JP5864443B2 - Exhaust gas purification catalyst - Google Patents

Exhaust gas purification catalyst Download PDF

Info

Publication number
JP5864443B2
JP5864443B2 JP2012551832A JP2012551832A JP5864443B2 JP 5864443 B2 JP5864443 B2 JP 5864443B2 JP 2012551832 A JP2012551832 A JP 2012551832A JP 2012551832 A JP2012551832 A JP 2012551832A JP 5864443 B2 JP5864443 B2 JP 5864443B2
Authority
JP
Japan
Prior art keywords
exhaust gas
ymn
compound
catalyst
supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012551832A
Other languages
Japanese (ja)
Other versions
JPWO2012093599A1 (en
Inventor
啓太 石崎
啓太 石崎
直樹 大矢
直樹 大矢
貴弘 中
貴弘 中
直樹 光田
直樹 光田
弘志 大野
弘志 大野
高橋 進
進 高橋
彦睦 渡邉
彦睦 渡邉
啓充 高木
啓充 高木
晶子 杉岡
晶子 杉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Mitsui Mining and Smelting Co Ltd
Original Assignee
Honda Motor Co Ltd
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Mitsui Mining and Smelting Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2012551832A priority Critical patent/JP5864443B2/en
Publication of JPWO2012093599A1 publication Critical patent/JPWO2012093599A1/en
Application granted granted Critical
Publication of JP5864443B2 publication Critical patent/JP5864443B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • B01J23/68Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/104Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • B01D2255/2045Calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2061Yttrium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/2073Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/908O2-storage component incorporated in the catalyst

Description

本発明は自動車等の内燃機関から排出される排気ガスを浄化するために使用される排気ガス浄化用触媒に関する。   The present invention relates to an exhaust gas purifying catalyst used for purifying exhaust gas discharged from an internal combustion engine such as an automobile.

自動車等の内燃機関から排出される排ガス中には、炭化水素、一酸化炭素、窒素酸化物等の有害成分が含まれている。それで、従来から、これら有害成分を浄化して無害化する三元触媒が用いられている。   The exhaust gas discharged from an internal combustion engine such as an automobile contains harmful components such as hydrocarbons, carbon monoxide, and nitrogen oxides. Therefore, conventionally, a three-way catalyst for purifying and detoxifying these harmful components has been used.

このような三元触媒として、Pt、Pd、Rh等の貴金属とアルミナ、セリア、ジルコニア又はこれらの複酸化物とを任意に組み合わせて、セラミックス又は金属等のハニカム担体上に担持させたものがある。更に、酸素吸蔵性助触媒を併用したものも提案されている。   As such a three-way catalyst, there is a catalyst in which a noble metal such as Pt, Pd, or Rh and an alumina, ceria, zirconia, or a double oxide thereof are arbitrarily combined and supported on a honeycomb carrier such as ceramic or metal. . Furthermore, a combination of oxygen storage promoters has been proposed.

また、ディーゼルエンジンから排出される排気ガスはパティキュレート(粒子状物質)を含んでおり、これらの物質がそのまま大気中に放出されると大気汚染の原因になる。パティキュレートを取り除くための有効な手段として、ススを捕集するためのディーゼル・パティキュレート・フィルター(DPF)を用いたディーゼル排ガストラップシステムがある。しかし、このDPFでは捕集したパティキュレートを連続的に酸化除去してDPFを再生する必要がある。   Further, the exhaust gas discharged from the diesel engine contains particulates (particulate matter), and if these materials are released into the atmosphere as they are, they cause air pollution. As an effective means for removing particulates, there is a diesel exhaust gas trap system using a diesel particulate filter (DPF) for collecting soot. However, in this DPF, it is necessary to regenerate the DPF by continuously oxidizing and removing the collected particulates.

これまでに提案された連続再生システムとしては、担体、例えば、酸化ジルコニウム、酸化バナジウム、酸化セリウム等の無機酸化物からなる担体にPtなどの高価な貴金属を担持させた触媒(例えば、特許文献1、2及び3参照)を用いるシステムがある。更に、酸素吸蔵性能を有する材料を助触媒として添加することも提案されている。   As a continuous regeneration system proposed so far, a catalyst (for example, Patent Document 1) in which an expensive noble metal such as Pt is supported on a support, for example, a support made of an inorganic oxide such as zirconium oxide, vanadium oxide, or cerium oxide. 2 and 3). Furthermore, it has also been proposed to add a material having oxygen storage performance as a promoter.

特開平10−047035号公報Japanese Patent Laid-Open No. 10-047035 特開2003−334443号公報JP 2003-334443 A 特開2004−058013号公報JP 2004-058013 A

本発明は自動車等の内燃機関から排出される排気ガスを浄化するために使用される酸素吸蔵性に優れた排気ガス浄化用触媒を提供することを目的としている。   An object of the present invention is to provide an exhaust gas purifying catalyst that is excellent in oxygen storage and used for purifying exhaust gas discharged from an internal combustion engine such as an automobile.

本発明者らは上記の目的を達成するために種々の物質を用いて種々の実験を行った結果、化学式Y1−XMn2−Zで表わされる複酸化物が酸素吸蔵性に優れていることを見出し、本発明を完成した。The present inventors have results of various experiments with various materials to achieve the above object, double oxide represented by the chemical formula Y 1-X A X Mn 2 -Z B Z O 5 is oxygen The present invention was completed by finding that it has excellent occlusion.

即ち、本発明の排気ガス浄化用触媒は、セラミックス又は金属材料からなる触媒支持体と、該触媒支持体上に担持されている複酸化物Y1−XMn2−Z(式中、AはLa、Sr、Ce、Ba、Ca、Sc、Ho、Er、Tm、Yb、Lu又はBiであり、BはCo、Fe、Ni、Cr、Mg、Ti、Nb、Ta、Cu又はRuであり、0.5≧X≧0であり、1≧Z≧0である)と、該複酸化物Y1−XMn2−Zに担持されているAg、Pt、Au、Pd、Rh、Cu及びMnからなる群から選択される少なくとも一種の原子とを有することを特徴とする。That is, the exhaust gas purifying catalyst of the present invention includes a catalyst support made of ceramics or a metal material, and a double oxide Y 1-X A X Mn 2-Z B Z O 5 supported on the catalyst support. (In the formula, A is La, Sr, Ce, Ba, Ca, Sc, Ho, Er, Tm, Yb, Lu or Bi, and B is Co, Fe, Ni, Cr, Mg, Ti, Nb, Ta, Cu or Ru, 0.5 ≧ X ≧ 0, and 1 ≧ Z ≧ 0), and Ag supported on the double oxide Y 1-X A X Mn 2-Z B Z O 5 And at least one atom selected from the group consisting of Pt, Au, Pd, Rh, Cu and Mn.

また、本発明の排気ガス浄化用触媒は、(1)セラミックス又は金属材料からなる触媒支持体と、(2)該触媒支持体上に担持されている複酸化物の合計質量を基準にして50質量%以上の複酸化物YMnと、該触媒支持体上に担持されている複酸化物の合計質量を基準にして50質量%未満の複酸化物YMnO及び複酸化物YMnの少なくとも1種とからなる混合複酸化物と、(3)該混合複酸化物に担持されているAg、Pt、Au、Pd、Rh、Cu及びMnからなる群から選択される少なくとも一種の原子とを有することを特徴とする。In addition, the exhaust gas purifying catalyst of the present invention comprises (1) a catalyst support made of ceramics or a metal material, and (2) 50 based on the total mass of the double oxide supported on the catalyst support. More than 50% by mass of double oxide YMn 2 O 5 and less than 50% by mass of double oxide YMnO 3 and double oxide Y 2 Mn based on the total mass of the double oxide supported on the catalyst support a mixed mixed oxide consisting of at least one and the 2 O 7, (3) Ag carried on the mixed double oxide, at least selected Pt, Au, Pd, Rh, from the group consisting of Cu and Mn It has a kind of atom.

更に、本発明の排気ガス浄化用触媒は、セラミックス又は金属材料からなる触媒支持体と、該触媒支持体上に担持されている複酸化物Y1−XMn2−Z(式中、AはLa、Sr、Ce、Ba、Ca、Sc、Ho、Er、Tm、Yb、Lu又はBiであり、BはCo、Fe、Ni、Cr、Mg、Ti、Nb、Ta、Cu又はRuであり、0.5≧X≧0であり、1≧Z≧0である)とを有することを特徴とする。Furthermore, the exhaust gas purifying catalyst of the present invention includes a catalyst support made of ceramics or a metal material, and a double oxide Y 1-X A X Mn 2-Z B Z O 5 supported on the catalyst support. (In the formula, A is La, Sr, Ce, Ba, Ca, Sc, Ho, Er, Tm, Yb, Lu or Bi, and B is Co, Fe, Ni, Cr, Mg, Ti, Nb, Ta, Cu or Ru, 0.5 ≧ X ≧ 0, and 1 ≧ Z ≧ 0).

