area of the porous inorganic oxide is preferably 10 m 2 / g or more.

【0039】上記の第四触媒の活性種としては、Pt、P
d、Ru、Rh、Ir及びAuからなる群より選ばれた少なくと
も1種の元素を用い、Pt、Pd、Ru、Rh及びAuの少なくと
も一種を用いるのが好ましく、特にPt、Pd及びAuの少な
くとも一種が好ましい。第四の触媒で無機酸化物に担持
する活性種の合計は、上述の多孔質の無機酸化物を基準
(100重量%) として0.01〜5重量%とし、好ましく
は0.01〜4重量%とする。触媒活性種の量が前記多
孔質無機酸化物に対して、5重量%を超す触媒担持量と
しても窒素酸化物の除去性能が向上しない。
The active species of the fourth catalyst include Pt, P
d, Ru, Rh, using at least one element selected from the group consisting of Ir and Au, it is preferable to use at least one of Pt, Pd, Ru, Rh and Au, particularly at least Pt, Pd and Au One is preferred. The sum of the active species supported on the inorganic oxide by the fourth catalyst is based on the above-mentioned porous inorganic oxide.
(100% by weight) is 0.01 to 5% by weight, preferably 0.01 to 4% by weight. Even when the amount of the catalytically active species exceeds 5% by weight of the porous inorganic oxide, the performance of removing nitrogen oxides is not improved.

【0040】また、第四の触媒の活性種として、さら
に、La、Ce等の希土類元素、Ca、Mgなどのアルカリ土類
元素、Na、Kなどのアルカリ金属元素からなる群より選
ばれた少なくとも一つ以上の元素を10重量%以下担持
することが好ましい。希土類、アルカリ土類、アルカリ
金属元素を担持することにより、白金系の触媒の耐熱性
を向上させることができる。
The active species of the fourth catalyst may further include at least one selected from the group consisting of rare earth elements such as La and Ce, alkaline earth elements such as Ca and Mg, and alkali metal elements such as Na and K. It is preferable to carry one or more elements in an amount of 10% by weight or less. By supporting a rare earth, alkaline earth, or alkali metal element, the heat resistance of a platinum-based catalyst can be improved.

【0041】第四の触媒における活性種の担持は、公知
の含浸法、沈澱法等を用いることができる。含浸法を用
いる際、触媒活性種元素の塩化物又はヘキサクロロ金属
酸等の水溶液に多孔質無機酸化物を浸漬し、70℃で乾
燥後、100〜700℃で段階的に昇温して焼成するこ
とによって行われる。焼成は窒素気流下、水素含有又は
酸素含有窒素気流下で行い、好ましくは窒素気流下で焼
成した後、水素含有窒素気流下、酸素含有窒素気流下で
それぞれ焼成を行う。なお、Pt系担持成分は金属元素と
して表示しているが、通常の浄化材の使用温度条件では
担持成分は金属と酸化物の状態で存在する。
For supporting the active species on the fourth catalyst, a known impregnation method, precipitation method or the like can be used. When using the impregnation method, the porous inorganic oxide is immersed in an aqueous solution such as a chloride or hexachlorometallic acid of a catalytically active species element, dried at 70 ° C., and then gradually heated at 100 to 700 ° C. and fired. This is done by: The calcination is performed under a nitrogen stream or a hydrogen-containing or oxygen-containing nitrogen stream. Preferably, the calcination is performed under a nitrogen stream, and then the calcination is performed under a hydrogen-containing nitrogen stream or an oxygen-containing nitrogen stream. Although the Pt-based loading component is shown as a metal element, the loading component exists in a state of a metal and an oxide under a normal use temperature condition of the purification material.

【0042】なお、浄化材の形態を上述した第一の好ま
しい形態とする場合、浄化材基体上に設ける第四の触媒
の厚さを300μm以下とするのがよい。また、浄化材
基体の表面上に設ける第四の触媒の量は、浄化材基体に
対して20〜300g/リットルとするのが好ましい。
When the form of the purifying material is the first preferred embodiment described above, the thickness of the fourth catalyst provided on the purifying material base is preferably 300 μm or less. The amount of the fourth catalyst provided on the surface of the purifying material base is preferably 20 to 300 g / liter based on the purifying material base.

【0043】第一の触媒と第二の触媒との重量比(多孔
質無機酸化物と触媒活性種との合計重量の比)は、1:
10〜10:1とするのが好ましい。比率が1:10未
満である(第一の触媒が少ない)と、150〜600℃
の広い温度範囲で全体的に窒素酸化物の浄化率が低下す
る。一方、比率が10:1を超え、第二の触媒が少ない
と、第一の触媒上でできたアルデヒドが窒素酸化物の還
元に有効に使用されない。より好ましい第一触媒と第二
の触媒の重量比は1:5〜5:1である。
The weight ratio of the first catalyst to the second catalyst (the ratio of the total weight of the porous inorganic oxide to the catalytically active species) is 1:
It is preferably 10 to 10: 1. When the ratio is less than 1:10 (the amount of the first catalyst is small), 150 to 600 ° C.
Over a wide temperature range, the purification rate of nitrogen oxides decreases overall. On the other hand, if the ratio exceeds 10: 1 and the amount of the second catalyst is small, the aldehyde formed on the first catalyst is not effectively used for reducing nitrogen oxides. A more preferred weight ratio of the first catalyst to the second catalyst is 1: 5 to 5: 1.

【0044】本発明の第一及び第二の排ガス浄化材にお
いては、第一の触媒及び第二の触媒の合計重量と第三の
触媒の重量との比(多孔質無機酸化物と触媒活性種との
合計重量の比)は、10:1〜1:5とするのが好まし
い。比率が1:5未満である(第一の触媒及び第二の触
媒が少ない)と、150〜600℃の広い温度範囲で全
体的に窒素酸化物の浄化率が低下する。一方、比率が1
0:1を超え、第三の触媒が少ないと、第一の触媒上で
できた亜硝酸エステルやアンモニアが窒素酸化物の還元
に有効に使用されない。より好ましい第一の触媒及び第
二の触媒の合計重量と第三の触媒の重量比は5:1〜
1:4である。
In the first and second exhaust gas purifying materials of the present invention, the ratio of the total weight of the first catalyst and the second catalyst to the weight of the third catalyst (porous inorganic oxide and catalytically active species) Is preferably 10: 1 to 1: 5. When the ratio is less than 1: 5 (the amount of the first catalyst and the amount of the second catalyst are small), the purification rate of nitrogen oxides is generally reduced in a wide temperature range of 150 to 600 ° C. On the other hand, if the ratio is 1
When the ratio exceeds 0: 1 and the amount of the third catalyst is small, nitrite and ammonia formed on the first catalyst are not effectively used for reducing nitrogen oxides. More preferably, the weight ratio of the total weight of the first catalyst and the second catalyst to the weight of the third catalyst is 5: 1 to 1: 1.
1: 4.

【0045】本発明の第三及び第四の排ガス浄化材で
は、第三の触媒と第四の触媒を混合して用いる。この混
合によって、第三の触媒の還元作用と第四の触媒の酸化
作用が互いに影響することなく同時に進行することがで
きる。浄化材が上記第一の好ましい形態である場合、浄
化材基体上に設ける第三の触媒と第四の触媒との混合触
媒の厚さを300μm以下とするのがよい。また、浄化
材基体の表面上に設ける第三の触媒と第四の触媒との混
合触媒の量は、浄化材基体に対して20〜300g/リ
ットルとするのが好ましい。
In the third and fourth exhaust gas purifying materials of the present invention, the third catalyst and the fourth catalyst are mixed and used. By this mixing, the reducing action of the third catalyst and the oxidizing action of the fourth catalyst can proceed simultaneously without affecting each other. When the purifying material is the first preferred embodiment, the thickness of the mixed catalyst of the third catalyst and the fourth catalyst provided on the purifying material base is preferably 300 μm or less. In addition, the amount of the mixed catalyst of the third catalyst and the fourth catalyst provided on the surface of the purifying material base is preferably 20 to 300 g / liter with respect to the purifying material base.

