JPH08168674A - Material and process for purifying exhaust gas - Google Patents

Material and process for purifying exhaust gas

Info

Publication number
JPH08168674A
JPH08168674A JP6333870A JP33387094A JPH08168674A JP H08168674 A JPH08168674 A JP H08168674A JP 6333870 A JP6333870 A JP 6333870A JP 33387094 A JP33387094 A JP 33387094A JP H08168674 A JPH08168674 A JP H08168674A
Authority
JP
Japan
Prior art keywords
catalyst
exhaust gas
silver
purifying material
active species
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6333870A
Other languages
Japanese (ja)
Inventor
Akira Abe
晃 阿部
Satoshi Kadoya
聡 角屋
Mika Saitou
美香 斎藤
Kiyohide Yoshida
清英 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Original Assignee
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp filed Critical Riken Corp
Priority to JP6333870A priority Critical patent/JPH08168674A/en
Priority to US08/466,988 priority patent/US5714130A/en
Priority to EP95308495A priority patent/EP0714693A1/en
Publication of JPH08168674A publication Critical patent/JPH08168674A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To effectively reduce and remove a nitrogen oxide from combustion exhaust gas containing nitrogen oxide and excessive oxygen by providing a first catalyst, a second catalyst carrying the amount of more carrying rate of active species of the first catalyst and a third catalyst having different active species in order successively starting from the inflow side to the outflow side of a purifying material. CONSTITUTION: An exhaust gas purifying material contains a first catalyst carrying silver and/or a silver compound or a mixture of them of 0.1-12wt.% (silver element conversion value) as active species on a porous inorganic oxygen. It also cantinas a second catalyst carrying silver and/or a silver compound or a mixture of them of 1-15wt.% (silver element conversion value) as active species and also carrying active species of the amount more than the carrying rate of the active species of the first catalyst. It also contains a third catalyst as active species carrying at least an oxide of one kind of element selected out of a group composed of W, V, Mo, Mn, Nb and Ta as active species of 0.5-30wt.% (metal element conversion value).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は窒素酸化物と過剰の酸素
を含む燃焼排ガスから、窒素酸化物を効果的に還元除去
することのできる排ガス浄化材及びそれを用いた浄化方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an exhaust gas purifying material capable of effectively reducing and removing nitrogen oxides from a combustion exhaust gas containing nitrogen oxides and excess oxygen, and a purification method using the same.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】自動車
用エンジン等の内燃機関や、工場等に設置された燃焼機
器、家庭用ファンヒーターなどから排出される各種の燃
焼排ガス中には、過剰の酸素とともに一酸化窒素、二酸
化窒素等の窒素酸化物が含まれている。ここで、「過剰
の酸素を含む」とは、その排ガス中に含まれる一酸化炭
素、水素、炭化水素等の未燃焼成分を燃焼するのに必要
な理論酸素量より多い酸素を含むことを意味する。ま
た、以下における窒素酸化物とは一酸化窒素及び/又は
二酸化窒素を指す。
2. Description of the Related Art Excessive combustion exhaust gas discharged from internal combustion engines such as automobile engines, combustion equipment installed in factories, household fan heaters, and the like is excessive. It contains nitrogen oxides such as nitric oxide and nitrogen dioxide together with oxygen. Here, "containing excess oxygen" means that the exhaust gas contains more oxygen than the theoretical amount of oxygen necessary to burn unburned components such as carbon monoxide, hydrogen, and hydrocarbons. I do. In the following, nitrogen oxide refers to nitric oxide and / or nitrogen dioxide.

【0003】この窒素酸化物は酸性雨の原因の一つとさ
れ、環境上の大きな問題となっている。そのため、各種
燃焼機器が排出する排ガス中の窒素酸化物を除去するさ
まざまな方法が検討されている。
[0003] This nitrogen oxide is one of the causes of acid rain and is a major environmental problem. Therefore, various methods for removing nitrogen oxides in exhaust gas discharged from various combustion equipments are being studied.

【0004】過剰の酸素を含む燃焼排ガスから窒素酸化
物を除去する方法として、特に大規模な固定燃焼装置
(工場等の大型燃焼機等)に対しては、アンモニアを用
いる選択的接触還元法が実用化されている。
[0004] As a method for removing nitrogen oxides from a combustion exhaust gas containing excess oxygen, a selective catalytic reduction method using ammonia is used particularly for a large-scale fixed combustion device (a large-scale combustor in a factory or the like). Has been put to practical use.

【0005】しかしながら、この方法においては、窒素
酸化物の還元剤として用いるアンモニアが高価であるこ
と、またアンモニアは毒性を有すること、そのために未
反応のアンモニアが排出しないように排ガス中の窒素酸
化物濃度を計測しながらアンモニア注入量を制御しなけ
ればならないこと、一般に装置が大型となること等の問
題点がある。
However, in this method, ammonia used as a reducing agent for nitrogen oxides is expensive, and ammonia is toxic. Therefore, the nitrogen oxides in the exhaust gas must be removed so that unreacted ammonia is not discharged. There are problems that the amount of injected ammonia must be controlled while measuring the concentration, and that the apparatus generally becomes large.

【0006】また、別な方法として、水素、一酸化炭
素、炭化水素等のガスを還元剤として用い、窒素酸化物
を還元する非選択的接触還元法があるが、この方法で
は、効果的な窒素酸化物の低減除去を実行するためには
排ガス中の酸素との理論反応量以上の還元剤を添加しな
ければならず、還元剤を多量に消費する欠点がある。こ
のため非選択的接触還元法は、実際上は、理論空燃比付
近で燃焼した残存酸素濃度の低い排ガスに対してのみ有
効となり、汎用性に乏しく実際的でない。
As another method, there is a non-selective catalytic reduction method in which a nitrogen oxide is reduced by using a gas such as hydrogen, carbon monoxide, or a hydrocarbon as a reducing agent. In order to reduce and remove nitrogen oxides, it is necessary to add a reducing agent in an amount equal to or more than a theoretical reaction amount with oxygen in exhaust gas, and there is a disadvantage that a large amount of the reducing agent is consumed. For this reason, the non-selective catalytic reduction method is practically effective only for exhaust gas having a low residual oxygen concentration burned near the stoichiometric air-fuel ratio, and is not practical because of poor versatility.

【0007】そこで、ゼオライト又はそれに遷移金属を
担持した触媒を用いて、排ガス中の酸素との理論反応量
以下の還元剤を添加して窒素酸化物を除去する方法が提
案された(たとえば、特開昭63-100919 号、同63-28372
7 号、特開平1-130735号等)。
In view of the above, a method has been proposed for removing nitrogen oxides by using a zeolite or a catalyst supporting a transition metal on the zeolite and adding a reducing agent having a theoretical reaction amount or less with oxygen in the exhaust gas (for example, Japanese Patent Application Laid-Open Publication No. H11-163873). No.63-100919, 63-28372
No. 7, JP-A No. 1-130735).

【0008】しかしながら、これらの方法では、効果的
な窒素酸化物の除去が狭い温度領域でしか得られず、ま
た、水分を含むような排ガスでは、窒素酸化物の除去率
が著しく低下する。つまり、10%程度の水分を含み、
運転条件によって温度変化の大きい車等からの排ガスに
対して、窒素酸化物の効果的除去は困難である。
However, in these methods, effective removal of nitrogen oxides can be obtained only in a narrow temperature range, and in an exhaust gas containing water, the removal rate of nitrogen oxides is significantly reduced. In other words, it contains about 10% water,
It is difficult to effectively remove nitrogen oxides from exhaust gas from a vehicle or the like whose temperature changes greatly depending on operating conditions.

【0009】したがって、本発明の目的は、固定燃焼装
置および酸素過剰条件で燃焼するガソリンエンジン、デ
ィーゼルエンジン等からの燃焼排ガスのように、窒素酸
化物や、一酸化炭素、水素、炭化水素等の未燃焼分に対
する理論反応量以上の酸素を含有する燃焼排ガスから、
効率良く窒素酸化物を還元除去することができる排ガス
浄化材及び排ガス浄化方法を提供することである。
Accordingly, it is an object of the present invention to provide a method for producing nitrogen oxides, carbon monoxide, hydrogen, hydrocarbons and the like, such as combustion exhaust gas from a fixed combustion device and a gasoline engine, a diesel engine or the like, which burns under oxygen excess conditions. From combustion exhaust gas containing more than the theoretical reaction amount for unburned components,
An object of the present invention is to provide an exhaust gas purifying material and an exhaust gas purifying method capable of efficiently reducing and removing nitrogen oxides.

【0010】[0010]

【課題を解決するための手段】上記課題に鑑み鋭意研究
の結果、本発明者は、多孔質無機酸化物に銀成分を担持
してなる触媒上で、エタノールなどの有機化合物が、酸
素及び窒素酸化物を含む排ガスと反応し、窒素酸化物を
窒素ガスに還元するとともに、副生成物としてアンモニ
アなどの含窒素化合物やアルデヒドを生成していること
を見出した。生成されたアルデヒドを利用して効果的に
窒素酸化物を除去できる第二の銀系触媒と、生成された
アンモニアを利用して効果的に窒素酸化物を除去できる
W系触媒と、さらに一酸化炭素、炭化水素等を酸化除去
する白金系触媒とを組み合わせて形成される排ガス浄化
材を用い、排ガス中に炭化水素と炭素数2以上の含酸素
有機化合物のいずれか又はそれらを含む燃料を添加し、
特定の温度及び空間速度で上記の浄化材に排ガスを接触
させれば、広い温度領域で窒素酸化物を効果的に除去す
ることができることを発見し、本発明を完成した。
Means for Solving the Problems In view of the above problems, as a result of intensive studies, the present inventor has found that an organic compound such as ethanol is converted to oxygen and nitrogen on a catalyst comprising a porous inorganic oxide carrying a silver component. It has been found that it reacts with exhaust gas containing oxides to reduce nitrogen oxides to nitrogen gas and to generate nitrogen-containing compounds such as ammonia and aldehydes as by-products. A second silver-based catalyst capable of effectively removing nitrogen oxides by utilizing the generated aldehyde, a W-based catalyst capable of effectively removing nitrogen oxides by utilizing the produced ammonia, and Using an exhaust gas purifying material formed by combining a platinum-based catalyst that oxidizes and removes carbon, hydrocarbons, etc., adding either hydrocarbons or oxygen-containing organic compounds having 2 or more carbon atoms or a fuel containing them to the exhaust gas And
The present inventors have found that if exhaust gas is brought into contact with the above-mentioned purifying material at a specific temperature and space velocity, nitrogen oxides can be effectively removed in a wide temperature range, and the present invention has been completed.