また、本発明の排気ガス浄化用触媒は、(1)セラミックス又は金属材料からなる触媒支持体と、(2)該触媒支持体上に担持されている複酸化物の合計質量を基準にして50質量%以上の複酸化物YMnと、該触媒支持体上に担持されている複酸化物の合計質量を基準にして50質量%未満の複酸化物YMnO及び複酸化物YMnの少なくとも1種とからなる混合複酸化物とを有することを特徴とする。In addition, the exhaust gas purifying catalyst of the present invention comprises (1) a catalyst support made of ceramics or a metal material, and (2) 50 based on the total mass of the double oxide supported on the catalyst support. More than 50% by mass of double oxide YMn 2 O 5 and less than 50% by mass of double oxide YMnO 3 and double oxide Y 2 Mn based on the total mass of the double oxide supported on the catalyst support and having a mixing mixed oxide consisting of at least one and the 2 O 7.

更にまた、本発明の排気ガス浄化用触媒は、上記の本発明の酸素吸蔵性に優れた排気ガス浄化用触媒において、触媒支持体がハニカム形状であるか、又はDPFであることを特徴とする。   Furthermore, the exhaust gas purifying catalyst of the present invention is the above exhaust gas purifying catalyst having an excellent oxygen storage property according to the present invention, wherein the catalyst support has a honeycomb shape or a DPF. .

本発明の排気ガス浄化用触媒は酸素吸蔵性(酸素貯蔵・放出性)に優れているので、自動車等の内燃機関から排出される排気ガスを浄化するのに有効である。   Since the exhaust gas purifying catalyst of the present invention is excellent in oxygen storage (oxygen storage / release), it is effective for purifying exhaust gas discharged from an internal combustion engine such as an automobile.

実施例1、実施例2及び比較例1で得られた各々のパティキュレートフィルター形状の排ガス浄化用触媒のCO浄化性能を示すグラフである。4 is a graph showing the CO purification performance of each particulate filter-shaped exhaust gas purification catalyst obtained in Example 1, Example 2 and Comparative Example 1. FIG. 実施例1、実施例2及び比較例1で得られた各々のパティキュレートフィルター形状の排ガス浄化用触媒のHC浄化性能を示すグラフである。4 is a graph showing the HC purification performance of each particulate filter-shaped exhaust gas purification catalyst obtained in Example 1, Example 2 and Comparative Example 1. 実施例3、実施例4及び実施例5で得られた各々のハニカム形状の排ガス浄化用触媒のCO浄化性能を示すグラフである。4 is a graph showing the CO purification performance of each honeycomb-shaped exhaust gas purification catalyst obtained in Example 3, Example 4 and Example 5. FIG. 実施例3、実施例4及び実施例5で得られた各々のハニカム形状の排ガス浄化用触媒のHC浄化性能を示すグラフである。6 is a graph showing the HC purification performance of each honeycomb-shaped exhaust gas purification catalyst obtained in Example 3, Example 4 and Example 5. FIG. 代表的なY1−XMn2−ZのXRDを示すチャートである。It is a chart showing the XRD of a representative Y 1-X A X Mn 2 -Z B Z O 5.

以下に、本発明の排気ガス浄化用触媒について説明する。   The exhaust gas purifying catalyst of the present invention will be described below.

本発明の排気ガス浄化用触媒で用いる複酸化物Y1−XMn2−Z(式中、AはLa、Sr、Ce、Ba、Ca、Sc、Ho、Er、Tm、Yb、Lu又はBiであり、BはCo、Fe、Ni、Cr、Mg、Ti、Nb、Ta、Cu又はRuであり、0.5≧X≧0であり、1≧Z≧0である)の基本型は化学式YMnで表わされる複酸化物であり、この複酸化物YMnは例えば下記の方法で製造することができる。Mixed oxide Y 1-X A X Mn 2 -Z B Z O 5 ( where used in the exhaust gas purifying catalyst of the present invention, A is La, Sr, Ce, Ba, Ca, Sc, Ho, Er, Tm Yb, Lu or Bi, B is Co, Fe, Ni, Cr, Mg, Ti, Nb, Ta, Cu or Ru, 0.5 ≧ X ≧ 0, and 1 ≧ Z ≧ 0 ) Is a double oxide represented by the chemical formula YMn 2 O 5 , and this double oxide YMn 2 O 5 can be produced, for example, by the following method.

製造方法の一例を以下に示す。   An example of the manufacturing method is shown below.

原料としてY及びMnOをY/Mnの原子比が1/2となるように秤取し、例えば、ボールミルを用いて3時間以上粉砕・混合する。その後、大気雰囲気下、800〜1100℃、好ましくは850〜950℃で1〜24時間、好ましくは4〜10時間焼成することにより複酸化物YMnが得られる。As raw materials, Y 2 O 3 and MnO 2 are weighed so that the Y / Mn atomic ratio becomes 1/2, and, for example, pulverized and mixed for 3 hours or more using a ball mill. Thereafter, the atmosphere, 800 to 1100 ° C., preferably 1 to 24 hours at 850 to 950 ° C., preferably the mixed oxide YMn 2 O 5 obtained by calcining 4-10 hours.

上記のYMnの製造においては、複酸化物YMn、複酸化物YMnO及び複酸化物YMnからなる混合物が生じることもある。これらの混合物も、複酸化物YMn50質量%以上と、複酸化物YMnO及び複酸化物YMnの少なくとも1種50質量%未満とからなる混合物であれば複酸化物YMnの良好な排ガス浄化性能を十分に発揮することができる。YMnの混合比率は80質量%以上であることがより好ましい。無論、製造で生じた混合物であっても、それらの3種の複酸化物を混合して得た混合物であっても同様である。In the production of YMn 2 O 5 described above, a mixture composed of double oxide YMn 2 O 5 , double oxide YMnO 3 and double oxide Y 2 Mn 2 O 7 may be formed. If these mixtures are also a mixture consisting of 50% by mass or more of double oxide YMn 2 O 5 and at least one kind of double oxide YMnO 3 and double oxide Y 2 Mn 2 O 7 , double oxidation Good exhaust gas purification performance of the product YMn 2 O 5 can be sufficiently exhibited. The mixing ratio of YMn 2 O 5 is more preferably 80% by mass or more. Of course, even if it is the mixture produced by manufacture and the mixture obtained by mixing those 3 types of double oxides, it is the same.

製造方法の他の例としては、YとMnとを含む溶液に沈殿剤を添加して、YとMnとがおよそ1/2の原子比で含有される前駆体の沈殿物を得て、これを乾燥、焼成することにより、前駆体を結晶化させて複酸化物YMnを得る方法を挙げることができる。As another example of the production method, a precipitant is added to a solution containing Y and Mn to obtain a precursor precipitate containing Y and Mn in an atomic ratio of approximately 1/2. A method of crystallizing the precursor to obtain a double oxide YMn 2 O 5 by drying and firing the can be mentioned.

上記それぞれの製造方法で用いたY化合物を、La化合物、Sr化合物、Ce化合物、Ba化合物、Ca化合物、Sc化合物、Ho化合物、Er化合物、Tm化合物、Yb化合物、Lu化合物及びBi化合物からなる群から選ばれた化合物の1種以上で、Y化合物のY原子の半量以下の原子の量となるように置き換えて上記の製造方法を実施することにより複酸化物Y1−XMn(式中、AはLa、Sr、Ce、Ba、Ca、Sc、Ho、Er、Tm、Yb、Lu又はBiであり、0.5≧X>0である)を製造することができる。Y compound used in each of the above production methods is a group consisting of La compound, Sr compound, Ce compound, Ba compound, Ca compound, Sc compound, Ho compound, Er compound, Tm compound, Yb compound, Lu compound and Bi compound. The compound O 1 -X A X Mn 2 O is obtained by substituting one or more of the compounds selected from the above so that the amount of atoms is less than half the amount of Y atoms of the Y compound and carrying out the above production method. 5 (wherein A is La, Sr, Ce, Ba, Ca, Sc, Ho, Er, Tm, Yb, Lu, or Bi, and 0.5 ≧ X> 0).

上記それぞれの製造方法で用いたMn化合物を、Co化合物、Fe化合物、Ni化合物、Cr化合物、Mg化合物、Ti化合物、Nb化合物、Ta化合物、Ru化合物及びCu化合物からなる群から選ばれた化合物の1種以上で、Mn化合物のMn原子の半量以下の原子の量となるように置き換えて上記の製造方法を実施することにより複酸化物YMn2−Z(式中、BはCo、Fe、Ni、Cr、Mg、Ti、Nb、Ta、Ru又はCuであり、1≧Z>0である)を製造することができる。The Mn compound used in each of the above production methods is a compound selected from the group consisting of Co compound, Fe compound, Ni compound, Cr compound, Mg compound, Ti compound, Nb compound, Ta compound, Ru compound and Cu compound. The compound oxide YMn 2 -Z B Z O 5 (wherein B represents Co is obtained by carrying out the above production method by replacing one or more kinds so that the amount of atoms is less than half of the Mn atoms of the Mn compound. , Fe, Ni, Cr, Mg, Ti, Nb, Ta, Ru or Cu, and 1 ≧ Z> 0.