【0046】第三の触媒と第四の触媒との重量比(多孔
質無機酸化物と触媒活性種との合計重量の比)は、10
0:1〜100:50とするのが好ましい。第三の触媒
100重量部に対して第四の触媒が1重量部未満の場合
では、炭化水素、一酸化炭素の除去率が低下する。一
方、第三の触媒100重量部に対して第四の触媒が50
重量部を越えると、150〜600℃の広い温度範囲で
全体的に窒素酸化物の浄化率が低下する。より好ましい
第三の触媒と第四の触媒の重量比は100:1〜10
0:30である。
The weight ratio of the third catalyst to the fourth catalyst (ratio of the total weight of the porous inorganic oxide and the catalytically active species) is 10
The ratio is preferably set to 0: 1 to 100: 50. If the amount of the fourth catalyst is less than 1 part by weight based on 100 parts by weight of the third catalyst, the removal rate of hydrocarbons and carbon monoxide decreases. On the other hand, 50 parts of the fourth catalyst is added to 100 parts by weight of the third catalyst.
If the amount is more than 100 parts by weight, the purification rate of nitrogen oxides is lowered as a whole in a wide temperature range of 150 to 600 ° C. More preferably, the weight ratio of the third catalyst to the fourth catalyst is 100: 1 to 10
0:30.

【0047】第一の触媒及び第二の触媒の合計重量と、
第三の触媒と第四の触媒との混合触媒の重量との比(多
孔質無機酸化物と触媒活性種との合計重量の比)は、1
0:1〜1:5とするのが好ましい。比率が1:5未満
である(第一の触媒及び第二の触媒が少ない)と、15
0〜600℃の広い温度範囲で全体的に窒素酸化物の浄
化率が低下する。一方、比率が10:1を超え、混合触
媒が少ないと、第一の触媒上でできた亜硝酸エステルや
アンモニアが窒素酸化物の還元に有効に利用されない、
また、一酸化炭素、炭化水素の除去率が低下する。より
好ましい第一触媒及び第二の触媒の合計重量と混合触媒
の重量比は5:1〜1:4である。
The total weight of the first and second catalysts,
The ratio of the weight of the mixed catalyst of the third catalyst and the fourth catalyst (the ratio of the total weight of the porous inorganic oxide to the catalytically active species) is 1
It is preferable that the ratio be 0: 1 to 1: 5. When the ratio is less than 1: 5 (the amount of the first catalyst and the second catalyst is small), 15
In a wide temperature range of 0 to 600 ° C., the purification rate of nitrogen oxides is reduced as a whole. On the other hand, if the ratio exceeds 10: 1 and the amount of the mixed catalyst is small, nitrite and ammonia formed on the first catalyst are not effectively used for reduction of nitrogen oxides.
Further, the removal rates of carbon monoxide and hydrocarbons are reduced. More preferably, the weight ratio of the total weight of the first catalyst and the second catalyst to the weight of the mixed catalyst is 5: 1 to 1: 4.

【0048】上述した構成の浄化材を用いれば、150
〜600℃の広い温度領域において、水分10%程度及
び硫黄酸化物を含む排ガスでも、良好な窒素酸化物の除
去を行うことができる。
If the purifying material having the above-described structure is used, 150
In a wide temperature range of up to 600 ° C., good removal of nitrogen oxides can be performed even with an exhaust gas containing about 10% of moisture and sulfur oxides.

【0049】次に、本発明の方法について説明する。ま
ず、本発明の第一及び第二の排ガス浄化材を用いる場
合、浄化材の排ガス流入側から流出側へ順に第一の触
媒、第二の触媒及び第三の触媒を排ガス導管の途中に設
置する。
Next, the method of the present invention will be described. First, when the first and second exhaust gas purifying materials of the present invention are used, the first catalyst, the second catalyst, and the third catalyst are installed in the exhaust gas conduit in order from the exhaust gas inflow side to the outflow side of the purifying material. I do.

【0050】本発明の第三及び第四の排ガス浄化材を用
いる場合、浄化材の排ガス流入側から流出側へ順に第一
の触媒、第二の触媒、第三の触媒と第四の触媒の混合触
媒を排ガス導管の途中に設置する。
When the third and fourth exhaust gas purifying materials of the present invention are used, the first catalyst, the second catalyst, the third catalyst and the fourth catalyst are sequentially arranged from the exhaust gas inflow side to the outflow side of the purifying material. The mixed catalyst is installed in the middle of the exhaust gas conduit.

【0051】排ガス中には、残留炭化水素としてエチレ
ン、プロピレン等がある程度は含まれるが、一般に排ガ
ス中のNOx を還元するのに十分な量ではないので、外部
から炭化水素及び/又は含酸素有機化合物、好ましくは
含酸素有機化合物又はそれと炭化水素燃料と混合してな
る還元剤を排ガス中に導入する。還元剤の導入位置は、
浄化材を設置した位置より上流側である。
Although the exhaust gas contains ethylene, propylene and the like to some extent as residual hydrocarbons, it is generally not enough to reduce NOx in the exhaust gas. A compound, preferably an oxygen-containing organic compound or a reducing agent obtained by mixing the compound with a hydrocarbon fuel is introduced into the exhaust gas. The introduction position of the reducing agent
It is upstream from the position where the purifying material is installed.

【0052】外部から導入する炭化水素としては、標準
状態でガス状又は液体状のアルカン、アルケン及び/又
はアルキンを用いることができる。特にアルカン又はア
ルケンの場合では炭素数2以上が好ましい。標準状態で
液体状の炭化水素としては、具体的に、軽油、セタン、
ヘプタン、灯油、ガソリン等の炭化水素が挙げられる。
その中でも、沸点50〜350℃の炭化水素が特に好ま
しい。外部から導入する含酸素有機化合物として、炭素
数2以上のエタノール、イソプロピルアルコール等のア
ルコール類、又はそれらを含む燃料を用いることができ
る。
As the hydrocarbons introduced from the outside, gaseous or liquid alkanes, alkenes and / or alkynes can be used under standard conditions. In particular, in the case of an alkane or alkene, it preferably has 2 or more carbon atoms. Specific examples of hydrocarbons that are liquid in the standard state include gas oil, cetane,
Examples include hydrocarbons such as heptane, kerosene, gasoline and the like.
Among them, hydrocarbons having a boiling point of 50 to 350 ° C are particularly preferable. As the oxygen-containing organic compound introduced from the outside, alcohols such as ethanol and isopropyl alcohol having 2 or more carbon atoms, or a fuel containing them can be used.

【0053】外部から導入する炭化水素及び/又は含酸
素有機化合物の量は、重量比(添加する還元剤の重量/
排ガス中の窒素酸化物の重量)が0.1〜5となるよう
にするのが好ましい。この重量比が0.1未満である
と、窒素酸化物の除去率が大きくならない。一方、5を
超えると、燃費悪化につながる。
The amount of the hydrocarbon and / or oxygen-containing organic compound introduced from the outside is determined by the weight ratio (weight of added reducing agent / weight).
(Weight of nitrogen oxides in the exhaust gas) is preferably 0.1 to 5. If the weight ratio is less than 0.1, the removal rate of nitrogen oxides does not increase. On the other hand, if it exceeds 5, fuel efficiency will be degraded.

【0054】また、炭化水素又は含酸素有機化合物を含
有する燃料を添加する場合、燃料としてガソリン、軽
油、灯油などを用いるのが好ましい。この場合、還元剤
の量は上記と同様に重量比(添加する還元剤の重量/排
ガス中の窒素酸化物の重量)が0.1〜5となるように
設定する。
When a fuel containing a hydrocarbon or an oxygen-containing organic compound is added, it is preferable to use gasoline, light oil, kerosene or the like as the fuel. In this case, the amount of the reducing agent is set such that the weight ratio (the weight of the reducing agent to be added / the weight of the nitrogen oxide in the exhaust gas) is 0.1 to 5 in the same manner as described above.

【0055】本発明では、含酸素有機化合物、炭化水
素、亜硝酸エステル又はアンモニア等による窒素酸化物
の還元除去を効率的に進行させるために、第一の触媒及
び第二の触媒における空間速度はそれぞれ 150,000h-1
以下、好ましくは 100,000h-1以下とする。第一の触媒
及び第二の触媒の空間速度が 150,000h-1を越えると、
窒素酸化物の還元反応が十分に起こらず、窒素酸化物の
除去率が低下する。第三の触媒又は第三の触媒と第四の
触媒との混合触媒の空間速度は 200,000h-1以下、好ま
しくは 150,000h-1以下とする。
In the present invention, the space velocity in the first catalyst and the second catalyst is set so that the reduction and removal of nitrogen oxides by an oxygen-containing organic compound, hydrocarbon, nitrite, ammonia or the like proceed efficiently. 150,000h -1 each
Or less, preferably 100,000 h -1 or less. When the space velocity of the first catalyst and the second catalyst exceeds 150,000 h -1 ,
The reduction reaction of nitrogen oxides does not sufficiently occur, and the nitrogen oxide removal rate decreases. Space velocity of the mixed catalyst of the third catalyst or third catalyst and a fourth catalyst 200,000 -1 or less, preferably 150,000H -1 or less.