【0011】すなわち、窒素酸化物と、共存する未燃焼
成分に対する理論反応量より多い酸素とを含む燃焼排ガ
スから窒素酸化物を還元除去する本発明の排ガス浄化材
は、多孔質の無機酸化物に活性種として銀及び/又は銀
化合物、又はそれらの混合物0.2〜12重量%(銀元
素換算値)を担持してなる第一の触媒と、多孔質の無機
酸化物に活性種として銀及び/又は銀化合物、又はそれ
らの混合物1〜15重量%(銀元素換算値)かつ前記第
一の触媒の活性種の担持率より多い量を担持してなる第
二の触媒と、多孔質の無機酸化物に活性種としてW、
V、Mo、Mn、Nb、Taからなる群より選ばれた少
なくとも一種の元素の酸化物又は硫酸塩0.5〜30重
量%(金属元素換算値)を担持してなる第三の触媒とか
らなり、浄化材の排ガス流入側から流出側へ順に前記第
一の触媒、前記第二の触媒、前記第三の触媒を有するこ
とを特徴とする。
That is, the exhaust gas purifying material of the present invention for reducing and removing nitrogen oxides from a combustion exhaust gas containing nitrogen oxides and oxygen which is larger than the theoretical reaction amount of coexisting unburned components is a porous inorganic oxide. A first catalyst supporting 0.2 to 12% by weight (in terms of silver element) of silver and / or a silver compound or a mixture thereof as an active species, and silver and silver as active species on a porous inorganic oxide; And / or a silver compound or a mixture thereof, 1 to 15% by weight (in terms of silver element) and a second catalyst supporting the first catalyst in an amount larger than the active catalyst loading rate, and a porous inorganic material. W as an active species in the oxide,
V, Mo, Mn, Nb, and a third catalyst supporting 0.5 to 30% by weight (in terms of metal element) of an oxide or sulfate of at least one element selected from the group consisting of Ta. The first catalyst, the second catalyst, and the third catalyst are provided in this order from the exhaust gas inflow side to the outflow side of the purification material.

【0012】また、窒素酸化物と、共存する未燃焼成分
に対する理論反応量より多い酸素とを含む燃焼排ガスか
ら窒素酸化物を還元除去する本発明の第二の排ガス浄化
材は、多孔質の無機酸化物に活性種として銀及び/又は
銀化合物、又はそれらの混合物0.2〜12重量%(銀
元素換算値)を担持してなる第一の触媒と、多孔質の無
機酸化物に活性種として銀及び/又は銀化合物、又はそ
れらの混合物1〜15重量%(銀元素換算値)かつ前記
第一の触媒の活性種の担持率より多い量を担持してなる
第二の触媒と、多孔質の無機酸化物に活性種としてW、
V、Mo、Mn、Nb、Taからなる群より選ばれた少
なくとも一種の元素の酸化物又は硫酸塩0.5〜30重
量%(金属元素換算値)を担持してなる第三の触媒と、
Pt、Pd、Ru、Rh、Ir及びAuからなる群より選ばれた少な
くとも1種の元素0.01〜5重量%(金属元素換算
値)とを担持してなる第四の触媒とからなり、前記第三
の触媒と前記第四の触媒が混合されており、浄化材の排
ガス流入側から流出側へ順に前記第一の触媒、前記第二
の触媒、前記混合触媒を有することを特徴とする。
A second exhaust gas purifying material of the present invention for reducing and removing nitrogen oxides from a combustion exhaust gas containing nitrogen oxides and oxygen in an amount larger than the theoretical reaction amount for coexisting unburned components is a porous inorganic material. A first catalyst in which silver and / or a silver compound or a mixture thereof is supported as an active species on an oxide at 0.2 to 12% by weight (in terms of silver element); A second catalyst comprising silver and / or a silver compound, or a mixture thereof in an amount of 1 to 15% by weight (in terms of silver element) and an amount greater than the active species loading of the first catalyst; W as an active species on a high quality inorganic oxide,
A third catalyst supporting 0.5 to 30% by weight (in terms of a metal element) of an oxide or sulfate of at least one element selected from the group consisting of V, Mo, Mn, Nb, and Ta;
A fourth catalyst comprising at least one element selected from the group consisting of Pt, Pd, Ru, Rh, Ir, and Au in an amount of 0.01 to 5% by weight (in terms of a metal element); The third catalyst and the fourth catalyst are mixed, and include the first catalyst, the second catalyst, and the mixed catalyst in order from the exhaust gas inflow side to the outflow side of the purification material. .

【0013】さらに、窒素酸化物と、共存する未燃焼成
分に対する理論反応量より多い酸素とを含む燃焼排ガス
から窒素酸化物を還元除去する本発明の排ガス浄化方法
は、上記の排ガス浄化材を用い、前記排ガス浄化材を排
ガス導管の途中に設置し、前記浄化材の上流側で炭化水
素及び/又は含酸素有機化合物を添加した排ガスを、1
50〜600℃において前記浄化材に接触させ、もって
前記排ガス中の炭化水素及び/又は含酸素有機化合物と
の反応により前記窒素酸化物を除去することを特徴とす
る。
Further, an exhaust gas purifying method of the present invention for reducing and removing nitrogen oxides from a combustion exhaust gas containing nitrogen oxides and oxygen in excess of the theoretical reaction amount for coexisting unburned components uses the above exhaust gas purifying material. The exhaust gas purifying material is installed in the middle of an exhaust gas conduit, and the exhaust gas to which hydrocarbons and / or oxygen-containing organic compounds are added upstream of the purifying material is
The nitrogen oxides are removed by contacting the purifying material at 50 to 600 ° C. and reacting with the hydrocarbons and / or oxygen-containing organic compounds in the exhaust gas.

【0014】以下、本発明を詳細に説明する。本発明の
第一の排ガス浄化材は、多孔質の無機酸化物に活性種と
して銀及び/又は銀化合物、又はそれらの混合物を担持
してなる第一の触媒と、多孔質の無機酸化物に活性種と
して銀及び/又は銀化合物、又はそれらの混合物かつ前
記第一の触媒の活性種の担持率より多い量を担持してな
る第二の触媒と、多孔質の無機酸化物に活性種として
W、V、Mo、Mn、Nb、Taからなる群より選ばれ
た少なくとも一種の元素の酸化物又は硫酸塩を担持して
なる第三の触媒とからなる。浄化材の排ガス流入側から
流出側へ順に前記第一の触媒、前記第二の触媒、前記第
三の触媒を有する排ガス浄化材を排ガス導管中に設置
し、浄化材の設置位置より上流側で炭化水素と炭素数2
以上の含酸素有機化合物のいずれか又はそれを含む燃料
を添加した排ガスをこの浄化材に接触させて、排ガス中
の窒素酸化物を還元除去する。
Hereinafter, the present invention will be described in detail. The first exhaust gas purifying material of the present invention comprises a first catalyst in which silver and / or a silver compound or a mixture thereof is supported as an active species on a porous inorganic oxide; A second catalyst comprising silver and / or a silver compound or a mixture thereof as an active species and an amount larger than the active species loading rate of the first catalyst; and a porous inorganic oxide as an active species. A third catalyst supporting an oxide or sulfate of at least one element selected from the group consisting of W, V, Mo, Mn, Nb, and Ta. An exhaust gas purifying material having the first catalyst, the second catalyst, and the third catalyst is installed in an exhaust gas conduit in order from an exhaust gas inflow side to an outflow side of the purifying material, and the exhaust gas purifying material is located upstream of the purifying material installation position. Hydrocarbon and carbon number 2
Exhaust gas to which any of the above oxygenated organic compounds or a fuel containing the same is added is brought into contact with this purifying material to reduce and remove nitrogen oxides in the exhaust gas.

【0015】本発明の第二の排ガス浄化材は、多孔質の
無機酸化物に活性種として銀及び/又は銀化合物、又は
それらの混合物を担持してなる第一の触媒と、多孔質の
無機酸化物に活性種として銀及び/又は銀化合物、又は
それらの混合物かつ前記第一の触媒の活性種の担持率よ
り多い量を担持してなる第二の触媒と、多孔質の無機酸
化物に活性種としてW、V、Mo、Mn、Nb、Taか
らなる群より選ばれた少なくとも一種の元素の酸化物又
は硫酸塩を担持してなる第三の触媒と、Pt、Pd、Ru、R
h、Ir及びAuからなる群より選ばれた少なくとも1種の
元素とを担持してなる第四の触媒とからなる。前記第三
の触媒と前記第四の触媒が混合されており、浄化材の排
ガス流入側から流出側へ順に前記第一の触媒、前記第二
の触媒、前記混合触媒を有する排ガス浄化材を排ガス導
管中に設置し、浄化材の設置位置より上流側で炭化水素
と炭素数2以上の含酸素有機化合物のいずれか又はそれ
を含む燃料を添加した排ガスをこの浄化材に接触させ
て、排ガス中の窒素酸化物を還元除去する。
The second exhaust gas purifying material of the present invention comprises a first catalyst comprising a porous inorganic oxide carrying silver and / or a silver compound or a mixture thereof as an active species, and a porous inorganic oxide. A second catalyst in which silver and / or a silver compound or a mixture thereof as an active species is supported on the oxide in an amount larger than a loading rate of the active species of the first catalyst; A third catalyst supporting an oxide or sulfate of at least one element selected from the group consisting of W, V, Mo, Mn, Nb, and Ta as active species; and Pt, Pd, Ru, and R
and a fourth catalyst supporting at least one element selected from the group consisting of h, Ir and Au. The third catalyst and the fourth catalyst are mixed, and the first catalyst, the second catalyst, and the exhaust gas purifying material having the mixed catalyst are sequentially exhausted from the exhaust gas inflow side to the outflow side of the purifying material. It is installed in a conduit, and an exhaust gas added with a hydrocarbon and any one of oxygen-containing organic compounds having 2 or more carbon atoms or a fuel containing the same is brought into contact with the purification material on the upstream side from the installation position of the purification material. Is reduced and removed.

【0016】本発明の排ガス浄化材の第一の好ましい形
態は、粉末状の多孔質無機酸化物に触媒活性種を担持し
てなる触媒を浄化材基体にコートしてなる浄化材であ
る。浄化材の基体を形成するセラミックス材料として
は、γ−アルミナ及びその酸化物(γ−アルミナ−チタ
ニア、γ−アルミナ−シリカ、γ−アルミナ−ジルコニ
ア等)、ジルコニア、チタニア−ジルコニアなどの多孔
質で表面積の大きい耐熱性のものが挙げられる。高耐熱
性が要求される場合、コージェライト、ムライト、アル
ミナ及びその複合物等を用いるのが好ましい。また、排
ガス浄化材の基体に公知の金属材料を用いることもでき
る。
A first preferred embodiment of the exhaust gas purifying material of the present invention is a purifying material obtained by coating a purifying material base with a catalyst comprising a powdery porous inorganic oxide carrying catalytically active species. Examples of the ceramic material forming the substrate of the purifying material include porous materials such as γ-alumina and its oxides (γ-alumina-titania, γ-alumina-silica, γ-alumina-zirconia, etc.), zirconia, titania-zirconia, and the like. A heat-resistant material having a large surface area can be used. When high heat resistance is required, it is preferable to use cordierite, mullite, alumina and a composite thereof. In addition, a known metal material can be used for the base of the exhaust gas purifying material.

【0017】排ガス浄化材の基体の形状及び大きさは、
目的に応じて種々変更できる。実用的には、入口部分、
中間部分及び出口部分等、二つ以上の部分からなること
が好ましい。またその構造としては、ハニカム構造型、
フォーム型、繊維状耐火物からなる三次元網目構造型、
あるいは顆粒状、ペレット状等が挙げられる。
The shape and size of the substrate of the exhaust gas purifying material are as follows:
Various changes can be made according to the purpose. Practically, at the entrance,
It is preferred that it comprises two or more parts, such as an intermediate part and an outlet part. In addition, as its structure, honeycomb structure type,
Foam type, three-dimensional network structure type made of fibrous refractory,
Alternatively, granules, pellets and the like can be mentioned.