更に、上記の製造方法で用いたY化合物を、La化合物、Sr化合物、Ce化合物、Ba化合物、Ca化合物、Sc化合物、Ho化合物、Er化合物、Tm化合物、Yb化合物、Lu化合物及びBi化合物からなる群から選ばれた化合物の1種以上で、Y化合物のY原子の半量以下の原子の量となるように置き換え、Mn化合物を、Co化合物、Fe化合物、Ni化合物、Cr化合物、Mg化合物、Ti化合物、Nb化合物、Ta化合物、Ru化合物及びCu化合物からなる群から選ばれた化合物の1種以上で、Mn化合物のMn原子の半量以下の原子の量となるように置き換えて上記の製造方法を実施することにより複酸化物Y1−XMn2−Z(式中、AはLa、Sr、Ce、Ba、Ca、Sc、Ho、Er、Tm、Yb、Lu又はBiであり、BはCo、Fe、Ni、Cr、Mg、Ti、Nb、Ta、Cu又はRuであり、0.5≧X>0であり、1≧Z>0である)を製造することができる。Further, the Y compound used in the above production method is composed of La compound, Sr compound, Ce compound, Ba compound, Ca compound, Sc compound, Ho compound, Er compound, Tm compound, Yb compound, Lu compound and Bi compound. The Mn compound is replaced with a Co compound, Fe compound, Ni compound, Cr compound, Mg compound, Ti, or the like, with one or more compounds selected from the group replaced with an amount of atoms equal to or less than half of the Y atoms of the Y compound. The above production method is replaced with one or more compounds selected from the group consisting of compounds, Nb compounds, Ta compounds, Ru compounds and Cu compounds so that the amount of atoms is less than half the amount of Mn atoms of the Mn compound. By carrying out the double oxide Y 1-X A X Mn 2-Z B Z O 5 (wherein A is La, Sr, Ce, Ba, Ca, Sc, Ho, Er, Tm, Yb, Lu, or Bi, B is Co, Fe, Ni, Cr, Mg, Ti, Nb, Ta, Cu, or Ru, and 0.5 ≧ X> 0 and 1 ≧ Z> 0) Can be manufactured.

ここで、AサイトのYを置き換える原子として列挙したLa、Sr、Ce、Ba、Ca、Sc、Ho、Er、Tm、Yb、Lu又はBiは、Yを置き換え得るイオン半径を有したものであるが、この中でも特に、Yのイオン半径に対して±10%以内のイオン半径を有する、La、Ce、Ca、Sc、Ho、Er、Tm、Yb、Lu又はBiが安定的に置換できることから好ましい。   Here, La, Sr, Ce, Ba, Ca, Sc, Ho, Er, Tm, Yb, Lu, or Bi listed as atoms replacing Y at the A site have an ionic radius that can replace Y. However, among these, La, Ce, Ca, Sc, Ho, Er, Tm, Yb, Lu, or Bi having an ionic radius within ± 10% with respect to the ionic radius of Y can be stably substituted. .

また、BサイトのMnを置き換える原子として列挙したCo、Fe、Ni、Cr、Mg、Ti、Nb、Ta、Cu又はRuは、Mnを置き換え得るイオン半径を有しているものであるが、この中でも特に、Mnのイオン半径に対して±10%以内のイオン半径を有する、Co、Fe、Ni、Cr、Mg、Ti又はCuが安定的に置換できることから好ましい。   Further, Co, Fe, Ni, Cr, Mg, Ti, Nb, Ta, Cu or Ru listed as atoms replacing Mn at the B site have an ionic radius that can replace Mn. Among these, Co, Fe, Ni, Cr, Mg, Ti or Cu having an ionic radius within ± 10% with respect to the ionic radius of Mn is particularly preferable because it can be stably replaced.

一般式Y1−XMn2−Z(式中、AはLa、Sr、Ce、Ba、Ca、Sc、Ho、Er、Tm、Yb、Lu又はBiであり、BはCo、Fe、Ni、Cr、Mg、Ti、Nb、Ta、Ru又はCuであり、0.5≧X≧0であり、1≧Z≧0である)で示される複酸化物は上記の全ての複酸化物を包含する。In the general formula Y 1-X A X Mn 2 -Z B Z O 5 ( wherein, A is La, Sr, Ce, Ba, Ca, Sc, Ho, Er, Tm, Yb, Lu , or Bi, B is Co, Fe, Ni, Cr, Mg, Ti, Nb, Ta, Ru or Cu, and 0.5 ≧ X ≧ 0 and 1 ≧ Z ≧ 0) Of the double oxide.

ここで、一般式Y1−XMn2−Zは、XRDパターンから、空間群Pbamに含まれる、マンガン酸ジスプロシウム構造(DyMn構造、ICSD(Inorganic crystal structure database)参照)をとる結晶であると同定された。そして、一般式Y1−XMn2−Zは化学量論比で示されるものであるが、組成比が化学量論比から多少ずれて、一部の元素が過剰になったり欠損したりしたものであっても、マンガン酸ジスプロシウム構造(DyMn構造)をとる結晶であれば、本発明の効果を奏するものであり、本発明の排気ガス浄化用触媒に包含されるものである。Here, the general formula Y 1-X A X Mn 2 -Z B Z O 5 , from the XRD pattern, included in the space group Pbam, manganese, dysprosium structure (DyMn 2 O 5 structure, ICSD (Inorganic crystal structure database) Crystal). Then, although the general formula Y 1-X A X Mn 2 -Z B Z O 5 is represented by the stoichiometric ratio, slightly deviated from the composition ratio a stoichiometric ratio, part of the elements is excessively Even if the crystal has a dysprosium manganate structure (DyMn 2 O 5 structure), the effect of the present invention can be obtained even if it is lost or lost, and is included in the exhaust gas purifying catalyst of the present invention. It is what is done.

すなわち、マンガン酸ジスプロシウム構造(DyMn構造)をとる複酸化物であって、AサイトにYを50%以上含み、BサイトにMnを50%以上含むものであれば、本発明の排気ガス浄化用触媒に包含され、同様な効果を奏するものである。That is, as long as it is a double oxide having a dysprosium manganate structure (DyMn 2 O 5 structure) and containing 50% or more of Y at the A site and 50% or more of Mn at the B site, the exhaust of the present invention It is included in the gas purification catalyst and has the same effect.

図5に代表的なY1−XMn2−Z(下記実施例6に相当)のXRDを示す。波線を付与したピークがマンガン酸ジスプロシウム構造(DyMn構造)、すなわち、この場合にはYMnに起因するピークである。FIG. 5 shows an XRD of a representative Y 1-X A X Mn 2-Z B Z O 5 (corresponding to Example 6 below). The peak given the wavy line is the dysprosium manganate structure (DyMn 2 O 5 structure), that is, the peak due to YMn 2 O 5 in this case.

上記の全ての複酸化物は酸素吸蔵性(酸素貯蔵・放出性)に優れている。さらに、Ag、Pt、Au、Pd、Rh、Cu及びMnからなる群から選択される少なくとも一種の原子を担持することにより、酸素吸蔵性がより向上する。また、担持された金属の量が金属+担体の合計質量基準で1〜10質量%とすることにより、排気ガス浄化性能が向上する。   All the double oxides described above are excellent in oxygen storage (oxygen storage / release). Furthermore, by supporting at least one atom selected from the group consisting of Ag, Pt, Au, Pd, Rh, Cu and Mn, the oxygen storage property is further improved. Moreover, exhaust gas purification performance improves because the quantity of the carried | supported metal shall be 1-10 mass% on the total mass reference | standard of a metal + support | carrier.

本発明の排気ガス浄化用触媒においては、セラミックス又は金属材料からなる触媒支持体の形状は、特に限定されるものではないが、一般的にはハニカム形状、板、ペレット、DPF等の形状であり、好ましくはハニカム形状又はDPFである。また、このような触媒支持体の材質としては、例えば、アルミナ(Al)、ムライト(3Al−2SiO)、コージェライト(2MgO−2Al−5SiO)、炭化ケイ素(SiC)等のセラミックスや、ステンレス等の金属材料を挙げることができる。In the exhaust gas purifying catalyst of the present invention, the shape of the catalyst support made of a ceramic or metal material is not particularly limited, but is generally a honeycomb shape, a plate, a pellet, a DPF, or the like. Preferably, it is a honeycomb shape or DPF. The material of such a catalyst support, e.g., alumina (Al 2 O 3), mullite (3Al 2 O 3 -2SiO 2) , cordierite (2MgO-2Al 2 O 3 -5SiO 2), silicon carbide Examples thereof include ceramics such as (SiC) and metal materials such as stainless steel.