【0056】また、本発明では、炭化水素及び/又は含
酸素有機化合物と窒素酸化物とが反応する部位である浄
化材設置部位における排ガスの温度を150〜600℃
に保つ。排ガスの温度が150℃未満であると還元剤と
窒素酸化物との反応が進行せず、良好な窒素酸化物の除
去を行うことができない。一方、600℃を超す温度と
すると炭化水素及び/又は含酸素有機化合物自身の燃焼
が始まり、窒素酸化物の還元除去が行えない。好ましい
排ガス温度は200〜550℃であり、より好ましくは
300〜500℃である。
Further, in the present invention, the temperature of the exhaust gas at the purification material installation site where the hydrocarbon and / or the oxygen-containing organic compound reacts with the nitrogen oxide is set to 150 to 600 ° C.
To keep. If the temperature of the exhaust gas is lower than 150 ° C., the reaction between the reducing agent and the nitrogen oxide does not proceed, and it is not possible to remove the nitrogen oxide satisfactorily. On the other hand, if the temperature exceeds 600 ° C., the combustion of the hydrocarbon and / or the oxygen-containing organic compound itself starts, and the reduction and removal of nitrogen oxides cannot be performed. The preferred exhaust gas temperature is from 200 to 550C, more preferably from 300 to 500C.

【0057】[0057]

【実施例】本発明を以下の具体的実施例によりさらに詳
細に説明する。実施例1 市販のγ−アルミナ粉末(比表面積200m2 /g)を
硝酸銀水溶液に浸漬したあと取り出して、70℃で2時
間乾燥した。そして、空気中で、段階的に600℃まで
昇温したあと、5時間焼成し、アルミナに対して3.1
重量%(金属元素換算値)の銀を担持した第一の触媒を
調製した。第一の触媒0.26gを、市販のコージェラ
イト製ハニカム状成形体(直径20mm、長さ8.3m
m、400セル/インチ2 )にコートし、乾燥後600
℃まで段階的に焼成し、銀系浄化材(第一の触媒をコー
トした浄化材)を調製した。
The present invention will be described in more detail with reference to the following specific examples. Example 1 A commercially available γ-alumina powder (specific surface area: 200 m 2 / g) was immersed in an aqueous silver nitrate solution, taken out, and dried at 70 ° C. for 2 hours. Then, the temperature is raised stepwise to 600 ° C. in the air, and calcined for 5 hours.
A first catalyst supporting silver by weight (in terms of a metal element) was prepared. 0.26 g of the first catalyst was charged with a commercially available cordierite honeycomb formed body (diameter 20 mm, length 8.3 m).
m, 400 cells / inch 2 ) and after drying 600
The mixture was baked stepwise to ℃ to prepare a silver-based purifying material (a purifying material coated with a first catalyst).

【0058】上記銀系触媒と同じ方法で、粉末状アルミ
ナに5.0重量%(金属元素換算値)の銀を担持した第
二の触媒を調製し、上記と同様なハニカム状成形体に第
二の触媒0.26gをコートし、同じ方法で第二の銀系
浄化材(第二の触媒をコートした浄化材)を調製した。
In the same manner as in the above-mentioned silver-based catalyst, a second catalyst in which 5.0% by weight (in terms of a metal element) of silver was supported on powdered alumina was prepared. 0.26 g of the second catalyst was coated, and a second silver-based purifying material (a purifying material coated with the second catalyst) was prepared in the same manner.

【0059】次に、硫酸銅水溶液(銅濃度7.7重量
%)に粉末状チタニア(比表面積50m2 /g)を浸漬
し、空気中で、80℃、100℃、120℃で各2時間
乾燥した。続いて、酸素を20%含む窒素気流下で12
0℃〜500℃まで段階的に昇温して500℃で5時間
焼成し、チタニアに対して硫酸銅4.4重量%(銅元素
換算値)を担持した第三の触媒を調製した。上記銀系浄
化材と同様なハニカム成形体に0.26gのスラリー化
した第三の触媒をコートし、銀系浄化材と同じ条件で乾
燥、焼成を行い、銅系浄化材(第三の触媒をコートした
浄化材)を調製した。
Next, powdery titania (specific surface area: 50 m 2 / g) is immersed in an aqueous solution of copper sulfate (copper concentration: 7.7% by weight), and is immersed in air at 80 ° C., 100 ° C. and 120 ° C. for 2 hours each. Dried. Subsequently, under a nitrogen stream containing 20% of oxygen, 12
The temperature was raised stepwise from 0 ° C. to 500 ° C. and calcined at 500 ° C. for 5 hours to prepare a third catalyst supporting 4.4% by weight of copper sulfate (converted to copper element) with respect to titania. A honeycomb formed body similar to the above-mentioned silver-based purifying material was coated with 0.26 g of a third catalyst slurried, dried and calcined under the same conditions as the silver-based purifying material to obtain a copper-based purifying material (third catalyst). Was prepared.

【0060】反応管内の排ガスの流入側からに流出側へ
順に銀系浄化材、第二の銀系浄化材、銅系浄化材をセッ
トした。次に、表1に示す組成のガス(一酸化窒素、酸
素、エタノール、二酸化硫黄、窒素及び水分)を毎分
3.48リットル(標準状態)の流量で流して(各浄化
材の見かけ空間速度はそれぞれ約80,000h-1であ
る)、反応管内の排ガス温度を350〜550℃の範囲
に保ち、エタノールと窒素酸化物とを反応させた。
A silver-based purifying material, a second silver-based purifying material, and a copper-based purifying material were set in order from the inflow side to the outflow side of the exhaust gas in the reaction tube. Next, a gas (nitrogen monoxide, oxygen, ethanol, sulfur dioxide, nitrogen and moisture) having a composition shown in Table 1 was flowed at a flow rate of 3.48 liters per minute (standard state) (apparent space velocity of each purification material). Were about 80,000 h -1 ), and the temperature of the exhaust gas in the reaction tube was kept in the range of 350 to 550 ° C., and ethanol and nitrogen oxides were reacted.

【0061】反応管通過後のガスの窒素酸化物の濃度を
化学発光式窒素酸化物分析計により測定し、窒素酸化物
除去率を求めた。結果を表2に示す。
The concentration of nitrogen oxides in the gas after passing through the reaction tube was measured with a chemiluminescent nitrogen oxide analyzer to determine the nitrogen oxide removal rate. Table 2 shows the results.

【0062】 表1 成分 濃度 一酸化窒素 800 ppm 酸素 10 容量% エタノール 1560 ppm 二酸化硫黄 30 ppm 窒素 残部 水分 10 容量%(上記成分の総体積に対して)Table 1 Component concentration Nitric oxide 800 ppm Oxygen 10% by volume Ethanol 1560 ppm Sulfur dioxide 30 ppm Nitrogen Residual water 10% by volume (based on the total volume of the above components)

