JP2700386B2 - Exhaust gas purifying material and exhaust gas purifying method - Google Patents

Exhaust gas purifying material and exhaust gas purifying method

Info

Publication number
JP2700386B2
JP2700386B2 JP6314034A JP31403494A JP2700386B2 JP 2700386 B2 JP2700386 B2 JP 2700386B2 JP 6314034 A JP6314034 A JP 6314034A JP 31403494 A JP31403494 A JP 31403494A JP 2700386 B2 JP2700386 B2 JP 2700386B2
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
purifying material
silver
gas purifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6314034A
Other languages
Japanese (ja)
Other versions
JPH08182920A (en
Inventor
達雄 宮寺
清英 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Original Assignee
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp filed Critical Riken Corp
Priority to JP6314034A priority Critical patent/JP2700386B2/en
Priority to EP95307871A priority patent/EP0710499A3/en
Publication of JPH08182920A publication Critical patent/JPH08182920A/en
Priority to US08/883,082 priority patent/US5882607A/en
Priority to US08/890,641 priority patent/US5780002A/en
Application granted granted Critical
Publication of JP2700386B2 publication Critical patent/JP2700386B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は窒素酸化物と過剰の酸素
を含む燃焼排ガスから、窒素酸化物を効果的に還元除去
することのできる排ガス浄化材及びそれを用いた浄化方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying material capable of effectively reducing and removing nitrogen oxides from a combustion exhaust gas containing nitrogen oxides and excess oxygen, and a purification method using the same.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】自動車
用エンジン等の内燃機関や、工場等に設置された燃焼機
器、家庭用ファンヒーターなどから排出される各種の燃
焼排ガス中には、過剰の酸素とともに一酸化窒素、二酸
化窒素等の窒素酸化物が含まれている。ここで、「過剰
の酸素を含む」とは、その排ガス中に含まれる一酸化炭
素、水素、炭化水素等の未燃焼成分を燃焼するのに必要
な理論酸素量より多い酸素を含むことを意味する。ま
た、以下における窒素酸化物とは一酸化窒素及び/又は
二酸化窒素を指す。
2. Description of the Related Art Excessive combustion exhaust gas discharged from internal combustion engines such as automobile engines, combustion equipment installed in factories, household fan heaters, and the like is excessive. It contains nitrogen oxides such as nitric oxide and nitrogen dioxide together with oxygen. Here, "containing excess oxygen" means that the exhaust gas contains more oxygen than the theoretical amount of oxygen necessary to burn unburned components such as carbon monoxide, hydrogen, and hydrocarbons. I do. In the following, nitrogen oxide refers to nitric oxide and / or nitrogen dioxide.

【0003】この窒素酸化物は酸性雨の原因の一つとさ
れ、環境上の大きな問題となっている。そのため、各種
燃焼機器が排出する排ガス中の窒素酸化物を除去するさ
まざまな方法が検討されている。
[0003] This nitrogen oxide is one of the causes of acid rain and is a major environmental problem. Therefore, various methods for removing nitrogen oxides in exhaust gas discharged from various combustion equipments are being studied.

【0004】過剰の酸素を含む燃焼排ガスから窒素酸化
物を除去する方法として、特に大規模な固定燃焼装置
(工場等の大型燃焼機等)に対しては、アンモニアを用
いる選択的接触還元法が実用化されている。
[0004] As a method for removing nitrogen oxides from a combustion exhaust gas containing excess oxygen, a selective catalytic reduction method using ammonia is used particularly for a large-scale fixed combustion device (a large-scale combustor in a factory or the like). Has been put to practical use.

【0005】しかしながら、この方法においては、窒素
酸化物の還元剤として用いるアンモニアが高価であるこ
と、またアンモニアは毒性を有すること、そのために未
反応のアンモニアが排出しないように排ガス中の窒素酸
化物濃度を計測しながらアンモニア注入量を制御しなけ
ればならないこと、一般に装置が大型となること等の問
題点がある。
However, in this method, ammonia used as a reducing agent for nitrogen oxides is expensive, and ammonia is toxic. Therefore, the nitrogen oxides in the exhaust gas must be removed so that unreacted ammonia is not discharged. There are problems that the amount of injected ammonia must be controlled while measuring the concentration, and that the apparatus generally becomes large.

【0006】また、別な方法として、水素、一酸化炭
素、炭化水素等のガスを還元剤として用い、窒素酸化物
を還元する非選択的接触還元法があるが、この方法で
は、効果的な窒素酸化物の低減除去を実行するためには
排ガス中の酸素との理論反応量以上の還元剤を添加しな
ければならず、還元剤を多量に消費する欠点がある。こ
のため非選択的接触還元法は、実際上は、理論空燃比付
近で燃焼した残存酸素濃度の低い排ガスに対してのみ有
効となり、汎用性に乏しく実際的でない。
As another method, there is a non-selective catalytic reduction method in which a nitrogen oxide is reduced by using a gas such as hydrogen, carbon monoxide, or a hydrocarbon as a reducing agent. In order to reduce and remove nitrogen oxides, it is necessary to add a reducing agent in an amount equal to or more than a theoretical reaction amount with oxygen in exhaust gas, and there is a disadvantage that a large amount of the reducing agent is consumed. For this reason, the non-selective catalytic reduction method is practically effective only for exhaust gas having a low residual oxygen concentration burned near the stoichiometric air-fuel ratio, and is not practical because of poor versatility.

【0007】そこで、ゼオライト又はそれに遷移金属を
担持した触媒を用いて、排ガス中の酸素との理論反応量
以下の還元剤を添加して窒素酸化物を除去する方法が提
案された(たとえば、特開昭63-100919 号、同63-28372
7 号、特開平1-130735号等)。
In view of the above, a method has been proposed for removing nitrogen oxides by using a zeolite or a catalyst supporting a transition metal on the zeolite and adding a reducing agent having a theoretical reaction amount or less with oxygen in the exhaust gas (for example, Japanese Patent Application Laid-Open Publication No. H11-163873). No.63-100919, 63-28372
No. 7, JP-A No. 1-130735).

【0008】しかしながら、これらの方法では、効果的
な窒素酸化物の除去が狭い温度領域でしか得られず、ま
た、水分を含むような排ガスでは、窒素酸化物の除去率
が著しく低下する。つまり、10%程度の水分を含み、
運転条件によって温度変化の大きい車等からの排ガスに
対して、窒素酸化物の効果的除去は困難である。
However, in these methods, effective removal of nitrogen oxides can be obtained only in a narrow temperature range, and in an exhaust gas containing water, the removal rate of nitrogen oxides is significantly reduced. In other words, it contains about 10% water,
It is difficult to effectively remove nitrogen oxides from exhaust gas from a vehicle or the like whose temperature changes greatly depending on operating conditions.

【0009】したがって、本発明の目的は、固定燃焼装
置および酸素過剰条件で燃焼するガソリンエンジン、デ
ィーゼルエンジン等からの燃焼排ガスのように、窒素酸
化物や、一酸化炭素、水素、炭化水素等の未燃焼分に対
する理論反応量以上の酸素を含有する燃焼排ガスから、
効率良く窒素酸化物を還元除去することができる排ガス
浄化材及び排ガス浄化方法を提供することである。
Accordingly, it is an object of the present invention to provide a method for producing nitrogen oxides, carbon monoxide, hydrogen, hydrocarbons and the like, such as combustion exhaust gas from a fixed combustion device and a gasoline engine, a diesel engine or the like, which burns under oxygen excess conditions. From combustion exhaust gas containing more than the theoretical reaction amount for unburned components,
An object of the present invention is to provide an exhaust gas purifying material and an exhaust gas purifying method capable of efficiently reducing and removing nitrogen oxides.

【0010】[0010]

【課題を解決するための手段】上記課題に鑑み鋭意研究
の結果、本発明者は、多孔質の無機酸化物に特定量の銀
成分を担持してなる第一の触媒と、銅成分単独又は銅成
分とW系成分を担持してなる第二の触媒と、Pt等の成分
を担持してなる第三の触媒とを分離して形成される排ガ
ス浄化材を用い、排ガス中に炭化水素及び/又は含酸素
有機化合物を添加して特定の温度で上記の触媒に排ガス
を接触させると、銀触媒上で窒素酸化物が還元されると
ともに、副生成物として亜硝酸エステル、アンモニアな
どの含窒素化合物やアルデヒドが生成され、これらの含
窒素化合物が銅系触媒で窒素まで還元され、さらに白金
系触媒で残留炭化水素、一酸化炭素が除去されることが
わかり、10%の水分を含む排ガスでも、広い温度領域
で窒素酸化物を効果的に除去することができることを発
見し、本発明を完成した。
Means for Solving the Problems In view of the above problems, as a result of intensive studies, the present inventors have found that a first catalyst comprising a porous inorganic oxide carrying a specific amount of a silver component and a copper component alone or Using an exhaust gas purifying material formed by separating a second catalyst supporting a copper component and a W-based component and a third catalyst supporting a component such as Pt, hydrocarbons and When an exhaust gas is brought into contact with the above catalyst at a specific temperature after addition of an oxygen-containing organic compound, nitrogen oxides are reduced on the silver catalyst and nitrogen-containing substances such as nitrites and ammonia are produced as by-products. Compounds and aldehydes are generated, and these nitrogen-containing compounds are reduced to nitrogen with a copper-based catalyst, and residual hydrocarbons and carbon monoxide are removed with a platinum-based catalyst. Effective for nitrogen oxides over a wide temperature range It discovered that can be removed, thereby completing the present invention.

【0011】すなわち、窒素酸化物と、共存する未燃焼
成分に対する理論反応量より多い酸素とを含む燃焼排ガ
スから窒素酸化物を還元除去する本発明の第一の排ガス
浄化材は、浄化材の排ガス流入側から流出側に順に第一
〜第三の触媒を有し、前記第一の触媒が多孔質のアルミ
ナ、チタニア及びゼオライトのいずれか又はそれらを含
む複合酸化物又はそれらの混合酸化物に活性種として銀
及び/又は銀化合物、又はそれらの混合物0.2〜15
重量%(銀元素換算値)を担持してなり、前記第二の触
媒が多孔質のγ−アルミナ及び/又はチタニアに活性種
として銅の酸化物及び/又は硫酸銅0.2〜30重量%
(銅元素換算値)を担持してなり、前記第三の触媒が
ルミナ、チタニア、ジルコニア、シリカ、ゼオライトか
らなる群より選ばれた一種以上の多孔質無機酸化物に活
性種としてPt、Pd、Ru、Rh、Ir及びAuから
なる群より選ばれた少なくとも1種の元素0.01〜5
重量%(金属元素換算値)を担持してなることを特徴と
する。
That is, the first exhaust gas purifying material of the present invention for reducing and removing nitrogen oxides from a combustion exhaust gas containing nitrogen oxides and oxygen in an amount larger than the theoretical reaction amount of coexisting unburned components is the exhaust gas purifying material. From the inflow side to the outflow side, it has first to third catalysts, and the first catalyst is a porous aluminum.
Na, titania and / or zeolite
Silver and / or a silver compound as an active species in a complex oxide or a mixed oxide thereof, or a mixture thereof 0.2 to 15;
% (In terms of silver element), and the second catalyst contains 0.2 to 30% by weight of copper oxide and / or copper sulfate as an active species on porous γ-alumina and / or titania.
It carries (copper metal basis), the third catalyst A
Lumina, titania, zirconia, silica, zeolite
At least one element selected from the group consisting of Pt, Pd, Ru, Rh, Ir, and Au as an active species in one or more porous inorganic oxides selected from the group consisting of 0.01 to 5;
It is characterized by being supported by weight% (in terms of metal element).