これらの触媒支持体の表面に上記の複酸化物Y1−XMn2−Zを含む層を設ける。Y1−XMn2−Zを含む層は貴金属が存在していない状態でも酸素吸蔵性に優れているので、セラミックス又は金属材料からなる触媒支持体と、該触媒支持体上に担持されている複酸化物Y1−XMn2−Zとを有する構成のものも酸素吸蔵性に優れた排気ガス浄化用触媒となる。The above double oxide on the surface of these catalyst supports Y 1-X A X Mn 2 -Z B providing a layer containing a Z O 5. Since the layer comprising Y 1-X A X Mn 2 -Z B Z O 5 is excellent in the oxygen storage property even in a state that does not exist a noble metal, a catalyst support made of a ceramic or metallic material, said catalyst support the composite oxide Y 1-X a X Mn 2 -Z B Z O 5 and excellent exhaust gas purifying catalyst to be oxygen-storing those configurations having carried on the top.

また、Ag、Pt、Au、Pd、Rh、Cu及びMnからなる群から選択される少なくとも一種の原子を担持したY1−XMn2−Zを含む層を上記の触媒支持体の表面に設けることもできる。即ち、セラミックス又は金属材料からなる触媒支持体と、該触媒支持体上に担持されている複酸化物Y1−XMn2−Zと、該Y1−XMn2−Zに担持されているAg、Pt、Au、Pd、Rh、Cu及びMnからなる群から選択される少なくとも一種の原子とを有する構成の酸素吸蔵性に優れた排気ガス浄化用触媒とすることもできる。この貴金属等を担持した排気ガス浄化用触媒は酸素吸蔵性の点では貴金属等を担持していない上記の排気ガス浄化用触媒とあまり変わらないが、排気ガス浄化用触媒として用いた場合には燃焼開始温度及びピークトップ温度が改善される。Further, Ag, Pt, Au, Pd , Rh, at least one of the atoms Y carrying 1-X A X Mn 2- Z B Z O 5 layer of the above catalyst containing selected from the group consisting of Cu and Mn It can also be provided on the surface of the support. That is, a catalyst support made of ceramics or a metal material, a double oxide Y 1-X A X Mn 2-Z B Z O 5 supported on the catalyst support, and the Y 1-X A X Mn 2-Z B Z O 5 is supported on Ag, Pt, Au, Pd, Rh, at least one arrangement oxygen storage with excellent exhaust gas purification having an atom selected from the group consisting of Cu and Mn It can also be used as a catalyst. This exhaust gas purifying catalyst carrying noble metal etc. is not much different from the above exhaust gas purifying catalyst not carrying noble metal etc. in terms of oxygen storage, but when used as an exhaust gas purifying catalyst, it burns Start temperature and peak top temperature are improved.

以下に、実施例及び比較例に基づいて本発明を具体的に説明する。   Hereinafter, the present invention will be described in detail based on examples and comparative examples.

実施例1
硝酸銀0.124gに水37.5gを加え、攪拌して硝酸銀水溶液とし、この水溶液にYMnからなる担体粉末1.5gを投入し、30分間攪拌した。得られたスラリーを直径25.4mm×長さ76.2mmのコージェライト製パティキュレートフィルター上にコートさせた。これを120℃で3時間乾燥した後、空気中600℃で1時間焼成した。得られたパティキュレートフィルター形状の排ガス浄化用触媒のAg担持量は金属Ag+担体の合計質量基準で5質量%であった。
Example 1
37.5 g of water was added to 0.124 g of silver nitrate and stirred to obtain an aqueous silver nitrate solution. To this aqueous solution, 1.5 g of carrier powder composed of YMn 2 O 5 was added and stirred for 30 minutes. The obtained slurry was coated on a cordierite particulate filter having a diameter of 25.4 mm and a length of 76.2 mm. This was dried at 120 ° C. for 3 hours and then calcined in air at 600 ° C. for 1 hour. The amount of Ag supported on the obtained particulate filter-shaped exhaust gas purification catalyst was 5% by mass based on the total mass of metal Ag + carrier.

実施例2
水30gにYMnからなる粉末1.5gを投入し、30分間攪拌した。得られたスラリーを用いて直径25.4mm×長さ76.2mmのコージェライト製パティキュレートフィルター上にYMnをコートさせた。これを120℃で3時間乾燥した後、空気中600℃で1時間焼成してパティキュレートフィルター形状の排ガス浄化用触媒を得た。
Example 2
To 30 g of water, 1.5 g of a powder composed of YMn 2 O 5 was added and stirred for 30 minutes. YMn 2 O 5 was coated on a cordierite particulate filter having a diameter of 25.4 mm and a length of 76.2 mm using the obtained slurry. This was dried at 120 ° C. for 3 hours and then calcined in air at 600 ° C. for 1 hour to obtain an exhaust gas purifying catalyst in the form of a particulate filter.

実施例3
硝酸マンガン(II)六水和物を5倍質量の水に溶解させた溶液にYMnを分散させ、撹拌しながら200℃で加熱、乾燥させた。その後、大気中、600℃で2時間焼成し、Mn担持YMn粉末を得た。この場合にMnの担持量が金属Mn+担体の合計質量基準で5.57質量%となるようにした。このMn担持YMn粉末6.08gに水30gを加え、30分間撹拌してスラリーとした。得られたスラリーを直径25.4mm×長さ60mmのコージェライト製ハニカムにコートした。これを120℃で3時間乾燥した後、空気中、500℃で1時間焼成した。コージェライト製ハニカムに担持されたMn担持YMnの量は、ハニカム容積1Lあたり200gであった。
Example 3
YMn 2 O 5 was dispersed in a solution in which manganese (II) nitrate hexahydrate was dissolved in 5 times mass of water, and heated and dried at 200 ° C. with stirring. Thereafter, in the air, and calcined for 2 hours at 600 ° C., to obtain a Mn-carrying YMn 2 O 5 powder. In this case, the amount of Mn supported was 5.57% by mass based on the total mass of the metal Mn + carrier. 30 g of water was added to 6.08 g of this Mn-supported YMn 2 O 5 powder and stirred for 30 minutes to form a slurry. The obtained slurry was coated on a cordierite honeycomb having a diameter of 25.4 mm and a length of 60 mm. This was dried at 120 ° C. for 3 hours and then calcined in air at 500 ° C. for 1 hour. The amount of Mn-supported YMn 2 O 5 supported on the cordierite honeycomb was 200 g per 1 L of honeycomb volume.

実施例4
YMn粉末6.08gに水30gを加え、30分間撹拌してスラリーとした。得られたスラリーを直径25.4mm×長さ60mmのコージェライト製ハニカムにコートした。これを120℃で3時間乾燥した後、空気中、500℃で1時間焼成した。コージェライト製ハニカムに担持されたYMnの量は、ハニカム容積1Lあたり200gであった。
Example 4
30 g of water was added to 6.08 g of YMn 2 O 5 powder and stirred for 30 minutes to form a slurry. The obtained slurry was coated on a cordierite honeycomb having a diameter of 25.4 mm and a length of 60 mm. This was dried at 120 ° C. for 3 hours and then calcined in air at 500 ° C. for 1 hour. The amount of YMn 2 O 5 supported on the cordierite honeycomb was 200 g per 1 L of honeycomb volume.

実施例5
硝酸銀を水30gに溶解させた溶液にYMnを分散させ、撹拌しながら200℃で加熱、乾燥させた。その後、大気中、600℃で2時間焼成し、Ag担持YMn粉末を得た。この場合にAgの担持量が金属Ag+担体の合計質量基準で5.57質量%となるようにした。このAg担持YMn粉末6.08gに水30gを加え、30分間撹拌してスラリーとした。得られたスラリーを直径25.4mm×長さ60mmのコージェライト製ハニカムにコートした。これを120℃で3時間乾燥した後、空気中、500℃で1時間焼成した。コージェライト製ハニカムに担持されたAg担持YMnの量は、ハニカム容積1Lあたり200gであった。
Example 5
YMn 2 O 5 was dispersed in a solution in which silver nitrate was dissolved in 30 g of water, and heated and dried at 200 ° C. with stirring. Thereafter, in the air, and calcined for 2 hours at 600 ° C., to obtain a Ag supported YMn 2 O 5 powder. In this case, the supported amount of Ag was 5.57% by mass based on the total mass of the metal Ag + carrier. 30 g of water was added to 6.08 g of this Ag-supported YMn 2 O 5 powder and stirred for 30 minutes to form a slurry. The obtained slurry was coated on a cordierite honeycomb having a diameter of 25.4 mm and a length of 60 mm. This was dried at 120 ° C. for 3 hours and then calcined in air at 500 ° C. for 1 hour. The amount of Ag-supported YMn 2 O 5 supported on the cordierite honeycomb was 200 g per 1 L of honeycomb volume.