【0063】実施例2 タングステン酸アンモニウムパラ五水和物、しゅう酸に
水を加え、水浴上で加熱して溶解させた後、冷却した水
溶液(タングステン濃度15.5重量%)に、粉末状チ
タニア(比表面積50m2 /g)を投入し、20分間浸
漬した。その後、溶液からチタニアを分離し、空気中
で、80℃、100℃、120℃で各2時間乾燥した。
続いて、酸素20%を含む窒素気流下で120℃から5
00℃まで5時間かけで昇温し、500℃で4時間焼成
して、チタニアに対してWの酸化物を7.4重量%(金
属元素換算値)担持したW系触媒を調製した。この触媒
を硫酸銅水溶液(銅濃度9.0重量%)に20分間浸漬
し、そして実施例1の第三の触媒と同じ方法で乾燥、焼
成し、チタニアに対してWの酸化物7.4重量%、硫酸
銅3.7重量%(金属元素換算値)を担持した第三の触
媒を調製した。0.26gの第三の触媒をスラリー化し
た後、実施例1と同じ方法でハニカム成形体にコート
し、乾燥、焼成を行い、銅、W系浄化材(第三の触媒を
コートした浄化材)を調製した。
Example 2 Water was added to ammonium paratungstate parapentahydrate and oxalic acid, dissolved by heating on a water bath, and then added to a cooled aqueous solution (tungsten concentration: 15.5% by weight) to obtain a powdery titania. (Specific surface area: 50 m 2 / g) and immersed for 20 minutes. Thereafter, the titania was separated from the solution, and dried in air at 80 ° C, 100 ° C, and 120 ° C for 2 hours each.
Subsequently, the temperature is changed from 120 ° C. to 5 ° C under a nitrogen stream containing 20% of oxygen.
The temperature was raised to 00 ° C. in 5 hours and calcined at 500 ° C. for 4 hours to prepare a W-based catalyst supporting 7.4% by weight (in terms of metal element) of an oxide of W with respect to titania. This catalyst was immersed in an aqueous solution of copper sulfate (copper concentration: 9.0% by weight) for 20 minutes, and dried and calcined in the same manner as the third catalyst of Example 1, to obtain 7.4 oxides of W against titania. A third catalyst supporting 3 wt% of copper sulfate and 3.7 wt% of copper sulfate (in terms of a metal element) was prepared. After slurrying 0.26 g of the third catalyst, it was coated on the honeycomb formed body in the same manner as in Example 1, dried and fired, and a copper and W-based purification material (a purification material coated with the third catalyst) was used. ) Was prepared.

【0064】反応管内の排ガスの流入側からに流出側へ
順に実施例1の銀系浄化材、実施例1の第二の銀系浄化
材、上記銅、W系浄化材をセットした。実施例1と同様
の反応条件(各浄化材の見かけ空間速度はそれぞれ約8
0,000h-1である)で、表1に示す組成のガスを用
いて評価を行った。結果を表2に示す。
The silver-based purifying material of Example 1, the second silver-based purifying material of Example 1, the copper, and the W-based purifying material were set in this order from the inflow side to the outflow side of the exhaust gas in the reaction tube. The same reaction conditions as in Example 1 (the apparent space velocities of the respective purifying materials were about 8
(At 0000 h −1 )), and the evaluation was performed using a gas having a composition shown in Table 1. Table 2 shows the results.

【0065】実施例3 五酸化バナジウムにしゅう酸を加え、水浴上で加熱して
溶解させた後、冷却した水溶液(バナジウム濃度7.8
重量%)に、粉末状チタニア(比表面積50m2 /g)
を投入し、20分間浸漬した。その後、溶液からチタニ
アを分離し、空気中で、80℃、100℃、120℃で
各2時間乾燥した。続いて、酸素20%を含む窒素気流
下で120℃〜500℃まで5時間かけで昇温し、50
0℃で4時間焼成して、チタニアに対してV酸化物を
3.8重量%(金属元素換算値)担持したV系触媒を調
製した。このV系触媒3.3g(見掛け体積3.1m
l)を硫酸銅水溶液(銅濃度9.0重量%)に20分間
浸漬し、そして実施例1の第三の触媒と同じ方法で乾
燥、焼成し、チタニアに対してVの酸化物3.8重量
%、硫酸銅4.0重量%(金属元素換算値)を担持した
第三の触媒を調製した。0.26gの第三の触媒をスラ
リー化した後、実施例1と同じ方法でハニカム成形体に
コートし、乾燥、焼成を行い、銅、V系浄化材(第三の
触媒をコートした浄化材)を調製した。
Example 3 Oxalic acid was added to vanadium pentoxide and dissolved by heating on a water bath, and then cooled and cooled (a vanadium concentration of 7.8).
% By weight), powdered titania (specific surface area: 50 m 2 / g)
, And immersed for 20 minutes. Thereafter, the titania was separated from the solution, and dried in air at 80 ° C, 100 ° C, and 120 ° C for 2 hours each. Subsequently, the temperature was increased from 120 ° C. to 500 ° C. in 5 hours under a nitrogen stream containing 20% of oxygen, and 50 ° C.
By calcining at 0 ° C. for 4 hours, a V-based catalyst carrying 3.8% by weight (converted to metal element) of V oxide with respect to titania was prepared. 3.3 g of this V-based catalyst (3.1 m in apparent volume)
l) was immersed in an aqueous copper sulfate solution (copper concentration: 9.0% by weight) for 20 minutes, and dried and calcined in the same manner as the third catalyst of Example 1, to obtain an oxide of V against titania of 3.8. A third catalyst was prepared, which supported 4.0% by weight of copper sulfate and 4.0% by weight of copper sulfate (in terms of metal element). After slurrying 0.26 g of the third catalyst, it was coated on the honeycomb formed body in the same manner as in Example 1, dried and fired, and then a copper and V-based purification material (a purification material coated with the third catalyst). ) Was prepared.

【0066】反応管内の排ガスの流入側からに流出側へ
順に実施例1の銀系浄化材、実施例1の第二の銀系浄化
材、上記銅、V系浄化材をセットした。実施例1と同様
の反応条件(各浄化材の見かけ空間速度はそれぞれ約8
0,000h-1である)で、表1に示す組成のガスを用
いて評価を行った。結果を表2に示す。
The silver-based purifying material of Example 1, the second silver-based purifying material of Example 1, the copper and V-based purifying materials were set in this order from the inflow side of the exhaust gas in the reaction tube to the outflow side. The same reaction conditions as in Example 1 (the apparent space velocities of the respective purifying materials were about 8
(At 0000 h −1 )), and the evaluation was performed using a gas having a composition shown in Table 1. Table 2 shows the results.

【0067】実施例4 実施例3で調製したV系触媒3.3g(見掛け体積3.
1ml)を硝酸銅水溶液(銅濃度9.5重量%)に20
分間浸漬し、そして実施例1の第三の触媒と同じ方法で
乾燥、焼成し、チタニアに対してVの酸化物3.8重量
%、銅の酸化物4.5重量%(金属元素換算値)を担持
した第三の触媒を調製した。0.26gの第三の触媒を
スラリー化した後、実施例1と同じ方法でハニカム成形
体にコートし、乾燥、焼成を行い、銅、V系浄化材(第
三の触媒をコートした浄化材)を調製した。
Example 4 3.3 g of V-based catalyst prepared in Example 3 (apparent volume: 3.
1 ml) in an aqueous solution of copper nitrate (copper concentration 9.5% by weight).
For 3 minutes, and then dried and calcined in the same manner as the third catalyst of Example 1. 3.8% by weight of oxide of V and 4.5% by weight of oxide of copper with respect to titania (value in terms of metal element) ) Was prepared. After slurrying 0.26 g of the third catalyst, it was coated on the honeycomb formed body in the same manner as in Example 1, dried and fired, and then a copper and V-based purification material (a purification material coated with the third catalyst). ) Was prepared.

【0068】反応管内の排ガスの流入側からに流出側へ
順に実施例1の銀系浄化材、実施例1の第二の銀系浄化
材、上記銅、V系浄化材をセットした。実施例1と同様
の反応条件(各浄化材の見かけ空間速度はそれぞれ約8
0,000h-1である)で、表1に示す組成のガスを用
いて評価を行った。結果を表2に示す。
The silver-based purifying material of Example 1, the second silver-based purifying material of Example 1, the above-mentioned copper and V-based purifying materials were set in order from the inflow side to the outflow side of the exhaust gas in the reaction tube. The same reaction conditions as in Example 1 (the apparent space velocities of the respective purifying materials were about 8
(At 0000 h −1 )), and the evaluation was performed using a gas having a composition shown in Table 1. Table 2 shows the results.

【0069】実施例5 実施例1と同じ方法で粉末状チタニアを硝酸銅水溶液
(銅濃度9.5重量%)に20分間浸漬し、そして実施
例1の第三の触媒と同じ方法で乾燥、焼成し、チタニア
に対して銅の酸化物4.5重量%(金属元素換算値)を
担持した第三の触媒を調製した。
Example 5 Powdered titania was immersed in an aqueous copper nitrate solution (copper concentration: 9.5% by weight) for 20 minutes in the same manner as in Example 1, and dried in the same manner as in the third catalyst of Example 1. It was calcined to prepare a third catalyst which supported 4.5% by weight (in terms of metal element) of copper oxide with respect to titania.