【0018】本発明の排ガス浄化材の第二の好ましい形
態は、ペレット状又は顆粒状粉末状の多孔質無機酸化物
に触媒活性種を担持してなる触媒、又は触媒活性種をそ
れぞれ担持した粉末状多孔質無機酸化物をペレット状又
は顆粒状に成形したものを所望形状のケーシングに充填
してなる浄化材である。
A second preferred embodiment of the exhaust gas purifying material of the present invention is a catalyst comprising a porous inorganic oxide in the form of a pellet or a granular powder carrying a catalytically active species, or a powder comprising a catalytically active species, respectively. It is a purifying material obtained by molding a porous inorganic oxide into pellets or granules into a casing having a desired shape.

【0019】本発明の浄化材には以下の触媒が形成され
ている。 (1)第一の触媒及び第二の触媒 第一の触媒及び第二の触媒は、多孔質無機酸化物に銀及
び/又は銀化合物、又はそれらの混合物を担持してな
り、排ガスの流入側に形成され、広い温度領域での窒素
酸化物除去に作用する。銀化合物は銀の酸化物、ハロゲ
ン化銀、硫酸銀及び燐酸銀などからなる群より選ばれた
少なくとも一種であり、好ましくは銀の酸化物、塩化銀
及び硫酸銀のいずれか一種以上であり、更に好ましくは
銀の酸化物及び/又は塩化銀である。多孔質の無機酸化
物としては、アルミナ、チタニアのいずれか又はそれら
を含む複合又は混合酸化物を用いることができるが、ア
ルミナ又はアルミナの複合又は混合酸化物を用いるのが
好ましい。アルミナの複合又は混合酸化物を用いる場
合、アルミナの含有率を50重量%以上とするのが好ま
しい。アルミナ又はアルミナの複合又は混合酸化物を用
いることにより、触媒の耐熱性及び耐久性が向上する。
The following catalyst is formed on the purifying material of the present invention. (1) First catalyst and second catalyst The first catalyst and the second catalyst are formed by supporting silver and / or a silver compound or a mixture thereof on a porous inorganic oxide, and on the inflow side of the exhaust gas. And acts to remove nitrogen oxides in a wide temperature range. The silver compound is at least one selected from the group consisting of silver oxide, silver halide, silver sulfate, silver phosphate, and the like, and is preferably one or more of silver oxide, silver chloride, and silver sulfate, More preferred are silver oxide and / or silver chloride. Either alumina or titania or a composite or mixed oxide containing them can be used as the porous inorganic oxide, but it is preferable to use alumina or a composite or mixed oxide of alumina. When a composite or mixed oxide of alumina is used, the content of alumina is preferably set to 50% by weight or more. The use of alumina or a composite or mixed oxide of alumina improves the heat resistance and durability of the catalyst.

【0020】第一の触媒及び第二の触媒で用いるアルミ
ナなどの多孔質の無機酸化物の比表面積は10m2 /g
以上であるのが好ましい。比表面積が10m2 /g未満
であると、排ガスと無機酸化物(及びこれに担持した銀
成分)との接触面積が小さくなり、良好な窒素酸化物の
除去が行えない。より好ましい多孔質無機酸化物の比表
面積は30m2 /g以上である。
The specific surface area of the porous inorganic oxide such as alumina used for the first catalyst and the second catalyst is 10 m 2 / g.
It is preferable that this is the case. If the specific surface area is less than 10 m 2 / g, the contact area between the exhaust gas and the inorganic oxide (and the silver component carried thereon) becomes small, and good nitrogen oxides cannot be removed. More preferred specific surface area of the porous inorganic oxide is 30 m 2 / g or more.

【0021】第一の触媒では、上記したγ−アルミナ等
の無機酸化物に活性種として担持する銀成分の担持量
は、無機酸化物100重量%に対して0.2〜12重量
%(銀元素換算値)とする。0.2重量%未満では窒素
酸化物の除去率が低下する。また、12重量%を超す量
の銀成分を担持すると炭化水素及び/又は含酸素有機化
合物自身の燃焼が起きやすく、窒素酸化物の除去率はか
えって低下する。好ましい銀成分の担持量は0.5〜1
0重量%である。
In the first catalyst, the amount of the silver component supported as an active species on the inorganic oxide such as γ-alumina is 0.2 to 12% by weight (100% by weight of the inorganic oxide). (Element conversion value). If the amount is less than 0.2% by weight, the removal rate of nitrogen oxides decreases. If the silver component is carried in an amount exceeding 12% by weight, the combustion of the hydrocarbon and / or the oxygen-containing organic compound itself tends to occur, and the nitrogen oxide removal rate is rather lowered. A preferable silver component loading is 0.5 to 1
0% by weight.

【0022】第二の触媒では、上記したγ−アルミナ等
の無機酸化物に活性種として担持する銀成分の担持量
は、無機酸化物100重量%に対して1〜15重量%
(銀元素換算値)で、かつ第一の触媒の活性種の担持率
より多い量とする。つまり、第二の触媒における多孔質
無機酸化物に対する銀成分の含有率を常に第一の触媒の
ものより大きくする。1重量%未満又は第一の触媒の活
性種の担持率以下では、第一の触媒で生成したアルデヒ
ドを用いた窒素酸化物の除去が行われない。また、15
重量%を超す量の銀成分を担持すると炭化水素及び/又
は含酸素有機化合物自身の燃焼が起きやすく、窒素酸化
物の除去率はかえって低下する。好ましい第二触媒にお
ける銀成分の担持量は1〜12重量%である。
In the second catalyst, the amount of the silver component supported as an active species on the inorganic oxide such as γ-alumina is 1 to 15% by weight based on 100% by weight of the inorganic oxide.
(In terms of silver element) and an amount larger than the loading ratio of the active species of the first catalyst. That is, the content of the silver component with respect to the porous inorganic oxide in the second catalyst is always higher than that in the first catalyst. If the content is less than 1% by weight or less than the active catalyst loading of the first catalyst, the removal of nitrogen oxides using the aldehyde generated by the first catalyst is not performed. Also, 15
When the silver component is supported in an amount exceeding the weight%, combustion of the hydrocarbon and / or the oxygen-containing organic compound itself tends to occur, and the nitrogen oxide removal rate is rather lowered. The loading amount of the silver component in the preferred second catalyst is 1 to 12% by weight.

【0023】アルミナ等の無機酸化物に銀を担持する方
法としては、公知の含浸法、沈澱法等を用いることがで
きる。含浸法を用いる際、銀の硝酸塩、塩化物、硫酸
塩、炭酸塩等の水溶液又はアンモニア性水溶液に多孔質
無機酸化物を浸漬する。又は硝酸銀水溶液に多孔質無機
酸化物を浸漬し、乾燥後、塩化アンモニウム又は硫酸ア
ンモニウムの水溶液に再び浸漬する。沈澱法では硝酸銀
とハロゲン化アンモニウムとを反応させて、ハロゲン化
銀として多孔質無機酸化物上に沈澱させる。これを50
〜150℃、特に70℃程度で乾燥後、100〜600
℃で段階的に昇温して焼成するのが好ましい。焼成は、
空気中、酸素を含む窒素気流下や水素ガス気流下で行う
のが好ましい。水素ガス気流下で行う場合には、最後に
300〜650℃で酸化処理するのが好ましい。
As a method of supporting silver on an inorganic oxide such as alumina, a known impregnation method, precipitation method, or the like can be used. When using the impregnation method, the porous inorganic oxide is immersed in an aqueous solution of silver nitrate, chloride, sulfate, carbonate, or the like, or an aqueous ammonia solution. Alternatively, the porous inorganic oxide is immersed in an aqueous solution of silver nitrate, dried, and then immersed again in an aqueous solution of ammonium chloride or ammonium sulfate. In the precipitation method, silver nitrate is reacted with ammonium halide to precipitate silver halide on the porous inorganic oxide. This is 50
After drying at about 150 ° C, especially about 70 ° C, 100 to 600
It is preferred to raise the temperature stepwise at a temperature of ° C. and to perform firing. Firing
It is preferable to carry out in air, under a flow of nitrogen containing oxygen or under a flow of hydrogen gas. When the treatment is performed under a hydrogen gas stream, it is preferable to perform the oxidation treatment at 300 to 650 ° C. at last.

【0024】硝酸銀等の水溶液を用いて多孔質無機酸化
物に担持された銀成分は酸化雰囲気下で焼成すると無機
酸化物に良く濡れた状態、近似的に円状の集合体を形成
することが観測されている。本発明の浄化材では、銀成
分集合体の平均直径を10〜10000nmとするのが
好ましい。一般的には、銀成分集合体の直径が小さいほ
ど、反応特性が高いが、平均直径が10nm未満である
と、還元剤である炭化水素及び/又は含酸素有機化合物
の酸化反応のみが進み、窒素酸化物の除去率が低下す
る。一方、平均直径が10000nmを超えると、銀成
分の反応特性が低減し、窒素酸化物の除去率が下がる。
好ましい銀成分集合体の平均直径は10〜5000n
m、更に好ましくは10〜2000nmとする。なお、
ここで言う平均とは算術平均のことを意味する。
When the silver component carried on the porous inorganic oxide using an aqueous solution of silver nitrate or the like is fired in an oxidizing atmosphere, the silver component can be well wetted by the inorganic oxide, forming an approximately circular aggregate. Has been observed. In the purification material of the present invention, the average diameter of the silver component aggregate is preferably set to 10 to 10000 nm. In general, the smaller the diameter of the silver component aggregate, the higher the reaction characteristics. However, if the average diameter is less than 10 nm, only the oxidation reaction of hydrocarbon and / or oxygen-containing organic compound as a reducing agent proceeds, Nitrogen oxide removal rate decreases. On the other hand, when the average diameter exceeds 10,000 nm, the reaction characteristics of the silver component are reduced, and the nitrogen oxide removal rate is reduced.
The average diameter of the preferred silver component aggregate is 10 to 5000 n.
m, more preferably 10 to 2000 nm. In addition,
The average here means an arithmetic average.

【0025】なお、浄化材の形態を上述した第一の好ま
しい形態とする場合、浄化材基体上に設ける第一の触媒
及び第二の触媒の厚さは、一般に、基体材と、この触媒
との熱膨張特性の違いから制限される場合が多い。浄化
材基体上に設ける触媒の厚さを300μm以下とするの
がよい。このような厚さとすれば、使用中に熱衝撃等で
浄化材が破損することを防ぐことができる。浄化材基体
の表面に触媒を形成する方法は公知のウォッシュコート
法等によって行われる。
When the purifying material is in the above-described first preferred embodiment, the thicknesses of the first catalyst and the second catalyst provided on the purifying material substrate are generally the same as the thickness of the base material and the catalyst. Are often limited due to differences in thermal expansion characteristics. The thickness of the catalyst provided on the purifying material base is preferably 300 μm or less. With such a thickness, it is possible to prevent the purifying material from being damaged by thermal shock or the like during use. A method for forming a catalyst on the surface of the purifying material base is performed by a known wash coat method or the like.

【0026】また、浄化材基体の表面上に設ける第一触
媒及び第二の触媒の量は、それぞれ浄化材基体の20〜
300g/リットルとするのが好ましい。触媒の量が2
0g/リットル未満では良好な窒素酸化物の除去が行え
ない。一方、触媒の量が300g/リットルを超えると
除去特性はそれほど上がらず、圧力損失が大きくなる。
より好ましくは、浄化材基体の表面上に設ける第一の触
媒及び第二の触媒をそれぞれ浄化材基体の50〜200
g/リットルとする。
The amount of the first catalyst and the amount of the second catalyst provided on the surface of the purifying material base are 20 to
Preferably it is 300 g / l. The amount of catalyst is 2
If it is less than 0 g / liter, good nitrogen oxides cannot be removed. On the other hand, when the amount of the catalyst exceeds 300 g / liter, the removal characteristics do not increase so much and the pressure loss increases.
More preferably, the first catalyst and the second catalyst provided on the surface of the purifying material base are respectively 50 to 200
g / liter.

【0027】(2)第三の触媒 第三の触媒は、多孔質無機酸化物に触媒活性種を担持し
てなり、排ガスの流出側に形成され、低い温度領域にお
ける窒素酸化物の除去に作用するとともに、一酸化炭素
や炭化水素の酸化除去を行う。多孔質無機酸化物として
は、アルミナ、チタニア、ゼオライトからなる群より選
ばれた一種以上の酸化物、又はそれらの複合、混合酸化
物を用いるのが好ましい。第一の触媒と同様に、多孔質
の無機酸化物の比表面積は10m2 /g以上であること
が好ましい。
(2) Third catalyst The third catalyst comprises a porous inorganic oxide carrying catalytically active species and is formed on the exhaust gas outflow side, and acts to remove nitrogen oxides in a low temperature region. And at the same time, oxidize and remove carbon monoxide and hydrocarbons. As the porous inorganic oxide, it is preferable to use at least one oxide selected from the group consisting of alumina, titania and zeolite, or a composite or mixed oxide thereof. Similar to the first catalyst, the specific surface area of the porous inorganic oxide is preferably 10 m 2 / g or more.

【0028】上記の第三の触媒の活性種としてはW、
V、Moからなる群より選ばれた少なくとも一種の元素
の酸化物又は硫酸塩を用いる。W、V、Moのうち、W
及び/又はVを用いるのが好ましい。多孔質無機酸化物
を100重量%として、W系成分の担持量は0.5〜3
0重量%(金属元素換算値)であり、好ましい担持量は
1〜25重量%(金属元素換算値)である。第三の触媒
を用いることにより、第一の触媒及び第二の触媒で生成
されたアンモニアを利用して、窒素酸化物を除去するこ
とができる。
As the active species of the third catalyst, W,
An oxide or sulfate of at least one element selected from the group consisting of V and Mo is used. W out of W, V and Mo
And / or V is preferably used. Assuming that the porous inorganic oxide is 100% by weight, the loading amount of the W component is 0.5 to 3%.
The amount is 0% by weight (in terms of metal element), and the preferred amount is 1 to 25% by weight (in terms of metal element). By using the third catalyst, nitrogen oxides can be removed using ammonia generated by the first catalyst and the second catalyst.

【0029】第三の触媒における活性種の担持は、公知
の含浸法、沈殿法等を用いることができる。含浸法を用
いる際、触媒活性種元素の炭酸塩、硝酸塩、酢酸塩、硫
酸塩、塩化物又はヘキサクロロ金属酸等の水溶液に多孔
質無機酸化物を浸漬する。W、V、Mo、Mn、Nb、
Taの場合、各元素のアンモニウム塩、しゅう酸塩等の
水溶液に多孔質無機酸化物を浸漬して用いる。50〜1
50℃、特に70℃で乾燥後、100〜600℃で段階
的に昇温して焼成することによって行われる。この焼成
は空気中、酸素を含む窒素気流下で行う。また、チタニ
アの代わりにメタチタン酸(含水酸化チタン)を出発物
質として用い、V、W、Moを担持することも有効な方
法である。無機酸化物にゼオライトを用いる場合、含浸
法や既知のイオン交換法等で担持するのが好ましい。
For loading the active species on the third catalyst, a known impregnation method, precipitation method, or the like can be used. When the impregnation method is used, the porous inorganic oxide is immersed in an aqueous solution of a carbonate, nitrate, acetate, sulfate, chloride, hexachlorometal acid, or the like of a catalytically active species element. W, V, Mo, Mn, Nb,
In the case of Ta, a porous inorganic oxide is immersed in an aqueous solution of an ammonium salt, oxalate or the like of each element for use. 50-1
After drying at 50 ° C., particularly 70 ° C., the temperature is raised stepwise at 100 to 600 ° C. and firing is performed. This calcination is performed in air under a nitrogen stream containing oxygen. It is also an effective method to use metatitanic acid (hydrous titanium oxide) as a starting material instead of titania and to carry V, W, and Mo. When zeolite is used as the inorganic oxide, it is preferable to support the zeolite by an impregnation method or a known ion exchange method.

【0030】なお、浄化材の形態を上述した第一の好ま
しい形態とする場合、浄化材基体上に設ける第三の触媒
の厚さを300μm以下とするのがよい。また、浄化材
基体の表面上に設ける第三の触媒の量は、浄化材基体に
対して20〜300g/リットルとするのが好ましい。
In the case where the purifying material is in the above-described first preferred embodiment, the thickness of the third catalyst provided on the purifying material base is preferably 300 μm or less. The amount of the third catalyst provided on the surface of the purifying material base is preferably 20 to 300 g / liter based on the purifying material base.

【0031】(3)第四の触媒 第四の触媒は、多孔質無機酸化物に触媒活性種を担持し
てなり、排ガスの流出側に形成され、低い温度領域にお
ける窒素酸化物の除去に作用するとともに、一酸化炭素
や炭化水素の酸化除去を行う。多孔質無機酸化物として
は、アルミナ、チタニア、ジルコニア、シリカ、ゼオラ
イトからなる群より選ばれた一種以上の酸化物、又はそ
れらの複合、混合酸化物を用いるのが好ましい。第一の
触媒と同様に、多孔質の無機酸化物の比表面積は10m
2 /g以上であることが好ましい。
(3) Fourth catalyst The fourth catalyst is formed by supporting catalytically active species on a porous inorganic oxide, and is formed on the exhaust gas outflow side, and acts to remove nitrogen oxides in a low temperature region. And at the same time, oxidize and remove carbon monoxide and hydrocarbons. As the porous inorganic oxide, it is preferable to use one or more oxides selected from the group consisting of alumina, titania, zirconia, silica, and zeolite, or a composite or mixed oxide thereof. Like the first catalyst, the specific surface area of the porous inorganic oxide is 10 m
It is preferably at least 2 / g.

【0032】上記の第四の触媒の活性種としてはPt、P
d、Ru、Rh、Ir及びAuからなる群より選ばれた少なくと
も1種の元素とを用いる。Pt、Pd、Ru、Rh及びAuのう
ち、特にPt、Pd及びAuの少なくとも一種を用いるのが好
ましい。多孔質無機酸化物を100重量%として、白金
系成分の担持量は0.01〜5重量%(金属元素換算
値)であり、好ましい担持量は0.01〜4重量%(金
属元素換算値)である。第四の触媒を用いることによ
り、一酸化炭素、炭化水素等の有害物質を酸化除去する
ことができる。
As the active species of the fourth catalyst, Pt, P
At least one element selected from the group consisting of d, Ru, Rh, Ir, and Au is used. Among Pt, Pd, Ru, Rh and Au, it is particularly preferable to use at least one of Pt, Pd and Au. Assuming that the porous inorganic oxide is 100% by weight, the supported amount of the platinum-based component is 0.01 to 5% by weight (in terms of a metal element), and the preferable supported amount is 0.01 to 4% by weight (in terms of a metal element). ). By using the fourth catalyst, harmful substances such as carbon monoxide and hydrocarbons can be oxidized and removed.

【0033】第四の触媒における活性種の担持は、公知
の含浸法、沈殿法等を用いることができる。含浸法を用
いる際、触媒活性種元素の炭酸塩、硝酸塩、酢酸塩、硫
酸塩、塩化物又はヘキサクロロ金属酸等の水溶液に多孔
質無機酸化物を浸漬する。50〜150℃、特に70℃
で乾燥後、100〜600℃で段階的に昇温して焼成す
ることによって行われる。この焼成は空気中、酸素を含
む窒素気流下で行う。
For supporting the active species on the fourth catalyst, a known impregnation method, precipitation method or the like can be used. When the impregnation method is used, the porous inorganic oxide is immersed in an aqueous solution of a carbonate, nitrate, acetate, sulfate, chloride, hexachlorometal acid, or the like of a catalytically active species element. 50-150 ° C, especially 70 ° C
After the drying, the temperature is raised stepwise at 100 to 600 ° C., followed by firing. This calcination is performed in air under a nitrogen stream containing oxygen.

【0034】なお、浄化材の形態を上述した第一の好ま
しい形態とする場合、浄化材基体上に設ける第四の触媒
の厚さを300μm以下とするのがよい。また、浄化材
基体の表面上に設ける第四の触媒の量は、浄化材基体に
対して20〜300g/リットルとするのが好ましい。
When the form of the purifying material is the above-described first preferred embodiment, the thickness of the fourth catalyst provided on the purifying material base is preferably 300 μm or less. The amount of the fourth catalyst provided on the surface of the purifying material base is preferably 20 to 300 g / liter based on the purifying material base.

【0035】第一の触媒と第二の触媒との重量比(多孔
質無機酸化物と触媒活性種との合計重量の比)は、1:
10〜20:1とするのが好ましい。比率が1:10未
満である(第一の触媒が少ない)と、150〜600℃
の広い温度範囲で全体的に窒素酸化物の浄化率が低下す
る。一方、比率が20:1を超え、第二の触媒が少ない
と、アルデヒドによる窒素酸化物の除去特性が低下す
る。より好ましい第一触媒と第二の触媒の重量比は1:
5〜10:1である。
The weight ratio of the first catalyst to the second catalyst (the ratio of the total weight of the porous inorganic oxide and the catalytically active species) is 1:
It is preferably 10 to 20: 1. When the ratio is less than 1:10 (the amount of the first catalyst is small), 150 to 600 ° C.
Over a wide temperature range, the purification rate of nitrogen oxides decreases overall. On the other hand, when the ratio exceeds 20: 1 and the amount of the second catalyst is small, the removal characteristics of nitrogen oxides by the aldehyde deteriorate. A more preferred weight ratio of the first catalyst to the second catalyst is 1:
5 to 10: 1.

【0036】本発明の第一の排ガス浄化材では、第一の
触媒及び第二の触媒の合計重量と第三の触媒の重量との
比(多孔質無機酸化物と触媒活性種との合計重量の比)
は、10:1〜1:5とするのが好ましい。比率が1:
5未満である(第一の触媒及び第二の触媒が少ない)
と、150〜600℃の広い温度範囲で全体的に窒素酸
化物の浄化率が低下する。一方、比率が10:1を超
え、第三の触媒が少ないと、第一の触媒上でできたアン
モニアが窒素酸化物の還元に有効に使用されない。より
好ましい第一の触媒及び第二の触媒の合計重量と第三の
触媒の重量比は5:1〜1:4である。
In the first exhaust gas purifying material of the present invention, the ratio of the total weight of the first catalyst and the second catalyst to the weight of the third catalyst (the total weight of the porous inorganic oxide and the catalytically active species) Ratio)
Is preferably 10: 1 to 1: 5. The ratio is 1:
Less than 5 (first and second catalysts are low)
As a result, the purification rate of nitrogen oxides as a whole decreases over a wide temperature range of 150 to 600 ° C. On the other hand, if the ratio exceeds 10: 1 and the amount of the third catalyst is small, ammonia formed on the first catalyst is not effectively used for reduction of nitrogen oxides. More preferably, the weight ratio of the total weight of the first catalyst and the second catalyst to the weight of the third catalyst is 5: 1 to 1: 4.

【0037】本発明の第二の排ガス浄化材では、第三の
触媒と第四の触媒とを混合して用いる。第三の触媒と第
四の触媒との重量比(多孔質無機酸化物と触媒活性種と
の合計重量の比)は、2:1〜100:1とするのが好
ましい。比率が2:1未満である(第三の触媒が少な
い)と、150〜600℃の広い温度範囲で全体的に窒
素酸化物の浄化率が低下する。一方、比率が100:1
を超え、第四の触媒が少ないと、炭化水素、一酸化炭素
の酸化特性が低下する。より好ましい第三触媒と第四の
触媒の重量比は5:1〜90:1である。
In the second exhaust gas purifying material of the present invention, a third catalyst and a fourth catalyst are mixed and used. The weight ratio of the third catalyst to the fourth catalyst (ratio of the total weight of the porous inorganic oxide and the catalytically active species) is preferably from 2: 1 to 100: 1. When the ratio is less than 2: 1 (the amount of the third catalyst is small), the purification rate of nitrogen oxides is reduced overall in a wide temperature range of 150 to 600 ° C. On the other hand, the ratio is 100: 1
When the amount of the fourth catalyst is less than the above, the oxidation characteristics of hydrocarbons and carbon monoxide deteriorate. A more preferred weight ratio of the third catalyst to the fourth catalyst is 5: 1 to 90: 1.

【0038】本発明の第二の排ガス浄化材では、第一の
触媒及び第二の触媒の合計重量と第三の触媒及び第四の
触媒の合計重量との比(多孔質無機酸化物と触媒活性種
との合計重量の比)は、10:1〜1:5とするのが好
ましい。比率が1:5未満である(第一の触媒及び第二
の触媒が少ない)と、150〜600℃の広い温度範囲
で全体的に窒素酸化物の浄化率が低下する。一方、比率
が10:1を超え、第三の触媒+第四の触媒が少ない
と、第一の触媒上でできたアンモニアが窒素酸化物の還
元に有効に使用されなかったり、炭化水素、一酸化炭素
などの酸化特性が低下する。より好ましい第一の触媒及
び第二の触媒の合計重量と第三の触媒及び第四の触媒の
合計重量との比は10:1〜1:2である。
In the second exhaust gas purifying material of the present invention, the ratio of the total weight of the first catalyst and the second catalyst to the total weight of the third catalyst and the fourth catalyst (porous inorganic oxide and catalyst) (The ratio of the total weight to the active species) is preferably 10: 1 to 1: 5. When the ratio is less than 1: 5 (the amount of the first catalyst and the amount of the second catalyst are small), the purification rate of nitrogen oxides is generally reduced in a wide temperature range of 150 to 600 ° C. On the other hand, if the ratio exceeds 10: 1 and the amount of the third catalyst + the fourth catalyst is small, the ammonia formed on the first catalyst is not effectively used for reducing nitrogen oxides, Oxidation characteristics such as carbon oxide are reduced. More preferably, the ratio of the total weight of the first catalyst and the second catalyst to the total weight of the third catalyst and the fourth catalyst is 10: 1 to 1: 2.

【0039】上述した構成の浄化材を用いれば、150
〜600℃の広い温度領域において、水分10%程度及
び硫黄酸化物を含む排ガスでも、良好な窒素酸化物の除
去を行うことができる。
If the purifying material having the above configuration is used, 150
In a wide temperature range of up to 600 ° C., good removal of nitrogen oxides can be performed even with an exhaust gas containing about 10% of moisture and sulfur oxides.

【0040】次に、本発明の方法について説明する。ま
ず、第一の排ガス浄化材では、浄化材の排ガス流入側か
ら流出側へ順に第一の触媒、第二の触媒及び第三の触媒
を排ガス導管の途中に設置する。第二の排ガス浄化材で
は、浄化材の排ガス流入側から流出側へ順に第一の触
媒、第二の触媒及び第三の触媒を排ガス導管の途中に設
置する。
Next, the method of the present invention will be described. First, in the first exhaust gas purifying material, the first catalyst, the second catalyst, and the third catalyst are installed in the exhaust gas conduit in order from the exhaust gas inflow side to the outflow side of the purifying material. In the second exhaust gas purifying material, the first catalyst, the second catalyst, and the third catalyst are arranged in the exhaust gas conduit in order from the exhaust gas inflow side to the outflow side of the purifying material.

【0041】排ガス中には、残留炭化水素としてエチレ
ン、プロピレン等がある程度は含まれるが、一般に排ガ
ス中のNOx を還元するのに十分な量ではないので、外部
から炭化水素及び/又は含酸素有機化合物、好ましくは
含酸素有機化合物又はそれと炭化水素燃料と混合してな
る還元剤を排ガス中に導入する。還元剤の導入位置は、
浄化材を設置した位置より上流側である。
The exhaust gas contains ethylene, propylene and the like to some extent as residual hydrocarbons. However, the amount is generally not sufficient to reduce NOx in the exhaust gas. A compound, preferably an oxygen-containing organic compound or a reducing agent obtained by mixing the compound with a hydrocarbon fuel is introduced into the exhaust gas. The introduction position of the reducing agent
It is upstream from the position where the purifying material is installed.

【0042】外部から導入する炭化水素としては、標準
状態でガス状又は液体状のアルカン、アルケン及び/又
はアルキンを用いることができる。特にアルカン又はア
ルケンの場合では炭素数2以上が好ましい。標準状態で
液体状の炭化水素としては、具体的に、軽油、セタン、
ヘプタン、灯油、ガソリン等の炭化水素が挙げられる。
その中でも、沸点50〜350℃の炭化水素が特に好ま
しい。外部から導入する含酸素有機化合物として、炭素
数2以上のエタノール、イソプロピルアルコール等のア
ルコール類、又はそれらを含む燃料を用いることができ
る。
As the hydrocarbon introduced from the outside, gaseous or liquid alkanes, alkenes and / or alkynes can be used under standard conditions. In particular, in the case of an alkane or alkene, it preferably has 2 or more carbon atoms. Specific examples of hydrocarbons that are liquid in the standard state include gas oil, cetane,
Examples include hydrocarbons such as heptane, kerosene, gasoline and the like.
Among them, hydrocarbons having a boiling point of 50 to 350 ° C are particularly preferable. As the oxygen-containing organic compound introduced from the outside, alcohols such as ethanol and isopropyl alcohol having 2 or more carbon atoms, or a fuel containing them can be used.

【0043】外部から導入する炭化水素及び/又は含酸
素有機化合物の量は、重量比(添加する還元剤の重量/
排ガス中の窒素酸化物の重量)が0.1〜5となるよう
にするのが好ましい。この重量比が0.1未満である
と、窒素酸化物の除去率が大きくならない。一方、5を
超えると、燃費悪化につながる。
The amount of the hydrocarbon and / or oxygen-containing organic compound introduced from the outside is determined by the weight ratio (weight of the reducing agent to be added / weight).
(Weight of nitrogen oxides in the exhaust gas) is preferably 0.1 to 5. If the weight ratio is less than 0.1, the removal rate of nitrogen oxides does not increase. On the other hand, if it exceeds 5, fuel efficiency will be degraded.

【0044】また、炭化水素又は含酸素有機化合物を含
有する燃料を添加する場合、燃料としてガソリン、軽
油、灯油などを用いるのが好ましい。この場合、還元剤
の量は上記と同様に重量比(添加する還元剤の重量/排
ガス中の窒素酸化物の重量)が0.1〜5となるように
設定する。
When a fuel containing a hydrocarbon or an oxygen-containing organic compound is added, it is preferable to use gasoline, light oil, kerosene or the like as the fuel. In this case, the amount of the reducing agent is set such that the weight ratio (the weight of the reducing agent to be added / the weight of the nitrogen oxide in the exhaust gas) is 0.1 to 5 in the same manner as described above.

【0045】本発明では、含酸素有機化合物、炭化水素
等による窒素酸化物の還元除去を効率的に進行させるた
めに、第一の触媒及び第二の触媒における空間速度はそ
れぞれ 150,000h-1以下、好ましくは 100,000h-1以下
とする。第一の触媒及び第二の触媒の空間速度が 150,0
00h-1を超えると、窒素酸化物の還元反応が十分に起こ
らず、窒素酸化物の除去率が低下する。第一の排ガス浄
化材では、第三の触媒の空間速度は 200,000h-1以下、
好ましくは 150,000h-1以下とする。第二の排ガス浄化
材では、第三の触媒と第四の触媒との混合触媒の空間速
度は 200,000h-1以下、好ましくは 150,000h-1以下と
する。
In the present invention, the space velocities of the first catalyst and the second catalyst are each 150,000 h -1 or less so that the reduction and removal of nitrogen oxides by an oxygen-containing organic compound, hydrocarbon and the like can efficiently proceed. , Preferably 100,000 h -1 or less. The space velocity of the first catalyst and the second catalyst is 150,0
If it exceeds 00 h −1 , the reduction reaction of nitrogen oxides does not sufficiently occur, and the nitrogen oxide removal rate decreases. In the first exhaust gas purifying material, the space velocity of the third catalyst is 200,000h -1 or less,
Preferably it is 150,000 h -1 or less. In the second exhaust gas purification material, the space velocity of the mixed catalyst of the third catalyst and a fourth catalyst 200,000 -1 or less, preferably 150,000H -1 or less.

【0046】また、本発明では、炭化水素及び/又は含
酸素有機化合物と窒素酸化物とが反応する部位である浄
化材設置部位における排ガスの温度を150〜600℃
に保つ。排ガスの温度が150℃未満であると還元剤と
窒素酸化物との反応が進行せず、良好な窒素酸化物の除
去を行うことができない。一方、600℃を超す温度と
すると炭化水素及び/又は含酸素有機化合物自身の燃焼
が始まり、窒素酸化物の還元除去が行えない。好ましい
排ガス温度は200〜550℃であり、より好ましくは
300〜500℃である。
In the present invention, the temperature of the exhaust gas at the purification material installation site, which is the site where the hydrocarbon and / or the oxygen-containing organic compound reacts with the nitrogen oxide, is set to 150 to 600 ° C.
To keep. If the temperature of the exhaust gas is lower than 150 ° C., the reaction between the reducing agent and the nitrogen oxide does not proceed, and it is not possible to remove the nitrogen oxide satisfactorily. On the other hand, if the temperature exceeds 600 ° C., the combustion of the hydrocarbon and / or the oxygen-containing organic compound itself starts, and the reduction and removal of nitrogen oxides cannot be performed. The preferred exhaust gas temperature is from 200 to 550C, more preferably from 300 to 500C.

【0047】[0047]

【実施例】本発明を以下の具体的実施例によりさらに詳
細に説明する。実施例1 市販のγ−アルミナ粉末(比表面積200m2 /g)を
硝酸銀水溶液に浸漬したあと取り出して、70℃で2時
間乾燥した。そして、空気中で、段階的に600℃まで
昇温したあと、5時間焼成し、アルミナに対して3.1
重量%(金属元素換算値)の銀を担持した第一の触媒を
調製した。第一の触媒0.26gを、市販のコージェラ
イト製ハニカム状成形体(直径20mm、長さ8.3m
m、400セル/インチ2 )にコートし、乾燥後600
℃まで段階的に焼成し、銀系浄化材(第一の触媒をコー
トした浄化材)を調製した。
The present invention will be described in more detail with reference to the following specific examples. Example 1 A commercially available γ-alumina powder (specific surface area: 200 m 2 / g) was immersed in an aqueous silver nitrate solution, taken out, and dried at 70 ° C. for 2 hours. Then, the temperature is raised stepwise to 600 ° C. in the air, and calcined for 5 hours.
A first catalyst supporting silver by weight (in terms of a metal element) was prepared. 0.26 g of the first catalyst was charged with a commercially available cordierite honeycomb formed body (diameter 20 mm, length 8.3 m).
m, 400 cells / inch 2 ) and after drying 600
The mixture was baked stepwise to ℃ to prepare a silver-based purifying material (a purifying material coated with a first catalyst).