比較例1
実施例2に記載の製造方法においてYMnの代わりにCeO(30質量%)−ZrO(70質量%)を用いた以外は実施例2と同様に処理してパティキュレートフィルター形状の排ガス浄化用触媒を得た。
Comparative Example 1
CeO 2 (30 wt%) instead of YMn 2 O 5 in the manufacturing method described in Example 2 - except for the use of ZrO 2 (70 mass%) was treated in the same manner as in Example 2 of the particulate filter shape An exhaust gas purification catalyst was obtained.

比較例2
実施例2に記載の方法においてYMnの代わりにAlを用いた以外は実施例2と同様に処理してパティキュレートフィルター形状の排ガス浄化用触媒を得た。
Comparative Example 2
A particulate filter-shaped exhaust gas purification catalyst was obtained in the same manner as in Example 2 except that Al 2 O 3 was used instead of YMn 2 O 5 in the method described in Example 2.

<酸素吸蔵性の評価>
実施例1〜2及び比較例1〜2において得られた各々の試料粉末25mgを反応器に充填し、600℃にて酸素雰囲気下で10分間処理して清浄表面とした。その後、50%O/Heガス及びHガスを用いて200〜600℃の温度範囲で酸素吸蔵能(OSC)を測定した。OSCは、試料粉末1g当たりのO吸蔵量(μmol/g)として評価した。試料粉末1g当たりのO吸蔵量(μmol/g)と温度との相関関係は第1表に示す通りであった。
<Evaluation of oxygen storage>
25 mg of each sample powder obtained in Examples 1 and 2 and Comparative Examples 1 and 2 was charged into a reactor and treated at 600 ° C. in an oxygen atmosphere for 10 minutes to obtain a clean surface. Thereafter, oxygen storage capacity (OSC) was measured in a temperature range of 200 to 600 ° C. using 50% O 2 / He gas and H 2 gas. OSC was evaluated as O 2 occlusion amount (μmol / g) per 1 g of sample powder. The correlation between the O 2 occlusion amount per 1 g of the sample powder (μmol / g) and the temperature was as shown in Table 1.

Figure 0005864443
Figure 0005864443

第1表に示すデータから明らかなように、本発明の実施例1〜2に係る試料粉末は、比較例1〜2に係る試料粉末と比較して酸素吸蔵性に優れたものであった。   As is clear from the data shown in Table 1, the sample powders according to Examples 1 and 2 of the present invention were excellent in oxygen storage compared with the sample powders according to Comparative Examples 1 and 2.

<昇温反応法(TPR)による評価>
実施例1〜2及び比較例1〜2において得られた各々の試料粉末200mgとカーボン20mg(デグサ社製、Printex−V、トナーカーボン)とをメノウ乳鉢で10分間混合し、この混合物から20mgを分取し、石英反応管の中央部に石英ウールを使って固定した。下記組成の流通ガスを下記の流量で流しながら電気炉によってその石英反応管の温度を下記の昇温速度で昇温させながら出口側でのCO及びCOの濃度を赤外線分析計で測定した。このCOの濃度とCOの濃度との和が30ppmになった時の触媒入り口側の温度(電気炉制御温度)をTig(燃焼開始温度)とした。
ガス組成:O:10%、N:残余
流量:400cc/min
昇温速度:10℃/min
<Evaluation by temperature rising reaction method (TPR)>
200 mg of each sample powder obtained in Examples 1-2 and Comparative Examples 1-2 and 20 mg of carbon (Degussa, Printex-V, toner carbon) were mixed for 10 minutes in an agate mortar, and 20 mg of this mixture was mixed. The sample was collected and fixed to the center of the quartz reaction tube using quartz wool. The concentration of CO and CO 2 at the outlet side was measured with an infrared analyzer while the temperature of the quartz reaction tube was raised at the following rate of temperature rise by an electric furnace while flowing the following gas at the following flow rate. The temperature at the catalyst inlet side (electric furnace control temperature) when the sum of the CO concentration and the CO 2 concentration was 30 ppm was defined as Tig (combustion start temperature).
Gas composition: O 2 : 10%, N 2 : residual flow rate: 400 cc / min
Temperature increase rate: 10 ° C / min

実施例1〜2及び比較例1〜2に係る試料粉末のTPRの評価結果は第2表に示す通りであった。   The TPR evaluation results of the sample powders according to Examples 1 and 2 and Comparative Examples 1 and 2 were as shown in Table 2.

Figure 0005864443
Figure 0005864443

第2表に示すデータから明らかなように、Agを担持している本発明の実施例1に係る試料粉末は、Agを担持していない本発明の実施例2に係る試料粉末と比較してTPRの評価において優れたものであった。   As is clear from the data shown in Table 2, the sample powder according to Example 1 of the present invention supporting Ag is compared with the sample powder according to Example 2 of the present invention not supporting Ag. It was excellent in evaluation of TPR.

<排ガス浄化性能試験>
実施例1、実施例2、実施例3、実施例4、実施例5及び比較例1で得られた各々の排ガス浄化用触媒について大気中、700℃で30時間の耐久処理を行った。その後、それらの排ガス浄化用触媒を別々にモデルガス測定装置(堀場製作所製MEXA−7500D)に装填し、下記の第3表に示す組成の排気モデルガスを空間速度29000/hで流通させながら、600℃から17℃/分の降温速度で降温させ、CO、HC浄化率を連続的に測定した。COの浄化率は図1及び図3に示す通りであり、HCの浄化率は図2及び図4に示す通りであった。
<Exhaust gas purification performance test>
Each exhaust gas purifying catalyst obtained in Example 1, Example 2, Example 3, Example 4, Example 5 and Comparative Example 1 was subjected to an endurance treatment at 700 ° C. for 30 hours in the atmosphere. Then, these exhaust gas purification catalysts were separately loaded into a model gas measuring device (MEXA-7500D manufactured by Horiba, Ltd.), and the exhaust model gas having the composition shown in Table 3 below was circulated at a space velocity of 29000 / h. The temperature was lowered from 600 ° C. at a rate of 17 ° C./min, and the CO and HC purification rates were measured continuously. The CO purification rate was as shown in FIGS. 1 and 3, and the HC purification rate was as shown in FIGS.

Figure 0005864443
Figure 0005864443

図1及び図2に示すグラフから明らかなように、CeO−ZrOを用いた場合よりもYMnを用いた場合に浄化性能が優れており、YMnを用いた場合よりもAg/YMnを用いた場合に浄化性能が優れている。また、図3及び図4に示すグラフから明らかなように、YMnを用いた場合よりもAgやMnをYMnに担持させることによって浄化性能を高めることができる。As apparent from the graph shown in FIG. 1 and FIG. 2, in the case of using CeO 2 -ZrO 2 and purification performance superior when using YMn 2 O 5 than, than with YMn 2 O 5 Also, when Ag / YMn 2 O 5 is used, the purification performance is excellent. Further, as is apparent from the graphs shown in FIGS. 3 and 4, the purification performance can be improved by supporting Ag or Mn on YMn 2 O 5 than when YMn 2 O 5 is used.

実施例6〜10
及びLuを下記第4表の割合で溶解した硝酸溶液と、下記第4表の硝酸マンガン溶液とを混合し、500mLとした溶液に、2.5%NH水溶液359.2mLと、30%過酸化水素水17mLとを加え、沈殿を生成した。続いて、沈殿物をろ過し、洗浄した後、120℃で一晩乾燥させた。その後、大気中、600℃で5時間焼成し、さらに、800℃で5時間焼成し、LuドープYMn粉末(実施例6についてはLu未ドープ)を得た。
Examples 6-10
A nitric acid solution in which Y 2 O 3 and Lu 2 O 3 are dissolved in the ratio shown in Table 4 below and a manganese nitrate solution in Table 4 below are mixed to make 500 mL, and a 2.5% NH 3 aqueous solution 359 is added. 2 mL and 17 mL of 30% aqueous hydrogen peroxide were added to form a precipitate. Subsequently, the precipitate was filtered, washed, and dried overnight at 120 ° C. Thereafter, in the air, and calcined for 5 hours at 600 ° C., further calcined 5 hours at 800 ° C., Lu doped YMn 2 O 5 powder (for Example 6 Lu undoped) was obtained.