【0070】上記第二の触媒と実施例1で調製した0.
26gの第三の触媒をスラリー化した後、実施例1と同
じ方法でハニカム成形体に混合触媒をコートし、乾燥、
焼成を行い、銅系浄化材(第三の触媒をコートした浄化
材)を調製した。
The above second catalyst and the 0.1.
After slurrying 26 g of the third catalyst, the mixed catalyst was coated on the formed honeycomb body in the same manner as in Example 1, dried, and dried.
Firing was performed to prepare a copper-based purifying material (a purifying material coated with a third catalyst).

【0071】反応管内の排ガスの流入側からに流出側へ
順に実施例1の銀系浄化材、実施例1の第二の銀系浄化
材、上記銅系浄化材をセットした。実施例1と同様の反
応条件(各浄化材の見かけ空間速度はそれぞれ約80,
000h-1である)で、表1に示す組成のガスを用いて
評価を行った。結果を表2に示す。
The silver-based purifying material of Example 1, the second silver-based purifying material of Example 1, and the copper-based purifying material were set in order from the inflow side to the outflow side of the exhaust gas in the reaction tube. The same reaction conditions as in Example 1 (the apparent space velocities of the respective purifying materials were about 80, respectively)
000 h −1 ), and evaluation was performed using a gas having a composition shown in Table 1. Table 2 shows the results.

【0072】実施例6 実施例1の第三の触媒と同様のチタニアを塩化白金酸水
溶液に20分間浸漬した後、空気中、80℃で2時間乾
燥し、窒素気流下で120℃で2時間、200〜400
℃まで段階的に各1時間焼成した。そして、水素ガス4
%を含む窒素気流下で50℃〜400℃まで5時間かけ
て昇温し、400℃で4時間焼成し、さらに、酸素を1
0%含む窒素気流下で50℃〜500℃まで5時間かけ
て昇温し、500℃で5時間焼成し、チタニアに対して
Ptを0.21重量%(金属元素換算値)担持した第四の
触媒を調製した。
Example 6 The same titania as the third catalyst of Example 1 was immersed in a chloroplatinic acid aqueous solution for 20 minutes, dried in air at 80 ° C. for 2 hours, and then at 120 ° C. for 2 hours in a nitrogen stream. , 200-400
Calcination was carried out stepwise for 1 hour up to ° C. And hydrogen gas 4
% Under a nitrogen stream containing 5% over a period of 5 hours from 50 ° C to 400 ° C, and calcined at 400 ° C for 4 hours.
The temperature was raised from 50 ° C. to 500 ° C. over 5 hours under a nitrogen stream containing 0%, and calcined at 500 ° C. for 5 hours.
A fourth catalyst carrying 0.21% by weight of Pt (in terms of a metal element) was prepared.

【0073】実施例1の第三の触媒と上記第四の触媒の
重量比が40:1になるように第二の触媒と第三の触媒
を混合してスラリー化した後、実施例1の銀系浄化材と
同様なハニカム成形体に0.26gの混合触媒をコート
し。実施例1の銀系浄化材と同じ条件で乾燥、焼成を行
い、銅、白金系浄化材(第三、第四の触媒をコートした
浄化材)を調製した。
The second catalyst and the third catalyst were mixed and slurried so that the weight ratio of the third catalyst and the fourth catalyst in Example 1 was 40: 1. A honeycomb formed body similar to the silver-based purifying material was coated with 0.26 g of the mixed catalyst. Drying and baking were performed under the same conditions as those of the silver-based purifying material of Example 1 to prepare copper and platinum-based purifying materials (purifying materials coated with third and fourth catalysts).

【0074】反応管内の排ガスの流入側からに流出側へ
順に実施例1の銀系浄化材、実施例1の第二の銀系浄化
材、上記銅、白金系浄化材をセットした。実施例1と同
様の反応条件(各浄化材の見かけ空間速度はそれぞれ約
80,000h-1である)で、表1に示す組成のガスを
用いて評価を行った。結果を表2に示す。
The silver-based purifying material of Example 1, the second silver-based purifying material of Example 1, and the copper and platinum-based purifying materials were set in this order from the inflow side to the outflow side of the exhaust gas in the reaction tube. Evaluation was performed using the gas having the composition shown in Table 1 under the same reaction conditions as in Example 1 (the apparent space velocity of each purification material was about 80,000 h -1 ). Table 2 shows the results.

【0075】実施例7 実施例2で調製した第三の触媒と実施例6で調製した第
四の触媒を重量比が40:1になるように混合してスラ
リー化した後、実施例6と同じ方法でハニカム成形体に
0.26gの混合触媒をコートし、乾燥、焼成を行い、
銅、W、白金系浄化材(第三、第四の触媒をコートした
浄化材)を調製した。
Example 7 A slurry was prepared by mixing the third catalyst prepared in Example 2 and the fourth catalyst prepared in Example 6 in a weight ratio of 40: 1, and the mixture was mixed with Example 6 to obtain a slurry. In the same manner, a honeycomb formed body was coated with 0.26 g of the mixed catalyst, dried and fired,
Copper, W, and platinum-based purifying materials (purifying materials coated with third and fourth catalysts) were prepared.

【0076】反応管内の排ガスの流入側からに流出側へ
順に実施例1の銀系浄化材、実施例1の第二の銀系浄化
材、上記銅、W、白金系浄化材をセットした。実施例1
と同様の反応条件(各浄化材の見かけ空間速度はそれぞ
れ約80,000h-1である)で、表1に示す組成のガ
スを用いて評価を行った。結果を表2に示す。
The silver-based purifying material of Example 1, the second silver-based purifying material of Example 1, and the copper, W, and platinum-based purifying materials were set in this order from the inflow side to the outflow side of the exhaust gas in the reaction tube. Example 1
Evaluation was carried out under the same reaction conditions as described above (the apparent space velocity of each purifying material was about 80,000 h -1 ) using a gas having a composition shown in Table 1. Table 2 shows the results.

【0077】実施例8 実施例3で調製した第三の触媒と実施例6で調製した第
四の触媒を重量比が20:1になるように混合してスラ
リー化した後、実施例6と同じ方法でハニカム成形体に
0.26gの混合触媒をコートし、乾燥、焼成を行い、
銅、V、白金系浄化材(第三、第四の触媒をコートした
浄化材)を調製した。
Example 8 The third catalyst prepared in Example 3 and the fourth catalyst prepared in Example 6 were mixed at a weight ratio of 20: 1 to form a slurry. In the same manner, a honeycomb formed body was coated with 0.26 g of the mixed catalyst, dried and fired,
Copper, V, and platinum-based purifying materials (purifying materials coated with third and fourth catalysts) were prepared.

【0078】反応管内の排ガスの流入側からに流出側へ
順に実施例1の銀系浄化材、実施例1の第二の銀系浄化
材、上記銅、V、白金系浄化材をセットした。実施例1
と同様の反応条件(各浄化材の見かけ空間速度はそれぞ
れ約80,000h-1である)で、表1に示す組成のガ
スを用いて評価を行った。結果を表2に示す。
The silver-based purifying material of Example 1, the second silver-based purifying material of Example 1, and the copper, V, and platinum-based purifying materials were set in this order from the inflow side to the outflow side of the exhaust gas in the reaction tube. Example 1
Evaluation was carried out under the same reaction conditions as described above (the apparent space velocity of each purifying material was about 80,000 h -1 ) using a gas having a composition shown in Table 1. Table 2 shows the results.

【0079】実施例9 実施例4で調製した第三の触媒と実施例6で調製した第
四の触媒を重量比が20:1になるように混合してスラ
リー化した後、実施例6と同じ方法でハニカム成形体に
0.26gの混合触媒をコートし、乾燥、焼成を行い、
銅、V、白金系浄化材(第三、第四の触媒をコートした
浄化材)を調製した。
Example 9 The third catalyst prepared in Example 4 and the fourth catalyst prepared in Example 6 were mixed at a weight ratio of 20: 1 to form a slurry. In the same manner, a honeycomb formed body was coated with 0.26 g of the mixed catalyst, dried and fired,
Copper, V, and platinum-based purifying materials (purifying materials coated with third and fourth catalysts) were prepared.