【0048】上記銀系触媒と同じ方法で、粉末状アルミ
ナに5.0重量%(金属元素換算値)の銀を担持した第
二の触媒を調製し、上記と同様なハニカム状成形体に第
二の触媒0.26gをコートし、同じ方法で第二の銀系
浄化材(第二の触媒をコートした浄化材)を調製した。
In the same manner as the above-mentioned silver-based catalyst, a second catalyst in which 5.0% by weight (in terms of a metal element) of silver was supported on powdered alumina was prepared, and a second honeycomb-shaped body similar to the above was prepared. 0.26 g of the second catalyst was coated, and a second silver-based purifying material (a purifying material coated with the second catalyst) was prepared in the same manner.

【0049】次に、タングステン酸アンモニウムパラ五
水和物、しゅう酸に水を加え、水浴上で加熱して溶解さ
せた後、冷却した水溶液に、粉末状チタニア(比表面積
35m2 /g)を投入し、20分間浸漬した。その後、
溶液からチタニアを分離し、空気中で、80℃、100
℃、120℃で各2時間乾燥した。続いて、酸素20%
を含む窒素気流下で120℃から500℃まで5時間か
けで昇温し、500℃で4時間焼成して、チタニアに対
してWの酸化物を7.4重量%(金属元素換算値)担持
し、W系触媒(第三の触媒)を調製した。0.26gの
第三の触媒をスラリー化した後、上記銀系浄化材と同様
なハニカム成形体にコートし、銀系浄化材と同じ条件で
乾燥、焼成を行い、W系浄化材(第三の触媒をコートし
た浄化材)を調製した。
Next, water was added to ammonium tungstate parapentapentahydrate and oxalic acid, and dissolved by heating on a water bath, and then powdered titania (specific surface area 35 m 2 / g) was added to the cooled aqueous solution. It was charged and immersed for 20 minutes. afterwards,
Separate the titania from the solution and in air at 80 ° C, 100
The resultant was dried at 120 ° C. for 2 hours. Then, 20% oxygen
The temperature was raised from 120 ° C. to 500 ° C. in 5 hours under a nitrogen gas flow containing, and calcined at 500 ° C. for 4 hours to carry 7.4 wt% (converted to metal element) of W oxide with respect to titania. Then, a W-based catalyst (third catalyst) was prepared. After slurrying 0.26 g of the third catalyst, it was coated on the same honeycomb formed body as the above-mentioned silver-based purifying material, and dried and fired under the same conditions as the silver-based purifying material to obtain a W-based purifying material (third material). Purification material coated with the above catalyst was prepared.

【0050】反応管内の排ガスの流入側からに流出側へ
順に銀系浄化材、第二の銀系浄化材、W系浄化材をセッ
トした。次に、表1に示す組成のガス(一酸化窒素、酸
素、エタノール、二酸化硫黄、窒素及び水分)を毎分
3.48リットル(標準状態)の流量で流して(各浄化
材の見かけ空間速度はそれぞれ約80,000h-1であ
る)、反応管内の排ガス温度を350〜550℃の範囲
に保ち、エタノールと窒素酸化物とを反応させた。
A silver-based purifying material, a second silver-based purifying material, and a W-based purifying material were set in order from the inflow side to the outflow side of the exhaust gas in the reaction tube. Next, a gas (nitrogen monoxide, oxygen, ethanol, sulfur dioxide, nitrogen and moisture) having a composition shown in Table 1 was flowed at a flow rate of 3.48 liters per minute (standard state) (apparent space velocity of each purification material). Were about 80,000 h -1 ), and the temperature of the exhaust gas in the reaction tube was kept in the range of 350 to 550 ° C., and ethanol and nitrogen oxides were reacted.

【0051】反応管通過後のガスの窒素酸化物の濃度を
化学発光式窒素酸化物分析計により測定し、窒素酸化物
除去率を求めた。結果を表2に示す。
The concentration of nitrogen oxides in the gas after passing through the reaction tube was measured with a chemiluminescent nitrogen oxide analyzer to determine the nitrogen oxide removal rate. Table 2 shows the results.

【0052】 表1 成分 濃度 一酸化窒素 800 ppm 酸素 10 容量% エタノール 1560 ppm 二酸化硫黄 30 ppm 窒素 残部 水分 10 容量%(上記成分の総体積に対して)Table 1 Component concentration Nitric oxide 800 ppm Oxygen 10% by volume Ethanol 1560 ppm Sulfur dioxide 30 ppm Nitrogen Residual water 10% by volume (based on the total volume of the above components)

【0053】実施例2 実施例1と同じように硝酸銀水溶液を用いて、市販のシ
リカ・アルミナ粉末(シリカ含有量5重量%、比表面積
350m2 /g)に3.1重量%(金属元素換算値)の
銀を担持して第一の触媒を調製した。第一の触媒0.2
6gを、市販のコージェライト製ハニカム状成形体(直
径20mm、長さ8.3mm、400セル/インチ2
にコートし、乾燥後600℃まで段階的に焼成し、銀系
浄化材(第一の触媒をコートした浄化材)を調製した。
Example 2 As in Example 1, 3.1% by weight (in terms of metal element) of commercially available silica-alumina powder (silica content: 5% by weight, specific surface area: 350 m 2 / g) using an aqueous silver nitrate solution. The first catalyst was prepared by carrying silver of value (1). First catalyst 0.2
6 g of a commercially available cordierite honeycomb-shaped molded product (diameter: 20 mm, length: 8.3 mm, 400 cells / inch 2 )
And dried and fired stepwise to 600 ° C. to prepare a silver-based purifying material (a purifying material coated with a first catalyst).

【0054】上記銀系触媒と同じ方法で、粉末状シリカ
・アルミナに5重量%(金属元素換算値)の銀を担持し
た第二の触媒を調製し、上記と同様なハニカム状成形体
に第二の触媒0.26gをコートし、同じ方法で第二の
銀系浄化材(第二の触媒をコートした浄化材)を調製し
た。
In the same manner as in the above-mentioned silver-based catalyst, a second catalyst in which 5% by weight (in terms of a metal element) of silver was supported on powdery silica / alumina was prepared. 0.26 g of the second catalyst was coated, and a second silver-based purifying material (a purifying material coated with the second catalyst) was prepared in the same manner.

【0055】反応管内の排ガスの流入側から流出側へ順
に銀系浄化材、第二の銀系浄化材、実施例1のW系浄化
材をセットした。実施例1と同様の反応条件(各浄化材
の見かけ空間速度はそれぞれ約80,000h-1であ
る)で、表1に示す組成のガスを用いて評価を行った。
結果を表2に示す。
A silver-based purifying material, a second silver-based purifying material, and a W-based purifying material of Example 1 were set in order from the inflow side to the outflow side of the exhaust gas in the reaction tube. Evaluation was performed using the gas having the composition shown in Table 1 under the same reaction conditions as in Example 1 (the apparent space velocity of each purification material was about 80,000 h -1 ).
Table 2 shows the results.

【0056】実施例3 五酸化バナジウムにしゅう酸を加え、水浴上で加熱して
溶解させた後、冷却した水溶液に、実施例1の第三の触
媒と同様な粉末状チタニアを投入し、20分間浸漬し
た。その後、溶液からチタニアを分離し、空気中で、8
0℃、100℃、120℃で各2時間乾燥した。続い
て、酸素20%を含む窒素気流下で120℃〜500℃
まで5時間かけで昇温し、500℃で4時間焼成して、
チタニアに対してV酸化物を4.8重量%(金属元素換
算値)担持し、V系触媒(第三の触媒)を調製した。
0.26gの第三の触媒をスラリー化した後、実施例1
と同じ方法でハニカム成形体にコートし、乾燥、焼成を
行い、V系浄化材(第三の触媒をコートした浄化材)を
調製した。
Example 3 Oxalic acid was added to vanadium pentoxide and dissolved by heating on a water bath. Then, the same powdery titania as the third catalyst of Example 1 was added to the cooled aqueous solution, and Soak for minutes. Thereafter, the titania was separated from the solution and, in air,
It dried at 0 degreeC, 100 degreeC, and 120 degreeC for 2 hours each. Subsequently, under a nitrogen stream containing 20% of oxygen, 120 ° C. to 500 ° C.
Up to 5 hours, bake at 500 ° C for 4 hours,
A V-based catalyst (third catalyst) was prepared by supporting 4.8% by weight (in terms of metal element) of V oxide with respect to titania.
After slurrying 0.26 g of the third catalyst, Example 1 was used.
The honeycomb formed body was coated in the same manner as described above, dried and fired to prepare a V-based purifying material (a purifying material coated with a third catalyst).

【0057】反応管内の排ガスの流入側からに流出側へ
順に実施例1の銀系浄化材、実施例1の第二の銀系浄化
材、上記V系浄化材をセットした。実施例1と同様の反
応条件(各浄化材の見かけ空間速度はそれぞれ約80,
000h-1である)で、表1に示す組成のガスを用いて
評価を行った。結果を表2に示す。
The silver-based purifying material of Example 1, the second silver-based purifying material of Example 1, and the V-based purifying material were set in this order from the inflow side to the outflow side of the exhaust gas in the reaction tube. The same reaction conditions as in Example 1 (the apparent space velocities of the respective purifying materials were about 80, respectively)
000 h −1 ), and evaluation was performed using a gas having a composition shown in Table 1. Table 2 shows the results.

【0058】実施例4 実施例1の第三の触媒と同じ方法で、実施例1と同様な
粉末状チタニアに対してW酸化物を4.5重量%(金属
元素換算値)担持してW系触媒を調製した。このV系触
媒を用いて、実施例3と同じ方法でさらにチタニアに対
してV酸化物を2.2重量%(金属元素換算値)担持し
て、W、V系触媒(第三の触媒)を調製した。0.26
gの第三の触媒をスラリー化した後、実施例1と同じ方
法でハニカム成形体にコートし、乾燥、焼成を行い、
W、V系浄化材(第三の触媒をコートした浄化材)を調
製した。
Example 4 In the same manner as in the third catalyst of Example 1, 4.5 wt% (converted to metal element) of W oxide was supported on the same powdery titania as in Example 1 to obtain W A system catalyst was prepared. Using this V-based catalyst, in the same manner as in Example 3, V-oxide was further supported on titania by 2.2% by weight (in terms of a metal element), and a W, V-based catalyst (third catalyst) was used. Was prepared. 0.26
g of the third catalyst was slurried, coated on a honeycomb formed body in the same manner as in Example 1, dried and fired,
W and V-based purifying materials (purifying materials coated with a third catalyst) were prepared.