硝酸銀0.124gに水37.5gを加え、攪拌して硝酸銀水溶液とし、この水溶液に、各LuドープYMn粉末を1.5gを投入し、加熱して水分を揮発させた。得られた粉末を、120℃で2時間乾燥した後、空気中600℃で1時間焼成し、実施例6〜10の排ガス浄化用触媒を得た。得られた排ガス浄化用触媒のAg担持量は金属Ag+担体の合計質量基準で5.57質量%であった。37.5 g of water was added to 0.124 g of silver nitrate and stirred to form an aqueous silver nitrate solution. To this aqueous solution, 1.5 g of each Lu-doped YMn 2 O 5 powder was added and heated to volatilize water. The obtained powder was dried at 120 ° C. for 2 hours and then calcined in air at 600 ° C. for 1 hour to obtain exhaust gas purifying catalysts of Examples 6 to 10. The amount of Ag supported on the obtained exhaust gas purifying catalyst was 5.57% by mass based on the total mass of metal Ag + carrier.

<固定床模擬ガス浄化性能評価試験1>
実施例6〜10の排ガス浄化用触媒について大気中、700℃で30時間の耐久処理を行った。その後、実施例6〜10で得られた各々の排気ガス浄化用触媒の触媒活性を以下のようにして評価した。
<Fixed bed simulation gas purification performance evaluation test 1>
The exhaust gas purifying catalysts of Examples 6 to 10 were subjected to an endurance treatment at 700 ° C. for 30 hours in the air. Thereafter, the catalytic activity of each exhaust gas purifying catalyst obtained in Examples 6 to 10 was evaluated as follows.

まず、固定床流通型反応装置を用い、反応管に触媒粉を0.1gセットし、上記第3表の組成から成る模擬排気ガスを1L/minで流通させ、500℃まで昇温後10分間保持し、前処理を行った。その後、一旦冷却後、100℃〜500℃まで10℃/minで昇温し、100〜500℃における出口ガス成分をCO/HC/NO分析計を用いて測定した。得られたライトオフ性能評価結果より、CO及びHCの50%浄化率に到達する温度(T50)を求めた。その結果は第4表に示す通りであった。   First, using a fixed bed flow type reactor, 0.1 g of catalyst powder was set in a reaction tube, and simulated exhaust gas having the composition shown in Table 3 was circulated at 1 L / min. Retained and pretreated. Then, after cooling, the temperature was raised from 100 ° C. to 500 ° C. at 10 ° C./min, and the outlet gas component at 100 to 500 ° C. was measured using a CO / HC / NO analyzer. From the obtained light-off performance evaluation results, the temperature (T50) at which 50% purification rate of CO and HC was reached was determined. The results were as shown in Table 4.

第4表には、耐久処理後の比表面積(BET法で測定)をあわせて示す。   Table 4 also shows the specific surface area (measured by the BET method) after the durability treatment.

この結果、実施例7〜10に係るYの一部をLuで置換した排ガス浄化用触媒については、Luドープ量が多くなるほどT50が低下していき、ドープ量が0.2(Y:Lu=8:2)の実施例9で最も良好な結果を示すことがわかった。   As a result, for the exhaust gas purifying catalyst in which part of Y according to Examples 7 to 10 is replaced with Lu, T50 decreases as the Lu doping amount increases, and the doping amount becomes 0.2 (Y: Lu = It was found that Example 9 of 8: 2) showed the best results.

Figure 0005864443
Figure 0005864443

実施例11〜16
を下記第5表の割合で溶解した硝酸溶液と、第5表に示した濃度の水酸化カルシウム硝酸溶液と、下記第5表の硝酸マンガン溶液とを混合し、500mLとした溶液に、2.5%NH水溶液350.4mLと、30%過酸化水素水17mLとを加え、沈殿を生成した。続いて、沈殿物をろ過し、洗浄した後、120℃で一晩乾燥させた。その後、大気中、600℃で5時間焼成し、さらに、800℃で5時間焼成し、CaドープYMn粉末(実施例11はCa未ドープ)を得た。
Examples 11-16
A solution in which Y 2 O 3 is dissolved in a proportion shown in Table 5 below, a calcium hydroxide nitric acid solution having a concentration shown in Table 5 and a manganese nitrate solution shown in Table 5 below are mixed to make 500 mL. In addition, 350.4 mL of 2.5% NH 3 aqueous solution and 17 mL of 30% aqueous hydrogen peroxide were added to form a precipitate. Subsequently, the precipitate was filtered, washed, and dried overnight at 120 ° C. Thereafter, in the air, and calcined for 5 hours at 600 ° C., further calcined 5 hours at 800 ° C., Ca-doped YMn 2 O 5 powder (Example 11 Ca undoped) was obtained.

硝酸銀0.124gに水37.5gを加え、攪拌して硝酸銀水溶液とし、この水溶液に、各YMn粉末を1.5gを投入し、加熱して水分を揮発させた。得られた粉末を、120℃で3時間乾燥した後、空気中600℃で1時間焼成し、実施例11〜16の排ガス浄化用触媒を得た。得られた排ガス浄化用触媒のAg担持量は金属Ag+担体の合計質量基準で5.57質量%であった。37.5 g of water was added to 0.124 g of silver nitrate and stirred to obtain an aqueous silver nitrate solution. To this aqueous solution, 1.5 g of each YMn 2 O 5 powder was added and heated to volatilize water. The obtained powder was dried at 120 ° C. for 3 hours and then calcined in air at 600 ° C. for 1 hour to obtain exhaust gas purifying catalysts of Examples 11 to 16. The amount of Ag supported on the obtained exhaust gas purifying catalyst was 5.57% by mass based on the total mass of metal Ag + carrier.

<固定床模擬ガス浄化性能評価試験2>
実施例11〜16の排ガス浄化用触媒について、固定床模擬ガス浄化性能評価試験1と同様に試験し各々の排気ガス浄化用触媒の触媒活性を以下のようにして評価した。得られたライトオフ性能評価結果より、CO及びHCの50%浄化率に到達する温度(T50)を求めた。その結果は第5表に示す通りであった。
<Fixed bed simulation gas purification performance evaluation test 2>
The exhaust gas purification catalysts of Examples 11 to 16 were tested in the same manner as the fixed bed simulated gas purification performance evaluation test 1, and the catalytic activity of each exhaust gas purification catalyst was evaluated as follows. From the obtained light-off performance evaluation results, the temperature (T50) at which 50% purification rate of CO and HC was reached was determined. The results were as shown in Table 5.

第5表には、耐久処理後の比表面積(BET法で測定)をあわせて示す。   Table 5 also shows the specific surface area (measured by the BET method) after the durability treatment.

この結果、実施例11〜16に係るYの一部をCaで置換した排ガス浄化用触媒についてもCaドープ量が多くなるほどT50が低下していき、ドープ量が0.1(Y:Ca=9:1)の実施例15で最も良好な結果を示すことがわかった。   As a result, for the exhaust gas purifying catalyst in which a part of Y according to Examples 11 to 16 is replaced with Ca, T50 decreases as the Ca doping amount increases, and the doping amount becomes 0.1 (Y: Ca = 9 1) was found to give the best results in Example 15.

Figure 0005864443
Figure 0005864443

実施例17〜20
Y(1−x)BixMnのx=0、0.1、0.2及び0.3となるように、所定量の硝酸イットリウム、硝酸ビスマス及び硝酸マンガンをそれぞれ秤量後、16モル倍のイオン交換水に投入し、溶解した。各溶液に、6モル倍のクエン酸を入れ、攪拌し、温度を80℃まで昇温してクエン酸を完全に溶解させる。次に、各溶液を150℃の炉で蒸発乾固し、続いて、350℃で2時間一次焼成を行い、さらに、800℃で2時間二次焼成を行い、実施例17〜20の排ガス浄化用触媒を得た。なお、実施例18〜20の排ガス浄化用触媒は、BiドープYMnである。
Examples 17-20
After weighing a predetermined amount of yttrium nitrate, bismuth nitrate and manganese nitrate so that x = 0, 0.1, 0.2 and 0.3 of Y (1-x) BixMn 2 O 5 is 16 mol times, In ion-exchanged water and dissolved. 6 mol times citric acid is added to each solution, stirred, and the temperature is raised to 80 ° C. to completely dissolve the citric acid. Next, each solution was evaporated to dryness in a furnace at 150 ° C., followed by primary baking at 350 ° C. for 2 hours, and further secondary baking at 800 ° C. for 2 hours. A catalyst was obtained. Incidentally, the exhaust gas purifying catalyst of Examples 18 to 20 is a Bi-doped YMn 2 O 5.

<昇温脱離法による評価>
実施例17〜20の排ガス浄化用触媒をそれぞれ100mg秤量し、前処理として、100mL/minで大気を導入した雰囲気下で、室温から10℃/minで700℃まで昇温し、その後、同じ雰囲気で50℃まで放冷した。
<Evaluation by temperature programmed desorption method>
100 mg of each of the exhaust gas purifying catalysts of Examples 17 to 20 was weighed, and as a pretreatment, the temperature was raised from room temperature to 700 ° C. at 10 ° C./min in an atmosphere introduced with air at 100 mL / min, and then the same atmosphere And allowed to cool to 50 ° C.