【0080】反応管内の排ガスの流入側からに流出側へ
順に実施例1の銀系浄化材、実施例1の第二の銀系浄化
材、上記銅、V、白金系浄化材をセットした。実施例1
と同様の反応条件(各浄化材の見かけ空間速度はそれぞ
れ約80,000h-1である)で、表1に示す組成のガ
スを用いて評価を行った。結果を表2に示す。
The silver-based purifying material of Example 1, the second silver-based purifying material of Example 1, and the copper, V, and platinum-based purifying materials were set in this order from the inflow side to the outflow side of the exhaust gas in the reaction tube. Example 1
Evaluation was carried out under the same reaction conditions as described above (the apparent space velocity of each purifying material was about 80,000 h -1 ) using a gas having a composition shown in Table 1. Table 2 shows the results.

【0081】実施例10 実施例5で調製した第三の触媒と実施例6で調製した第
四の触媒を重量比が20:1になるように混合してスラ
リー化した後、実施例6と同じ方法でハニカム成形体に
0.26gの混合触媒をコートし、乾燥、焼成を行い、
銅、白金系浄化材(第三、第四の触媒をコートした浄化
材)を調製した。
Example 10 The third catalyst prepared in Example 5 and the fourth catalyst prepared in Example 6 were mixed at a weight ratio of 20: 1 to form a slurry. In the same manner, a honeycomb formed body was coated with 0.26 g of the mixed catalyst, dried and fired,
Copper and platinum-based purifying materials (purifying materials coated with third and fourth catalysts) were prepared.

【0082】反応管内の排ガスの流入側からに流出側へ
順に実施例1の銀系浄化材、実施例1の第二の銀系浄化
材、上記銅、白金系浄化材をセットした。実施例1と同
様の反応条件(各浄化材の見かけ空間速度はそれぞれ約
80,000h-1である)で、表1に示す組成のガスを
用いて評価を行った。結果を表2に示す。
The silver-based purifying material of Example 1, the second silver-based purifying material of Example 1, and the copper and platinum-based purifying materials were set in this order from the inflow side to the outflow side of the exhaust gas in the reaction tube. Evaluation was performed using the gas having the composition shown in Table 1 under the same reaction conditions as in Example 1 (the apparent space velocity of each purification material was about 80,000 h -1 ). Table 2 shows the results.

【0083】比較例1 実施例1で調製した第一の触媒0.52gを同様のハニ
カム成形体にコートして、乾燥、焼成を行い、銀系浄化
材を調製した。銀系浄化材を排ガスの導管にセットし、
実施例1と同様の反応条件(見かけ空間速度は約80,
000h-1である)で、表1に示す組成のガスを用いて
評価を行った。結果を表2に示す。
Comparative Example 1 The same honeycomb formed body was coated with 0.52 g of the first catalyst prepared in Example 1, dried and fired to prepare a silver-based purifying material. Set the silver purifying material in the exhaust gas conduit,
The same reaction conditions as in Example 1 (apparent space velocity was about 80,
000 h −1 ), and evaluation was performed using a gas having a composition shown in Table 1. Table 2 shows the results.

【0084】 表2 窒素酸化物(NOx)の除去率 窒素酸化物の除去率(%) 反応温度(℃) 300 350 400 450 500 実施例1 55.8 82.5 97.7 96.5 93.6 実施例2 67.4 78.8 92.1 95.9 88.8 実施例3 68.1 76.5 88.7 93.6 83.2 実施例4 62.8 78.7 90.8 93.1 83.6 実施例5 23.4 56.5 67.4 80.3 80.3 実施例6 59.8 82.5 95.7 96.5 90.6 実施例7 68.4 78.8 92.1 94.9 83.8 実施例8 68.1 76.5 88.7 92.6 80.2 実施例9 66.8 78.7 90.8 92.1 80.6 実施例10 28.4 58.5 67.4 75.3 78.3 比較例1 20.5 30.5 35.7 42.6 40.5Table 2 Removal rate of nitrogen oxides (NOx) Removal rate of nitrogen oxides (%) Reaction temperature (° C.) 300 350 400 450 500 Example 1 55.8 82.5 97.7 96.5 93.6 Example 2 67.4 78.8 92.1 95.9 88.8 Example 3 68.1 76.5 88.7 93.6 83.2 Example 4 62.8 78.7 90.8 93.1 83.6 Example 5 23.4 56.5 67.4 80.3 80.3 Example 6 59.8 82.5 95.7 96.5 90.6 Example 7 68.4 78.8 92.1 94.9 83.8 Example 8 68.1 76.5 88.7 92.6 80.2 Example 9 66.8 78.7 90.8 92.1 80.6 Example 10 28.4 58.5 67.4 75.3 78.3 Comparative Example 1 20.5 30.5 35.7 42.6 40.5

【0085】表2からわかるように、銀触媒だけを用い
た比較例1に比べて、実施例1〜10では広い排ガス温
度領域で窒素酸化物の良好な除去がみられた。
As can be seen from Table 2, in Examples 1 to 10, good removal of nitrogen oxides was observed in a wide exhaust gas temperature range as compared with Comparative Example 1 using only a silver catalyst.

【0086】[0086]

【発明の効果】以上詳述したように、本発明の排ガス浄
化材を用いれば、広い温度領域において過剰の酸素を含
む排ガス中の窒素酸化物を効率良く除去することができ
る。本発明の排ガス浄化材及び浄化方法は、各種燃焼
機、自動車等の排ガス浄化に広く利用することができ
る。
As described above in detail, the use of the exhaust gas purifying material of the present invention makes it possible to efficiently remove nitrogen oxides in exhaust gas containing excess oxygen in a wide temperature range. INDUSTRIAL APPLICABILITY The exhaust gas purifying material and the purification method of the present invention can be widely used for purifying exhaust gas of various types of combustors, automobiles and the like.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 23/40 A 23/42 23/48 A 23/648 23/652 23/72 A 27/053 A 27/055 A 27/08 A 27/18 A B01D 53/36 102 A 102 B B01J 23/64 102 A 103 A (72)発明者 古山 雅孝 埼玉県熊谷市末広四丁目14番1号 株式会 社リケン熊谷事業所内 (72)発明者 斎藤 美香 埼玉県熊谷市末広四丁目14番1号 株式会 社リケン熊谷事業所内 (72)発明者 吉田 清英 埼玉県熊谷市末広四丁目14番1号 株式会 社リケン熊谷事業所内 (72)発明者 宮寺 達雄 茨城県つくば市小野川16番3工業技術院 資源県境 技術研究所内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical indication location B01J 23/40 A 23/42 23/48 A 23/648 23/652 23/72 A 27/053 A 27/055 A 27/08 A 27/18 A B01D 53/36 102 A 102 B B01J 23/64 102 A 103 A (72) Inventor Masataka Koyama 4-1-1, Suehiro, Kumagaya-shi, Saitama, Japan Co., Ltd. Inside the Riken Kumagaya Plant (72) Mika Saito 4-1-1, Suehiro, Kumagaya City, Saitama Prefecture Inside the Riken Kumagaya Plant (72) Kiyohide Yoshida 4-1-1, Suehiro Kumagaya City, Saitama Stock Company (72) Inventor Tatsuo Miyadera 16-3 Onogawa, Tsukuba City, Ibaraki Pref.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 窒素酸化物と、共存する未燃焼成分に対
する理論反応量より多い酸素とを含む燃焼排ガスから窒
素酸化物を還元除去する排ガス浄化材において、多孔質
の無機酸化物に活性種として銀及び/又は銀化合物、又
はそれらの混合物0.2〜12重量%(銀元素換算値)
を担持してなる第一の触媒と、多孔質の無機酸化物に活
性種として銀及び/又は銀化合物、又はそれらの混合物
0.5〜15重量%(銀元素換算値)かつ前記第一の触
媒の活性種の担持率より多い量を担持してなる第二の触
媒と、多孔質の無機酸化物に活性種として銅の酸化物及
び/又は硫酸塩0.2〜30重量%(銅元素換算値)を
担持してなる第三の触媒とからなり、浄化材の排ガス流
入側から流出側へ順に前記第一の触媒、前記第二の触媒
及び前記第三の触媒を有することを特徴とする排ガス浄
化材。
1. An exhaust gas purifying material for reducing and removing nitrogen oxides from a combustion exhaust gas containing nitrogen oxides and oxygen in excess of the theoretical reaction amount of coexisting unburned components, wherein the porous inorganic oxides are used as active species. 0.2 to 12% by weight of silver and / or a silver compound or a mixture thereof (in terms of silver element)
And a silver and / or silver compound as an active species in a porous inorganic oxide, or a mixture thereof in an amount of 0.5 to 15% by weight (in terms of silver element) and the first catalyst. A second catalyst supporting a larger amount of the active species than the active species of the catalyst, and 0.2 to 30% by weight of copper oxide and / or sulfate as active species on a porous inorganic oxide (copper element) (Converted value), the first catalyst, the second catalyst, and the third catalyst in order from the exhaust gas inflow side to the outflow side of the purification material. Exhaust gas purifying material.
【請求項2】 窒素酸化物と、共存する未燃焼成分に対
する理論反応量より多い酸素とを含む燃焼排ガスから窒
素酸化物を還元除去する排ガス浄化材において、多孔質
の無機酸化物に活性種として銀及び/又は銀化合物、又
はそれらの混合物0.2〜12重量%(銀元素換算値)
を担持してなる第一の触媒と、多孔質の無機酸化物に活
性種として銀及び/又は銀化合物、又はそれらの混合物
0.5〜15重量%(銀元素換算値)かつ前記第一の触
媒の活性種の担持率より多い量を担持してなる第二の触
媒と、多孔質の無機酸化物に活性種として銅の酸化物及
び/又は硫酸塩0.2〜30重量%(銅元素換算値)
と、W、V、Moからなる群より選ばれた少なくとも一
種の元素の酸化物又は硫酸塩30重量%以下(金属元素
換算値)とを担持してなる第三の触媒とからなり、浄化
材の排ガス流入側から流出側へ順に前記第一の触媒、前
記第二の触媒及び前記第三の触媒を有することを特徴と
する排ガス浄化材。
2. An exhaust gas purifying material for reducing and removing nitrogen oxides from a combustion exhaust gas containing nitrogen oxides and oxygen which is larger than a theoretical reaction amount of coexisting unburned components, wherein the porous inorganic oxides are used as active species. 0.2 to 12% by weight of silver and / or a silver compound or a mixture thereof (in terms of silver element)
And a silver and / or silver compound as an active species in a porous inorganic oxide, or a mixture thereof in an amount of 0.5 to 15% by weight (in terms of silver element) and the first catalyst. A second catalyst supporting a larger amount of the active species than the active species of the catalyst, and 0.2 to 30% by weight of copper oxide and / or sulfate as active species on a porous inorganic oxide (copper element) Conversion value)
And a third catalyst carrying 30% by weight or less (in terms of a metal element) of an oxide or sulfate of at least one element selected from the group consisting of W, V, and Mo. An exhaust gas purifying material comprising the first catalyst, the second catalyst, and the third catalyst in order from the exhaust gas inflow side to the outflow side.
【請求項3】 窒素酸化物と、共存する未燃焼成分に対
する理論反応量より多い酸素とを含む燃焼排ガスから窒
素酸化物を還元除去する排ガス浄化材において、多孔質
の無機酸化物に活性種として銀及び/又は銀化合物、又
はそれらの混合物0.2〜12重量%(銀元素換算値)
を担持してなる第一の触媒と、多孔質の無機酸化物に活
性種として銀及び/又は銀化合物、又はそれらの混合物
0.5〜15重量%(銀元素換算値)かつ前記第一の触
媒の活性種の担持率より多い量を担持してなる第二の触
媒と、多孔質の無機酸化物に活性種として銅の酸化物及
び/又は硫酸塩0.2〜30重量%(銅元素換算値)を
担持してなる第三の触媒と、多孔質の無機酸化物に活性
種としてPt、Pd、Ru、Rh、Ir及びAuからなる群より選ば
れた少なくとも1種の元素0.01〜5重量%(金属元
素換算値)を担持してなる第四の触媒とからなり、前記
第三の触媒と前記第四の触媒とが混合されており、浄化
材の排ガス流入側から流出側へ順に前記第一の触媒、前
記第二の触媒、前記混合触媒を有することを特徴とする
排ガス浄化材。
3. An exhaust gas purifying material for reducing and removing nitrogen oxides from a combustion exhaust gas containing nitrogen oxides and oxygen which is larger than a theoretical reaction amount of coexisting unburned components, wherein the porous inorganic oxides are used as active species. 0.2 to 12% by weight of silver and / or a silver compound or a mixture thereof (in terms of silver element)
And a silver and / or silver compound as an active species in a porous inorganic oxide, or a mixture thereof in an amount of 0.5 to 15% by weight (in terms of silver element) and the first catalyst. A second catalyst supporting a larger amount of the active species than the active species of the catalyst, and 0.2 to 30% by weight of copper oxide and / or sulfate as active species on a porous inorganic oxide (copper element) (Converted value) and at least one element selected from the group consisting of Pt, Pd, Ru, Rh, Ir and Au as active species in a porous inorganic oxide. -5% by weight (in terms of a metal element), the fourth catalyst being mixed with the third catalyst and the fourth catalyst. An exhaust gas purifying material comprising the first catalyst, the second catalyst, and the mixed catalyst in this order.
【請求項4】 窒素酸化物と、共存する未燃焼成分に対
する理論反応量より多い酸素とを含む燃焼排ガスから窒
素酸化物を還元除去する排ガス浄化材において、多孔質
の無機酸化物に活性種として銀及び/又は銀化合物、又
はそれらの混合物0.2〜12重量%(銀元素換算値)
を担持してなる第一の触媒と、多孔質の無機酸化物に活
性種として銀及び/又は銀化合物、又はそれらの混合物
0.5〜15重量%(銀元素換算値)かつ前記第一の触
媒の活性種の担持率より多い量を担持してなる第二の触
媒と、多孔質の無機酸化物に活性種として銅の酸化物及
び/又は硫酸塩0.2〜30重量%(銅元素換算値)
と、W、V、Moからなる群より選ばれた少なくとも一
種の元素の酸化物又は硫酸塩30重量%以下(金属元素
換算値)とを担持してなる第三の触媒と、多孔質の無機
酸化物に活性種としてPt、Pd、Ru、Rh、Ir及びAuからな
る群より選ばれた少なくとも1種の元素0.01〜5重
量%(金属元素換算値)を担持してなる第四の触媒とか
らなり、前記第三の触媒と前記第四の触媒とが混合され
ており、浄化材の排ガス流入側から流出側へ順に前記第
一の触媒、前記第二の触媒、前記混合触媒を有すること
を特徴とする排ガス浄化材。
4. An exhaust gas purifying material for reducing and removing nitrogen oxides from a combustion exhaust gas containing nitrogen oxides and oxygen in excess of a theoretical reaction amount for coexisting unburned components, wherein the porous inorganic oxides have an active species as active species. 0.2 to 12% by weight of silver and / or a silver compound or a mixture thereof (in terms of silver element)
And a silver and / or silver compound as an active species in a porous inorganic oxide, or a mixture thereof in an amount of 0.5 to 15% by weight (in terms of silver element) and the first catalyst. A second catalyst supporting a larger amount of the active species than the active species of the catalyst, and 0.2 to 30% by weight of copper oxide and / or sulfate as active species on the porous inorganic oxide (copper element) Conversion value)
A third catalyst supporting 30% by weight or less (in terms of a metal element) of an oxide or sulfate of at least one element selected from the group consisting of W, V, and Mo; A fourth method in which at least one element selected from the group consisting of Pt, Pd, Ru, Rh, Ir, and Au as an active species is supported on the oxide in an amount of 0.01 to 5% by weight (in terms of a metal element). And the third catalyst and the fourth catalyst are mixed, and the first catalyst, the second catalyst, and the mixed catalyst are arranged in order from the exhaust gas inflow side to the outflow side of the purification material. An exhaust gas purifying material characterized by having.
【請求項5】 請求項3又は4に記載の排ガス浄化材に
おいて、前記第三の触媒と第四の触媒の重量比は10
0:1〜100:50であることを特徴とする排ガス浄
化材。
5. The exhaust gas purifying material according to claim 3, wherein the weight ratio of the third catalyst to the fourth catalyst is 10%.
An exhaust gas purifying material having a ratio of 0: 1 to 100: 50.
【請求項6】 請求項1〜5のいずれかに記載の排ガス
浄化材において、前記第一、第二、第三及び第四の触媒
の内の一つ以上がセラッミクス製又は金属製の基体の表
面にコートされたものであることを特徴とする排ガス浄
化材。
6. The exhaust gas purifying material according to claim 1, wherein at least one of the first, second, third, and fourth catalysts is a ceramic or metal substrate. An exhaust gas purifying material characterized by being coated on the surface.
【請求項7】 請求項1〜5のいずれかに記載の排ガス
浄化材において、前記第一、第二、第三及び第四の触媒
の内の一つ以上がペレット状又は顆粒状であることを特
徴とする排ガス浄化材。
7. The exhaust gas purifying material according to claim 1, wherein at least one of the first, second, third and fourth catalysts is in the form of pellets or granules. An exhaust gas purifying material characterized by the following.
【請求項8】 請求項1〜7のいずれかに記載の排ガス
浄化材において、前記銀化合物は銀の酸化物、ハロゲン
化銀、硫酸銀及び燐酸銀からなる群より選ばれた少なく
とも一種であることを特徴とする排ガス浄化材。
8. The exhaust gas purifying material according to claim 1, wherein the silver compound is at least one selected from the group consisting of silver oxide, silver halide, silver sulfate and silver phosphate. An exhaust gas purifying material characterized by that:
【請求項9】 請求項1〜8のいずれかに記載の排ガス
浄化材において、前記多孔質無機酸化物が、第一及び第
二の触媒ではアルミナ、チタニアのいずれか又はそれら
を含む複合酸化物、第三の触媒ではアルミナ、チタニア
及びゼオライトのいずれか又はそれらを含む複合酸化物
又はそれらの混合酸化物、第四の触媒ではアルミナ、チ
タニア、ジルコニア、シリカ、ゼオライトからなる群よ
り選ばれた一種以上の酸化物であることを特徴とする排
ガス浄化材。
9. The exhaust gas purifying material according to claim 1, wherein said porous inorganic oxide is alumina or titania or a composite oxide containing them for the first and second catalysts. , The third catalyst is alumina, titania and zeolite, or a composite oxide containing them or a mixed oxide thereof, and the fourth catalyst is alumina, titania, zirconia, silica, and one selected from the group consisting of zeolites. An exhaust gas purifying material comprising the above oxide.
【請求項10】 請求項1〜9のいずれかに記載の排ガ
ス浄化材を用い、窒素酸化物と、共存する未燃焼成分に
対する理論反応量より多い酸素とを含む燃焼排ガスから
窒素酸化物を還元除去する排ガス浄化方法において、前
記排ガス浄化材を排ガス導管の途中に設置し、前記浄化
材の上流側で炭化水素及び/又は含酸素有機化合物を添
加した排ガスを、150〜600℃において前記浄化材
に接触させ、もって前記排ガス中の炭化水素及び/又は
含酸素有機化合物との反応により前記窒素酸化物を除去
することを特徴とする排ガス浄化方法。
10. A method for reducing nitrogen oxides from a combustion exhaust gas containing the nitrogen oxides and oxygen that is larger than the theoretical reaction amount of unexisting unburned components using the exhaust gas purifying material according to claim 1. Description: In the exhaust gas purifying method for removing, the exhaust gas purifying material is installed in the middle of an exhaust gas conduit, and the exhaust gas to which hydrocarbons and / or oxygen-containing organic compounds are added on the upstream side of the purifying material is subjected to the purifying material at 150 to 600 ° C. Exhaust gas purifying method, wherein the nitrogen oxides are removed by contact with a hydrocarbon and / or an oxygen-containing organic compound in the exhaust gas.
JP31763394A 1994-11-04 1994-11-28 Exhaust gas purification material and exhaust gas purification method Expired - Lifetime JP3626999B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP31763394A JP3626999B2 (en) 1994-11-28 1994-11-28 Exhaust gas purification material and exhaust gas purification method
EP95307871A EP0710499A3 (en) 1994-11-04 1995-11-03 Exhaust gas cleaner and method for cleaning exhaust gas
US08/883,082 US5882607A (en) 1994-11-04 1997-06-26 Exhaust gas cleaner and method for cleaning exhaust gas
US08/890,641 US5780002A (en) 1994-11-04 1997-07-09 Exhaust gas cleaner and method for cleaning exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31763394A JP3626999B2 (en) 1994-11-28 1994-11-28 Exhaust gas purification material and exhaust gas purification method

Publications (2)

Publication Number Publication Date
JPH08150336A true JPH08150336A (en) 1996-06-11
JP3626999B2 JP3626999B2 (en) 2005-03-09

Family

ID=18090342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31763394A Expired - Lifetime JP3626999B2 (en) 1994-11-04 1994-11-28 Exhaust gas purification material and exhaust gas purification method

Country Status (1)

Country Link
JP (1) JP3626999B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009515095A (en) * 2005-11-08 2009-04-09 テネコ オートモティブ オペレーティング カンパニー インコーポレイテッド Selective catalytic reduction of nitrogen oxides with hydrogen.
JP2012097724A (en) * 2010-10-08 2012-05-24 Hino Motors Ltd Exhaust gas cleaning device
JP2012130921A (en) * 2012-04-13 2012-07-12 Chugoku Electric Power Co Inc:The Catalyst for cleaning ammonia gas
JP2015134353A (en) * 2015-03-02 2015-07-27 中国電力株式会社 Catalyst for purifying ammonia gas
WO2023136061A1 (en) * 2022-01-17 2023-07-20 株式会社キャタラー Exhaust gas purification catalyst

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009515095A (en) * 2005-11-08 2009-04-09 テネコ オートモティブ オペレーティング カンパニー インコーポレイテッド Selective catalytic reduction of nitrogen oxides with hydrogen.
JP2012097724A (en) * 2010-10-08 2012-05-24 Hino Motors Ltd Exhaust gas cleaning device
JP2012130921A (en) * 2012-04-13 2012-07-12 Chugoku Electric Power Co Inc:The Catalyst for cleaning ammonia gas
JP2015134353A (en) * 2015-03-02 2015-07-27 中国電力株式会社 Catalyst for purifying ammonia gas
WO2023136061A1 (en) * 2022-01-17 2023-07-20 株式会社キャタラー Exhaust gas purification catalyst

Also Published As

Publication number Publication date
JP3626999B2 (en) 2005-03-09

Similar Documents

Publication Publication Date Title
JP3626999B2 (en) Exhaust gas purification material and exhaust gas purification method
JP2700386B2 (en) Exhaust gas purifying material and exhaust gas purifying method
JPH0824583A (en) Exhaust gas purifying material and method for purifying exhaust gas
JP2649217B2 (en) Exhaust gas purifying material and exhaust gas purifying method
JPH0957064A (en) Waste gas purifying material and waste gas purifying method
JP2587000B2 (en) Exhaust gas purifying material and exhaust gas purifying method
JPH08168650A (en) Material and method for purifying exhaust gas
JPH08309189A (en) Combustion gas purifying material and purification of combustion gas
JPH08168651A (en) Material and method for purifying exhaust gas
JP3854325B2 (en) Exhaust gas purification material and exhaust gas purification method
JPH08168674A (en) Material and process for purifying exhaust gas
JPH08141371A (en) Exhaust gas purification material and purifying method for exhaust gas
JPH0824654A (en) Matreial and method for pufitying exhaust gas
JPH0970536A (en) Purifying material for exhaust gas and purifying method of exhaust gas
JPH08164327A (en) Waste gas purifying material and waste gas purifying method
JPH08299795A (en) Waste gas purification material and method for purifying waste gas
JPH0824646A (en) Material and method for purifying exhaust gas
JPH08318157A (en) Waste gas purification material and method for purifying waste gas
JPH08196872A (en) Exhaust gas purification material and purification of exhaust gas
JPH08309190A (en) Combustion gas purifying material and purification of combustion gas
JPH0985057A (en) Exhaust gas purifying material and method for purifying exhaust gas
JPH08182931A (en) Exhaust gas purifying material and exhaust gas purification using the same
JPH08318156A (en) Waste gas purification material and method for purifying waste gas
JPH0952024A (en) Exhaust gas purifying material and exhaust gas purifying method
JPH08229393A (en) Waste gas purifying mateiral and waste gas purifying method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040707

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040803

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20040805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041102

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term