JPH08164327A - Waste gas purifying material and waste gas purifying method - Google Patents

Waste gas purifying material and waste gas purifying method

Info

Publication number
JPH08164327A
JPH08164327A JP6332162A JP33216294A JPH08164327A JP H08164327 A JPH08164327 A JP H08164327A JP 6332162 A JP6332162 A JP 6332162A JP 33216294 A JP33216294 A JP 33216294A JP H08164327 A JPH08164327 A JP H08164327A
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
silver
purifying material
gas purifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6332162A
Other languages
Japanese (ja)
Inventor
Akira Abe
晃 阿部
Kiyohide Yoshida
清英 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Original Assignee
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp filed Critical Riken Corp
Priority to JP6332162A priority Critical patent/JPH08164327A/en
Priority to US08/466,988 priority patent/US5714130A/en
Priority to EP95308495A priority patent/EP0714693A1/en
Publication of JPH08164327A publication Critical patent/JPH08164327A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE: To effectively remove NOx from the waste gas contg. NOx and excess oxygen by reduction by using a waste gas purifying material having specified first, second and third catalysts from the waste gas inlet side to the outlet side. CONSTITUTION: The first catalyst is obtained by depositing 0.2-1.2wt.% silver component (expressed in terms of silver element) on a porous inorg. oxide as an active species. The second catalyst is formed by depositing 0.5-15wt.% siver component (expressed in terms of silver element), which is a higher deposition rate than the first catalyst, on a porous inorg. oxide as an active species. The third catalyst is obtained by depositing 0.2-10wt.% oxide or sulfate of at least one kind of element among W, V, Mo, Mn, Nb and Ta (expressed in terms of metallic element) and 0.01-5wt.% at least one kind among Pt, Pd, Ru, Rh, Ir and Au (expressed in terms of metallic element) on a porous inorg. oxide as an active species. The first, second and third catalysts are arranged in this order from the waste gas inlet side of the purifying material to the outlet side.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は窒素酸化物と過剰の酸素
を含む燃焼排ガスから、窒素酸化物を効果的に還元除去
することのできる排ガス浄化材及びそれを用いた浄化方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying material capable of effectively reducing and removing nitrogen oxides from a combustion exhaust gas containing nitrogen oxides and excess oxygen, and a purification method using the same.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】自動車
用エンジン等の内燃機関や、工場等に設置された燃焼機
器、家庭用ファンヒーターなどから排出される各種の燃
焼排ガス中には、過剰の酸素とともに一酸化窒素、二酸
化窒素等の窒素酸化物が含まれている。ここで、「過剰
の酸素を含む」とは、その排ガス中に含まれる一酸化炭
素、水素、炭化水素等の未燃焼成分を燃焼するのに必要
な理論酸素量より多い酸素を含むことを意味する。ま
た、以下における窒素酸化物とは一酸化窒素及び/又は
二酸化窒素を指す。
2. Description of the Related Art Excessive combustion exhaust gas discharged from internal combustion engines such as automobile engines, combustion equipment installed in factories, household fan heaters, and the like is excessive. It contains nitrogen oxides such as nitric oxide and nitrogen dioxide together with oxygen. Here, "containing excess oxygen" means that the exhaust gas contains more oxygen than the theoretical amount of oxygen necessary to burn unburned components such as carbon monoxide, hydrogen, and hydrocarbons. I do. In the following, nitrogen oxide refers to nitric oxide and / or nitrogen dioxide.

【0003】この窒素酸化物は酸性雨の原因の一つとさ
れ、環境上の大きな問題となっている。そのため、各種
燃焼機器が排出する排ガス中の窒素酸化物を除去するさ
まざまな方法が検討されている。
[0003] This nitrogen oxide is one of the causes of acid rain and is a major environmental problem. Therefore, various methods for removing nitrogen oxides in exhaust gas discharged from various combustion equipments are being studied.

【0004】過剰の酸素を含む燃焼排ガスから窒素酸化
物を除去する方法として、特に大規模な固定燃焼装置
(工場等の大型燃焼機等)に対しては、アンモニアを用
いる選択的接触還元法が実用化されている。
[0004] As a method for removing nitrogen oxides from a combustion exhaust gas containing excess oxygen, a selective catalytic reduction method using ammonia is used particularly for a large-scale fixed combustion device (a large-scale combustor in a factory or the like). Has been put to practical use.

【0005】しかしながら、この方法においては、窒素
酸化物の還元剤として用いるアンモニアが高価であるこ
と、またアンモニアは毒性を有すること、そのために未
反応のアンモニアが排出しないように排ガス中の窒素酸
化物濃度を計測しながらアンモニア注入量を制御しなけ
ればならないこと、一般に装置が大型となること等の問
題点がある。
However, in this method, ammonia used as a reducing agent for nitrogen oxides is expensive, and ammonia is toxic. Therefore, the nitrogen oxides in the exhaust gas must be removed so that unreacted ammonia is not discharged. There are problems that the amount of injected ammonia must be controlled while measuring the concentration, and that the apparatus generally becomes large.

【0006】また、別な方法として、水素、一酸化炭
素、炭化水素等のガスを還元剤として用い、窒素酸化物
を還元する非選択的接触還元法があるが、この方法で
は、効果的な窒素酸化物の低減除去を実行するためには
排ガス中の酸素との理論反応量以上の還元剤を添加しな
ければならず、還元剤を多量に消費する欠点がある。こ
のため非選択的接触還元法は、実際上は、理論空燃比付
近で燃焼した残存酸素濃度の低い排ガスに対してのみ有
効となり、汎用性に乏しく実際的でない。
As another method, there is a non-selective catalytic reduction method in which a nitrogen oxide is reduced by using a gas such as hydrogen, carbon monoxide, or a hydrocarbon as a reducing agent. In order to reduce and remove nitrogen oxides, it is necessary to add a reducing agent in an amount equal to or more than a theoretical reaction amount with oxygen in exhaust gas, and there is a disadvantage that a large amount of the reducing agent is consumed. For this reason, the non-selective catalytic reduction method is practically effective only for exhaust gas having a low residual oxygen concentration burned near the stoichiometric air-fuel ratio, and is not practical because of poor versatility.

【0007】そこで、ゼオライト又はそれに遷移金属を
担持した触媒を用いて、排ガス中の酸素との理論反応量
以下の還元剤を添加して窒素酸化物を除去する方法が提
案された(たとえば、特開昭63-100919 号、同63-28372
7 号、特開平1-130735号等)。
In view of the above, a method has been proposed for removing nitrogen oxides by using a zeolite or a catalyst supporting a transition metal on the zeolite and adding a reducing agent having a theoretical reaction amount or less with oxygen in the exhaust gas (for example, Japanese Patent Application Laid-Open Publication No. H11-163873). No.63-100919, 63-28372
No. 7, JP-A No. 1-130735).

【0008】しかしながら、これらの方法では、効果的
な窒素酸化物の除去が狭い温度領域でしか得られず、ま
た、水分を含むような排ガスでは、窒素酸化物の除去率
が著しく低下する。つまり、10%程度の水分を含み、
運転条件によって温度変化の大きい車等からの排ガスに
対して、窒素酸化物の効果的除去は困難である。
However, in these methods, effective removal of nitrogen oxides can be obtained only in a narrow temperature range, and in an exhaust gas containing water, the removal rate of nitrogen oxides is significantly reduced. In other words, it contains about 10% water,
It is difficult to effectively remove nitrogen oxides from exhaust gas from a vehicle or the like whose temperature changes greatly depending on operating conditions.

【0009】したがって、本発明の目的は、固定燃焼装
置および酸素過剰条件で燃焼するガソリンエンジン、デ
ィーゼルエンジン等からの燃焼排ガスのように、窒素酸
化物や、一酸化炭素、水素、炭化水素等の未燃焼分に対
する理論反応量以上の酸素を含有する燃焼排ガスから、
効率良く窒素酸化物を還元除去することができる排ガス
浄化材及び排ガス浄化方法を提供することである。
Accordingly, it is an object of the present invention to provide a method for producing nitrogen oxides, carbon monoxide, hydrogen, hydrocarbons and the like, such as combustion exhaust gas from a fixed combustion device and a gasoline engine, a diesel engine or the like, which burns under oxygen excess conditions. From combustion exhaust gas containing more than the theoretical reaction amount for unburned components,
An object of the present invention is to provide an exhaust gas purifying material and an exhaust gas purifying method capable of efficiently reducing and removing nitrogen oxides.

【0010】[0010]

【課題を解決するための手段】上記課題に鑑み鋭意研究
の結果、本発明者は、多孔質無機酸化物に銀成分を担持
してなる触媒上で、エタノールなどの有機化合物が、酸
素及び窒素酸化物を含む排ガスと反応し、窒素酸化物を
窒素ガスに還元するとともに、副生成物として亜硝酸エ
ステル、アンモニアなどの含窒素化合物やアルデヒドを
生成していることを見出した。生成されたアルデヒドを
利用して効果的に窒素酸化物を除去できる第二の銀系触
媒をさらに設けて、一酸化炭素、炭化水素及びディーゼ
ル排ガス中の可溶性有機成分(以下SOFと略す)を酸
化除去するW系成分と白金系成分とを担持してなる触媒
とを組み合わせて形成される排ガス浄化材を用い、排ガ
ス中に炭化水素と炭素数2以上の含酸素有機化合物のい
ずれか又はそれらを含む燃料を添加し、特定の温度及び
空間速度で上記の浄化材に排ガスを接触させれば、広い
温度領域で窒素酸化物を効果的に除去することができる
ことを発見し、本発明を完成した。
Means for Solving the Problems In view of the above problems, as a result of intensive studies, the present inventor has found that an organic compound such as ethanol is converted to oxygen and nitrogen on a catalyst comprising a porous inorganic oxide carrying a silver component. It has been found that it reacts with exhaust gas containing oxides to reduce nitrogen oxides to nitrogen gas and to generate nitrogen-containing compounds such as nitrites and ammonia and aldehydes as by-products. A second silver-based catalyst capable of effectively removing nitrogen oxides using the generated aldehyde is further provided to oxidize soluble organic components (hereinafter abbreviated as SOF) in carbon monoxide, hydrocarbons and diesel exhaust gas. Using an exhaust gas purifying material formed by combining a catalyst carrying a W-based component and a platinum-based component to be removed, any one of hydrocarbons and oxygen-containing organic compounds having 2 or more carbon atoms in the exhaust gas or It has been discovered that nitrogen oxides can be effectively removed in a wide temperature range by adding a fuel containing the gas and bringing the exhaust gas into contact with the above-mentioned purifying material at a specific temperature and space velocity, and completed the present invention. .

【0011】すなわち、窒素酸化物と、共存する未燃焼
成分に対する理論反応量より多い酸素とを含む燃焼排ガ
スから窒素酸化物を還元除去する本発明の排ガス浄化材
は、多孔質の無機酸化物に活性種として銀及び/又は銀
化合物、又はそれらの混合物0.2〜12重量%(銀元
素換算値)を担持してなる第一の触媒と、多孔質の無機
酸化物に活性種として銀及び/又は銀化合物、又はそれ
らの混合物0.5〜15重量%(銀元素換算値)かつ前
記第一の触媒の活性種の担持率より多い量を担持してな
る第二の触媒と、多孔質の無機酸化物に活性種として
W、V、Mo、Mn、Nb、Taからなる群より選ばれ
た少なくとも一種の元素の酸化物又は硫酸塩0.2〜1
0重量%(金属元素換算値)と、Pt、Pd、Ru、Rh、Ir及
びAuからなる群より選ばれた少なくとも1種の元素0.
01〜5重量%(金属元素換算値)とを担持してなる第
三の触媒とからなり、浄化材の排ガス流入側から流出側
へ順に前記第一の触媒、前記第二の触媒、前記第三の触
媒を有することを特徴とする。
That is, the exhaust gas purifying material of the present invention for reducing and removing nitrogen oxides from a combustion exhaust gas containing nitrogen oxides and oxygen which is larger than the theoretical reaction amount of coexisting unburned components is a porous inorganic oxide. A first catalyst supporting 0.2 to 12% by weight (in terms of silver element) of silver and / or a silver compound or a mixture thereof as an active species, and silver and silver as active species on a porous inorganic oxide; And / or a silver compound or a mixture thereof, in which 0.5 to 15% by weight (in terms of silver element) and a second catalyst supporting an amount larger than the active species loading of the first catalyst, Oxide or sulfate of at least one element selected from the group consisting of W, V, Mo, Mn, Nb, and Ta as active species in the inorganic oxide of
0% by weight (in terms of a metal element) and at least one element selected from the group consisting of Pt, Pd, Ru, Rh, Ir and Au.
A first catalyst, the second catalyst, and the second catalyst in order from the exhaust gas inflow side to the outflow side of the purification material. It has three catalysts.

【0012】また、窒素酸化物と、共存する未燃焼成分
に対する理論反応量より多い酸素とを含む燃焼排ガスか
ら窒素酸化物を還元除去する本発明の排ガス浄化方法
は、上記の排ガス浄化材を用い、前記排ガス浄化材を排
ガス導管の途中に設置し、前記浄化材の上流側で炭化水
素及び/又は含酸素有機化合物を添加した排ガスを、1
50〜600℃において前記浄化材に接触させ、もって
前記排ガス中の炭化水素及び/又は含酸素有機化合物と
の反応により前記窒素酸化物を除去することを特徴とす
る。
Further, the exhaust gas purifying method of the present invention for reducing and removing nitrogen oxides from a combustion exhaust gas containing nitrogen oxides and oxygen in excess of the theoretical reaction amount for coexisting unburned components uses the above exhaust gas purifying material. The exhaust gas purifying material is installed in the middle of an exhaust gas conduit, and the exhaust gas to which hydrocarbons and / or oxygen-containing organic compounds are added upstream of the purifying material is
The nitrogen oxides are removed by contacting the purifying material at 50 to 600 ° C. and reacting with the hydrocarbons and / or oxygen-containing organic compounds in the exhaust gas.

【0013】以下、本発明を詳細に説明する。本発明の
排ガス浄化材は、多孔質の無機酸化物に活性種として銀
及び/又は銀化合物、又はそれらの混合物0.2〜12
重量%(銀元素換算値)を担持してなる第一の触媒と、
多孔質の無機酸化物に活性種として銀及び/又は銀化合
物、又はそれらの混合物0.5〜15重量%(銀元素換
算値)かつ前記第一の触媒の活性種の担持率より多い量
を担持してなる第二の触媒と、多孔質の無機酸化物に活
性種としてW、V、Mo、Mn、Nb、Taからなる群
より選ばれた少なくとも一種の元素の酸化物又は硫酸塩
0.2〜10重量%(金属元素換算値)と、Pt、Pd、R
u、Rh、Ir及びAuからなる群より選ばれた少なくとも1
種の元素0.01〜5重量%(金属元素換算値)とを担
持してなる第三の触媒とからなる。浄化材の排ガス流入
側から流出側へ順に前記第一の触媒、前記第二の触媒、
前記第三の触媒を有する排ガス浄化材を排ガス導管中に
設置し、浄化材の設置位置より上流側で炭化水素と炭素
数2以上の含酸素有機化合物のいずれか又はそれを含む
燃料を添加した排ガスをこの浄化材に接触させて、排ガ
ス中の窒素酸化物を還元除去する。
Hereinafter, the present invention will be described in detail. The exhaust gas purifying material of the present invention comprises a porous inorganic oxide containing silver and / or a silver compound as an active species, or a mixture thereof in an amount of 0.2 to 12 as an active species.
A first catalyst supporting the weight% (in terms of silver element);
Silver and / or a silver compound or a mixture thereof as active species is added to the porous inorganic oxide in an amount of 0.5 to 15% by weight (in terms of silver element) and more than the active catalyst loading of the first catalyst. An oxide or a sulfate of at least one element selected from the group consisting of W, V, Mo, Mn, Nb, and Ta as active species in a porous inorganic oxide and a second catalyst to be supported. 2 to 10% by weight (converted to metal element), Pt, Pd, R
at least one selected from the group consisting of u, Rh, Ir, and Au
A third catalyst supporting 0.01 to 5% by weight (in terms of metal element) of a seed element. The first catalyst, the second catalyst, in order from the exhaust gas inflow side to the outflow side of the purification material,
An exhaust gas purifying material having the third catalyst was installed in an exhaust gas conduit, and either a hydrocarbon or an oxygen-containing organic compound having 2 or more carbon atoms or a fuel containing the same was added upstream from the installation position of the purifying material. The exhaust gas is brought into contact with the purifying material to reduce and remove nitrogen oxides in the exhaust gas.

【0014】本発明の排ガス浄化材の第一の好ましい形
態は、粉末状の多孔質無機酸化物に触媒活性種を担持し
てなる触媒を浄化材基体にコートしてなる浄化材であ
る。浄化材の基体を形成するセラミックス材料として
は、γ−アルミナ及びその酸化物(γ−アルミナ−チタ
ニア、γ−アルミナ−シリカ、γ−アルミナ−ジルコニ
ア等)、ジルコニア、チタニア−ジルコニアなどの多孔
質で表面積の大きい耐熱性のものが挙げられる。高耐熱
性が要求される場合、コージェライト、ムライト、アル
ミナ及びその複合物等を用いるのが好ましい。また、排
ガス浄化材の基体に公知の金属材料を用いることもでき
る。
A first preferred embodiment of the exhaust gas purifying material of the present invention is a purifying material obtained by coating a purifying material base with a catalyst comprising a powdery porous inorganic oxide carrying catalytically active species. Examples of the ceramic material forming the substrate of the purifying material include porous materials such as γ-alumina and its oxides (γ-alumina-titania, γ-alumina-silica, γ-alumina-zirconia, etc.), zirconia, titania-zirconia, and the like. A heat-resistant material having a large surface area can be used. When high heat resistance is required, it is preferable to use cordierite, mullite, alumina and a composite thereof. In addition, a known metal material can be used for the base of the exhaust gas purifying material.

【0015】排ガス浄化材の基体の形状及び大きさは、
目的に応じて種々変更できる。実用的には、入口部分、
中間部分及び出口部分等、二つ以上の部分からなること
が好ましい。またその構造としては、ハニカム構造型、
フォーム型、繊維状耐火物からなる三次元網目構造型、
あるいは顆粒状、ペレット状等が挙げられる。
The shape and size of the substrate of the exhaust gas purifying material
Various changes can be made according to the purpose. Practically, at the entrance,
It is preferred that it comprises two or more parts, such as an intermediate part and an outlet part. In addition, as its structure, honeycomb structure type,
Foam type, three-dimensional network structure type made of fibrous refractory,
Alternatively, granules, pellets and the like can be mentioned.

【0016】本発明の排ガス浄化材の第二の好ましい形
態は、ペレット状又は顆粒状粉末状の多孔質無機酸化物
に触媒活性種を担持してなる触媒、又は触媒活性種をそ
れぞれ担持した粉末状多孔質無機酸化物をペレット状又
は顆粒状に成形したものを所望形状のケーシングに充填
してなる浄化材である。
A second preferred embodiment of the exhaust gas purifying material of the present invention is a catalyst comprising a porous inorganic oxide in the form of a pellet or a granular powder carrying a catalytically active species, or a powder comprising a catalytically active species, respectively. It is a purifying material obtained by molding a porous inorganic oxide into pellets or granules into a casing having a desired shape.

【0017】本発明の浄化材には以下の触媒が形成され
ている。 (1)第一の触媒及び第二の触媒 第一の触媒及び第二の触媒は、多孔質無機酸化物に銀及
び/又は銀化合物、又はそれらの混合物を担持してな
り、排ガスの流入側に形成され、広い温度領域での窒素
酸化物除去に作用する。銀化合物は銀の酸化物、ハロゲ
ン化銀、硫酸銀及び燐酸銀などからなる群より選ばれた
少なくとも一種であり、好ましくは銀の酸化物、塩化銀
及び硫酸銀のいずれか一種以上であり、更に好ましくは
銀の酸化物及び/又は塩化銀である。多孔質の無機酸化
物としては、アルミナ、チタニアのいずれか又はそれら
を含む複合又は混合酸化物を用いるのが好ましい。アル
ミナの複合又は混合酸化物を用いる場合、アルミナの含
有率を50重量%以上とするのが好ましい。アルミナ、
チタニア又はそれらの複合又は混合酸化物を用いること
により、添加した炭化水素、含酸素有機化合物及び/又
は排ガス中の残留炭化水素と排ガス中の窒素酸化物との
反応が効率良く起こる。
The following catalyst is formed on the purifying material of the present invention. (1) First catalyst and second catalyst The first catalyst and the second catalyst are formed by supporting silver and / or a silver compound or a mixture thereof on a porous inorganic oxide, and on the inflow side of the exhaust gas. And acts to remove nitrogen oxides in a wide temperature range. The silver compound is at least one selected from the group consisting of silver oxide, silver halide, silver sulfate, silver phosphate, and the like, and is preferably one or more of silver oxide, silver chloride, and silver sulfate, More preferred are silver oxide and / or silver chloride. As the porous inorganic oxide, it is preferable to use either alumina or titania or a composite or mixed oxide containing them. When a composite or mixed oxide of alumina is used, the content of alumina is preferably set to 50% by weight or more. alumina,
By using titania or a composite or mixed oxide thereof, a reaction between added hydrocarbons, oxygen-containing organic compounds and / or residual hydrocarbons in exhaust gas and nitrogen oxides in exhaust gas occurs efficiently.

【0018】第一の触媒及び第二の触媒で用いるアルミ
ナなどの多孔質の無機酸化物の比表面積は10m2 /g
以上であるのが好ましい。比表面積が10m2 /g未満
であると、排ガスと無機酸化物(及びこれに担持した銀
成分)との接触面積が小さくなり、良好な窒素酸化物の
除去が行えない。より好ましい多孔質無機酸化物の比表
面積は30m2 /g以上である。
The specific surface area of the porous inorganic oxide such as alumina used for the first catalyst and the second catalyst is 10 m 2 / g.
It is preferable that this is the case. If the specific surface area is less than 10 m 2 / g, the contact area between the exhaust gas and the inorganic oxide (and the silver component carried thereon) becomes small, and good nitrogen oxides cannot be removed. More preferred specific surface area of the porous inorganic oxide is 30 m 2 / g or more.

【0019】第一の触媒では、上記したγ−アルミナ等
の無機酸化物に活性種として担持する銀成分の担持量
は、無機酸化物100重量%に対して0.2〜12重量
%(銀元素換算値)とする。0.2重量%未満では窒素
酸化物の除去率が低下する。また、12重量%を超す量
の銀成分を担持すると炭化水素及び/又は含酸素有機化
合物自身の燃焼が起きやすく、窒素酸化物の除去率はか
えって低下する。好ましい銀成分の担持量は0.5〜1
0重量%である。
In the first catalyst, the amount of the silver component supported as an active species on the above-mentioned inorganic oxide such as γ-alumina is 0.2 to 12% by weight (100% by weight of the inorganic oxide). (Element conversion value). If the amount is less than 0.2% by weight, the removal rate of nitrogen oxides decreases. If the silver component is carried in an amount exceeding 12% by weight, the combustion of the hydrocarbon and / or the oxygen-containing organic compound itself tends to occur, and the nitrogen oxide removal rate is rather lowered. A preferable silver component loading is 0.5 to 1
0% by weight.

【0020】第二の触媒では、上記したγ−アルミナ等
の無機酸化物に活性種として担持する銀成分の担持量
は、無機酸化物100重量%に対して0.5〜15重量
%(銀元素換算値)で、かつ第一の触媒の活性種の担持
率より多い量とする。つまり、第二の触媒における多孔
質無機酸化物に対する銀成分の含有率を常に第一の触媒
のものより大きくする。0.5重量%未満又は第一の触
媒の活性種の担持率以下では、第一の触媒で生成したア
ルデヒドを用いた窒素酸化物の除去が行われない。ま
た、15重量%を超す量の銀成分を担持すると炭化水素
及び/又は含酸素有機化合物自身の燃焼が起きやすく、
窒素酸化物の除去率はかえって低下する。好ましい第二
触媒における銀成分の担持量は1〜12重量%である。
In the second catalyst, the amount of the silver component supported as an active species on the inorganic oxide such as γ-alumina is 0.5 to 15% by weight (100% by weight of the inorganic oxide). (In terms of element) and more than the loading rate of the active species of the first catalyst. That is, the content of the silver component with respect to the porous inorganic oxide in the second catalyst is always higher than that in the first catalyst. If it is less than 0.5% by weight or less than the active catalyst loading of the first catalyst, the removal of nitrogen oxides using the aldehyde generated by the first catalyst is not performed. In addition, when a silver component in an amount exceeding 15% by weight is supported, combustion of hydrocarbons and / or oxygen-containing organic compounds themselves tends to occur,
The nitrogen oxide removal rate is rather reduced. The loading amount of the silver component in the preferred second catalyst is 1 to 12% by weight.

【0021】アルミナ等の無機酸化物に銀を担持する方
法としては、公知の含浸法、沈澱法等を用いることがで
きる。含浸法を用いる際、銀の硝酸塩、塩化物、硫酸
塩、炭酸塩等の水溶液又はアンモニア性水溶液に多孔質
無機酸化物を浸漬する。又は硝酸銀水溶液に多孔質無機
酸化物を浸漬し、乾燥後、塩化アンモニウム又は硫酸ア
ンモニウムの水溶液に再び浸漬する。沈澱法では硝酸銀
とハロゲン化アンモニウムとを反応させて、ハロゲン化
銀として多孔質無機酸化物上に沈澱させる。これを50
〜150℃、特に70℃程度で乾燥後、100〜600
℃で段階的に昇温して焼成するのが好ましい。焼成は、
空気中、酸素を含む窒素気流下や水素ガス気流下で行う
のが好ましい。水素ガス気流下で行う場合には、最後に
300〜650℃で酸化処理するのが好ましい。
As a method for supporting silver on an inorganic oxide such as alumina, a known impregnation method, precipitation method, or the like can be used. When using the impregnation method, the porous inorganic oxide is immersed in an aqueous solution of silver nitrate, chloride, sulfate, carbonate, or the like, or an aqueous ammonia solution. Alternatively, the porous inorganic oxide is immersed in an aqueous solution of silver nitrate, dried, and then immersed again in an aqueous solution of ammonium chloride or ammonium sulfate. In the precipitation method, silver nitrate is reacted with ammonium halide to precipitate silver halide on the porous inorganic oxide. This is 50
After drying at about 150 ° C, especially about 70 ° C, 100 to 600
It is preferred to raise the temperature stepwise at a temperature of ° C. and to perform firing. Firing
It is preferable to carry out in air, under a flow of nitrogen containing oxygen or under a flow of hydrogen gas. When the treatment is performed under a hydrogen gas stream, it is preferable to perform the oxidation treatment at 300 to 650 ° C. at last.

【0022】硝酸銀等の水溶液を用いて多孔質無機酸化
物に担持された銀成分は酸化雰囲気下で焼成すると円状
集合体を形成することが観測されている。本発明の浄化
材では、銀成分集合体の平均直径を10〜10000n
mとするのが好ましい。一般的には、銀成分集合体の直
径が小さいほど、反応特性が高いが、平均直径が10n
m未満であると、還元剤である炭化水素及び/又は含酸
素有機化合物の酸化反応のみが進み、窒素酸化物の除去
率が低下する。一方、平均直径が10000nmを超え
ると、銀成分の反応特性が低減し、窒素酸化物の除去率
が下がる。好ましい銀成分集合体の平均直径は10〜5
000nm、更に好ましくは10〜2000nmとす
る。なお、ここで言う平均とは算術平均のことを意味す
る。
It has been observed that a silver component supported on a porous inorganic oxide using an aqueous solution of silver nitrate or the like forms a circular aggregate when fired in an oxidizing atmosphere. In the purification material of the present invention, the average diameter of the silver component aggregate is 10 to 10,000 n
m is preferable. In general, the smaller the diameter of the silver component aggregate, the higher the reaction characteristics, but the average diameter is 10n.
If it is less than m, only the oxidation reaction of the hydrocarbon and / or the oxygen-containing organic compound as the reducing agent proceeds, and the nitrogen oxide removal rate decreases. On the other hand, when the average diameter exceeds 10,000 nm, the reaction characteristics of the silver component are reduced, and the nitrogen oxide removal rate is reduced. The average diameter of the preferred silver component aggregate is 10 to 5
000 nm, more preferably 10 to 2000 nm. Here, the average means an arithmetic average.

【0023】なお、浄化材の形態を上述した第一の好ま
しい形態とする場合、浄化材基体上に設ける第一の触媒
及び第二の触媒の厚さは、一般に、基体材と、この触媒
との熱膨張特性の違いから制限される場合が多い。浄化
材基体上に設ける触媒の厚さを300μm以下とするの
がよい。このような厚さとすれば、使用中に熱衝撃等で
浄化材が破損することを防ぐことができる。浄化材基体
の表面に触媒を形成する方法は公知のウォシュコート法
等によって行われる。
When the purifying material is in the above-described first preferred embodiment, the thicknesses of the first catalyst and the second catalyst provided on the purifying material base are generally the same as those of the base material and the catalyst. Are often limited due to differences in thermal expansion characteristics. The thickness of the catalyst provided on the purifying material base is preferably 300 μm or less. With such a thickness, it is possible to prevent the purifying material from being damaged by thermal shock or the like during use. A method for forming a catalyst on the surface of the purifying material base is performed by a known washcoat method or the like.

【0024】また、浄化材基体の表面上に設ける第一触
媒及び第二の触媒の量は、それぞれ浄化材基体の20〜
300g/リットルとするのが好ましい。触媒の量が2
0g/リットル未満では良好なNOx の除去が行えない。
一方、触媒の量が300g/リットルを超えると除去特
性はそれほど上がらず、圧力損失が大きくなる。より好
ましくは、浄化材基体の表面上に設ける第一の触媒及び
第二の触媒をそれぞれ浄化材基体の50〜200g/リ
ットルとする。
The amount of the first catalyst and the amount of the second catalyst provided on the surface of the purifying material base are 20 to
Preferably it is 300 g / l. The amount of catalyst is 2
If it is less than 0 g / liter, good NOx removal cannot be performed.
On the other hand, when the amount of the catalyst exceeds 300 g / liter, the removal characteristics do not increase so much and the pressure loss increases. More preferably, the first catalyst and the second catalyst provided on the surface of the purifying material base are each 50 to 200 g / liter of the purifying material base.

【0025】(2)第三の触媒 第三の触媒は、多孔質無機酸化物に触媒活性種を担持し
てなり、排ガスの流出側に形成され、低い温度領域にお
ける窒素酸化物の除去に作用するとともに、一酸化炭素
や炭化水素の酸化除去を行う。多孔質無機酸化物として
は、アルミナ、チタニア、ジルコニア、シリカ、ゼオラ
イトからなる群より選ばれた一種以上の酸化物、又はそ
れらの複合、混合酸化物を用いるのが好ましい。第一の
触媒と同様に、多孔質の無機酸化物の比表面積は10m
2 /g以上であることが好ましい。
(2) Third Catalyst The third catalyst comprises a porous inorganic oxide carrying catalytically active species and is formed on the exhaust gas outflow side, and acts to remove nitrogen oxides in a low temperature region. And at the same time, oxidize and remove carbon monoxide and hydrocarbons. As the porous inorganic oxide, it is preferable to use one or more oxides selected from the group consisting of alumina, titania, zirconia, silica, and zeolite, or a composite or mixed oxide thereof. Like the first catalyst, the specific surface area of the porous inorganic oxide is 10 m
It is preferably at least 2 / g.

【0026】上記の第三の触媒の活性種としてはW、
V、Mo、Mn、Nb、Taからなる群より選ばれた少
なくとも一種の元素の酸化物又は硫酸塩と、Pt、Pd、R
u、Rh、Ir及びAuからなる群より選ばれた少なくとも1
種の元素とを用いる。W、V、Mo、Mn、Nb、Ta
のうち、W及び/又はVを用いるのが好ましく、Pt、P
d、Ru、Rh及びAuのうち、特にPt、Pd及びAuの少なくと
も一種を用いるのが好ましい。多孔質無機酸化物を10
0重量%として、W系成分の担持量は0.2〜10重量
%(金属元素換算値)であり、白金系成分の担持量は
0.01〜5重量%(金属元素換算値)である。W系成
分の好ましい担持量は0.2〜9重量%(金属元素換算
値)であり、白金系成分の好ましい担持量は0.01〜
4重量%(金属元素換算値)である。第三の触媒を用い
ることにより、一酸化炭素、炭化水素、SOF等の有害
物質を酸化除去することができる。その上、二酸化硫黄
が存在する排ガスの処理でも、二酸化硫黄の酸化を抑制
することができる。
The active species of the third catalyst are W,
Oxides or sulfates of at least one element selected from the group consisting of V, Mo, Mn, Nb, Ta, and Pt, Pd, R
at least one selected from the group consisting of u, Rh, Ir, and Au
Seed elements are used. W, V, Mo, Mn, Nb, Ta
Of these, it is preferable to use W and / or V, and Pt, P
Among d, Ru, Rh and Au, it is particularly preferable to use at least one of Pt, Pd and Au. 10 porous inorganic oxides
Assuming 0% by weight, the supported amount of the W-based component is 0.2 to 10% by weight (converted to metal element), and the supported amount of the platinum-based component is 0.01 to 5% by weight (converted to metal element). . The preferred amount of the W-based component is 0.2 to 9% by weight (in terms of a metal element), and the preferred amount of the platinum-based component is 0.01 to 9% by weight.
4% by weight (in terms of metal element). By using the third catalyst, harmful substances such as carbon monoxide, hydrocarbons, and SOF can be oxidized and removed. Moreover, oxidation of sulfur dioxide can be suppressed even in the treatment of exhaust gas containing sulfur dioxide.

【0027】第三の触媒における活性種の担持は、公知
の含浸法、沈殿法等を用いることができる。含浸法を用
いる際、触媒活性種元素の炭酸塩、硝酸塩、酢酸塩、硫
酸塩、塩化物又はヘキサクロロ金属酸等の水溶液に多孔
質無機酸化物を浸漬する。W、V、Mo、Mn、Nb、
Taの場合、各元素のアンモニウム塩、しゅう酸塩等の
水溶液に多孔質無機酸化物を浸漬して用いる。50〜1
50℃、特に70℃で乾燥後、100〜600℃で段階
的に昇温して焼成することによって行われる。この焼成
は空気中、酸素を含む窒素気流下で行う。また、チタニ
アの代わりにメタチタン酸(含水酸化チタン)を出発物
質として用い、V、W、Moを担持することも有効な方
法である。無機酸化物にゼオライトを用いる場合、含浸
法や既知のイオン交換法等で担持するのが好ましい。
For supporting the active species on the third catalyst, a known impregnation method, precipitation method, or the like can be used. When the impregnation method is used, the porous inorganic oxide is immersed in an aqueous solution of a carbonate, nitrate, acetate, sulfate, chloride, hexachlorometal acid, or the like of a catalytically active species element. W, V, Mo, Mn, Nb,
In the case of Ta, a porous inorganic oxide is immersed in an aqueous solution of an ammonium salt, oxalate or the like of each element for use. 50-1
After drying at 50 ° C., particularly 70 ° C., the temperature is raised stepwise at 100 to 600 ° C. and firing is performed. This calcination is performed in air under a nitrogen stream containing oxygen. It is also an effective method to use metatitanic acid (hydrous titanium oxide) as a starting material instead of titania and to carry V, W, and Mo. When zeolite is used as the inorganic oxide, it is preferable to support the zeolite by an impregnation method or a known ion exchange method.

【0028】なお、浄化材の形態を上述した第一の好ま
しい形態とする場合、浄化材基体上に設ける第三の触媒
の厚さを300μm以下とするのがよい。また、浄化材
基体の表面上に設ける第三の触媒の量は、浄化材基体に
対して20〜300g/リットルとするのが好ましい。
When the form of the purifying material is the above-described first preferred embodiment, the thickness of the third catalyst provided on the purifying material base is preferably 300 μm or less. The amount of the third catalyst provided on the surface of the purifying material base is preferably 20 to 300 g / liter based on the purifying material base.

【0029】第一の触媒と第二の触媒との重量比(多孔
質無機酸化物と触媒活性種との合計重量の比)は、1:
10〜20:1とするのが好ましい。比率が1:10未
満である(第一の触媒が少ない)と、150〜600℃
の広い温度範囲で全体的に窒素酸化物の浄化率が低下す
る。一方、比率が20:1を超え、第二の触媒が少ない
と、一酸化炭素、SOFの酸化特性が低下する。より好
ましい第一触媒と第二の触媒の重量比は1:5〜10:
1である。
The weight ratio of the first catalyst to the second catalyst (the ratio of the total weight of the porous inorganic oxide and the catalytically active species) is 1:
It is preferably 10 to 20: 1. When the ratio is less than 1:10 (the amount of the first catalyst is small), 150 to 600 ° C.
Over a wide temperature range, the purification rate of nitrogen oxides decreases overall. On the other hand, when the ratio exceeds 20: 1 and the amount of the second catalyst is small, the oxidation characteristics of carbon monoxide and SOF deteriorate. More preferred weight ratio of the first catalyst to the second catalyst is 1: 5 to 10:
It is one.

【0030】第一の触媒及び第二の触媒の合計重量と第
三の触媒の重量との比(多孔質無機酸化物と触媒活性種
との合計重量の比)は、10:1〜1:5とするのが好
ましい。比率が1:5未満である(第一の触媒及び第二
の触媒が少ない)と、150〜600℃の広い温度範囲
で全体的に窒素酸化物の浄化率が低下する。一方、比率
が10:1を超え、第三の触媒が少ないと、第一の触媒
上でできた亜硝酸エステルやアンモニアが窒素酸化物の
還元に有効に使用されない。より好ましい第一の触媒及
び第二の触媒の合計重量と第三の触媒の重量比は5:1
〜1:4である。
The ratio of the total weight of the first catalyst and the second catalyst to the weight of the third catalyst (ratio of the total weight of the porous inorganic oxide and the catalytically active species) is 10: 1 to 1: It is preferably set to 5. When the ratio is less than 1: 5 (the amount of the first catalyst and the amount of the second catalyst are small), the purification rate of nitrogen oxides is generally reduced in a wide temperature range of 150 to 600 ° C. On the other hand, when the ratio exceeds 10: 1 and the amount of the third catalyst is small, nitrite and ammonia formed on the first catalyst are not effectively used for reducing nitrogen oxides. More preferably, the weight ratio of the total weight of the first catalyst and the second catalyst to the weight of the third catalyst is 5: 1.
1 : 1: 4.

【0031】上述した構成の浄化材を用いれば、150
〜600℃の広い温度領域において、水分10%程度及
び硫黄酸化物を含む排ガスでも、良好な窒素酸化物の除
去を行うことができる。
If the purifying material having the above configuration is used, 150
In a wide temperature range of up to 600 ° C., good removal of nitrogen oxides can be performed even with an exhaust gas containing about 10% of moisture and sulfur oxides.

【0032】次に、本発明の方法について説明する。ま
ず、浄化材の排ガス流入側から流出側へ順に第一の触
媒、第二の触媒及び第三の触媒を排ガス導管の途中に設
置する。
Next, the method of the present invention will be described. First, a first catalyst, a second catalyst, and a third catalyst are installed in the exhaust gas conduit in order from the exhaust gas inflow side to the outflow side of the purifying material.

【0033】排ガス中には、残留炭化水素としてエチレ
ン、プロピレン等がある程度は含まれるが、一般に排ガ
ス中のNOx を還元するのに十分な量ではないので、外部
から炭化水素及び/又は含酸素有機化合物、好ましくは
含酸素有機化合物又はそれと炭化水素燃料と混合してな
る還元剤を排ガス中に導入する。還元剤の導入位置は、
浄化材を設置した位置より上流側である。
The exhaust gas contains ethylene, propylene and the like to some extent as residual hydrocarbons. However, since the amount is generally not enough to reduce NOx in the exhaust gas, hydrocarbons and / or oxygen-containing organic substances are supplied from the outside. A compound, preferably an oxygen-containing organic compound or a reducing agent obtained by mixing the compound with a hydrocarbon fuel is introduced into the exhaust gas. The introduction position of the reducing agent
It is upstream from the position where the purifying material is installed.

【0034】外部から導入する炭化水素としては、標準
状態でガス状又は液体状のアルカン、アルケン及び/又
はアルキンを用いることができる。特にアルカン又はア
ルケンの場合では炭素数2以上が好ましい。標準状態で
液体状の炭化水素としては、具体的に、軽油、セタン、
ヘプタン、灯油、ガソリン等の炭化水素が挙げられる。
その中でも、沸点50〜350℃の炭化水素が特に好ま
しい。外部から導入する含酸素有機化合物として、炭素
数2以上のエタノール、イソプロピルアルコール等のア
ルコール類、又はそれらを含む燃料を用いることができ
る。
As the hydrocarbons introduced from the outside, gaseous or liquid alkanes, alkenes and / or alkynes can be used under standard conditions. In particular, in the case of an alkane or alkene, it preferably has 2 or more carbon atoms. Specific examples of hydrocarbons that are liquid in the standard state include gas oil, cetane,
Examples include hydrocarbons such as heptane, kerosene, gasoline and the like.
Among them, hydrocarbons having a boiling point of 50 to 350 ° C are particularly preferable. As the oxygen-containing organic compound introduced from the outside, alcohols such as ethanol and isopropyl alcohol having 2 or more carbon atoms, or a fuel containing them can be used.

【0035】外部から導入する炭化水素及び/又は含酸
素有機化合物の量は、重量比(添加する還元剤の重量/
排ガス中の窒素酸化物の重量)が0.1〜5となるよう
にするのが好ましい。この重量比が0.1未満である
と、窒素酸化物の除去率が大きくならない。一方、5を
超えると、燃費悪化につながる。
The amount of the hydrocarbon and / or oxygen-containing organic compound introduced from the outside is determined by the weight ratio (weight of the reducing agent to be added / weight).
(Weight of nitrogen oxides in the exhaust gas) is preferably 0.1 to 5. If the weight ratio is less than 0.1, the removal rate of nitrogen oxides does not increase. On the other hand, if it exceeds 5, fuel efficiency will be degraded.

【0036】また、炭化水素又は含酸素有機化合物を含
有する燃料を添加する場合、燃料としてガソリン、軽
油、灯油などを用いるのが好ましい。この場合、還元剤
の量は上記と同様に重量比(添加する還元剤の重量/排
ガス中の窒素酸化物の重量)が0.1〜5となるように
設定する。
When a fuel containing a hydrocarbon or an oxygen-containing organic compound is added, it is preferable to use gasoline, light oil, kerosene, or the like as the fuel. In this case, the amount of the reducing agent is set such that the weight ratio (the weight of the reducing agent to be added / the weight of the nitrogen oxide in the exhaust gas) is 0.1 to 5 in the same manner as described above.

【0037】本発明では、含酸素有機化合物、炭化水素
等による窒素酸化物の還元除去を効率的に進行させるた
めに、第一の触媒及び第二の触媒における空間速度はそ
れぞれ 150,000h-1以下、好ましくは 100,000h-1以下
とする。第一の触媒及び第二の触媒の空間速度が 150,0
00h-1を超えると、窒素酸化物の還元反応が十分に起こ
らず、窒素酸化物の除去率が低下する。第三の触媒の空
間速度は 200,000h-1以下、好ましくは 150,000h-1
下とする。
In the present invention, the space velocity of each of the first catalyst and the second catalyst is 150,000 h -1 or less in order to efficiently promote the reduction and removal of nitrogen oxides by an oxygen-containing organic compound, a hydrocarbon or the like. , Preferably 100,000 h -1 or less. The space velocity of the first catalyst and the second catalyst is 150,0
If it exceeds 00 h −1 , the reduction reaction of nitrogen oxides does not sufficiently occur, and the nitrogen oxide removal rate decreases. The space velocity of the third catalyst 200,000 -1 or less, preferably 150,000H -1 or less.

【0038】また、本発明では、炭化水素及び/又は含
酸素有機化合物と窒素酸化物とが反応する部位である浄
化材設置部位における排ガスの温度を150〜600℃
に保つ。排ガスの温度が150℃未満であると還元剤と
窒素酸化物との反応が進行せず、良好な窒素酸化物の除
去を行うことができない。一方、600℃を超す温度と
すると炭化水素及び/又は含酸素有機化合物自身の燃焼
が始まり、窒素酸化物の還元除去が行えない。好ましい
排ガス温度は200〜550℃であり、より好ましくは
300〜500℃である。
In the present invention, the temperature of the exhaust gas at the purification material installation site where the hydrocarbon and / or the oxygen-containing organic compound reacts with the nitrogen oxide is set to 150 to 600 ° C.
To keep. If the temperature of the exhaust gas is lower than 150 ° C., the reaction between the reducing agent and the nitrogen oxide does not proceed, and it is not possible to remove the nitrogen oxide satisfactorily. On the other hand, if the temperature exceeds 600 ° C., the combustion of the hydrocarbon and / or the oxygen-containing organic compound itself starts, and the reduction and removal of nitrogen oxides cannot be performed. The preferred exhaust gas temperature is from 200 to 550C, more preferably from 300 to 500C.

【0039】[0039]

【実施例】本発明を以下の具体的実施例によりさらに詳
細に説明する。実施例1 市販のγ−アルミナ粉末(比表面積200m2 /g)を
硝酸銀水溶液に浸漬したあと取り出して、70℃で2時
間乾燥した。そして、空気中で、段階的に600℃まで
昇温したあと、5時間焼成し、アルミナに対して3.1
重量%(金属元素換算値)の銀を担持した第一の触媒を
調製した。第一の触媒0.26gを、市販のコージェラ
イト製ハニカム状成形体(直径20mm、長さ8.3m
m、400セル/インチ2 )にコートし、乾燥後600
℃まで段階的に焼成し、銀系浄化材(第一の触媒をコー
トした浄化材)を調製した。
The present invention will be described in more detail with reference to the following specific examples. Example 1 A commercially available γ-alumina powder (specific surface area: 200 m 2 / g) was immersed in an aqueous silver nitrate solution, taken out, and dried at 70 ° C. for 2 hours. Then, the temperature is raised stepwise to 600 ° C. in the air, and calcined for 5 hours.
A first catalyst supporting silver by weight (in terms of a metal element) was prepared. 0.26 g of the first catalyst was charged with a commercially available cordierite honeycomb formed body (diameter 20 mm, length 8.3 m).
m, 400 cells / inch 2 ) and after drying 600
The mixture was baked stepwise to ℃ to prepare a silver-based purifying material (a purifying material coated with a first catalyst).

【0040】上記銀系触媒と同じ方法で、粉末状アルミ
ナに5.0重量%(金属元素換算値)の銀を担持した第
二の触媒を調製し、上記と同様なハニカム状成形体に第
二の触媒0.26gをコートし、同じ方法で第二の銀系
浄化材(第二の触媒をコートした浄化材)を調製した。
In the same manner as in the above-mentioned silver-based catalyst, a second catalyst in which 5.0% by weight (in terms of metal element) of silver was supported on powdered alumina was prepared, and the same honeycomb-shaped formed body as described above was obtained. 0.26 g of the second catalyst was coated, and a second silver-based purifying material (a purifying material coated with the second catalyst) was prepared in the same manner.

【0041】次に、粉末状チタニア(比表面積50m2
/g)を塩化白金酸水溶液に20分間浸漬した後、空気
中、80℃で2時間乾燥し、窒素気流下で120℃で2
時間、200〜400℃まで段階的に各1時間焼成し
た。そして、水素ガス4%を含む窒素気流下で50℃〜
400℃まで5時間かけて昇温し、400℃で4時間焼
成し、さらに、酸素を10%含む窒素気流下で50℃〜
500℃まで5時間かけて昇温し、500℃で5時間焼
成し、チタニアに対してPtを1重量%(金属元素換算
値)担持した。タングステン酸アンモニウムパラ五水和
物、しゅう酸に水を加え、水浴上で加熱して溶解させた
後、冷却した水溶液(タングステン濃度15.5重量
%)に、この粉末状チタニアを投入し、20分間浸漬し
た。その後、溶液からチタニアを分離し、空気中で、8
0℃、100℃、120℃で各2時間乾燥した。続い
て、酸素20%を含む窒素気流下で120℃から500
℃まで5時間かけで昇温し、500℃で4時間焼成し
て、チタニアに対してWの酸化物を3重量%(金属元素
換算値)担持し、W、Pt系触媒(第三の触媒)を調製
した。0.26gの第三の触媒をスラリー化した後、上
記銀系浄化材と同様なハニカム成形体にコートし、銀系
浄化材と同じ条件で乾燥、焼成を行い、W、Pt系浄化
材(第三の触媒をコートした浄化材)を調製した。
Next, powdered titania (specific surface area 50 m 2)
/ G) in a chloroplatinic acid aqueous solution for 20 minutes, dried in air at 80 ° C. for 2 hours, and dried at 120 ° C. in a nitrogen stream at 120 ° C.
The firing was carried out step by step from 200 to 400 ° C. for 1 hour each. Then, under a nitrogen gas flow containing 4% of hydrogen gas, 50 ° C.
The temperature was raised to 400 ° C. over 5 hours, calcined at 400 ° C. for 4 hours, and further heated to 50 ° C. under a nitrogen stream containing 10% oxygen.
The temperature was raised to 500 ° C. over 5 hours, and calcined at 500 ° C. for 5 hours to carry 1% by weight (converted to metal element) of Pt on titania. After adding water to ammonium tungstate parapentapentahydrate and oxalic acid and dissolving by heating on a water bath, the powdered titania was added to a cooled aqueous solution (tungsten concentration: 15.5% by weight), Soak for minutes. Thereafter, the titania was separated from the solution and, in air,
It dried at 0 degreeC, 100 degreeC, and 120 degreeC for 2 hours each. Subsequently, under a nitrogen stream containing 20% of oxygen, the temperature is raised from 120 ° C to 500 ° C.
To 5 ° C. in 5 hours, and calcined at 500 ° C. for 4 hours to support 3% by weight (converted to metal element) of W oxide with respect to titania. ) Was prepared. After slurrying 0.26 g of the third catalyst, it was coated on the same honeycomb formed body as the above-mentioned silver-based purifying material, and dried and fired under the same conditions as the silver-based purifying material to obtain a W, Pt-based purifying material ( A purification material coated with a third catalyst) was prepared.

【0042】反応管内の排ガスの流入側からに流出側へ
順に銀系浄化材、第二の銀系浄化材、W、Pt系浄化材
をセットした。次に、表1に示す組成のガス(一酸化窒
素、酸素、エタノール、二酸化硫黄、窒素及び水分)を
毎分3.48リットル(標準状態)の流量で流して(各
浄化材の見かけ空間速度はそれぞれ約80,000h-1
である)、反応管内の排ガス温度を350〜550℃の
範囲に保ち、エタノールと窒素酸化物とを反応させた。
A silver-based purifying material, a second silver-based purifying material, and a W and Pt-based purifying material were sequentially set from the inflow side to the outflow side of the exhaust gas in the reaction tube. Next, a gas (nitrogen monoxide, oxygen, ethanol, sulfur dioxide, nitrogen and moisture) having a composition shown in Table 1 was flowed at a flow rate of 3.48 liters per minute (standard state) (apparent space velocity of each purification material). Are about 80,000 h -1
), The temperature of the exhaust gas in the reaction tube was kept in the range of 350 to 550 ° C, and ethanol and nitrogen oxide were reacted.

【0043】反応管通過後のガスの窒素酸化物の濃度を
化学発光式窒素酸化物分析計により測定し、窒素酸化物
除去率を求めた。結果を表2に示す。
The concentration of nitrogen oxides in the gas after passing through the reaction tube was measured by a chemiluminescent nitrogen oxide analyzer to determine the nitrogen oxide removal rate. Table 2 shows the results.

【0044】 表1 成分 濃度 一酸化窒素 800 ppm 酸素 10 容量% エタノール 1560 ppm 二酸化硫黄 30 ppm 窒素 残部 水分 10 容量%(上記成分の総体積に対して)Table 1 Component concentration Nitric oxide 800 ppm Oxygen 10% by volume Ethanol 1560 ppm Sulfur dioxide 30 ppm Nitrogen Residual water 10% by volume (based on the total volume of the above components)

【0045】実施例2 実施例1と同じように硝酸銀水溶液を用いて、市販のシ
リカ・アルミナ粉末(シリカ含有量5重量%、比表面積
350m2 /g)に3.1重量%(金属元素換算値)の
銀を担持して第一の触媒を調製した。第一の触媒0.2
6gを、市販のコージェライト製ハニカム状成形体(直
径20mm、長さ8.3mm、400セル/インチ2
にコートし、乾燥後600℃まで段階的に焼成し、銀系
浄化材(第一の触媒をコートした浄化材)を調製した。
Example 2 As in Example 1, 3.1% by weight (in terms of metal element) of commercially available silica-alumina powder (silica content: 5% by weight, specific surface area: 350 m 2 / g) using an aqueous silver nitrate solution. The first catalyst was prepared by carrying silver of value (1). First catalyst 0.2
6 g of a commercially available cordierite honeycomb-shaped molded product (diameter: 20 mm, length: 8.3 mm, 400 cells / inch 2 )
And dried and fired stepwise to 600 ° C. to prepare a silver-based purifying material (a purifying material coated with a first catalyst).

【0046】上記銀系触媒と同じ方法で、粉末状シリカ
・アルミナに5重量%(金属元素換算値)の銀を担持し
た第二の触媒を調製し、上記と同様なハニカム状成形体
に第二の触媒0.26gをコートし、同じ方法で第二の
銀系浄化材(第二の触媒をコートした浄化材)を調製し
た。
In the same manner as the above-mentioned silver-based catalyst, a second catalyst in which 5% by weight (in terms of a metal element) of silver was supported on powdery silica / alumina was prepared, and the same honeycomb-shaped formed body as above was prepared. 0.26 g of the second catalyst was coated, and a second silver-based purifying material (a purifying material coated with the second catalyst) was prepared in the same manner.

【0047】反応管内の排ガスの流入側から流出側へ順
に銀系浄化材、第二の銀系浄化材、実施例1のW、Pt
系浄化材をセットした。実施例1と同様の反応条件(各
浄化材の見かけ空間速度はそれぞれ約80,000h-1
である)で、表1に示す組成のガスを用いて評価を行っ
た。結果を表2に示す。
In order from the inflow side to the outflow side of the exhaust gas in the reaction tube, a silver-based purifying material, a second silver-based purifying material, W, Pt of Example 1
System purifying material was set. The same reaction conditions as in Example 1 (the apparent space velocity of each purification material was about 80,000 h -1
The evaluation was performed using a gas having the composition shown in Table 1. Table 2 shows the results.

【0048】実施例3 塩化白金酸水溶液を用いて、実施例1の第三の触媒と同
じチタニアに白金を1.0重量%担持した。五酸化バナ
ジウムにしゅう酸を加え、水浴上で加熱して溶解させた
後、冷却した水溶液(バナジウム濃度7.8重量%)
に、この粉末状チタニアを投入し、20分間浸漬した。
その後、溶液からチタニアを分離し、空気中で、80
℃、100℃、120℃で各2時間乾燥した。続いて、
酸素20%を含む窒素気流下で120℃〜500℃まで
5時間かけで昇温し、500℃で4時間焼成して、チタ
ニアに対してV酸化物を3.3重量%(金属元素換算
値)担持し、V、Pt系触媒(第三の触媒)を調製し
た。0.26gの第三の触媒をスラリー化した後、実施
例1と同じ方法でハニカム成形体にコートし、乾燥、焼
成を行い、V、Pt系浄化材(第三の触媒をコートした
浄化材)を調製した。
Example 3 Using an aqueous chloroplatinic acid solution, 1.0% by weight of platinum was supported on the same titania as in the third catalyst of Example 1. Oxalic acid was added to vanadium pentoxide, heated and dissolved in a water bath, and then cooled and cooled (a vanadium concentration of 7.8% by weight).
This powdery titania was put into the container and immersed for 20 minutes.
Thereafter, the titania was separated from the solution and in air,
It dried at each of 2 degreeC, 100 degreeC, and 120 degreeC. continue,
The temperature was increased from 120 ° C. to 500 ° C. in 5 hours under a nitrogen gas stream containing 20% oxygen, and calcined at 500 ° C. for 4 hours. ) Supported to prepare a V, Pt-based catalyst (third catalyst). After slurrying 0.26 g of the third catalyst, it was coated on the formed honeycomb body in the same manner as in Example 1, dried and fired to obtain a V, Pt-based purification material (a purification material coated with the third catalyst). ) Was prepared.

【0049】反応管内の排ガスの流入側からに流出側へ
順に実施例1の銀系浄化材、実施例1の第二の銀系浄化
材、上記V、Pt系浄化材をセットした。実施例1と同
様の反応条件(各浄化材の見かけ空間速度はそれぞれ約
80,000h-1である)で、表1に示す組成のガスを
用いて評価を行った。結果を表2に示す。
The silver-based purifying material of Example 1, the second silver-based purifying material of Example 1, and the V and Pt-based purifying materials were set in this order from the inflow side to the outflow side of the exhaust gas in the reaction tube. Evaluation was performed using the gas having the composition shown in Table 1 under the same reaction conditions as in Example 1 (the apparent space velocity of each purification material was about 80,000 h -1 ). Table 2 shows the results.

【0050】比較例1 実施例1で調製した第一の触媒0.52gを同様のハニ
カム成形体にコートして、乾燥、焼成を行い、銀系浄化
材を調製した。銀系浄化材を排ガスの導管にセットし、
実施例1と同様の反応条件(見かけ空間速度は約80,
000h-1である)で、表1に示す組成のガスを用いて
評価を行った。結果を表2に示す。
Comparative Example 1 The same honeycomb formed body was coated with 0.52 g of the first catalyst prepared in Example 1, dried and fired to prepare a silver-based purifying material. Set the silver purifying material in the exhaust gas conduit,
The same reaction conditions as in Example 1 (apparent space velocity was about 80,
000 h −1 ), and evaluation was performed using a gas having a composition shown in Table 1. Table 2 shows the results.

【0051】 表2 窒素酸化物(NOx)の除去率 窒素酸化物の除去率(%) 反応温度(℃) 350 400 450 500 550 実施例1 53.6 79.5 94.7 95.0 88.6 実施例2 48.7 78.8 90.1 92.9 85.8 実施例3 58.1 82.5 93.4 94.8 87.2 比較例1 24.5 46.8 68.7 82.6 78.5Table 2 Removal rate of nitrogen oxide (NOx) Removal rate of nitrogen oxide (%) Reaction temperature (° C.) 350 400 450 500 550 Example 1 53.6 79.5 94.7 95.0 88.6 Example 2 48.7 78.8 90.1 92.9 85.8 Example 3 58.1 82.5 93.4 94.8 87.2 Comparative Example 1 24.5 46.8 68.7 82.6 78.5

【0052】表2からわかるように、銀触媒だけを用い
た比較例1に比べて、実施例1〜3では広い排ガス温度
領域で窒素酸化物の良好な除去がみられた。また、一酸
化炭素、残留炭化水素、SOFが効果的に酸化除去され
ていること確認した。
As can be seen from Table 2, in Examples 1 to 3, good removal of nitrogen oxides was observed in a wide exhaust gas temperature range as compared with Comparative Example 1 using only a silver catalyst. It was also confirmed that carbon monoxide, residual hydrocarbons, and SOF were effectively oxidized and removed.

【0053】[0053]

【発明の効果】以上詳述したように、本発明の排ガス浄
化材を用いれば、広い温度領域において過剰の酸素を含
む排ガス中の窒素酸化物を効率良く除去することができ
る。本発明の排ガス浄化材及び浄化方法は、各種燃焼
機、自動車等の排ガス浄化に広く利用することができ
る。
As described above in detail, the use of the exhaust gas purifying material of the present invention makes it possible to efficiently remove nitrogen oxides in exhaust gas containing excess oxygen in a wide temperature range. INDUSTRIAL APPLICABILITY The exhaust gas purifying material and the purification method of the present invention can be widely used for purifying exhaust gas of various types of combustors, automobiles and the like.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01D 53/36 102 A 102 B 104 A ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical display location B01D 53/36 102 A 102 B 104 A

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 窒素酸化物と、共存する未燃焼成分に対
する理論反応量より多い酸素とを含む燃焼排ガスから窒
素酸化物を還元除去する排ガス浄化材において、多孔質
の無機酸化物に活性種として銀及び/又は銀化合物、又
はそれらの混合物0.2〜12重量%(銀元素換算値)
を担持してなる第一の触媒と、多孔質の無機酸化物に活
性種として銀及び/又は銀化合物、又はそれらの混合物
0.5〜15重量%(銀元素換算値)かつ前記第一の触
媒の活性種の担持率より多い量を担持してなる第二の触
媒と、多孔質の無機酸化物に活性種としてW、V、M
o、Mn、Nb、Taからなる群より選ばれた少なくと
も一種の元素の酸化物又は硫酸塩0.2〜10重量%
(金属元素換算値)と、Pt、Pd、Ru、Rh、Ir及びAuから
なる群より選ばれた少なくとも1種の元素0.01〜5
重量%(金属元素換算値)とを担持してなる第三の触媒
とからなり、浄化材の排ガス流入側から流出側へ順に前
記第一の触媒、前記第二の触媒、前記第三の触媒を有す
ることを特徴とする排ガス浄化材。
1. An exhaust gas purifying material for reducing and removing nitrogen oxides from a combustion exhaust gas containing nitrogen oxides and oxygen in excess of the theoretical reaction amount of coexisting unburned components, wherein the porous inorganic oxides are used as active species. 0.2 to 12% by weight of silver and / or a silver compound or a mixture thereof (in terms of silver element)
And a silver and / or silver compound as an active species in a porous inorganic oxide, or a mixture thereof in an amount of 0.5 to 15% by weight (in terms of silver element) and the first catalyst. A second catalyst supporting a larger amount of the active species than the active species of the catalyst; and W, V, M as active species on the porous inorganic oxide.
O, Mn, Nb, Ta oxide or sulfate of at least one element selected from the group consisting of Ta 0.2 to 10% by weight
(Metal element conversion value) and at least one element selected from the group consisting of Pt, Pd, Ru, Rh, Ir and Au 0.01 to 5
% Of the catalyst (in terms of a metal element), the first catalyst, the second catalyst, and the third catalyst in order from the exhaust gas inflow side to the outflow side of the purifying material. An exhaust gas purifying material comprising:
【請求項2】 請求項1に記載の排ガス浄化材におい
て、前記第一、第二及び第三の触媒の内の一つ以上がセ
ラミックス製又は金属製の基体の表面にコートされたも
のであることを特徴とする排ガス浄化材。
2. The exhaust gas purifying material according to claim 1, wherein at least one of the first, second and third catalysts is coated on the surface of a ceramic or metal substrate. An exhaust gas purifying material characterized by that:
【請求項3】 請求項1に記載の排ガス浄化材におい
て、前記第一、第二及び第三の触媒の内の一つ以上がペ
レット状又は顆粒状であることを特徴とする排ガス浄化
材。
3. The exhaust gas purifying material according to claim 1, wherein at least one of the first, second and third catalysts is in the form of pellets or granules.
【請求項4】 請求項1〜3のいずれかに記載の排ガス
浄化材において、前記銀化合物は銀の酸化物、ハロゲン
化銀、硫酸銀及び燐酸銀からなる群より選ばれた少なく
とも一種であることを特徴とする排ガス浄化材。
4. The exhaust gas purifying material according to claim 1, wherein the silver compound is at least one selected from the group consisting of silver oxide, silver halide, silver sulfate, and silver phosphate. An exhaust gas purifying material characterized by that:
【請求項5】 請求項1〜4のいずれかに記載の排ガス
浄化材において、前記多孔質無機酸化物が、第一及び第
二の触媒ではアルミナ、チタニアのいずれか又はそれら
を含む複合又は混合酸化物、第三の触媒ではアルミナ、
チタニア、ジルコニア、シリカ、ゼオライトからなる群
より選ばれた一種以上の酸化物であることを特徴とする
排ガス浄化材。
5. The exhaust gas purifying material according to claim 1, wherein said porous inorganic oxide is alumina or titania in the first and second catalysts, or a composite or mixed material containing them. Oxides, alumina for the third catalyst,
An exhaust gas purifying material comprising at least one oxide selected from the group consisting of titania, zirconia, silica, and zeolite.
【請求項6】 請求項1〜5のいずれかに記載の排ガス
浄化材を用い、窒素酸化物と、共存する未燃焼成分に対
する理論反応量より多い酸素とを含む燃焼排ガスから窒
素酸化物を還元除去する排ガス浄化方法において、前記
排ガス浄化材を排ガス導管の途中に設置し、前記浄化材
の上流側で炭化水素及び/又は含酸素有機化合物を添加
した排ガスを、150〜600℃において前記浄化材に
接触させ、もって前記排ガス中の炭化水素及び/又は含
酸素有機化合物との反応により前記窒素酸化物を除去す
ることを特徴とする排ガス浄化方法。
6. An exhaust gas purifying material according to claim 1, wherein nitrogen oxide is reduced from a combustion exhaust gas containing nitrogen oxide and oxygen in an amount larger than a theoretical reaction amount for a coexisting unburned component. In the exhaust gas purifying method for removing, the exhaust gas purifying material is installed in the middle of an exhaust gas conduit, and the exhaust gas to which hydrocarbons and / or oxygen-containing organic compounds are added on the upstream side of the purifying material is subjected to the purifying material at 150 to 600 ° C. Exhaust gas purifying method, wherein the nitrogen oxides are removed by contact with a hydrocarbon and / or an oxygen-containing organic compound in the exhaust gas.
JP6332162A 1994-11-28 1994-12-12 Waste gas purifying material and waste gas purifying method Pending JPH08164327A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP6332162A JPH08164327A (en) 1994-12-12 1994-12-12 Waste gas purifying material and waste gas purifying method
US08/466,988 US5714130A (en) 1994-11-28 1995-06-06 Exhaust gas cleaner and method for cleaning exhaust gas
EP95308495A EP0714693A1 (en) 1994-11-28 1995-11-27 Exhaust gas cleaner and method for cleaning exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6332162A JPH08164327A (en) 1994-12-12 1994-12-12 Waste gas purifying material and waste gas purifying method

Publications (1)

Publication Number Publication Date
JPH08164327A true JPH08164327A (en) 1996-06-25

Family

ID=18251854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6332162A Pending JPH08164327A (en) 1994-11-28 1994-12-12 Waste gas purifying material and waste gas purifying method

Country Status (1)

Country Link
JP (1) JPH08164327A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014144408A (en) * 2013-01-28 2014-08-14 Nippon Steel & Sumitomo Metal Catalyst for oxidation of carbon monoxide, method for manufacturing the same, and method for removing carbon monoxide in gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014144408A (en) * 2013-01-28 2014-08-14 Nippon Steel & Sumitomo Metal Catalyst for oxidation of carbon monoxide, method for manufacturing the same, and method for removing carbon monoxide in gas

Similar Documents

Publication Publication Date Title
JP3626999B2 (en) Exhaust gas purification material and exhaust gas purification method
JP2700386B2 (en) Exhaust gas purifying material and exhaust gas purifying method
JP2587000B2 (en) Exhaust gas purifying material and exhaust gas purifying method
JP2649217B2 (en) Exhaust gas purifying material and exhaust gas purifying method
JPH08168650A (en) Material and method for purifying exhaust gas
JPH08168651A (en) Material and method for purifying exhaust gas
JPH0985053A (en) Exhaust gas purifying material and exhaust gas purifying method
JPH08164327A (en) Waste gas purifying material and waste gas purifying method
JPH07275709A (en) Material and method for purifying exhaust gas
JP3854325B2 (en) Exhaust gas purification material and exhaust gas purification method
JPH08309189A (en) Combustion gas purifying material and purification of combustion gas
JPH08168674A (en) Material and process for purifying exhaust gas
JPH08141371A (en) Exhaust gas purification material and purifying method for exhaust gas
JPH0824654A (en) Matreial and method for pufitying exhaust gas
JPH08182931A (en) Exhaust gas purifying material and exhaust gas purification using the same
JP3530214B2 (en) Exhaust gas purification material and exhaust gas purification method
JPH08229393A (en) Waste gas purifying mateiral and waste gas purifying method
JPH0970536A (en) Purifying material for exhaust gas and purifying method of exhaust gas
JPH08318134A (en) Exhaust gas purifying material and exhaust gas purifying method
JPH0824646A (en) Material and method for purifying exhaust gas
JPH08299795A (en) Waste gas purification material and method for purifying waste gas
JPH08323202A (en) Exhaust gas purifying material and exhaust gas purifying method
JPH08309190A (en) Combustion gas purifying material and purification of combustion gas
JPH08276131A (en) Exhaust gas cleaning material and exhaust gas cleaning
JPH08281072A (en) Waste gas purifying material and waste gas purifying method