各サンプルについて、昇温脱離法(TPD)により、酸素放出ピーク温度を測定した。測定条件は、2%H含有Heを50mL/min導入した雰囲気下で、50℃から700℃まで10℃/minで昇温し、放出されたガスの質量を測定し、酸素放出のピーク温度(℃)を求めた。結果は下記第6表に示す。For each sample, the oxygen release peak temperature was measured by a temperature programmed desorption method (TPD). Measurement conditions were as follows: 2% H 2 containing He was introduced at 50 mL / min, the temperature was raised from 50 ° C. to 700 ° C. at 10 ° C./min, the mass of the released gas was measured, and the peak temperature of oxygen release (° C.) was determined. The results are shown in Table 6 below.

この結果、Yの一部をBiで置換した実施例18〜20のBiドープYMnからなる排ガス浄化触媒は、Biがドープされない実施例17と比較してより低温で酸素を放出できることがわかった。As a result, the exhaust gas purification catalyst composed of Bi-doped YMn 2 O 5 of Examples 18 to 20 in which a part of Y is substituted with Bi can release oxygen at a lower temperature than Example 17 in which Bi is not doped. all right.

Figure 0005864443
Figure 0005864443

実施例21
硝酸銅を所定量秤量し、適量のイオン交換水に入れて攪拌し、溶解させた。硝酸銅が完全に溶解した後、所定量のYMn粉末を投入し、攪拌して分散させる。次いで、60℃で真空脱気を行い、蒸発乾固させ、600℃で2時間焼成を行い、5質量%Cu担持YMn粉末を得た。
Example 21
A predetermined amount of copper nitrate was weighed, placed in an appropriate amount of ion-exchanged water, stirred and dissolved. After the copper nitrate is completely dissolved, a predetermined amount of YMn 2 O 5 powder is added and stirred to disperse. Subsequently, vacuum deaeration was performed at 60 ° C., evaporation to dryness, and baking was performed at 600 ° C. for 2 hours to obtain 5 mass% Cu-supported YMn 2 O 5 powder.

<固定床模擬ガス浄化性能評価試験3>
実施例21の排ガス浄化用触媒について、固定床模擬ガス浄化性能評価試験1と同様に試験し各々の排気ガス浄化用触媒の触媒活性を以下のようにして評価した。得られたライトオフ性能評価結果より、CO及びHCの50%浄化率に到達する温度(T50)を求めた。その結果は第7表に示す通りであった。
<Fixed bed simulation gas purification performance evaluation test 3>
The exhaust gas purification catalyst of Example 21 was tested in the same manner as the fixed bed simulated gas purification performance evaluation test 1, and the catalytic activity of each exhaust gas purification catalyst was evaluated as follows. From the obtained light-off performance evaluation results, the temperature (T50) at which 50% purification rate of CO and HC was reached was determined. The results were as shown in Table 7.

この結果、実施例21に係るCu担持YMnも浄化性能を発揮することがわかった。なお、実施例21は測定条件が異なるため、他の実施例と単純な比較はできない。As a result, it was found that the Cu-supported YMn 2 O 5 according to Example 21 also exhibited purification performance. Since Example 21 has different measurement conditions, a simple comparison with other examples is not possible.

Figure 0005864443
Figure 0005864443

実施例22〜24
実施例6の合成方法で得られたYMnと、これと同様な方法でY/Mnが1/1になる様にして合成して得られたYMnOとを、第8表に示す比率で混合し、マンガン酸イットリウム担体の混合物(実施例22はYMnO未混合)を得た。
Examples 22-24
Table 8 shows YMn 2 O 5 obtained by the synthesis method of Example 6 and YMnO 3 obtained by synthesizing Y / Mn to be 1/1 by the same method. The mixture was mixed at a ratio to obtain a mixture of yttrium manganate support (Example 22 was not mixed with YMnO 3 ).

次に、硝酸Ag0.124gに水37.5gを加え、攪拌して硝酸Ag水溶液とし、この水溶液に上記のYMnとYMnOとの混合物1.5gを投入し、加熱攪拌して水分を揮発させた。得られた粉末を120℃で3時間乾燥した後、空気中600℃で2時間焼成し、排ガス浄化用触媒を得た。得られた排ガス浄化用触媒のAg担持量は金属Ag+担体の合計質量基準で5.57質量%であった。Next, 37.5 g of water is added to 0.124 g of nitric acid Ag and stirred to obtain an aqueous solution of Ag nitric acid. To this aqueous solution, 1.5 g of the above-mentioned mixture of YMn 2 O 5 and YMnO 3 is added, and heated and stirred to obtain moisture. Was volatilized. The obtained powder was dried at 120 ° C. for 3 hours and then calcined in air at 600 ° C. for 2 hours to obtain an exhaust gas purifying catalyst. The amount of Ag supported on the obtained exhaust gas purifying catalyst was 5.57% by mass based on the total mass of metal Ag + carrier.

<固定床模擬ガス浄化性能評価試験4>
実施例22から24の排ガス浄化用触媒について、固定床模擬ガス浄化性能評価試験1と同様に試験し各々の排気ガス浄化用触媒の触媒活性を以下のようにして評価した。得られたライトオフ性能評価結果より、CO及びHCの50%浄化率に到達する温度(T50)を求めた。その結果は第8表に示す通りであった。
<Fixed bed simulation gas purification performance evaluation test 4>
The exhaust gas purification catalysts of Examples 22 to 24 were tested in the same manner as the fixed bed simulated gas purification performance evaluation test 1, and the catalytic activity of each exhaust gas purification catalyst was evaluated as follows. From the obtained light-off performance evaluation results, the temperature (T50) at which 50% CO and HC purification rates were achieved was determined. The results were as shown in Table 8.

第8表には、耐久処理後の比表面積(BET法で測定)をあわせて示す。   Table 8 also shows the specific surface area (measured by the BET method) after the durability treatment.

この結果、YMnO未混合のYMnである実施例22が最も良好な排ガス浄化性能を示したが、YMnOを混合した実施例23、24も、概ね同様の排ガス浄化性能を示すことがわかった。これは、YMn固有の優れた排ガス浄化性能による効果は勿論、YMnが比較的に高い比表面積を得られやすいことにも起因するものと思われる。なお、実施例22〜24の測定条件は他と異なるため、他の実施例と単純な比較はできない。As a result, Example 22 which is YMn 2 O 5 not mixed with YMnO 3 showed the best exhaust gas purification performance, but Examples 23 and 24 mixed with YMnO 3 also showed almost the same exhaust gas purification performance. I understood. This effect YMn 2 O 5 unique excellent exhaust gas purification performance, of course, are believed to be due to the YMn 2 O 5 is obtained a relatively high specific surface area tends to. In addition, since the measurement conditions of Examples 22-24 are different from others, a simple comparison with other Examples cannot be performed.

Figure 0005864443
Figure 0005864443

Claims (5)

セラミックス又は金属材料からなる触媒支持体と、該触媒支持体上に担持されている複酸化物Y1−XMn(式中、AはCa、Lu又はBiであり、0.5≧X≧0である)と、該複酸化物Y1−XMnに担持されているAg、Cu及びMnからなる群から選択される少なくとも一種の原子からなる金属とを有し、担持された金属の量が金属+担体の合計質量基準で5〜10質量%であることを特徴とする排気ガス浄化用触媒。 Catalyst support made of ceramic or metal material, and double oxide Y 1-X A X Mn 2 O 5 supported on the catalyst support (wherein A is Ca, Lu or Bi; 5 ≧ X ≧ 0) and a metal comprising at least one atom selected from the group consisting of Ag, Cu and Mn supported on the double oxide Y 1-X A X Mn 2 O 5 An exhaust gas purifying catalyst characterized in that the amount of the supported and supported metal is 5 to 10% by mass based on the total mass of the metal + support . 複酸化物Y1−XMnがYMnである請求項1記載の排気ガス浄化用触媒。 2. The exhaust gas purifying catalyst according to claim 1, wherein the double oxide Y 1-X A X Mn 2 O 5 is YMn 2 O 5 . 前記複酸化物Y1−XMnに担持されている原子がAgである請求項記載の排気ガス浄化用触媒。 The mixed oxide Y 1-X A X Mn 2 O 5 is supported on the atom is Ag claim 1 exhaust gas purifying catalyst according. 触媒支持体がハニカム形状であることを特徴とする請求項1〜3の何れか1項に記載の排気ガス浄化用触媒。 The exhaust gas purifying catalyst according to any one of claims 1 to 3, wherein the catalyst support has a honeycomb shape. 触媒支持体がDPFであることを特徴とする請求項1〜3の何れか1項に記載の排気ガス浄化用触媒。 The exhaust gas purifying catalyst according to any one of claims 1 to 3, wherein the catalyst support is a DPF.
JP2012551832A 2011-01-05 2011-12-22 Exhaust gas purification catalyst Expired - Fee Related JP5864443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012551832A JP5864443B2 (en) 2011-01-05 2011-12-22 Exhaust gas purification catalyst