【0059】反応管内の排ガスの流入側からに流出側へ
順に実施例1の銀系浄化材、実施例1の第二の銀系浄化
材、上記W、V系浄化材をセットした。実施例1と同様
の反応条件(各浄化材の見かけ空間速度はそれぞれ約8
0,000h-1である)で、表1に示す組成のガスを用
いて評価を行った。結果を表2に示す。
The silver-based purifying material of Example 1, the second silver-based purifying material of Example 1, and the W and V-based purifying materials were set in this order from the inflow side to the outflow side of the exhaust gas in the reaction tube. The same reaction conditions as in Example 1 (the apparent space velocities of the respective purifying materials were about 8
(At 0000 h −1 )), and the evaluation was performed using a gas having a composition shown in Table 1. Table 2 shows the results.

【0060】実施例5 粉末状チタニア(比表面積35m2 /g)を塩化白金酸
水溶液に20分間浸漬した後、空気中、80℃で2時間
乾燥し、窒素気流下で120℃で2時間、200〜40
0℃まで段階的に各1時間焼成した。そして、水素ガス
4%を含む窒素気流下で50℃〜400℃まで5時間か
けて昇温し、400℃で4時間焼成し、さらに、酸素を
10%含む窒素気流下で50℃〜500℃まで5時間か
けて昇温し、500℃で5時間焼成し、チタニアに対し
てPtを0.21重量%(金属元素換算値)担持し、P
t系触媒(第四の触媒)を調製した。実施例1のW系触
媒と上記Pt触媒との重量比が40:1になるように、
両触媒を混合し、さらにスラリー化した後、実施例1と
同じ方法でそのスラリーを0.26g(乾燥ベース)ハ
ニカム成形体にコートし、乾燥、焼成を行い、W、Pt
系浄化材(混合触媒をコートした浄化材)を調製した。
Example 5 Powdered titania (specific surface area: 35 m 2 / g) was immersed in an aqueous chloroplatinic acid solution for 20 minutes, dried in air at 80 ° C. for 2 hours, and dried at 120 ° C. for 2 hours in a nitrogen stream. 200-40
It was fired stepwise for 1 hour to 0 ° C. Then, the temperature was raised from 50 ° C. to 400 ° C. over 5 hours under a nitrogen gas stream containing 4% of hydrogen gas, calcined at 400 ° C. for 4 hours, and further heated to 50 ° C. to 500 ° C. under a nitrogen gas stream containing 10% oxygen. And then calcined at 500 ° C. for 5 hours to carry 0.21% by weight (converted to metal element) of Pt with respect to titania.
A t-based catalyst (fourth catalyst) was prepared. The weight ratio of the W-based catalyst of Example 1 to the Pt catalyst was 40: 1,
After mixing both catalysts and further forming a slurry, the slurry was coated on a honeycomb formed body of 0.26 g (dry base) in the same manner as in Example 1, dried and fired, and W, Pt
A system purifying material (a purifying material coated with a mixed catalyst) was prepared.

【0061】反応管内の排ガスの流入側からに流出側へ
順に実施例1の銀系浄化材、実施例1の第二の銀系浄化
材、上記W、Pt系浄化材をセットした。実施例1と同
様の反応条件(各浄化材の見かけ空間速度はそれぞれ約
80,000h-1である)で、表1に示す組成のガスを
用いて評価を行った。結果を表2に示す。
The silver-based purifying material of Example 1, the second silver-based purifying material of Example 1, and the W and Pt-based purifying materials were set in order from the inflow side to the outflow side of the exhaust gas in the reaction tube. Evaluation was performed using the gas having the composition shown in Table 1 under the same reaction conditions as in Example 1 (the apparent space velocity of each purification material was about 80,000 h -1 ). Table 2 shows the results.

【0062】実施例6 反応管内の排ガスの流入側からに流出側へ順に実施例2
の銀系浄化材、実施例2の第二の銀系浄化材、実施例5
のW、Pt系浄化材をセットした。実施例1と同様の反
応条件(各浄化材の見かけ空間速度はそれぞれ約80,
000h-1である)で、表1に示す組成のガスを用いて
評価を行った。結果を表2に示す。
Example 6 Example 2 in order from the inflow side of the exhaust gas in the reaction tube to the outflow side.
Silver-based purifying material, second silver-based purifying material of Example 2, Example 5
Was set. The same reaction conditions as in Example 1 (the apparent space velocities of the respective purifying materials were about 80, respectively)
000 h −1 ), and evaluation was performed using a gas having a composition shown in Table 1. Table 2 shows the results.

【0063】実施例7 実施例3のV系触媒と実施例5のPt触媒との重量比が
20:1になるように、両触媒を混合し、さらにスラリ
ー化した後、実施例1と同じ方法でそのスラリーを0.
26g(乾燥ベース)ハニカム成形体にコートし、乾
燥、焼成を行い、V、Pt系浄化材(混合触媒をコート
した浄化材)を調製した。
Example 7 The same catalyst as in Example 1 was prepared by mixing and further slurrying the V-based catalyst of Example 3 and the Pt catalyst of Example 5 so that the weight ratio thereof was 20: 1. The slurry is then treated with 0.
26 g (dry base) of a honeycomb formed body was coated, dried and fired to prepare a V, Pt-based purifying material (a purifying material coated with a mixed catalyst).

【0064】反応管内の排ガスの流入側からに流出側へ
順に実施例1の銀系浄化材、実施例1の第二の銀系浄化
材、上記V、Pt系浄化材をセットした。実施例1と同
様の反応条件(各浄化材の見かけ空間速度はそれぞれ約
80,000h-1である)で、表1に示す組成のガスを
用いて評価を行った。結果を表2に示す。
The silver-based purifying material of Example 1, the second silver-based purifying material of Example 1, and the V and Pt-based purifying materials were set in this order from the inflow side to the outflow side of the exhaust gas in the reaction tube. Evaluation was performed using the gas having the composition shown in Table 1 under the same reaction conditions as in Example 1 (the apparent space velocity of each purification material was about 80,000 h -1 ). Table 2 shows the results.

【0065】実施例8 実施例4のW、V系触媒と実施例5のPt触媒との重量
比が10:1になるように、両触媒を混合し、さらにス
ラリー化した後、実施例1と同じ方法でそのスラリーを
0.26g(乾燥ベース)ハニカム成形体にコートし、
乾燥、焼成を行い、W、V、Pt系浄化材(混合触媒を
コートした浄化材)を調製した。
Example 8 After mixing the W and V catalysts of Example 4 and the Pt catalyst of Example 5 so that the weight ratio of the two catalysts was 10: 1 and further forming a slurry, Example 1 was used. 0.26 g (dry base) of the formed honeycomb article was coated with the slurry in the same manner as in
After drying and firing, W, V, and Pt-based purifying materials (purifying materials coated with a mixed catalyst) were prepared.

【0066】反応管内の排ガスの流入側からに流出側へ
順に実施例1の銀系浄化材、実施例1の第二の銀系浄化
材、上記W、V、Pt系浄化材をセットした。実施例1
と同様の反応条件(各浄化材の見かけ空間速度はそれぞ
れ約80,000h-1である)で、表1に示す組成のガ
スを用いて評価を行った。結果を表2に示す。
The silver-based purifying material of Example 1, the second silver-based purifying material of Example 1, and the W, V, and Pt-based purifying materials were set in this order from the inflow side to the outflow side of the exhaust gas in the reaction tube. Example 1
Evaluation was carried out under the same reaction conditions as described above (the apparent space velocity of each purifying material was about 80,000 h -1 ) using a gas having a composition shown in Table 1. Table 2 shows the results.

【0067】比較例1 実施例1で調製した第一の触媒0.52gを同様のハニ
カム成形体(直径20mm、長さ16.6mm、400
セル/インチ2 )にコートして、乾燥、焼成を行い、銀
系浄化材を調製した。銀系浄化材を排ガスの導管にセッ
トし、実施例1と同様の反応条件(見かけ空間速度は約
80,000h-1である)で、表1に示す組成のガスを
用いて評価を行った。結果を表2に示す。
COMPARATIVE EXAMPLE 1 0.52 g of the first catalyst prepared in Example 1 was mixed with the same honeycomb formed body (diameter 20 mm, length 16.6 mm, 400
Cells / inch 2 ), and dried and fired to prepare a silver-based purifying material. A silver-based purifying material was set in an exhaust gas conduit, and evaluated under the same reaction conditions as in Example 1 (the apparent space velocity was about 80,000 h -1 ) using a gas having a composition shown in Table 1. . Table 2 shows the results.

【0068】 表2 窒素酸化物(NOx)の除去率 窒素酸化物の除去率(%) 反応温度(℃) 350 400 450 500 550 実施例1 57.6 78.5 94.7 95.0 90.6 実施例2 54.4 77.8 91.1 93.9 89.8 実施例3 60.1 80.5 94.4 94.8 87.2 実施例4 60.8 78.7 93.8 94.1 89.6 実施例5 58.6 79.5 91.7 93.0 88.6 実施例6 56.4 78.8 88.1 92.9 85.8 実施例7 62.1 82.5 92.4 93.8 84.2 実施例8 64.8 79.7 91.8 93.1 85.6 比較例1 20.5 30.5 35.7 42.6 40.5Table 2 Removal rate of nitrogen oxide (NOx) Removal rate of nitrogen oxide (%) Reaction temperature (° C.) 350 400 450 500 550 Example 1 57.6 78.5 94.7 95.0 90.6 Example 2 54.4 77.8 91.1 93.9 89.8 Execution Example 3 60.1 80.5 94.4 94.8 87.2 Example 4 60.8 78.7 93.8 94.1 89.6 Example 5 58.6 79.5 91.7 93.0 88.6 Example 6 56.4 78.8 88.1 92.9 85.8 Example 7 62.1 82.5 92.4 93.8 84.2 Example 8 64.8 79.7 91.8 93.1 85.6 Comparative Example 1 20.5 30.5 35.7 42.6 40.5

【0069】表2からわかるように、銀触媒だけを用い
た比較例1に比べて、実施例1〜8では広い排ガス温度
領域で窒素酸化物の良好な除去がみられた。また、白金
系触媒を用いた実施例5〜8では、一酸化炭素、残留炭
化水素が効果的に酸化除去されていることを確認した。
As can be seen from Table 2, in Examples 1 to 8, better removal of nitrogen oxides was observed in a wider exhaust gas temperature range than in Comparative Example 1 using only a silver catalyst. In Examples 5 to 8 using a platinum-based catalyst, it was confirmed that carbon monoxide and residual hydrocarbons were effectively oxidized and removed.

【0070】[0070]

【発明の効果】以上詳述したように、本発明の排ガス浄
化材を用いれば、広い温度領域において過剰の酸素を含
む排ガス中の窒素酸化物を効率良く除去することができ
る。本発明の排ガス浄化材及び浄化方法は、各種燃焼
機、自動車等の排ガス浄化に広く利用することができ
る。
As described above in detail, the use of the exhaust gas purifying material of the present invention makes it possible to efficiently remove nitrogen oxides in exhaust gas containing excess oxygen in a wide temperature range. INDUSTRIAL APPLICABILITY The exhaust gas purifying material and the purification method of the present invention can be widely used for purifying exhaust gas of various types of combustors, automobiles and the like.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 23/16 A 23/22 A 23/30 A 23/48 A 23/64 A 23/648 23/652 27/053 A 27/055 A 32/00 35/02 P B01D 53/36 102 B 102 C 102 H B01J 23/64 102 A 103 A (72)発明者 吉田 清英 埼玉県熊谷市末広四丁目14番1号 株式会 社リケン熊谷事業所内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical display location B01J 23/16 A 23/22 A 23/30 A 23/48 A 23/64 A 23/648 23 / 652 27/053 A 27/055 A 32/00 35/02 P B01D 53/36 102 B 102 C 102 H B01J 23/64 102 A 103 A (72) Inventor Kiyohide Yoshida Suehiro 4-chome, Kumagaya City, Saitama Prefecture No. 14-1 Rikken Kumagaya Office

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 窒素酸化物と、共存する未燃焼成分に対
する理論反応量より多い酸素とを含む燃焼排ガスから窒
素酸化物を還元除去する排ガス浄化材において、多孔質
の無機酸化物に活性種として銀及び/又は銀化合物、又
はそれらの混合物0.2〜12重量%(銀元素換算値)
を担持してなる第一の触媒と、多孔質の無機酸化物に活
性種として銀及び/又は銀化合物、又はそれらの混合物
1〜15重量%(銀元素換算値)かつ前記第一の触媒の
活性種の担持率より多い量を担持してなる第二の触媒
と、多孔質の無機酸化物に活性種としてW、V、Mo、
Mn、Nb、Taからなる群より選ばれた少なくとも一
種の元素の酸化物又は硫酸塩0.5〜30重量%(金属
元素換算値)を担持してなる第三の触媒とからなり、浄
化材の排ガス流入側から流出側へ順に前記第一の触媒、
前記第二の触媒、前記第三の触媒を有することを特徴と
する排ガス浄化材。
1. An exhaust gas purifying material for reducing and removing nitrogen oxides from a combustion exhaust gas containing nitrogen oxides and oxygen in excess of the theoretical reaction amount of coexisting unburned components, wherein the porous inorganic oxides are used as active species. 0.2 to 12% by weight of silver and / or a silver compound or a mixture thereof (in terms of silver element)
And a silver and / or silver compound as an active species in a porous inorganic oxide or a mixture thereof in an amount of 1 to 15% by weight (in terms of silver element) and the first catalyst A second catalyst supporting an amount greater than the active species loading rate, and W, V, Mo,
A purifying material comprising a third catalyst carrying 0.5 to 30% by weight (in terms of a metal element) of an oxide or sulfate of at least one element selected from the group consisting of Mn, Nb, and Ta; The first catalyst in order from the exhaust gas inflow side to the outflow side,
An exhaust gas purifying material comprising the second catalyst and the third catalyst.
【請求項2】 窒素酸化物と、共存する未燃焼成分に対
する理論反応量より多い酸素とを含む燃焼排ガスから窒
素酸化物を還元除去する排ガス浄化材において、多孔質
の無機酸化物に活性種として銀及び/又は銀化合物、又
はそれらの混合物0.2〜12重量%(銀元素換算値)
を担持してなる第一の触媒と、多孔質の無機酸化物に活
性種として銀及び/又は銀化合物、又はそれらの混合物
1〜15重量%(銀元素換算値)かつ前記第一の触媒の
活性種の担持率より多い量を担持してなる第二の触媒
と、多孔質の無機酸化物に活性種としてW、V、Mo、
Mn、Nb、Taからなる群より選ばれた少なくとも一
種の元素の酸化物又は硫酸塩0.5〜30重量%(金属
元素換算値)を担持してなる第三の触媒と、Pt、Pd、R
u、Rh、Ir及びAuからなる群より選ばれた少なくとも1
種の元素0.01〜5重量%(金属元素換算値)とを担
持してなる第四の触媒とからなり、前記第三の触媒と前
記第四の触媒が混合されており、浄化材の排ガス流入側
から流出側へ順に前記第一の触媒、前記第二の触媒、前
記混合触媒を有することを特徴とする排ガス浄化材。
2. An exhaust gas purifying material for reducing and removing nitrogen oxides from a combustion exhaust gas containing nitrogen oxides and oxygen which is larger than a theoretical reaction amount of coexisting unburned components, wherein the porous inorganic oxides are used as active species. 0.2 to 12% by weight of silver and / or a silver compound or a mixture thereof (in terms of silver element)
And a silver and / or silver compound as an active species in a porous inorganic oxide or a mixture thereof in an amount of 1 to 15% by weight (in terms of silver element) and the first catalyst A second catalyst supporting an amount greater than the active species loading rate, and W, V, Mo,
A third catalyst supporting 0.5 to 30% by weight (in terms of metal element) of an oxide or sulfate of at least one element selected from the group consisting of Mn, Nb, and Ta; R
at least one selected from the group consisting of u, Rh, Ir, and Au
A fourth catalyst carrying 0.01 to 5% by weight of a seed element (in terms of a metal element), wherein the third catalyst and the fourth catalyst are mixed, and An exhaust gas purifying material comprising: the first catalyst, the second catalyst, and the mixed catalyst in order from an exhaust gas inflow side to an outflow side.
【請求項3】 請求項1又は2に記載の排ガス浄化材に
おいて、前記第一、第二、第三及び第四の触媒の内の一
つ以上がセラミックス製又は金属製の基体の表面にコー
トされたものであることを特徴とする排ガス浄化材。
3. The exhaust gas purifying material according to claim 1, wherein at least one of the first, second, third, and fourth catalysts is coated on a surface of a ceramic or metal substrate. An exhaust gas purifying material characterized in that it has been manufactured.
【請求項4】 請求項1又は2に記載の排ガス浄化材に
おいて、前記第一、第二、第三及び第四の触媒の内の一
つ以上がペレット状又は顆粒状であることを特徴とする
排ガス浄化材。
4. The exhaust gas purifying material according to claim 1, wherein at least one of the first, second, third and fourth catalysts is in the form of pellets or granules. Exhaust gas purifying material.
【請求項5】 請求項1〜4のいずれかに記載の排ガス
浄化材において、前記銀化合物は銀の酸化物、ハロゲン
化銀、硫酸銀及び燐酸銀からなる群より選ばれた少なく
とも一種であることを特徴とする排ガス浄化材。
5. The exhaust gas purifying material according to claim 1, wherein the silver compound is at least one selected from the group consisting of silver oxide, silver halide, silver sulfate, and silver phosphate. An exhaust gas purifying material characterized by that:
【請求項6】 請求項1〜5のいずれかに記載の排ガス
浄化材において、前記多孔質無機酸化物が、第一及び第
二の触媒ではアルミナ、チタニアのいずれか又はそれら
を含む複合又は混合酸化物、第三の触媒ではアルミナ、
チタニア、ゼオライトからなる群より選ばれた一種以上
の酸化物、第四の触媒ではアルミナ、チタニア、ジルコ
ニア、シリカ、ゼオライトからなる群より選ばれた一種
以上の酸化物であることを特徴とする排ガス浄化材。
6. The exhaust gas purifying material according to claim 1, wherein said porous inorganic oxide is alumina or titania in the first and second catalysts, or a composite or mixed material containing them. Oxides, alumina for the third catalyst,
An exhaust gas characterized by being one or more oxides selected from the group consisting of titania and zeolite, and the fourth catalyst being one or more oxides selected from the group consisting of alumina, titania, zirconia, silica, and zeolite. Purifying material.
【請求項7】 請求項1〜6のいずれかに記載の排ガス
浄化材を用い、窒素酸化物と、共存する未燃焼成分に対
する理論反応量より多い酸素とを含む燃焼排ガスから窒
素酸化物を還元除去する排ガス浄化方法において、前記
排ガス浄化材を排ガス導管の途中に設置し、前記浄化材
の上流側で炭化水素及び/又は含酸素有機化合物を添加
した排ガスを、150〜600℃において前記浄化材に
接触させ、もって前記排ガス中の炭化水素及び/又は含
酸素有機化合物との反応により前記窒素酸化物を除去す
ることを特徴とする排ガス浄化方法。
7. A method for reducing nitrogen oxides from a combustion exhaust gas containing nitrogen oxides and oxygen which is larger than a theoretical reaction amount of unexisting unburned components using the exhaust gas purifying material according to claim 1. In the exhaust gas purifying method for removing, the exhaust gas purifying material is installed in the middle of an exhaust gas conduit, and the exhaust gas to which hydrocarbons and / or oxygen-containing organic compounds are added on the upstream side of the purifying material is subjected to the purifying material at 150 to 600 ° C. Exhaust gas purifying method, wherein the nitrogen oxides are removed by contact with a hydrocarbon and / or an oxygen-containing organic compound in the exhaust gas.
JP6333870A 1994-11-28 1994-12-16 Material and process for purifying exhaust gas Pending JPH08168674A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP6333870A JPH08168674A (en) 1994-12-16 1994-12-16 Material and process for purifying exhaust gas
US08/466,988 US5714130A (en) 1994-11-28 1995-06-06 Exhaust gas cleaner and method for cleaning exhaust gas
EP95308495A EP0714693A1 (en) 1994-11-28 1995-11-27 Exhaust gas cleaner and method for cleaning exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6333870A JPH08168674A (en) 1994-12-16 1994-12-16 Material and process for purifying exhaust gas

Publications (1)

Publication Number Publication Date
JPH08168674A true JPH08168674A (en) 1996-07-02

Family

ID=18270874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6333870A Pending JPH08168674A (en) 1994-11-28 1994-12-16 Material and process for purifying exhaust gas

Country Status (1)

Country Link
JP (1) JPH08168674A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016504182A (en) * 2012-11-29 2016-02-12 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Diesel oxidation catalyst containing palladium, gold and ceria

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016504182A (en) * 2012-11-29 2016-02-12 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se Diesel oxidation catalyst containing palladium, gold and ceria

Similar Documents

Publication Publication Date Title
JP3626999B2 (en) Exhaust gas purification material and exhaust gas purification method
JP2700386B2 (en) Exhaust gas purifying material and exhaust gas purifying method
JPH0824583A (en) Exhaust gas purifying material and method for purifying exhaust gas
JP2649217B2 (en) Exhaust gas purifying material and exhaust gas purifying method
JPH08168650A (en) Material and method for purifying exhaust gas
JP2587000B2 (en) Exhaust gas purifying material and exhaust gas purifying method
JPH08168674A (en) Material and process for purifying exhaust gas
JPH0985053A (en) Exhaust gas purifying material and exhaust gas purifying method
JPH08168651A (en) Material and method for purifying exhaust gas
JPH08309189A (en) Combustion gas purifying material and purification of combustion gas
JP3854325B2 (en) Exhaust gas purification material and exhaust gas purification method
JPH07275709A (en) Material and method for purifying exhaust gas
JPH08141371A (en) Exhaust gas purification material and purifying method for exhaust gas
JPH08164327A (en) Waste gas purifying material and waste gas purifying method
JPH0824654A (en) Matreial and method for pufitying exhaust gas
JPH08182931A (en) Exhaust gas purifying material and exhaust gas purification using the same
JPH08229393A (en) Waste gas purifying mateiral and waste gas purifying method
JPH0824646A (en) Material and method for purifying exhaust gas
JPH08299795A (en) Waste gas purification material and method for purifying waste gas
JPH08318134A (en) Exhaust gas purifying material and exhaust gas purifying method
JPH08309190A (en) Combustion gas purifying material and purification of combustion gas
JPH08323202A (en) Exhaust gas purifying material and exhaust gas purifying method
JPH0970536A (en) Purifying material for exhaust gas and purifying method of exhaust gas
JPH08276131A (en) Exhaust gas cleaning material and exhaust gas cleaning
JPH08229353A (en) Waste gas purifying material and waste gas purifying method