【0012】また、窒素酸化物と、共存する未燃焼成分
に対する理論反応量より多い酸素とを含む燃焼排ガスか
ら窒素酸化物を還元除去する本発明の第二の排ガス浄化
材は、浄化材の排ガス流入側から流出側に順に第一〜第
三の触媒を有し、前記第一の触媒が多孔質の無機酸化物
に活性種として銀及び/又は銀化合物、又はそれらの混
合物0.2〜15重量%(銀元素換算値)を担持してな
り、前記第二の触媒が多孔質の無機酸化物に活性種とし
て銅の酸化物及び/又は硫酸塩0.2〜30重量%(銅
元素換算値)と、W、V、Moからなる群より選ばれた
少なくとも一種の元素の酸化物又は硫酸塩30重量%以
下(金属元素換算値)とを担持してなり、前記第三の触
媒が多孔質の無機酸化物に活性種としてPt、Pd、Ru、R
h、Ir及びAuからなる群より選ばれた少なくとも1種の
元素0.01〜5重量%(金属元素換算値)を担持して
なることを特徴とする。
A second exhaust gas purifying material of the present invention for reducing and removing nitrogen oxides from a combustion exhaust gas containing nitrogen oxides and oxygen in an amount larger than a theoretical reaction amount for co-existing unburned components, From the inflow side to the outflow side, the first catalyst has first to third catalysts, and the first catalyst is formed on a porous inorganic oxide by using silver and / or a silver compound as an active species or a mixture thereof in a range of 0.2 to 15; Weight percent (in terms of silver element), and the second catalyst is a porous inorganic oxide in which 0.2 to 30 weight% of copper oxide and / or sulfate as an active species (in terms of copper element) Value) and an oxide or sulfate of at least one element selected from the group consisting of W, V, and Mo, in an amount of 30% by weight or less (in terms of a metal element), and the third catalyst is porous. Pt, Pd, Ru, R as active species on high quality inorganic oxides
It is characterized by carrying at least one element selected from the group consisting of h, Ir and Au in an amount of 0.01 to 5% by weight (in terms of a metal element).

【0013】さらに、窒素酸化物と、共存する未燃焼成
分に対する理論反応量より多い酸素とを含む燃焼排ガス
から窒素酸化物を還元除去する本発明の排ガス浄化方法
は、上記排ガス浄化材を排ガス導管の途中に設置し、前
記浄化材の上流側で炭化水素及び/又は含酸素有機化合
物を添加した排ガスを、150〜600℃において前記
浄化材に接触させ、もって前記排ガス中の炭化水素及び
/又は含酸素有機化合物との反応により前記窒素酸化物
を除去することを特徴とする。
Further, the exhaust gas purifying method of the present invention for reducing and removing nitrogen oxides from a combustion exhaust gas containing nitrogen oxides and oxygen in excess of the theoretical reaction amount for coexisting unburned components, comprises: And the exhaust gas to which hydrocarbons and / or oxygen-containing organic compounds are added on the upstream side of the purification material is brought into contact with the purification material at 150 to 600 ° C., whereby the hydrocarbons and / or The nitrogen oxide is removed by a reaction with an oxygen-containing organic compound.

【0014】以下、本発明を詳細に説明する。本発明の
第一の排ガス浄化材では、排ガス流入側に、多孔質の無
機酸化物に活性種である銀及び/又は銀化合物、又はそ
れらの混合物を担持してなる第一の触媒を形成し、流出
側に多孔質の無機酸化物に活性種であるPt、Pd、Ru、R
h、Ir及びAuからなる群より選ばれた少なくとも1種の
元素を担持してなる第三の触媒を形成し、第一の触媒と
第三の触媒の間に、多孔質の無機酸化物に活性種である
銅の酸化物及び/又は硫酸銅を担持してなる第二の触媒
を形成してなる排ガス浄化材を排ガス導管中に設置し、
浄化材の設置位置より上流側で排ガス中に炭化水素及び
/又は含酸素有機化合物を添加して排ガスをこの浄化材
に接触させ、炭化水素、含酸素有機化合物を還元剤とし
て排ガス中の窒素酸化物を還元除去する。
Hereinafter, the present invention will be described in detail. In the first exhaust gas purifying material of the present invention, a first catalyst in which silver and / or a silver compound as active species are supported on a porous inorganic oxide or a mixture thereof is formed on the exhaust gas inflow side. , Pt, Pd, Ru, R which are active species on the porous inorganic oxide on the outflow side
h, forming a third catalyst carrying at least one element selected from the group consisting of Ir and Au, between the first catalyst and the third catalyst, a porous inorganic oxide An exhaust gas purifying material formed by forming a second catalyst carrying an active species copper oxide and / or copper sulfate is installed in an exhaust gas conduit,
A hydrocarbon and / or an oxygen-containing organic compound is added to the exhaust gas on the upstream side from the installation position of the purifying material, and the exhaust gas is brought into contact with the purifying material. Nitrogen oxidation in the exhaust gas using the hydrocarbon and the oxygen-containing organic compound as a reducing agent The substance is reduced and removed.

【0015】また、本発明の第二の排ガス浄化材では、
排ガス流入側に、多孔質の無機酸化物に活性種である銀
及び/又は銀化合物、又はそれらの混合物を担持してな
る第一の触媒を形成し、流出側に多孔質の無機酸化物に
活性種であるPt、Pd、Ru、Rh、Ir及びAuからなる群より
選ばれた少なくとも1種の元素を担持してなる第三の触
媒を形成し、第一の触媒と第三の触媒の間に、多孔質の
無機酸化物に活性種である銅の酸化物及び/又は硫酸塩
と、W、V、Moからなる群より選ばれた少なくとも一
種の元素の酸化物又は硫酸塩とを担持してなる第二の触
媒を形成してなる排ガス浄化材を排ガス導管中に設置
し、浄化材の設置位置より上流側で排ガス中に炭化水素
及び/又は含酸素有機化合物を添加して排ガスをこの浄
化材に接触させ、炭化水素、含酸素有機化合物を還元剤
として排ガス中の窒素酸化物を還元除去する。
In the second exhaust gas purifying material of the present invention,
On the exhaust gas inflow side, a first catalyst comprising silver and / or a silver compound, which is an active species, or a mixture thereof is formed on a porous inorganic oxide, and on the outflow side, a porous inorganic oxide is formed. Forming a third catalyst carrying at least one element selected from the group consisting of active species Pt, Pd, Ru, Rh, Ir, and Au, the first catalyst and the third catalyst In between, the porous inorganic oxide carries copper oxide and / or sulfate as an active species and oxide or sulfate of at least one element selected from the group consisting of W, V and Mo. Exhaust gas purifying material forming the second catalyst is installed in an exhaust gas conduit, and hydrocarbons and / or oxygen-containing organic compounds are added to the exhaust gas upstream of the installation position of the purifying material to remove the exhaust gas. Nitric acid in exhaust gas by contacting this purification material with hydrocarbons and oxygen-containing organic compounds as reducing agents Things to the reduced and removed.

【0016】本発明の排ガス浄化材の第一の好ましい形
態は、粉末状の多孔質無機酸化物に触媒活性種を担持し
てなる触媒を浄化材基体にコートしてなる浄化材であ
る。浄化材の基体を形成するセラミックス材料として
は、γ−アルミナ及びその酸化物(γ−アルミナ−チタ
ニア、γ−アルミナ−シリカ、γ−アルミナ−ジルコニ
ア等)、ジルコニア、チタニア−ジルコニアなどの多孔
質で表面積の大きい耐熱性のものが挙げられる。高耐熱
性が要求される場合、コージェライト、ムライト、アル
ミナ及びその複合物等を用いるのが好ましい。また、排
ガス浄化材の基体に公知の金属材料を用いることもでき
る。
A first preferred embodiment of the exhaust gas purifying material of the present invention is a purifying material obtained by coating a purifying material base with a catalyst comprising a powdery porous inorganic oxide carrying catalytically active species. Examples of the ceramic material forming the substrate of the purifying material include porous materials such as γ-alumina and its oxides (γ-alumina-titania, γ-alumina-silica, γ-alumina-zirconia, etc.), zirconia, titania-zirconia, and the like. A heat-resistant material having a large surface area can be used. When high heat resistance is required, it is preferable to use cordierite, mullite, alumina and a composite thereof. In addition, a known metal material can be used for the base of the exhaust gas purifying material.

【0017】排ガス浄化材の基体の形状及び大きさは、
目的に応じて種々変更できる。実用的には、入口部分、
中間部分、及び出口部分等、二つ以上の部分からなるこ
とが好ましい。またその構造としては、ハニカム構造
型、フォーム型、繊維状耐火物からなる三次元網目構造
型、あるいは顆粒状、ペレット状等が挙げられる。
The shape and size of the substrate of the exhaust gas purifying material are as follows:
Various changes can be made according to the purpose. Practically, at the entrance,
It is preferable that it is composed of two or more parts such as an intermediate part and an outlet part. Examples of the structure include a honeycomb structure type, a foam type, a three-dimensional network structure type formed of a fibrous refractory, a granular shape, a pellet shape, and the like.

【0018】本発明の排ガス浄化材の第二の好ましい形
態は、ペレット状又は顆粒状粉末状の多孔質無機酸化物
に触媒活性種を担持してなる触媒、又は触媒活性種をそ
れぞれ担持した粉末状多孔質無機酸化物をペレット状又
は顆粒状に成形したものを所望形状のケーシングに充填
してなる浄化材である。
A second preferred embodiment of the exhaust gas purifying material of the present invention is a catalyst comprising a porous inorganic oxide in the form of a pellet or a granular powder carrying a catalytically active species, or a powder comprising a catalytically active species, respectively. It is a purifying material obtained by molding a porous inorganic oxide into pellets or granules into a casing having a desired shape.

【0019】本発明の浄化材には以下の触媒が形成され
ている。 (1)第一の触媒 第一の触媒は、多孔質無機酸化物に銀及び/又は銀化合
物、又はそれらの混合物を担持してなり、排ガスの流入
側に形成され、広い温度領域での窒素酸化物除去に作用
する。銀化合物は銀の酸化物、ハロゲン化銀、硫酸銀及
び燐酸銀などからなる群より選ばれた少なくとも一種で
あり、好ましくは銀の酸化物、塩化銀及び硫酸銀のいず
れか一種以上であり、更に好ましくは銀の酸化物及び/
又は塩化銀である。多孔質の無機酸化物としては、多孔
質のアルミナ、シリカ、チタニア、ジルコニア、ゼオラ
イト及びそれらの複合酸化物等を使用することができる
が、好ましくはγ−アルミナ、チタニアのいずれか又は
それらを含む複合酸化物又はそれらの混合酸化物を用い
る。γ−アルミナ、チタニア又はそれらの複合酸化物又
はそれらの混合酸化物を用いることにより、添加した炭
化水素、含酸素有機化合物及び/又は排ガス中の残留炭
化水素と排ガス中の窒素酸化物との反応が効率良く起こ
る。
The following catalyst is formed on the purifying material of the present invention. (1) First catalyst The first catalyst is formed by supporting silver and / or a silver compound or a mixture thereof on a porous inorganic oxide, and is formed on the inflow side of exhaust gas. Acts on oxide removal. The silver compound is at least one selected from the group consisting of silver oxide, silver halide, silver sulfate, silver phosphate, and the like, and is preferably one or more of silver oxide, silver chloride, and silver sulfate, More preferably, a silver oxide and / or
Or silver chloride. As the porous inorganic oxide, porous alumina, silica, titania, zirconia, zeolite and composite oxides thereof and the like can be used, preferably γ-alumina, any of or including titania A composite oxide or a mixed oxide thereof is used. Reaction of added hydrocarbons, oxygen-containing organic compounds and / or residual hydrocarbons in exhaust gas with nitrogen oxides in exhaust gas by using γ-alumina, titania or their composite oxides or mixed oxides thereof Occurs efficiently.

【0020】第一の触媒で用いるアルミナなどの多孔質
の無機酸化物の比表面積は10m2/g以上であるのが
好ましい。比表面積が10m2 /g未満であると、排ガ
スと無機酸化物(及びこれに担持した銀成分)との接触
面積が小さくなり、良好な窒素酸化物の除去が行えな
い。より好ましい多孔質無機酸化物の比表面積は30m
2 /g以上である。
The specific surface area of the porous inorganic oxide such as alumina used for the first catalyst is preferably 10 m 2 / g or more. If the specific surface area is less than 10 m 2 / g, the contact area between the exhaust gas and the inorganic oxide (and the silver component carried thereon) becomes small, and good nitrogen oxides cannot be removed. More preferably, the specific surface area of the porous inorganic oxide is 30 m.
2 / g or more.

【0021】上記したγ−アルミナ等の無機酸化物に活
性種として担持する銀成分の担持量は、無機酸化物10
0重量%に対して0.2〜15重量%(銀元素換算値)
とする。0.2重量%未満では窒素酸化物の除去率が低
下する。また、15重量%を超す量の銀成分を担持する
と炭化水素及び/又は含酸素有機化合物自身の燃焼が起
きやすく、窒素酸化物の除去率はかえって低下する。好
ましい銀成分の担持量は0.5〜12重量%である。
The amount of the silver component supported as an active species on the inorganic oxide such as γ-alumina is determined by the amount of the inorganic oxide 10
0.2 to 15% by weight with respect to 0% by weight (in terms of silver element)
And If the amount is less than 0.2% by weight, the removal rate of nitrogen oxides decreases. If the silver component is carried in an amount exceeding 15% by weight, the combustion of the hydrocarbon and / or the oxygen-containing organic compound itself tends to occur, and the nitrogen oxide removal rate is rather lowered. The preferred loading of the silver component is 0.5 to 12% by weight.

【0022】アルミナ等の無機酸化物に銀を担持する方
法としては、公知の含浸法、沈澱法等を用いることがで
きる。含浸法を用いる際、銀の硝酸塩、塩化物、硫酸
塩、炭酸塩等の水溶液又はアンモニア性水溶液に多孔質
無機酸化物を浸漬する。又は硝酸銀水溶液に多孔質無機
酸化物を浸漬し、乾燥後、塩化アンモニウム又は硫酸ア
ンモニウムの水溶液に再び浸漬する。沈澱法では硝酸銀
とハロゲン化アンモニウムとを反応させて、ハロゲン化
銀として多孔質無機酸化物上に沈澱させる。これを50
〜150℃、特に70℃程度で乾燥後、100〜600
℃で段階的に昇温して焼成するのが好ましい。焼成は、
空気中、酸素を含む窒素気流下や水素ガス気流下で行う
のが好ましい。水素ガス気流下で行う場合には、最後に
300〜650℃で酸化処理するのが好ましい。
As a method for supporting silver on an inorganic oxide such as alumina, a known impregnation method, precipitation method, or the like can be used. When using the impregnation method, the porous inorganic oxide is immersed in an aqueous solution of silver nitrate, chloride, sulfate, carbonate, or the like, or an aqueous ammonia solution. Alternatively, the porous inorganic oxide is immersed in an aqueous solution of silver nitrate, dried, and then immersed again in an aqueous solution of ammonium chloride or ammonium sulfate. In the precipitation method, silver nitrate is reacted with ammonium halide to precipitate silver halide on the porous inorganic oxide. This is 50
After drying at about 150 ° C, especially about 70 ° C, 100 to 600
It is preferred to raise the temperature stepwise at a temperature of ° C. and to perform firing. Firing
It is preferable to carry out in air, under a flow of nitrogen containing oxygen or under a flow of hydrogen gas. When the treatment is performed under a hydrogen gas stream, it is preferable to perform the oxidation treatment at 300 to 650 ° C. at last.

【0023】硝酸銀等の水溶液を用いて多孔質無機酸化
物に担持された銀成分は酸化雰囲気下で焼成すると円状
集合体を形成することが観測されている。本発明の浄化
材では、銀成分集合体の平均直径を10〜10000n
mとするのが好ましい。一般的には、銀成分集合体の直
径が小さいほど、反応特性が高いが、平均直径が10n
m未満であると、還元剤である炭化水素及び/又は含酸
素有機化合物の酸化反応のみが進み、窒素酸化物の除去
率が低下する。一方、平均直径が10000nmを越え
ると、銀成分の反応特性が低減し、窒素酸化物の除去率
が下がる。好ましい銀成分集合体の平均直径は10〜5
000nm、更に好ましくは10〜2000nmとす
る。なお、ここで言う平均とは算術平均のことを意味す
る。
It has been observed that a silver component supported on a porous inorganic oxide using an aqueous solution of silver nitrate or the like forms a circular aggregate when fired in an oxidizing atmosphere. In the purification material of the present invention, the average diameter of the silver component aggregate is 10 to 10,000 n
m is preferable. In general, the smaller the diameter of the silver component aggregate, the higher the reaction characteristics, but the average diameter is 10n.
If it is less than m, only the oxidation reaction of the hydrocarbon and / or the oxygen-containing organic compound as the reducing agent proceeds, and the nitrogen oxide removal rate decreases. On the other hand, when the average diameter exceeds 10,000 nm, the reaction characteristics of the silver component are reduced, and the nitrogen oxide removal rate is reduced. The average diameter of the preferred silver component aggregate is 10 to 5
000 nm, more preferably 10 to 2000 nm. Here, the average means an arithmetic average.

【0024】なお、浄化材の形態を上述した第一の好ま
しい形態とする場合、浄化材基体上に設ける第一の触媒
の厚さは、一般に、基体材と、この触媒との熱膨張特性
の違いから制限される場合が多い。浄化材基体上に設け
る触媒の厚さを300μm以下とするのがよい。このよ
うな厚さとすれば、使用中に熱衝撃等で浄化材が破損す
ることを防ぐことができる。浄化材基体の表面に触媒を
形成する方法は公知のウォシュコート法等によって行わ
れる。
When the purifying material is in the above-described first preferred embodiment, the thickness of the first catalyst provided on the purifying material substrate generally depends on the thermal expansion characteristics of the substrate material and the catalyst. Often limited by differences. The thickness of the catalyst provided on the purifying material base is preferably 300 μm or less. With such a thickness, it is possible to prevent the purifying material from being damaged by thermal shock or the like during use. A method for forming a catalyst on the surface of the purifying material base is performed by a known washcoat method or the like.

【0025】また、浄化材基体の表面上に設ける第一触
媒の量は、浄化材基体に対して20〜300g/リット
ルとするのが好ましい。触媒の量が20g/リットル未
満では良好なNOx の除去が行えない。一方、触媒の量が
300g/リットルを超えると除去特性はそれほど上が
らず、圧力損失が大きくなる。より好ましくは、浄化材
基体の表面上に設ける第一の触媒を浄化材基体の50〜
200g/リットルとする。
Further, the amount of the first catalyst provided on the surface of the purifying material base is preferably 20 to 300 g / l based on the purifying material base. If the amount of the catalyst is less than 20 g / liter, good NOx removal cannot be performed. On the other hand, when the amount of the catalyst exceeds 300 g / liter, the removal characteristics do not increase so much and the pressure loss increases. More preferably, the first catalyst provided on the surface of the purifying material base is provided with 50 to
200 g / liter.

【0026】(2)第二の触媒 第二の触媒は、多孔質無機酸化物に触媒活性種を担持し
てなる。多孔質無機酸化物としては、アルミナ及びその
酸化物(γ−アルミナ−チタニア、γ−アルミナ−シリ
カ、γ−アルミナ−ジルコニア等)、ジルコニア、チタ
ニアなどの多孔質で表面積の大きい耐熱性のセラミック
スが挙げられる。好ましくはアルミナ、チタニアのいず
れか又はそれらを含む複合酸化物又はそれらの混合酸化
物を用いる。第一の触媒と同様に、多孔質の無機酸化物
の比表面積は10m2 /g以上であることが好ましい。
(2) Second Catalyst The second catalyst comprises a porous inorganic oxide carrying catalytically active species. Examples of the porous inorganic oxide include alumina and its oxides (γ-alumina-titania, γ-alumina-silica, γ-alumina-zirconia, etc.), zirconia, titania and other heat-resistant ceramics having a large surface area. No. Preferably, either alumina or titania, a composite oxide containing them, or a mixed oxide thereof is used. Similar to the first catalyst, the specific surface area of the porous inorganic oxide is preferably 10 m 2 / g or more.

【0027】本発明の第一の排ガス浄化材では、上記の
第二の触媒の活性種としては銅の酸化物及び/又は硫酸
銅を用いる。第二の触媒を用いることにより、窒素酸化
物や第一触媒で生じる亜硝酸エステルなどの含窒素化合
物を窒素まで還元して窒素酸化物除去するとともに、
第一触媒で生じるアンモニアを窒素に酸化することが可
能になる。多孔質無機酸化物を100重量%として、銅
成分の担持量は0.2〜30重量%(金属元素換算値)
であり、好ましい担持量は0.5〜25重量%である。
In the first exhaust gas purifying material of the present invention, copper oxide and / or copper sulfate is used as the active species of the second catalyst. By using the second catalyst, while reducing nitrogen oxides such as nitrogen oxides and nitrites generated by the first catalyst to nitrogen to remove nitrogen oxides ,
Ammonia generated in the first catalyst can be oxidized to nitrogen . Assuming that the porous inorganic oxide is 100% by weight, the supported amount of the copper component is 0.2 to 30% by weight (in terms of a metal element).
And the preferred amount of the carrier is 0.5 to 25% by weight.

【0028】本発明の第二の排ガス浄化材では、上記の
第二の触媒の活性種としては銅の酸化物及び/又は硫酸
塩と、W、V、Moからなる群より選ばれた少なくとも
一種の元素の酸化物又は硫酸塩とを用いる。W、V、M
oのうち、W及び/又はVを用いるのが好ましい。第二
の触媒を用いることにより、窒素酸化物や第一触媒で生
じる亜硝酸エステル、アンモニアなどの含窒素化合物を
窒素まで還元して、窒素酸化物の除去が可能になる。多
孔質無機酸化物を100重量%として、銅の酸化物及び
/又は硫酸銅の担持量は0.2〜30重量%(金属元素
換算値)であり、W系成分の担持量は30重量%以下
(金属元素換算値)である。また銅成分とW系成分との
合計担持量は0.2〜60重量%(金属元素換算値)
(金属元素換算値)である。銅成分の好ましい担持量が
0.5〜25重量%(金属元素換算値)であり、W系成
分の好ましい担持量は25重量%以下(金属元素換算
値)であり、銅成分とW系成分との好ましい合計担持量
は0.5〜50重量%(金属元素換算値)とする。
In the second exhaust gas purifying material of the present invention, the active species of the second catalyst is at least one selected from the group consisting of oxides and / or sulfates of copper and W, V and Mo. And an oxide or a sulfate of the element (a). W, V, M
Of o, it is preferable to use W and / or V. By using the second catalyst, nitrogen oxides can be reduced by reducing nitrogen oxides and nitrogen-containing compounds generated by the first catalyst, such as nitrite and ammonia, to nitrogen. Assuming that the porous inorganic oxide is 100% by weight, the supported amount of copper oxide and / or copper sulfate is 0.2 to 30% by weight (in terms of a metal element), and the supported amount of W component is 30% by weight. The following are the values (in terms of metal elements). The total loading of the copper component and the W-based component is 0.2 to 60% by weight (in terms of metal element).
(Metal element conversion value). The preferred loading of the copper component is 0.5 to 25% by weight (in terms of a metal element), and the preferred loading of the W-based component is not more than 25% by weight (in terms of a metal element). Is preferably 0.5 to 50% by weight (in terms of a metal element).

【0029】第二の触媒における活性種の担持は、公知
の含浸法、沈殿法等を用いることができる。含浸法を用
いる際、触媒活性種元素の炭酸塩、硝酸塩、酢酸塩、硫
酸塩等の水溶液に多孔質無機酸化物を浸漬する。銅成分
の場合、硫酸銅、硝酸銅などの水溶液を用いる。W、
V、Moの場合、各元素のアンモニウム塩、しゅう酸塩
等の水溶液に多孔質無機酸化物を浸漬して用いる。50
〜150℃、特に70℃で乾燥後、100〜600℃で
段階的に昇温して焼成することによって行われる。この
焼成は空気中、酸素を含む窒素気流下で行う。また、チ
タニアの代わりにメタチタン酸(含水酸化チタン)を出
発物質として用い、V、W、Moを担持することも有効
な方法である。
For loading the active species on the second catalyst, a known impregnation method, precipitation method or the like can be used. When using the impregnation method, the porous inorganic oxide is immersed in an aqueous solution of a carbonate, nitrate, acetate, sulfate or the like of the catalytically active species element. In the case of a copper component, an aqueous solution such as copper sulfate or copper nitrate is used. W,
In the case of V or Mo, a porous inorganic oxide is immersed in an aqueous solution of an ammonium salt, oxalate or the like of each element for use. 50
After drying at ~ 150 ° C, especially at 70 ° C, the temperature is raised stepwise at 100-600 ° C and firing is performed. This calcination is performed in air under a nitrogen stream containing oxygen. It is also an effective method to use metatitanic acid (hydrous titanium oxide) as a starting material instead of titania and to carry V, W, and Mo.

【0030】なお、浄化材の形態を上述した第一の好ま
しい形態とする場合、浄化材基体上に設ける第二の触媒
の厚さを300μm以下とするのがよい。また、浄化材
基体の表面上に設ける第二の触媒の量は、浄化材基体に
対して20〜300g/リットルとするのが好ましい。
When the form of the purifying material is the first preferred embodiment described above, the thickness of the second catalyst provided on the purifying material base is preferably 300 μm or less. The amount of the second catalyst provided on the surface of the purifying material base is preferably 20 to 300 g / liter based on the purifying material base.

【0031】第一の触媒と、第二の触媒との重量比は、
5:1〜1:5とするのが好ましい。比率が1:5未満
である(第一の触媒が少ない)と、150〜600℃の
広い温度範囲で全体的に窒素酸化物の浄化率が低下す
る。一方、比率が5:1を超える(第一の触媒が多い)
と、400℃以下における窒素酸化物の浄化能が大きく
ならない。すなわち、比較的低温での還元剤と窒素酸化
物との反応が十分に進行しない。より好ましい第一触媒
と第二触媒の重量比は4:1〜1:4である。
The weight ratio of the first catalyst to the second catalyst is:
The ratio is preferably set to 5: 1 to 1: 5. When the ratio is less than 1: 5 (the amount of the first catalyst is small), the purification rate of nitrogen oxides is reduced overall in a wide temperature range of 150 to 600 ° C. On the other hand, the ratio exceeds 5: 1 (most of the first catalyst)
The purification ability of nitrogen oxides at 400 ° C. or lower does not increase. That is, the reaction between the reducing agent and the nitrogen oxide at a relatively low temperature does not sufficiently proceed. More preferably, the weight ratio of the first catalyst to the second catalyst is from 4: 1 to 1: 4.

【0032】(3)第三の触媒 第三の触媒は、多孔質無機酸化物に触媒活性種を担持し
てなり、排ガスの流出側に形成され、低い温度領域にお
ける窒素酸化物の除去に作用するとともに、一酸化炭素
や炭化水素の酸化除去を行う。多孔質無機酸化物として
は、アルミナ、チタニア、ジルコニア、シリカ、ゼオラ
イトからなる群より選ばれた一種以上の酸化物又は複合
酸化物を用いるのが好ましい。第一の触媒と同様に、多
孔質の無機酸化物の比表面積は10m2 /g以上である
ことが好ましい。
(3) Third catalyst The third catalyst comprises a porous inorganic oxide carrying catalytically active species and is formed on the exhaust gas outflow side, and acts to remove nitrogen oxides in a low temperature range. And at the same time, oxidize and remove carbon monoxide and hydrocarbons. As the porous inorganic oxide, it is preferable to use one or more oxides or composite oxides selected from the group consisting of alumina, titania, zirconia, silica, and zeolite. Similar to the first catalyst, the specific surface area of the porous inorganic oxide is preferably 10 m 2 / g or more.

【0033】上記の第三触媒の活性種としては、Pt、P
d、Ru、Rh、Ir及びAuからなる群より選ばれた少なくと
も1種の元素を用い、Pt、Pd、Ru、Rh及びAuの少なくと
も一種を用いるのが好ましく、特にPt、Pd及びAuの少な
くとも一種が好ましい。第三の触媒で無機酸化物に担持
する活性種の合計は、上述の多孔質の無機酸化物を基準
(100重量%) として0.01〜5重量%とし、好ましく
は0.01〜4重量%とする。触媒活性種の量が前記多
孔質無機酸化物に対して、5重量%を超す触媒担持量と
しても窒素酸化物の除去性能が向上しない。
The active species of the third catalyst include Pt, P
d, Ru, Rh, using at least one element selected from the group consisting of Ir and Au, it is preferable to use at least one of Pt, Pd, Ru, Rh and Au, particularly at least Pt, Pd and Au One is preferred. The total of the active species supported on the inorganic oxide by the third catalyst is based on the above-mentioned porous inorganic oxide.
(100% by weight) is 0.01 to 5% by weight, preferably 0.01 to 4% by weight. Even when the amount of the catalytically active species exceeds 5% by weight of the porous inorganic oxide, the performance of removing nitrogen oxides is not improved.

【0034】また、第三の触媒の活性種として、さら
に、La、Ce等の希土類元素、Ca、Mgなどのアルカリ土類
元素、Na、Kなどのアルカリ金属元素からなる群より選
ばれた少なくとも一つ以上の元素を10重量%以下担持
することが好ましい。希土類、アルカリ土類、アルカリ
金属元素を担持することにより、白金系の触媒の耐熱性
を向上させることができる。
The active species of the third catalyst may further include at least one selected from the group consisting of rare earth elements such as La and Ce, alkaline earth elements such as Ca and Mg, and alkali metal elements such as Na and K. It is preferable to carry one or more elements in an amount of 10% by weight or less. By supporting a rare earth, alkaline earth, or alkali metal element, the heat resistance of a platinum-based catalyst can be improved.

【0035】第三の触媒における活性種の担持は、公知
の含浸法、沈澱法等を用いることができる。含浸法を用
いる際、触媒活性種元素の塩化物又はヘキサクロロ金属
酸等の水溶液に多孔質無機酸化物を浸漬し、70℃で乾
燥後、100〜700℃で段階的に昇温して焼成するこ
とによって行われる。焼成は窒素気流下、水素含有又は
酸素含有窒素気流下で行い、好ましくは窒素気流下で焼
成した後、水素含有窒素気流下、酸素含有窒素気流下で
それぞれ焼成を行う。なお、Pt系担持成分は金属元素と
して表示しているが、通常の浄化材の使用温度条件では
担持成分は金属と酸化物の状態で存在する。
For loading the active species on the third catalyst, known impregnation methods, precipitation methods and the like can be used. When using the impregnation method, the porous inorganic oxide is immersed in an aqueous solution such as a chloride or hexachlorometallic acid of a catalytically active species element, dried at 70 ° C., and then gradually heated at 100 to 700 ° C. and fired. This is done by: The calcination is performed under a nitrogen stream or a hydrogen-containing or oxygen-containing nitrogen stream. Preferably, the calcination is performed under a nitrogen stream, and then the calcination is performed under a hydrogen-containing nitrogen stream or an oxygen-containing nitrogen stream. Although the Pt-based loading component is shown as a metal element, the loading component exists in a state of a metal and an oxide under a normal use temperature condition of the purification material.

【0036】なお、浄化材の形態を上述した第一の好ま
しい形態とする場合、浄化材基体上に設ける第三の触媒
の厚さを300μm以下とするのがよい。また、浄化材
基体の表面上に設ける第三の触媒の量は、浄化材基体に
対して20〜300g/リットルとするのが好ましい。
In the case where the purifying material is in the above-described first preferred embodiment, the thickness of the third catalyst provided on the purifying material base is preferably 300 μm or less. The amount of the third catalyst provided on the surface of the purifying material base is preferably 20 to 300 g / liter based on the purifying material base.

【0037】第一の触媒と第三の触媒との重量比は、
5:1〜1:5とするのが好ましい。比率が1:5未満
である(第一の触媒が少ない)と、150〜600℃の
広い温度範囲で全体的に窒素酸化物の浄化率が低下す
る。一方、比率が5:1を超える(第一の触媒が多い)
と、400℃以下における窒素酸化物の浄化能が大きく
ならず、また、一酸化炭素や炭化水素の除去率が低下す
る。より好ましい第一の触媒と第三の触媒の重量比は
4:1〜1:4である。
The weight ratio of the first catalyst to the third catalyst is
The ratio is preferably set to 5: 1 to 1: 5. When the ratio is less than 1: 5 (the amount of the first catalyst is small), the purification rate of nitrogen oxides is reduced overall in a wide temperature range of 150 to 600 ° C. On the other hand, the ratio exceeds 5: 1 (most of the first catalyst)
In this case, the purification performance of nitrogen oxides at 400 ° C. or lower does not increase, and the removal rate of carbon monoxide and hydrocarbons decreases. More preferably, the weight ratio of the first catalyst to the third catalyst is from 4: 1 to 1: 4.

【0038】上述した構成の浄化材を用いれば、150
〜600℃の広い温度領域において、水分を10%程度
を含む排ガスでも、良好な窒素酸化物の除去を行うこと
ができる。
If the purifying material having the above-described structure is used, 150
In a wide temperature range of up to 600 ° C., excellent removal of nitrogen oxides can be performed even with exhaust gas containing about 10% of water.

【0039】次に、本発明の方法について説明する。ま
ず、第一の触媒が排ガスの入口に面し、第三の触媒が排
ガスの出口に面し、第二の触媒が第一の触媒と第二の触
媒の間に位置するように、排ガス導管の途中に設置す
る。
Next, the method of the present invention will be described. First, the exhaust gas conduit so that the first catalyst faces the exhaust gas inlet, the third catalyst faces the exhaust gas outlet, and the second catalyst is located between the first catalyst and the second catalyst. Installed in the middle of

【0040】排ガス中には、残留炭化水素としてエチレ
ン、プロピレン等がある程度は含まれるが、一般に排ガ
ス中のNOx を還元するのに十分な量ではないので、外部
から炭化水素及び/又は含酸素有機化合物、好ましくは
含酸素有機化合物又はそれと炭化水素燃料と混合してな
る還元剤を排ガス中に導入する。還元剤の導入位置は、
浄化材を設置した位置より上流側である。
Although the exhaust gas contains ethylene, propylene and the like to some extent as residual hydrocarbons, it is generally not enough to reduce NOx in the exhaust gas. A compound, preferably an oxygen-containing organic compound or a reducing agent obtained by mixing the compound with a hydrocarbon fuel is introduced into the exhaust gas. The introduction position of the reducing agent
It is upstream from the position where the purifying material is installed.

【0041】外部から導入する炭化水素としては、標準
状態でガス状又は液体状のアルカン、アルケン及び/又
はアルキンを用いることができる。特にアルカン又はア
ルケンの場合では炭素数2以上が好ましい。標準状態で
液体状の炭化水素としては、具体的に、軽油、セタン、
ヘプタン、灯油、ガソリン等の炭化水素が挙げられる。
その中でも、沸点50〜350℃の炭化水素が特に好ま
しい。外部から導入する含酸素有機化合物として、炭素
数2以上のエタノール、イソプロピルアルコール等のア
ルコール類、又はそれらを含む燃料を用いることができ
る。
As the hydrocarbons introduced from the outside, gaseous or liquid alkanes, alkenes and / or alkynes can be used under standard conditions. In particular, in the case of an alkane or alkene, it preferably has 2 or more carbon atoms. Specific examples of hydrocarbons that are liquid in the standard state include gas oil, cetane,
Examples include hydrocarbons such as heptane, kerosene, gasoline and the like.
Among them, hydrocarbons having a boiling point of 50 to 350 ° C are particularly preferable. As the oxygen-containing organic compound introduced from the outside, alcohols such as ethanol and isopropyl alcohol having 2 or more carbon atoms, or a fuel containing them can be used.

【0042】外部から導入する炭化水素及び/又は含酸
素有機化合物の量は、重量比(添加する還元剤の重量/
排ガス中の窒素酸化物の重量)が0.1〜5となるよう
にするのが好ましい。この重量比が0.1未満である
と、窒素酸化物の除去率が大きくならない。一方、5を
超えると、燃費悪化につながる。
The amount of the hydrocarbon and / or oxygen-containing organic compound introduced from the outside is determined by the weight ratio (weight of added reducing agent / weight).
(Weight of nitrogen oxides in the exhaust gas) is preferably 0.1 to 5. If the weight ratio is less than 0.1, the removal rate of nitrogen oxides does not increase. On the other hand, if it exceeds 5, fuel efficiency will be degraded.

【0043】本発明では、還元剤による窒素酸化物の還
元除去を効率的に進行させるために、第一の触媒及び第
二の触媒の見掛け空間速度は150000/時間以下とし、第
三の触媒の見掛け空間速度は200000/時間以下とするの
が好ましい。
In the present invention, the apparent space velocity of the first catalyst and the second catalyst is set to 150,000 / hour or less, and The apparent space velocity is preferably not more than 200,000 / hour.

【0044】また、本発明では、炭化水素及び/又は含
酸素有機化合物と窒素酸化物とが反応する部位である浄
化材設置部位における排ガスの温度を150〜600℃
に保つ。排ガスの温度が150℃未満であると還元剤と
窒素酸化物との反応が進行せず、良好な窒素酸化物の除
去を行うことができない。一方、600℃を超す温度と
すると炭化水素及び/又は含酸素有機化合物自身の燃焼
が始まり、窒素酸化物の還元除去が行えない。好ましい
排ガス温度は200〜550℃であり、より好ましくは
300〜500℃である。
Further, in the present invention, the temperature of the exhaust gas at the purification material installation site, which is the site where the hydrocarbon and / or the oxygen-containing organic compound reacts with the nitrogen oxide, is set to 150 to 600 ° C.
To keep. If the temperature of the exhaust gas is lower than 150 ° C., the reaction between the reducing agent and the nitrogen oxide does not proceed, and it is not possible to remove the nitrogen oxide satisfactorily. On the other hand, if the temperature exceeds 600 ° C., the combustion of the hydrocarbon and / or the oxygen-containing organic compound itself starts, and the reduction and removal of nitrogen oxides cannot be performed. The preferred exhaust gas temperature is from 200 to 550C, more preferably from 300 to 500C.

【0045】[0045]

【実施例】本発明を以下の具体的実施例によりさらに詳
細に説明する。実施例1 市販のγ−アルミナペレット(粒径0.5〜2mm、比
表面積200m2 /g)11.7g(見掛け体積21.
7ml)を20分間硝酸銀水溶液(水22mlに硝酸銀
0.76gを溶かした溶液)に浸漬したあと取り出し
て、70℃で2時間乾燥した。そして、空気中で、段階
的に600℃まで昇温したあと、5時間焼成し、γ−ア
ルミナ成形体に対して2.1重量%(金属元素換算値)
の銀を担持した第一の触媒を調製した。
The present invention will be described in more detail with reference to the following specific examples. Example 1 11.7 g of commercially available γ-alumina pellets (particle size: 0.5 to 2 mm, specific surface area: 200 m 2 / g) (apparent volume: 21.
7 ml) was immersed in a silver nitrate aqueous solution (a solution prepared by dissolving 0.76 g of silver nitrate in 22 ml of water) for 20 minutes, taken out, and dried at 70 ° C. for 2 hours. Then, the temperature is gradually increased to 600 ° C. in the air, and then calcined for 5 hours.
A first catalyst carrying silver was prepared.

【0046】次に、硫酸銅水溶液(銅濃度7.7重量
%)にチタニアペレット(粒径0.5〜2mm、比表面
積50m2 /g)3.1g(見掛け体積3.1ml)を
浸漬し、空気中で80℃、100℃、120℃で各2時
間乾燥した。続いて、酸素を20%含む窒素気流下で1
20℃〜500℃まで段階的に昇温し500℃で5時間
焼成し、チタニアに対して硫酸銅4.4重量%(銅元素
換算値)を担持した第二の触媒を調製した。
Next, 3.1 g (apparent volume: 3.1 ml) of titania pellets (particle size: 0.5 to 2 mm, specific surface area: 50 m 2 / g) were immersed in an aqueous copper sulfate solution (copper concentration: 7.7% by weight). And dried in air at 80 ° C, 100 ° C and 120 ° C for 2 hours each. Subsequently, under a nitrogen stream containing 20% of oxygen, 1
The temperature was raised stepwise from 20 ° C. to 500 ° C. and calcined at 500 ° C. for 5 hours to prepare a second catalyst supporting 4.4% by weight of copper sulfate (converted to a copper element) with respect to titania.

【0047】さらに、同様のペレット状チタニア15.
5g(見掛け体積15.5ml)を塩化白金酸水溶液に
20分間浸漬した後、空気中、80℃で2時間乾燥し、
窒素気流下で120℃で2時間、200〜400℃まで
段階的に各1時間焼成した。そして、水素ガス4%を含
む窒素気流下で50℃〜400℃まで5時間かけて昇温
し、400℃で4時間焼成し、さらに、酸素を10%含
む窒素気流下で50℃〜500℃まで5時間かけて昇温
し、500℃で5時間焼成し、チタニアに対してPtを
0.21重量%(金属元素換算値)担持した第三の触媒
を調製した。
Further, the same titania as pellets15.
5 g (apparent volume 15.5 ml) was immersed in a chloroplatinic acid aqueous solution for 20 minutes, and then dried in air at 80 ° C. for 2 hours.
The mixture was calcined in a nitrogen stream at 120 ° C. for 2 hours and 200 to 400 ° C. for 1 hour each. Then, the temperature was raised from 50 ° C. to 400 ° C. over 5 hours under a nitrogen gas stream containing 4% of hydrogen gas, calcined at 400 ° C. for 4 hours, and further heated to 50 ° C. to 500 ° C. under a nitrogen gas stream containing 10% oxygen. And then calcined at 500 ° C. for 5 hours to prepare a third catalyst carrying 0.21% by weight (converted to metal element) of Pt with respect to titania.

【0048】排ガスの流入側から順に、第一の触媒1.
7g(3.1ml)、第二の触媒3.4g(3.1m
l)、第三の触媒3.1g(3.1ml)を組み合わせ
て浄化材とし、反応管内にセットした。次に、表1に示
す組成のガス(一酸化窒素、酸素、エタノール、二酸化
炭素、窒素及び水分)を毎分2リットル(標準状態)の
流量で流して(第一、第二及び第三の触媒の見かけ空間
速度約40,000h-1)、反応管内の排ガス温度を3
00〜600℃の範囲に保ち、エタノールと窒素酸化物
とを反応させた。
[0048] The first catalyst 1.
7 g (3.1 ml), 3.4 g (3.1 m) of the second catalyst
l), 3.1 g (3.1 ml) of the third catalyst were combined as a purifying material, and set in a reaction tube. Next, a gas (nitrogen monoxide, oxygen, ethanol, carbon dioxide, nitrogen and moisture) having a composition shown in Table 1 was flowed at a flow rate of 2 liters per minute (standard state) (first, second and third flows). The apparent space velocity of the catalyst is about 40,000 h -1 ), and the temperature of the exhaust gas in the reaction tube is 3
Ethanol and nitrogen oxide were reacted while keeping the temperature in the range of 00 to 600 ° C.

【0049】反応管通過後のガスの窒素酸化物の濃度を
化学発光式窒素酸化物分析計により測定し、窒素酸化物
除去率を求めた。結果を表3に示す。
The concentration of nitrogen oxides in the gas after passing through the reaction tube was measured by a chemiluminescent nitrogen oxide analyzer to determine the nitrogen oxide removal rate. Table 3 shows the results.

【0050】 表1 成分 濃度 一酸化窒素 1000 ppm 酸素 10 容量% エタノール 1250 ppm 二酸化炭素 10 容量% 窒素 残部 水分 10 容量%(上記成分の総体積に対して)Table 1 Component concentration Nitric oxide 1000 ppm Oxygen 10% by volume Ethanol 1250 ppm Carbon dioxide 10% by volume Nitrogen Residual water 10% by volume (based on the total volume of the above components)

【0051】実施例2 実施例1と同じ第一、第二の触媒を用いた。そして、実
施例1と同じ方法で塩化パラジウム水溶液(パラジウム
濃度0.5重量%)を用いてペレット状チタニアにPdを
0.19重量%(金属元素換算値)担持した第三の触媒
を調製した。
Example 2 The same first and second catalysts as in Example 1 were used. Then, in the same manner as in Example 1, a third catalyst was prepared in which 0.19% by weight (in terms of a metal element) of Pd was supported on pelletized titania using an aqueous palladium chloride solution (palladium concentration: 0.5% by weight). .

【0052】排ガスの流入側から順に、第一の触媒1.
7g(3.1ml)、第二の触媒3.4g(3.1m
l)、第三の触媒3.1g(3.1ml)を組み合わせ
て浄化材とし、反応管内にセットした。実施例1と同様
の反応条件(第一、第二及び第三の触媒の見かけ空間速
度約40,000h-1)で、表1に示す組成のガスを用
いて評価を行った。結果を表3に示す。
The first catalyst 1.
7 g (3.1 ml), 3.4 g (3.1 m) of the second catalyst
l), 3.1 g (3.1 ml) of the third catalyst were combined as a purifying material, and set in a reaction tube. Evaluation was carried out under the same reaction conditions as in Example 1 (approximate space velocity of the first, second and third catalysts of about 40,000 h -1 ) using the gas having the composition shown in Table 1. Table 3 shows the results.

【0053】実施例3 タングステン酸アンモニウムパラ五水和物2.9g、し
ゅう酸1.5gに水8.6mlを加え、水浴上で加熱して
溶解させた後、冷却した水溶液(タングステン濃度1
5.5重量%)に、ペレット状チタニア(粒径0.5〜
2mm、比表面積50m2 /g)6.2g(見掛け体積
6.2ml)を投入し、20分間浸漬した。その後、溶
液からチタニアを分離し、空気中で、80℃、100
℃、120℃で各2時間乾燥した。続いて、酸素20%
を含む窒素気流下で120℃から500℃まで5時間か
けで昇温し、500℃で4時間焼成して、チタニアに対
してWの酸化物を7.4重量%(金属元素換算値)担持
したW系触媒を調製した。この触媒3.4g(見掛け体
積3.1ml)を硫酸銅水溶液(銅濃度9.0重量%)
に20分間浸漬し、そして実施例1の第二の触媒と同じ
方法で乾燥、焼成し、チタニアに対してWの酸化物7.
4重量%、硫酸銅3.7重量%(金属元素換算値)を担
持した第二の触媒を調製した。
Example 3 2.9 ml of water was added to 2.9 g of ammonium paratungstate parapentahydrate and 1.5 g of oxalic acid, and dissolved by heating on a water bath.
5.5 wt%), pelletized titania (particle size 0.5 to
6.2 g (approximate volume 6.2 ml) of 2 mm and a specific surface area of 50 m 2 / g were charged and immersed for 20 minutes. Thereafter, the titania was separated from the solution, and the mixture was heated at 80 ° C and 100 ° C in air.
The resultant was dried at 120 ° C. for 2 hours. Then, 20% oxygen
The temperature was raised from 120 ° C. to 500 ° C. in 5 hours under a nitrogen gas flow containing, and calcined at 500 ° C. for 4 hours to carry 7.4 wt% (converted to metal element) of W oxide with respect to titania. A prepared W-based catalyst was prepared. 3.4 g (3.1 ml apparent volume) of this catalyst was added to an aqueous copper sulfate solution (copper concentration: 9.0% by weight).
For 20 minutes, and dried and calcined in the same manner as the second catalyst of Example 1 to obtain an oxide of W against titania.
A second catalyst supporting 4% by weight and 3.7% by weight of copper sulfate (in terms of a metal element) was prepared.

【0054】排ガスの流入側から順に、実施例1の第一
の触媒1.7g(3.1ml)、上記第二の触媒3.7
g(3.1ml)及び実施例1の第三の触媒3.1g
(3.1ml)を組み合わせて浄化材とし、反応管内に
セットした。実施例1と同様の反応条件(第一、第二及
び第三の触媒の見かけ空間速度約40,000h-1
で、表1に示す組成のガスを用いて評価を行った。結果
を表3に示す。
In the order from the exhaust gas inflow side, 1.7 g (3.1 ml) of the first catalyst of Example 1 and 3.7 g of the second catalyst described above were used.
g (3.1 ml) and 3.1 g of the third catalyst of Example 1
(3.1 ml) was combined as a purifying material and set in a reaction tube. Reaction conditions similar to Example 1 (apparent space velocity of the first, second and third catalysts: about 40,000 h -1 )
The evaluation was performed using a gas having a composition shown in Table 1. Table 3 shows the results.

【0055】実施例4 実施例1の第3の触媒と同じ方法で、塩化ロジウム水溶
液(ロジウム濃度0.5重量%)を用いて、ペレット状
チタニア3.1g(見掛け体積3.1ml)にRhを0.
19重量%(金属元素換算値)担持した第三の触媒を調
製した。
Example 4 Using a rhodium chloride aqueous solution (rhodium concentration: 0.5% by weight), 3.1 g of pelletized titania (3.1 ml in apparent volume) was treated with Rh in the same manner as in the third catalyst of Example 1. To 0.
A third catalyst supporting 19% by weight (converted to a metal element) was prepared.

【0056】排ガスの流入側から順に、実施例1の第一
の触媒1.7g(3.1ml)、実施例3の第二の触媒
3.7g(3.1ml)、及び上記第三の触媒3.1g
(3.1ml)を組み合わせて浄化材とし、反応管内に
セットした。実施例1と同様の反応条件(第一、第二及
び第三の触媒の見かけ空間速度約40,000h-1
で、表1に示す組成のガスを用いて評価を行った。結果
を表3に示す。
In order from the exhaust gas inflow side, 1.7 g (3.1 ml) of the first catalyst of Example 1, 3.7 g (3.1 ml) of the second catalyst of Example 3, and the third catalyst described above. 3.1g
(3.1 ml) was combined as a purifying material and set in a reaction tube. Reaction conditions similar to Example 1 (apparent space velocity of the first, second and third catalysts: about 40,000 h -1 )
The evaluation was performed using a gas having a composition shown in Table 1. Table 3 shows the results.

【0057】実施例5 五酸化バナジウムにしゅう酸を加え、水浴上で加熱して
溶解させた後、冷却した水溶液(バナジウム濃度7.8
重量%)に、ペレット状チタニア(粒径0.5〜2m
m、比表面積50m2 /g)6.2g(見掛け体積6.
2ml)を投入し、20分間浸漬した。その後、溶液か
らチタニアを分離し、空気中で、80℃、100℃、1
20℃で各2時間乾燥した。続いて、酸素20%を含む
窒素気流下で120℃〜500℃まで5時間かけで昇温
し、500℃で4時間焼成して、チタニアに対してV酸
化物を3.8重量%(金属元素換算値)担持したV系触
媒を調製した。このV系触媒3.3g(見掛け体積3.
1ml)を硫酸銅水溶液(銅濃度9.0重量%)に20
分間浸漬し、そして実施例1の第二の触媒と同じ方法で
乾燥、焼成し、チタニアに対してVの酸化物3.8重量
%、硫酸銅4.0重量%(金属元素換算値)を担持した
第二の触媒を調製した。
Example 5 Oxalic acid was added to vanadium pentoxide and dissolved by heating on a water bath, and then cooled and cooled (a vanadium concentration of 7.8).
% By weight), pelletized titania (particle size: 0.5 to 2 m)
m, specific surface area 50 m 2 / g) 6.2 g (apparent volume 6.
2 ml) and immersed for 20 minutes. Thereafter, the titania was separated from the solution, and the air was heated at 80 ° C., 100 ° C.,
Dried at 20 ° C. for 2 hours each. Subsequently, the temperature was increased from 120 ° C. to 500 ° C. in 5 hours under a nitrogen gas stream containing 20% oxygen, and calcined at 500 ° C. for 4 hours. A supported V-based catalyst was prepared. 3.3 g of this V-based catalyst (3.
1 ml) to an aqueous solution of copper sulfate (copper concentration 9.0% by weight).
For 2 minutes, and dried and calcined in the same manner as the second catalyst of Example 1 to obtain 3.8% by weight of an oxide of V and 4.0% by weight of copper sulfate (in terms of a metal element) based on titania. A supported second catalyst was prepared.

【0058】排ガスの流入側から順に、実施例1の第一
の触媒1.7g(3.1ml)、上記第二の触媒3.6
g(3.1ml)及び実施例1の第三の触媒3.1g
(3.1ml)を組み合わせて浄化材とし、反応管内に
セットした。実施例1と同様の反応条件(第一、第二及
び第三の触媒の見かけ空間速度約40,000h-1
で、表1に示す組成のガスを用いて評価を行った。結果
を表3に示す。
In the order from the exhaust gas inflow side, 1.7 g (3.1 ml) of the first catalyst of Example 1 and 3.6 g of the second catalyst described above were used.
g (3.1 ml) and 3.1 g of the third catalyst of Example 1
(3.1 ml) was combined as a purifying material and set in a reaction tube. Reaction conditions similar to Example 1 (apparent space velocity of the first, second and third catalysts: about 40,000 h -1 )
The evaluation was performed using a gas having a composition shown in Table 1. Table 3 shows the results.

【0059】実施例6 実施例5で調製したV系触媒3.3g(見掛け体積3.
1ml)を硝酸銅水溶液(銅濃度9.5重量%)に20
分間浸漬し、そして実施例1の第二の触媒と同じ方法で
乾燥、焼成し、チタニアに対してVの酸化物3.8重量
%、銅の酸化物3.8重量%(金属元素換算値)を担持
した第二の触媒を調製した。
Example 6 3.3 g of the V-based catalyst prepared in Example 5 (apparent volume: 3.
1 ml) in an aqueous solution of copper nitrate (copper concentration 9.5% by weight).
For 2 minutes, and dried and calcined in the same manner as in the second catalyst of Example 1 to obtain 3.8% by weight of oxides of V and 3.8% by weight of copper with respect to titania (in terms of metal element). ) Was prepared.

【0060】排ガスの流入側から順に、実施例1の第一
の触媒1.7g(3.1ml)、上記第二の触媒3.4
g(3.1ml)及び実施例1の第三の触媒3.1g
(3.1ml)を組み合わせて浄化材とし、反応管内に
セットした。実施例1と同様の反応条件(第一、第二及
び第三の触媒の見かけ空間速度約40,000h-1
で、表1に示す組成のガスを用いて評価を行った。結果
を表3に示す。
In the order from the inflow side of the exhaust gas, 1.7 g (3.1 ml) of the first catalyst of Example 1 and 3.4 g of the second catalyst described above were used.
g (3.1 ml) and 3.1 g of the third catalyst of Example 1
(3.1 ml) was combined as a purifying material and set in a reaction tube. Reaction conditions similar to Example 1 (apparent space velocity of the first, second and third catalysts: about 40,000 h -1 )
The evaluation was performed using a gas having a composition shown in Table 1. Table 3 shows the results.

【0061】実施例7 市販のγ−アルミナ粉末(比表面積200m2 /g)を
硝酸銀水溶液に浸漬したあと取り出して、70℃で2時
間乾燥した。そして、空気中で、段階的に600℃まで
昇温したあと、5時間焼成し、アルミナに対して3重量
%(金属元素換算値)の銀を担持した第一の触媒を調製
した。第一の触媒0.26gを、市販のコージェライト
製ハニカム状成形体(直径20mm、長さ8.3mm、
400セル/インチ2 )にコートし、乾燥後600℃ま
で段階的に焼成し、銀系浄化材(第一の触媒をコートし
た浄化材)を調製した。
Example 7 A commercially available γ-alumina powder (specific surface area: 200 m 2 / g) was immersed in an aqueous silver nitrate solution, taken out, and dried at 70 ° C. for 2 hours. Then, the temperature was gradually raised to 600 ° C. in the air, and the mixture was calcined for 5 hours to prepare a first catalyst supporting 3% by weight (in terms of metal element) of silver with respect to alumina. 0.26 g of the first catalyst was used as a commercially available cordierite honeycomb-shaped formed body (diameter 20 mm, length 8.3 mm,
The coating was carried out at 400 cells / inch 2 ), dried and baked stepwise to 600 ° C. to prepare a silver-based purifying material (a purifying material coated with a first catalyst).

【0062】次に、酢酸銅水溶液(銅濃度7.7重量
%)に粉末状ゼオライト(SiO2 :Al2 3 モル比
が27である。比表面積50m2 /g)を浸漬した後、
銅イオンを交換したゼオライトを分離し、空気中で、8
0℃、100℃、120℃で各2時間乾燥した。続い
て、酸素を20%含む窒素気流下で120℃〜400℃
まで段階的に昇温し400℃で5時間焼成し、ゼオライ
トに対して銅成分5.19重量%(銅元素換算値)を担
持した第二の触媒を調製した。第二の触媒をスラリー化
した後、上記銀系浄化材と同様なハニカム成形体に0.
23gの第二の触媒をコートし、銀系浄化材と同じ条件
で乾燥、焼成を行い、銅系浄化材(第二の触媒をコート
した浄化材)を調製した。
Next, a powdery zeolite (SiO 2 : Al 2 O 3 molar ratio is 27. Specific surface area: 50 m 2 / g) is immersed in an aqueous copper acetate solution (copper concentration: 7.7% by weight).
The zeolite exchanged for copper ions is separated and, in air,
It dried at 0 degreeC, 100 degreeC, and 120 degreeC for 2 hours each. Subsequently, under a nitrogen stream containing 20% of oxygen, 120 ° C. to 400 ° C.
Then, the temperature was raised stepwise and calcined at 400 ° C. for 5 hours to prepare a second catalyst supporting 5.19% by weight of copper component (converted to copper element) with respect to zeolite. After the second catalyst was slurried, 0.1% was formed on the same honeycomb formed body as the silver-based purifying material.
23 g of the second catalyst was coated, dried and calcined under the same conditions as the silver-based purifying material to prepare a copper-based purifying material (a purifying material coated with the second catalyst).

【0063】さらに、粉末状チタニア(比表面積35m
2 /g)を塩化白金酸水溶液に20分間浸漬した後、空
気中、80℃で2時間乾燥し、窒素気流下で120℃で
2時間、200〜400℃まで段階的に各1時間焼成し
た。そして、水素ガス4%を含む窒素気流下で50℃〜
400℃まで5時間かけて昇温し、400℃で4時間焼
成し、さらに、酸素を10%含む窒素気流下で50℃〜
500℃まで5時間かけて昇温し、500℃で5時間焼
成し、チタニアに対してPtを0.25重量%(金属元素
換算値)担持した第三の触媒を調製した。第三の触媒
0.26gを上記銀系浄化材と同じハニカム成形体にコ
ートし。銀系浄化材と同じ条件で乾燥、焼成を行い、白
金系浄化材(第三の触媒をコートした浄化材)を調製し
た。
Further, powdered titania (specific surface area 35 m
2 / g) in a chloroplatinic acid aqueous solution for 20 minutes, dried in air at 80 ° C. for 2 hours, and baked in a nitrogen stream at 120 ° C. for 2 hours and stepwise from 200 to 400 ° C. for 1 hour each. . Then, under a nitrogen gas flow containing 4% of hydrogen gas, 50 ° C.
The temperature was raised to 400 ° C. over 5 hours, calcined at 400 ° C. for 4 hours, and further heated to 50 ° C. under a nitrogen stream containing 10% oxygen.
The temperature was raised to 500 ° C. over 5 hours and calcined at 500 ° C. for 5 hours to prepare a third catalyst supporting 0.25% by weight (converted to metal element) of Pt with respect to titania. 0.26 g of the third catalyst was coated on the same honeycomb formed body as the silver-based purifying material. Drying and baking were performed under the same conditions as the silver-based purifying material to prepare a platinum-based purifying material (a purifying material coated with a third catalyst).

【0064】反応管内の排ガスの流入側から流出側へ順
に銀系浄化材、銅系浄化材、白金系浄化材をそれぞれセ
ットした。次に、表2に示す組成のガス(一酸化窒素、
酸素、エタノール、二酸化硫黄、窒素及び水分)を毎分
3.48リットル(標準状態)の流量で流して(各浄化
材の見かけ空間速度はそれぞれ約80,000h-1であ
る)、反応管内の排ガス温度を350〜550℃の範囲
に保ち、エタノールと窒素酸化物とを反応させた。
A silver-based purifying material, a copper-based purifying material, and a platinum-based purifying material were set in this order from the inflow side to the outflow side of the exhaust gas in the reaction tube. Next, a gas having the composition shown in Table 2 (nitrogen monoxide,
Oxygen, ethanol, sulfur dioxide, nitrogen and water) at a flow rate of 3.48 liters per minute (standard condition) (the apparent space velocity of each purifying material is about 80,000 h -1 ). The exhaust gas temperature was kept in the range of 350 to 550 ° C., and ethanol and nitrogen oxide were reacted.

【0065】反応管通過後のガスの窒素酸化物の濃度を
化学発光式窒素酸化物分析計により測定し、窒素酸化物
除去率を求めた。結果を表3に示す。
The concentration of nitrogen oxides in the gas after passing through the reaction tube was measured by a chemiluminescent nitrogen oxide analyzer to determine the nitrogen oxide removal rate. Table 3 shows the results.

【0066】 表2 成分 濃度 一酸化窒素 800 ppm 酸素 10 容量% エタノール 1560 ppm 二酸化硫黄 30 ppm 窒素 残部 水分 10 容量%(上記成分の総体積に対して)Table 2 Component Concentration Nitric Oxide 800 ppm Oxygen 10% by volume Ethanol 1560 ppm Sulfur dioxide 30 ppm Nitrogen Residual water 10% by volume (based on the total volume of the above components)

【0067】実施例8 硝酸銅水溶液(銅濃度7.7重量%)に粉末状チタニア
(比表面積35m2 /g)を浸漬し、空気中で、80
℃、100℃、120℃で各2時間乾燥した。続いて、
酸素を20%含む窒素気流下で120℃〜500℃まで
段階的に昇温し500℃で5時間焼成し、チタニアに対
して銅の酸化物4.5重量%(銅元素換算値)を担持し
た第二の触媒を調製した。 第二の触媒をスラリー化し
た後、実施例7の銅系浄化材と同様なハニカム成形体に
0.26gの第二の触媒をコートし、乾燥、焼成を行
い、銅系浄化材(第二の触媒をコートした浄化材)を調
製した。
Example 8 Powdered titania (specific surface area: 35 m 2 / g) was immersed in an aqueous solution of copper nitrate (copper concentration: 7.7% by weight), and dried in air.
It dried at each of 2 degreeC, 100 degreeC, and 120 degreeC. continue,
The temperature was increased stepwise from 120 ° C. to 500 ° C. under a nitrogen gas stream containing 20% of oxygen, and calcined at 500 ° C. for 5 hours to carry 4.5% by weight of copper oxide (converted to copper element) with respect to titania. A second catalyst was prepared. After slurrying the second catalyst, a honeycomb formed body similar to the copper-based purifying material of Example 7 was coated with 0.26 g of the second catalyst, dried and calcined to obtain a copper-based purifying material (second Purification material coated with the above catalyst was prepared.

【0068】反応管内の排ガスの流入側から流出側へ順
にに実施例7の銀系浄化材、上記銅系浄化材、実施例7
の白金系浄化材をそれぞれセットした。次に、実施例7
と同じように表2に示す組成のガスを用いて(各浄化材
の見かけ空間速度はそれぞれ約80,000h-1であ
る)、エタノールと窒素酸化物とを反応させた。反応管
通過後のガスの窒素酸化物の濃度を化学発光式窒素酸化
物分析計により測定し、窒素酸化物除去率を求めた。結
果を表3に示す。
From the inflow side to the outflow side of the exhaust gas in the reaction tube, the silver-based purifying material of Example 7, the copper-based purifying material,
Was set respectively. Next, Example 7
In the same manner as described above, ethanol and nitrogen oxides were reacted using a gas having the composition shown in Table 2 (the apparent space velocity of each purification material was about 80,000 h -1 ). The concentration of nitrogen oxides in the gas after passing through the reaction tube was measured with a chemiluminescent nitrogen oxide analyzer to determine the nitrogen oxide removal rate. Table 3 shows the results.

【0069】比較例1 実施例1で調製した第一の触媒と第二の触媒を用い、排
ガスの流入側から、第一の触媒1.7g(3.1m
l)、第三の触媒3.1g(3.1ml)の順に組み合
わせて浄化材とし、反応管内にセットした。実施例1と
同様の反応条件(第一、第二及び第三の触媒の見かけ空
間速度約40,000h-1)で、表1に示す組成のガス
を用いて評価を行った。結果を表3に示す。
COMPARATIVE EXAMPLE 1 Using the first catalyst and the second catalyst prepared in Example 1, 1.7 g (3.1 m) of the first catalyst was supplied from the exhaust gas inflow side.
l), 3.1 g (3.1 ml) of the third catalyst were combined in this order to obtain a purifying material, which was set in the reaction tube. Evaluation was carried out under the same reaction conditions as in Example 1 (approximate space velocity of the first, second and third catalysts of about 40,000 h -1 ) using the gas having the composition shown in Table 1. Table 3 shows the results.

【0070】 表3 窒素酸化物(NOx)の除去率 窒素酸化物の除去率(%) 反応温度(℃) 300 350 400 450 500 実施例1 75.2 92.7 92.5 79.6 64.9 実施例2 79.7 97.1 94.2 80.4 62.5 実施例3 73.4 92.1 95.9 85.6 66.4 実施例4 80.9 96.2 96.1 84.9 66.8 実施例5 74.1 91.7 89.6 77.2 65.3 実施例6 79.8 92.8 89.1 76.5 60.9 実施例7 68.1 80.5 83.7 82.0 78.6 実施例8 48.4 69.8 77.1 80.9 76.8 比較例1 64.5 79.5 78.7 73.6 59.9 Table 3 Removal rate of nitrogen oxides (NOx) Removal rate of nitrogen oxides (%) Reaction temperature (° C.) 300 350 400 450 500 Example 1 75.2 92.7 92.5 79.6 64.9 Example 2 79.7 97.1 94.2 80.4 62.5 Execution Example 3 73.4 92.1 95.9 85.6 66.4 Example 4 80.9 96.2 96.1 84.9 66.8 Example 5 74.1 91.7 89.6 77.2 65.3 Example 6 79.8 92.8 89.1 76.5 60.9 Example 7 68.1 80.5 83.7 82.0 78.6 Example 8 48.4 69.8 77.1 80.9 76.8 Comparative Example 1 64.5 79.5 78.7 73.6 59.9

【0071】表3からわかるように、銀、白金触媒だけ
を用いた比較例1に比べて、実施例1〜8は広い排ガス
温度領域で窒素酸化物の良好な除去がみられた。
As can be seen from Table 3, in Examples 1 to 8, good removal of nitrogen oxides was observed in a wide exhaust gas temperature range as compared with Comparative Example 1 using only silver and platinum catalysts.

【0072】[0072]

【発明の効果】以上詳述したように、本発明の排ガス浄
化材を用いれば、広い温度領域において過剰の酸素を含
む排ガス中の窒素酸化物を効率良く除去することができ
る。本発明の排ガス浄化材及び浄化方法は、各種燃焼
機、自動車等の排ガス浄化に広く利用することができ
る。
As described above in detail, the use of the exhaust gas purifying material of the present invention makes it possible to efficiently remove nitrogen oxides in exhaust gas containing excess oxygen in a wide temperature range. INDUSTRIAL APPLICABILITY The exhaust gas purifying material and the purification method of the present invention can be widely used for purifying exhaust gas of various types of combustors, automobiles and the like.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 23/847 B01J 27/053 A 23/85 ZAB 29/068 A 27/053 B01D 53/36 102C 29/068 102H ZAB B01J 23/84 301A (56)参考文献 特開 平6−238166(JP,A) 特開 平6−221139(JP,A)──────────────────────────────────────────────────続 き Continuation of the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical display location B01J 23/847 B01J 27/053 A 23/85 ZAB 29/068 A 27/053 B01D 53/36 102C 29/068 102H ZAB B01J 23/84 301A (56) References JP-A-6-238166 (JP, A) JP-A-6-221139 (JP, A)

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 窒素酸化物と、共存する末燃焼成分に対
する理論反応量より多い酸素とを含む燃焼排ガスから窒
素酸化物を還元除去する排ガス浄化材において、浄化材
の排ガス流入側から流出側に順に第一〜第三の触媒を有
し、前記第一の触媒が多孔質のアルミナ、チタニア及び
ゼオライトのいずれか又はそれらを含む複合酸化物又は
それらの混合酸化物に活性種として銀及び/又は銀化合
物、又はそれらの混合物0.2〜15重量%(銀元素換
算値)を担持してなり、前記第二の触媒が多孔質のγ−
アルミナ及び/又はチタニアに活性種として銅の酸化物
及び/又は硫酸銅0.2〜30重量%(銅元素換算値)
を担持してなり、前記第三の触媒がアルミナ、チタニ
ア、ジルコニア、シリカ、ゼオライトからなる群より選
ばれた一種以上の多孔質無機酸化物に活性種としてP
t、Pd、Ru、Rh、Ir及びAuからなる群より選
ばれた少なくとも1種の元素0.01〜5重量%(金属
元素換算値)を担持してなることを特徴とする排ガス浄
化材。
An exhaust gas purifying material for reducing and removing nitrogen oxides from a combustion exhaust gas containing nitrogen oxides and oxygen which is larger than a theoretical reaction amount of a coexisting end combustion component, wherein the purifying material is disposed from an exhaust gas inflow side to an exhaust side. In order has a first to third catalyst, the first catalyst is porous alumina, titania and
Any of zeolite or a composite oxide containing them or
Silver and / or silver compound as an active species to a mixed oxide thereof, or it carries a mixture thereof 0.2 to 15 wt% (silver metal basis), the second catalyst is a porous γ-
Copper oxide and / or copper sulfate as active species on alumina and / or titania 0.2 to 30% by weight (converted to copper element)
And the third catalyst is alumina, titania
A, zirconia, silica, zeolite
P as an active species in one or more of the porous inorganic oxides
An exhaust gas purifying material characterized by carrying at least one element selected from the group consisting of t, Pd, Ru, Rh, Ir and Au in an amount of 0.01 to 5% by weight (in terms of a metal element).
【請求項2】 窒素酸化物と、共存する未燃焼成分に対
する理論反応量より多い酸素とを含む燃焼排ガスから窒
素酸化物を還元除去する排ガス浄化材において、浄化材
の排ガス流入側から流出側に順に第一〜第三の触媒を有
し、前記第一の触媒が多孔質の無機酸化物に活性種とし
て銀及び/又は銀化合物、又はそれらの混合物0.2〜
15重量%(銀元素換算値)を担持してなり、前記第二
の触媒が多孔質の無機酸化物に活性種として銅の酸化物
及び/又は硫酸塩0.2〜30重量%(銅元素換算値)
と、W、V、Moからなる群より選ばれた少なくとも一
種の元素の酸化物又は硫酸塩30重量%以下(金属元素
換算値)とを担持してなり、前記第三の触媒が多孔質の
無機酸化物に活性種としてpt、Pd、Ru、Rh、I
r及びAuからなる群より選ばれた少なくとも1種の元
素0.01〜5重量%(金属元素換算値)を担持してな
ることを特徴とする排ガス浄化材。
2. An exhaust gas purifying material for reducing and removing nitrogen oxides from a combustion exhaust gas containing nitrogen oxides and oxygen larger than a theoretical reaction amount of coexisting unburned components. It has a first to third catalysts in order, and the first catalyst is a porous inorganic oxide, in which silver and / or a silver compound, or a mixture thereof is used as an active species.
15% by weight (in terms of silver element), and the second catalyst contains 0.2 to 30% by weight of copper oxide and / or sulfate as an active species on a porous inorganic oxide (copper element). Conversion value)
And an oxide or sulfate of at least one element selected from the group consisting of W, V, and Mo, in an amount of 30% by weight or less (in terms of a metal element), and the third catalyst is porous. Pt, Pd, Ru, Rh, I as active species in the inorganic oxide
An exhaust gas purifying material characterized by carrying at least one element selected from the group consisting of r and Au in an amount of 0.01 to 5% by weight (in terms of a metal element).
【請求項3】 請求項に記載の排ガス浄化材におい
て、前記多孔質無機酸化物が、第一の触媒及び第二の触
媒ではアルミナ、チタニア及びゼオライトのいずれか又
はそれらを含む複合酸化物又はそれらの混合酸化物、第
三の触媒ではアルミナ、チタニア、ジルコニア、シリ
カ、ゼオライトからなる群より選ばれた一種以上の酸化
物であることを特徴とする排ガス浄化材。
3. The exhaust gas purifying material according to claim 2 , wherein the porous inorganic oxide is one of alumina, titania and zeolite, or a composite oxide containing them, for the first catalyst and the second catalyst. An exhaust gas purifying material, wherein the mixed oxide and the third catalyst are at least one oxide selected from the group consisting of alumina, titania, zirconia, silica, and zeolite.
【請求項4】 請求項1〜3のいずれかに記載の排ガス
浄化材において、前記第一、第二、及び第三の触媒の内
の一つ以上がセラッミクス製又は金属製の基体の表面に
コートされたものであることを特徴とする排ガス浄化
材。
4. The exhaust gas purifying material according to any one of claims 1 to 3, the first, second, and one or more Serammikusu made or surface of the metal substrate of the third catalyst An exhaust gas purifying material characterized by being coated.
【請求項5】 請求項1〜3のいずれかに記載の排ガス
浄化材において、前記第一、第二、及び第三の触媒の内
の一つ以上がペレット状又は顆粒状であることを特徴と
する排ガス浄化材。
5. The exhaust gas purifying material according to any one of claims 1-3, wherein the first, wherein the second and third one or more of the catalyst is in the form of pellets or granules Exhaust gas purifying material.
【請求項6】 請求項1〜のいずれかに記載の排ガス
浄化材において、前記銀化合物は銀の酸化物、ハロゲン
化銀、硫酸銀及び燐酸銀からなる群より選ばれた少なく
とも一種であることを特徴とする排ガス浄化材。
6. The exhaust gas purifying material according to any one of claims 1 to 5, wherein the silver compound oxides of silver, silver halide, is at least one selected from the group consisting of silver sulfate and phosphate silver An exhaust gas purifying material characterized by that:
【請求項7】 請求項1〜6のいずれかに記載の排ガス
浄化材を用い、窒素酸化物と、共存する末燃焼成分に対
する理論反応量より多い酸素とを含む燃焼排ガスから窒
素酸化物を還元除去する排ガス浄化方法において、前記
排ガス浄化材を排ガス導管の途中に設置し、前記浄化材
の上流側で炭化水素及び/又は含酸素有機化合物を添加
した排ガスを、150〜600℃において前記浄化材に
接触させ、もって前記排ガス中の炭化水素及び/又は含
酸素有機化合物との反応により前記窒素酸化物を除去す
ることを特徴とする排ガス浄化方法。
7. A method for reducing nitrogen oxides from a combustion exhaust gas containing nitrogen oxides and oxygen which is larger than a theoretical reaction amount for a coexisting end combustion component, using the exhaust gas purifying material according to claim 1. In the exhaust gas purifying method for removing, the exhaust gas purifying material is installed in the middle of an exhaust gas conduit, and the exhaust gas to which a hydrocarbon and / or an oxygen-containing organic compound is added at an upstream side of the purifying material is subjected to the purifying material at 150 to 600 ° C. Exhaust gas purifying method, wherein the nitrogen oxides are removed by contact with a hydrocarbon and / or an oxygen-containing organic compound in the exhaust gas.
JP6314034A 1994-11-04 1994-11-24 Exhaust gas purifying material and exhaust gas purifying method Expired - Lifetime JP2700386B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP6314034A JP2700386B2 (en) 1994-11-04 1994-11-24 Exhaust gas purifying material and exhaust gas purifying method
EP95307871A EP0710499A3 (en) 1994-11-04 1995-11-03 Exhaust gas cleaner and method for cleaning exhaust gas
US08/883,082 US5882607A (en) 1994-11-04 1997-06-26 Exhaust gas cleaner and method for cleaning exhaust gas
US08/890,641 US5780002A (en) 1994-11-04 1997-07-09 Exhaust gas cleaner and method for cleaning exhaust gas

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP29582294 1994-11-04
JP6-295822 1994-11-04
JP6314034A JP2700386B2 (en) 1994-11-04 1994-11-24 Exhaust gas purifying material and exhaust gas purifying method

Publications (2)

Publication Number Publication Date
JPH08182920A JPH08182920A (en) 1996-07-16
JP2700386B2 true JP2700386B2 (en) 1998-01-21

Family

ID=26560422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6314034A Expired - Lifetime JP2700386B2 (en) 1994-11-04 1994-11-24 Exhaust gas purifying material and exhaust gas purifying method

Country Status (1)

Country Link
JP (1) JP2700386B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101137439B (en) * 2005-02-28 2012-12-26 田中贵金属工业株式会社 Catalyst and method for reducing nitrogen oxides in exhaust streams with hydrocarbons or alcohols
JP5178164B2 (en) * 2007-11-29 2013-04-10 株式会社キャタラー Exhaust gas purification catalyst
JP5205999B2 (en) * 2008-02-07 2013-06-05 トヨタ自動車株式会社 Exhaust gas purification catalyst

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06238166A (en) * 1993-02-15 1994-08-30 Riken Corp Cleaning material for exhaust gas and cleaning method for exhaust gas
JP2966675B2 (en) * 1993-01-29 1999-10-25 三菱重工業株式会社 Exhaust treatment method

Also Published As

Publication number Publication date
JPH08182920A (en) 1996-07-16

Similar Documents

Publication Publication Date Title
JP2700386B2 (en) Exhaust gas purifying material and exhaust gas purifying method
JP3626999B2 (en) Exhaust gas purification material and exhaust gas purification method
JPH0824583A (en) Exhaust gas purifying material and method for purifying exhaust gas
JP2649217B2 (en) Exhaust gas purifying material and exhaust gas purifying method
JP2587000B2 (en) Exhaust gas purifying material and exhaust gas purifying method
JPH08168650A (en) Material and method for purifying exhaust gas
JPH07275709A (en) Material and method for purifying exhaust gas
JPH08168651A (en) Material and method for purifying exhaust gas
JPH08309189A (en) Combustion gas purifying material and purification of combustion gas
JPH0824654A (en) Matreial and method for pufitying exhaust gas
JP3854325B2 (en) Exhaust gas purification material and exhaust gas purification method
JPH08141371A (en) Exhaust gas purification material and purifying method for exhaust gas
JP3530214B2 (en) Exhaust gas purification material and exhaust gas purification method
JP3509152B2 (en) Exhaust gas purification material and exhaust gas purification method
JPH08164327A (en) Waste gas purifying material and waste gas purifying method
JPH08168674A (en) Material and process for purifying exhaust gas
JPH0824646A (en) Material and method for purifying exhaust gas
JPH0970536A (en) Purifying material for exhaust gas and purifying method of exhaust gas
JPH08196872A (en) Exhaust gas purification material and purification of exhaust gas
JPH0857263A (en) Exhaust gas purifying material and method therefor
JPH08182931A (en) Exhaust gas purifying material and exhaust gas purification using the same
JPH08229393A (en) Waste gas purifying mateiral and waste gas purifying method
JPH08309190A (en) Combustion gas purifying material and purification of combustion gas
JPH08318157A (en) Waste gas purification material and method for purifying waste gas
JPH08299795A (en) Waste gas purification material and method for purifying waste gas

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term