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011000625 2011-01-05
JP2011000625 2011-01-05
PCT/JP2011/079874 WO2012093599A1 (en) 2011-01-05 2011-12-22 Exhaust gas purifying catalyst
JP2012551832A JP5864443B2 (en) 2011-01-05 2011-12-22 Exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JPWO2012093599A1 JPWO2012093599A1 (en) 2014-06-09
JP5864443B2 true JP5864443B2 (en) 2016-02-17

Family

ID=46457459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012551832A Expired - Fee Related JP5864443B2 (en) 2011-01-05 2011-12-22 Exhaust gas purification catalyst

Country Status (4)

Country Link
JP (1) JP5864443B2 (en)
CN (1) CN103429341B (en)
DE (1) DE112011104676T5 (en)
WO (1) WO2012093599A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5925668B2 (en) * 2012-11-27 2016-05-25 三井金属鉱業株式会社 Exhaust gas purification catalyst
US20140336045A1 (en) * 2013-05-10 2014-11-13 Cdti Perovskite and Mullite-like Structure Catalysts for Diesel Oxidation and Method of Making Same
US20160023188A1 (en) * 2013-06-06 2016-01-28 Clean Diesel Technologies, Inc. Pseudo-brookite Compositions as Active Zero-PGM Catalysts for Diesel Oxidation Applications
WO2015159403A1 (en) * 2014-04-17 2015-10-22 三井金属鉱業株式会社 Catalyst composition for purifying exhaust gas and exhaust gas purifying catalyst
US20160346765A1 (en) * 2015-06-01 2016-12-01 Clean Diesel Technologies, Inc. Combination of Pseudobrookite Oxide and Low Loading of PGM as High Sulfur-Resistant Catalyst for Diesel Oxidation Applications
US20170095794A1 (en) * 2015-10-01 2017-04-06 Clean Diesel Technologies, Inc. NO Oxidation Activity of Pseudo-brookite Compositions as Zero-PGM Catalysts for Diesel Oxidation Applications
JP7368351B2 (en) * 2017-11-10 2023-10-24 ビーエーエスエフ コーポレーション Catalyzed soot filter with reduced ammonia oxidation
US11633723B2 (en) 2017-11-17 2023-04-25 Mitsui Mining & Smelting Co., Ltd. Exhaust gas purging composition
CN108671938A (en) * 2018-04-24 2018-10-19 曹俊峰 A kind of preparation method of purifying vehicle exhaust spent mixed catalyst
CN110433794B (en) * 2019-08-15 2020-10-30 南开大学 General formula AM2O5-xApplication of compound as catalyst for catalyzing VOC combustion
JP7226343B2 (en) * 2020-01-08 2023-02-21 トヨタ自動車株式会社 oxygen storage material
CN115739106A (en) * 2022-11-10 2023-03-07 南开大学 Preparation method and application of composite oxide

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002038048A (en) * 2000-06-07 2002-02-06 Dmc 2 Degussa Metals Catalysts Cerdec Ag Pigment containing rare earth manganese oxide, coating or enamel composition containing the pigment, coated article, method for preparing the pigment, and method of coloring article
JP2004530837A (en) * 2001-06-26 2004-10-07 フォルシュングスツェントルム ユーリッヒ ゲーエムベーハー Diesel smoke filter with finely dispersed diesel smoke catalyst
EP1547972A2 (en) * 2003-12-22 2005-06-29 The Boc Group, Inc. Oxygen sorbent compositions and methods of using same
JP2007216099A (en) * 2006-02-14 2007-08-30 Honda Motor Co Ltd Exhaust gas purification oxidation catalyst
JP2009136788A (en) * 2007-12-06 2009-06-25 Honda Motor Co Ltd Oxidation catalyst device for cleaning exhaust gas
JP2010170998A (en) * 2008-12-24 2010-08-05 Mitsubishi Heavy Ind Ltd Electrode catalyst for fuel cell and its selection method
JP2011016684A (en) * 2009-07-08 2011-01-27 Hokkaido Univ Oxygen deficit perovskite-type metal oxide excellent in oxygen storage capability, exhaust gas purifying catalyst and functional ceramic containing the metal oxide, and method and apparatus using the metal oxide

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1047035A (en) 1996-08-08 1998-02-17 Sumitomo Electric Ind Ltd Particulate trap for diesel engine
JP3528839B2 (en) 2002-05-15 2004-05-24 トヨタ自動車株式会社 Particulate oxidizer and oxidation catalyst
JP2004058013A (en) 2002-07-31 2004-02-26 Nissan Motor Co Ltd Purification catalyst for exhaust gas

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002038048A (en) * 2000-06-07 2002-02-06 Dmc 2 Degussa Metals Catalysts Cerdec Ag Pigment containing rare earth manganese oxide, coating or enamel composition containing the pigment, coated article, method for preparing the pigment, and method of coloring article
JP2004530837A (en) * 2001-06-26 2004-10-07 フォルシュングスツェントルム ユーリッヒ ゲーエムベーハー Diesel smoke filter with finely dispersed diesel smoke catalyst
EP1547972A2 (en) * 2003-12-22 2005-06-29 The Boc Group, Inc. Oxygen sorbent compositions and methods of using same
JP2007216099A (en) * 2006-02-14 2007-08-30 Honda Motor Co Ltd Exhaust gas purification oxidation catalyst
JP2009136788A (en) * 2007-12-06 2009-06-25 Honda Motor Co Ltd Oxidation catalyst device for cleaning exhaust gas
JP2010170998A (en) * 2008-12-24 2010-08-05 Mitsubishi Heavy Ind Ltd Electrode catalyst for fuel cell and its selection method
JP2011016684A (en) * 2009-07-08 2011-01-27 Hokkaido Univ Oxygen deficit perovskite-type metal oxide excellent in oxygen storage capability, exhaust gas purifying catalyst and functional ceramic containing the metal oxide, and method and apparatus using the metal oxide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012012819; MOTOHASHI, T. et al: 'Remarkable Oxygen Intake/Release Capability of BaYMn2O5+delta: Applications to Oxygen Storage Technolog' Chem. Mater. Vol.22, No.10, 20100421, p.3192-3196 *

Also Published As

Publication number Publication date
WO2012093599A1 (en) 2012-07-12
JPWO2012093599A1 (en) 2014-06-09
DE112011104676T5 (en) 2013-12-05
CN103429341B (en) 2017-12-05
CN103429341A (en) 2013-12-04

Similar Documents

Publication Publication Date Title
JP5864443B2 (en) Exhaust gas purification catalyst
JP5864444B2 (en) Exhaust gas purification catalyst and exhaust gas purification catalyst structure
JP5859366B2 (en) Exhaust gas purification catalyst and exhaust gas purification catalyst structure
JP2005066559A (en) Exhaust gas treatment catalyst and exhaust gas treatment method
JP4806613B2 (en) Gas purification method, gas purification device, and gas purification catalyst
WO2019088302A1 (en) Oxygen absorbing and releasing material, catalyst, exhaust gas purifying system, and exhaust gas treatment method
WO2006134787A1 (en) Exhaust gas purifying catalyst
CN104203402B (en) Exhaust gas purification catalyst
JP6087784B2 (en) Oxygen storage / release material and exhaust gas purification catalyst containing the same
JP5558867B2 (en) Exhaust purification catalyst
JP5802087B2 (en) Exhaust gas purification catalyst
WO2010110298A1 (en) Exhaust gas purifying catalyst
JP4859100B2 (en) Exhaust gas purification catalyst
JP5794908B2 (en) Exhaust gas purification catalyst and exhaust gas purification catalyst structure
JP5196656B2 (en) Exhaust gas purification catalyst and method for producing the same
JPH09248462A (en) Exhaust gas-purifying catalyst
JP5071840B2 (en) Exhaust gas purification catalyst
JP5120360B2 (en) Oxygen storage / release material and exhaust gas purifying catalyst provided with the same
JP4775953B2 (en) Exhaust gas purification catalyst and regeneration method thereof
JP5190797B2 (en) Composite oxide catalyst, diesel particulate filter using the same, and method for producing composite oxide catalyst
JP5585805B2 (en) PM oxidation catalyst and production method thereof
JP2000256017A (en) Laminar perovskite compound, catalyst material for purification of nitrogen oxide and catalyst for purification of exhaust gas using the same
JP6681347B2 (en) Exhaust gas purification catalyst carrier and exhaust gas purification catalyst
JP3786666B2 (en) Exhaust gas purification catalyst and method for producing the same
JP2016026874A (en) Catalyst carrier for exhaust gas purification, catalyst for exhaust gas purification, and catalyst product for exhaust gas purification

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141104

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151224

R150 Certificate of patent or registration of utility model

Ref document number: 5864443

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees