WO2006134787A1 - Exhaust gas purifying catalyst - Google Patents

Exhaust gas purifying catalyst Download PDF

Info

Publication number
WO2006134787A1
WO2006134787A1 PCT/JP2006/311106 JP2006311106W WO2006134787A1 WO 2006134787 A1 WO2006134787 A1 WO 2006134787A1 JP 2006311106 W JP2006311106 W JP 2006311106W WO 2006134787 A1 WO2006134787 A1 WO 2006134787A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
purifying catalyst
gas purifying
noble metal
earth element
Prior art date
Application number
PCT/JP2006/311106
Other languages
French (fr)
Japanese (ja)
Inventor
Satoshi Matsueda
Mareo Kimura
Akimasa Hirai
Keiichi Narita
Hirohisa Tanaka
Mari Uenishi
Isao Tan
Masashi Taniguchi
Original Assignee
Cataler Corporation
Daihatsu Motor Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cataler Corporation, Daihatsu Motor Co., Ltd. filed Critical Cataler Corporation
Priority to EP06756927A priority Critical patent/EP1913999A4/en
Priority to US11/915,317 priority patent/US8133839B2/en
Priority to CN2006800213548A priority patent/CN101198404B/en
Publication of WO2006134787A1 publication Critical patent/WO2006134787A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0205Impregnation in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20715Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • B01J35/30
    • B01J35/613
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust gas purifying catalyst.
  • a three-way catalyst in which a precious metal such as platinum is supported on an inorganic oxide such as ceria or alumina has been widely used. Yes.
  • the precious metal plays a role in promoting the reduction reaction of nitrogen oxides and the oxidation reaction of carbon monoxide and hydrocarbons.
  • inorganic oxides play a role in increasing the specific surface area of the noble metal and suppressing the sintering of the noble metal by dissipating the heat generated by the reaction.
  • ceria has oxygen storage capacity and can optimize the previous reduction and oxidation reactions.
  • the exhaust gas purifying catalyst is used at a higher temperature as compared with the prior art, and the opportunity to be exposed to an oxygen-excess atmosphere at a high temperature is increasing. Therefore, there is a lot of research and development to realize an exhaust gas purifying catalyst that exhibits sufficient performance even in such a usage environment.
  • Japanese Patent Application Laid-Open No. 5-168926 discloses exhaust containing platinum group element, activated alumina, cerium oxide, norium compound and zirconium compound. A catalyst for gas purification is described.
  • Japanese Examined Patent Publication No. 6-75675 discloses that the catalyst support layer contains cerium oxide, zirconium oxide, and catalytic metal, and at least a part of these cerium oxide and zirconium oxide is a complex oxide.
  • an exhaust gas purifying catalyst existing as a solid solution is described.
  • JP 2000-169148 discloses a general formula: Ce
  • a cerium-based complex oxide represented by Zr Y 2 O is described.
  • Japanese Patent Application Laid-Open No. 10-358 and Japanese Patent Application Laid-Open No. 2001-129399 describe that platinum sintering is suppressed by making platinum present as a platinum composite oxide.
  • Japanese Patent Application Laid-Open No. 10-358 discloses a high heat-resistant composite oxide containing platinum and one or more elements selected from an alkaline earth metal element or a group IV element. A catalyst for exhaust gas purification using is described.
  • JP 2001-129399 A a platinum complex oxide layer containing platinum element and an alkaline earth metal element is provided on an inorganic oxide support, and a metal X (X is Mg, Ca, An exhaust gas purifying catalyst is described in which an oxide layer of one or more elements selected from Sr, Ba, La and Ce is interposed.
  • An object of the present invention is to provide an exhaust gas purifying catalyst which is less likely to cause a decrease in activity even when used in an atmosphere having a high temperature and a high oxygen concentration.
  • the rare earth element, the alkaline earth element, zirconium, and a noble metal are included, and the atomic ratio of the alkaline earth element to the sum of the rare earth element and zirconium is 10 atomic% or more.
  • Part of the element and part of zirconium form a composite oxide with at least part of the alkaline earth element, and this composite oxide and part of the noble metal form a solid solution! / Provided exhaust gas purification catalyst.
  • FIG. 1 is a diagram schematically showing an exhaust gas purifying catalyst according to an embodiment of the present invention.
  • FIG. 2 is a diagram schematically showing a state change of the exhaust gas purifying catalyst of FIG. 1 under high temperature conditions.
  • FIG. 3 is a graph showing an X-ray diffraction spectrum of the powder produced in Example 1.
  • FIG. 4 is a TEM photograph of an exhaust gas purifying catalyst according to Example 2.
  • FIG. 5 is a graph showing changes in the X-ray diffraction spectrum accompanying changes in the atmosphere composition, obtained for the exhaust gas purifying catalyst according to Example 2.
  • FIG. 6 is a graph showing the change in solid solution formation rate with the change in the composition of the atmosphere obtained for the exhaust gas purifying catalyst according to Example 2.
  • FIG. 1 is a diagram schematically showing an exhaust gas purifying catalyst according to an embodiment of the present invention.
  • This exhaust gas purifying catalyst 1 is a pellet catalyst formed by agglomerating particles, and FIG. 1 shows one particle.
  • This exhaust gas purification catalyst 1 is used under high temperature conditions of, for example, 1000 ° C to 1200 ° C.
  • the exhaust gas-purifying catalyst 1 shown in FIG. 1 includes a support 11, composite oxides 12 a to 12 c partially covered on the surface, and a noble metal 13 a supported on the support 11.
  • the support 11 contains a rare earth element oxide as a main component.
  • the carrier 11 can further contain, for example, zircoure (ZrO 2).
  • Carrier 11 is composed of rare earth elements and zirco.
  • -It may contain a complex oxide with um as the main component.
  • the composite oxide 12a contains a composite oxide of a rare earth element and an alkaline earth element as a main component.
  • the composite oxide 12b contains a composite oxide of zirconium and an alkaline earth element as a main component.
  • the composite oxide 12c contains a composite oxide of a rare earth element, zirconium and an alkaline earth element as a main component.
  • the rare earth elements contained in the composite oxides 12a and 12c are the same as the rare earth elements contained in the carrier 11, and the composite oxides 12a to 12c do not contain the same alkaline earth element.
  • the composite oxides 12a to 12c contain the same noble metal as the noble metal 13a and form a solid solution.
  • the carrier 11 contains ceria (CeO) as a main component, and a composite oxide.
  • complex oxide 12a is composed of a complex oxide represented by the chemical formula: BaCeO, and complex oxide 12b is represented by the chemical formula:
  • the complex acidity represented by BaZrO is the chemical formula: Ba (Zr, Ce) 0
  • the noble metal and the noble metal 13a included in the composite oxides 12a to 12c are assumed to be platinum (Pt). That is, cerium is used as the rare earth element, norlium is used as the alkaline earth element, and platinum is used as the noble metal.
  • the solid solution of the composite oxide 12a and platinum can be expressed, for example, by the chemical formula: Ba (Ce, Pt) O, and the solid solution of the composite oxide 12b and platinum can be expressed by the chemical formula: Ba (Zr, P
  • This exhaust gas-purifying catalyst 1 exhibits an irreversible state change when the composition of the atmosphere is changed under high temperature conditions. This will be described with reference to FIG.
  • FIG. 2 is a diagram schematically showing a state change of the exhaust gas-purifying catalyst of FIG. 1 under high temperature conditions.
  • the state indicated as “Lean” indicates that the exhaust gas purification is performed when exposed to a high oxygen concentration atmosphere under a high temperature condition of 1000 ° C. to 1200 ° C., for example, when the fuel supply to the engine is stopped. This shows the state of the catalyst 1 for metal.
  • the state indicated as “Rich” is an exhaust gas when exposed to a low oxygen concentration atmosphere under a high temperature condition of 1000 ° C. to 1200 ° C., for example, when a large amount of fuel is continuously supplied to the engine.
  • the state where the catalyst 1 for purifier is exhibited is shown.
  • the state indicated as "Lean” in FIG. 2 corresponds to the state described with reference to FIG. However, at this time, at least a part of the noble metal 13a may be oxidized (the oxidation number is increased).
  • the noble metal 13a mainly contributes to the activity of the exhaust gas purification catalyst 1, and platinum in the composite oxides 12a to 12c hardly contributes to the activity.
  • the concentration of harmful components for example, nitrogen oxides, carbon monoxide, hydrocarbons, etc.
  • the exhaust gas purifying catalyst 1 exhibits sufficient performance.
  • the exhaust gas purifying catalyst 1 changes from the state indicated as "Le &11" to the state indicated as "1 ⁇ 11". Specifically, complex acid Platinum is deposited from the compounds 12a to 12c, and the deposited platinum forms a noble metal 13b on the surfaces of the composite oxides 12a to 12c.
  • the noble metal 13b is much smaller than the noble metal 13a.
  • the dimension of the noble metal 13a is about several lOnm, while the dimension of the noble metal 13b is several nm or less. Therefore, the exhaust gas purifying catalyst 1 that exhibits the state of “Richj” has higher activity than the exhaust gas purifying catalyst 1 that exhibits the state of “Lean”. is doing. Therefore, the exhaust gas purifying catalyst 1 exhibits sufficient performance even when the concentration of harmful components in the exhaust gas is high.
  • Exhaust gas purifying catalyst 1 exhibiting a state indicated as “Rich” changes to a state indicated as “Lean” when the oxygen concentration in the atmosphere increases under the previous high-temperature conditions. To do. That is, the platinum forming the noble metal 13b and the composite oxide form a solid solution. Platinum and silica rarely form a solid solution.
  • the exhaust gas purifying catalyst 1 undergoes a reversible state change.
  • the exhaust gas-purifying catalyst 1 forms extremely fine noble metal 13b on the surfaces of the composite oxides 12a to 12c each time it changes from the state described as “Lean” to the state expressed as “Rich”. To do. Therefore, this state is recovered by causing a change from a state indicated as “Rich” to a state indicated as “Lean” and vice versa.
  • the oxygen concentration in the exhaust gas changes relatively frequently, so this exhaust gas purification catalyst 1 always exhibits high activity and sufficient performance when exposed to a low oxygen concentration atmosphere at high temperatures. Demonstrate.
  • the noble metal 13a contributes to the activity of the exhaust gas purifying catalyst 1 regardless of the composition and temperature of the atmosphere. Therefore, the exhaust gas-purifying catalyst 1 exhibits sufficient performance when exposed to an atmosphere of high oxygen concentration at high temperatures, and also exhibits sufficient performance during initial use and low-temperature conditions.
  • rare earth element As the rare earth element has been described above as an example, other elements may be used as the rare earth element.
  • lantern, praseodymium, neodymium, etc. may be used.
  • a plurality of rare earth elements may be used.
  • Elements other than norium may be used as the alkaline earth element.
  • strontium, calcium and magnesium may be used.
  • a plurality of alkaline earth elements may be used.
  • Elements other than platinum may be used as the noble metal.
  • platinum group elements such as palladium and rhodium may be used.
  • a plurality of noble metals may be used.
  • the atomic ratio of the alkaline earth element to the sum of the rare earth element and zirconium is 10 atomic% or more, and typically 20 atomic% or more.
  • the atomic ratio is, for example, 100 atomic% or less, and typically 80 atomic% or less.
  • this atomic ratio When this atomic ratio is small, the volume ratio of the composite oxide 12 to the support 11 is small. Therefore, the performance recovery of the exhaust gas purifying catalyst 1 due to the change in the composition of the atmosphere may be insufficient. Further, when this atomic ratio is excessively increased, the ratio of the noble metal 13a to the total noble metal supported by the exhaust gas purification catalyst 1 is reduced. Therefore, sufficient catalytic activity may not be obtained under high temperature and high oxygen concentration conditions. If the atomic ratio is excessively increased, the heat resistance of the support 11 is lowered during high temperature use, and as a result, noble metal sintering may occur easily.
  • the precious metal content of the exhaust gas purification catalyst 1 is, for example, in the range of 0.01% by mass to 10% by mass, and typically in the range of 0.1% by mass to 5% by mass. If the noble metal content is low, sufficient catalytic activity may not be obtained. When the noble metal content is high, sintering of the noble metal may occur easily.
  • the ratio of the precious metal forming the solid solution to the total precious metal carried by the exhaust gas purification catalyst 1 (hereinafter referred to as the solid solution formation rate) is, for example, within a range of 10% to 80%. And When the solid solution formation rate is small, the decrease in activity due to sintering of noble metals is suppressed. The effect may be insufficient. When the solid solution formation rate is large, the initial activity may be insufficient.
  • the exhaust gas purifying catalyst 1 can be produced, for example, by the following method.
  • a powdery support 11 containing a complex oxide of a rare earth element and zirconium oxide as a main component is prepared, and a slurry thereof is prepared. At this time, for example, water is used as the dispersion medium.
  • a noble metal salt solution is added to the slurry and this is filtered. Subsequently, the filter cake is sequentially dried and fired. In this way, the support 11 is loaded with the noble metal.
  • the carrier 11 supporting the noble metal is added to the alkaline earth salt solution. Sarako, this slurry is heated to sufficiently remove the liquid. In this way, the alkaline earth element is supported on the support 11.
  • the carrier 11 carrying the noble metal and the alkaline earth element is fired in an oxidizing atmosphere.
  • the composite oxides 12a to 12c are generated, and a solid solution of the composite oxides 12a to 12c and the noble metal is generated, and the particles shown in FIG. 1 are obtained.
  • the fired powder is compression-molded, and the molded product is pulverized as necessary. As described above, a pellet-shaped exhaust gas purification catalyst 1 is obtained.
  • the firing temperature is, for example, in the range of about 700 ° C to about 1100 ° C.
  • the firing temperature is low, it is difficult to form noble metals in these composite oxides 12a to 12c, which are difficult to produce the composite oxides 12a to 12c.
  • the calcination temperature is high, the specific surface area of the carrier 11 decreases, and accordingly, it becomes difficult to satisfactorily disperse the noble metal 13a on the carrier 11. Therefore, high activity may not be obtained.
  • the exhaust gas purifying catalyst 1 is a pellet catalyst
  • the exhaust gas purifying catalyst 1 can take various forms.
  • the exhaust gas purifying catalyst 1 may be a monolith catalyst.
  • the filter cake was thoroughly washed with deionized water and dried at 110 ° C. This dried product was subjected to pre-baking at 500 ° C for 3 hours in an air atmosphere. The obtained pre-baked product was pulverized in a mortar and further subjected to main baking at 800 ° C. for 5 hours in an air atmosphere.
  • the oxide powder was sufficiently dispersed in deionized water by performing ultrasonic stirring for 10 minutes, and then a dinitrodiammine platinum nitric acid solution was added to the slurry.
  • concentration and addition amount of the dinitrodiammine gold nitric acid solution were adjusted so that the amount of platinum supported was 1% by mass over the exhaust gas purification catalyst as the final product.
  • the slurry was subjected to suction filtration.
  • the filtrate was subjected to inductively coupled radio frequency plasma (ICP) spectroscopy analysis and found that almost all of the platinum in the slurry was present in the filter cake.
  • ICP inductively coupled radio frequency plasma
  • the filter cake was dried at 110 ° C for 12 hours. Subsequently, this was fired at 500 ° C. in the atmosphere. As a result, platinum was supported on the above oxide.
  • barium acetate was dissolved in lOOmL of deionized water.
  • 50 g of an oxide containing platinum was weighed and added to an aqueous barium acetate solution.
  • the concentration of the barium acetate aqueous solution was adjusted so that the atomic ratio of barium to the sum of cerium and zirconium was 10.0 atomic% in the exhaust gas purification catalyst as the final product.
  • FIG. 3 is a graph showing an X-ray diffraction spectrum of the powder produced in Example 1.
  • the horizontal axis indicates the diffraction angle
  • the vertical axis indicates the diffraction intensity.
  • this powder has a chemical formula: (Ce, Zr) 0 in addition to a composite oxide represented by chemical formula: BaCeO.
  • Oxide chemical formula: Composite oxide represented by BaZrO, Chemical formula: Ba (Zr, Ce) 0
  • the above powder was compression molded. Further, this molded product was pulverized to obtain a pellet-shaped exhaust gas purifying catalyst having a particle size of about 0.5 mm to about 1. Omm.
  • Exhaust gas was treated in the same way as described in Example 1 except that the concentration and amount of barium acetate aqueous solution were adjusted so that the atomic ratio of norium to the sum of cerium and zirconium in the final product was 30 atomic%.
  • a catalyst for purifier was produced.
  • the amount of platinum supported and the solid solution formation rate were examined by the same method as described in Example 1. As a result, in this example, the amount of platinum supported was 1% by mass and the solid solution formation rate was 65%.
  • Exhaust gas was exhausted by the same method as described in Example 1 except that the concentration and amount of barium acetate aqueous solution were adjusted so that the atomic ratio of norium to the sum of cerium and zirconium in the final product was 50 atomic%.
  • a catalyst for purifier was produced.
  • Example 4 the amount of platinum supported and the solid solution formation rate were examined by the same method as described in Example 1. As a result, in this example, the amount of platinum supported was 1% by mass and the solid solution formation rate was 70%. [0060] (Example 4)
  • Example 2 Except that the concentration and amount of barium acetate aqueous solution were adjusted so that the atomic ratio of norium to the sum of cerium and zirconium in the final product was 80 atomic%, the same method as described in Example 1 was used. An exhaust gas purification catalyst was produced.
  • the amount of platinum supported and the solid solution formation rate were examined by the same method as described in Example 1. As a result, in this example, the amount of platinum supported was 1% by mass and the solid solution formation rate was 85%.
  • Exhaust gas was exhausted by the same method as described in Example 1 except that the concentration and amount of barium acetate aqueous solution were adjusted so that the atomic ratio of norium to the sum of cerium and zirconium in the final product was 100 atomic%.
  • a catalyst for purifier was produced.
  • Exhaust gas purification catalyst was produced in the same manner as described in Example 1 except that the addition of the platinum-supported oxide to the barium acetate aqueous solution and subsequent firing was not performed. .
  • the amount of platinum supported was examined by the same method as described in Example 1. As a result, in this example, the platinum loading was 1% by mass.
  • an oxide powder represented by the chemical formula: (Ce, Zr, Y) 0 is converted by the following method.
  • this oxide powder was used instead of the oxide powder represented by the chemical formula: (Ce, Zr) 0.
  • a catalyst for exhaust gas purification was produced by the method described above.
  • an oxide powder represented by the chemical formula: (Ce, Zr, La, Nd) 0 is
  • the atomic ratio of lanthanum, lanthanum, and neodymium was weighed to 50: 35: 10: 5, and these were added to 500 mL of deionized water. After sufficiently stirring, at room temperature, a 10% by mass aqueous solution of ammonium hydroxide was added dropwise to the aqueous solution to cause coprecipitation. The aqueous solution containing the precipitate was stirred for 60 minutes and then filtered.
  • the filter cake was thoroughly washed with deionized water and dried at 110 ° C. This dried product was subjected to pre-baking at 500 ° C for 3 hours in an air atmosphere. The obtained pre-baked product was pulverized in a mortar and further subjected to main baking at 800 ° C. for 5 hours in an air atmosphere.
  • the amount of platinum supported and the solid solution formation rate were examined by the same method as described in Example 1. As a result, in this example, the amount of platinum supported was 1% by mass and the solid solution formation rate was 70%.
  • each exhaust gas purification catalyst was placed in a flow-type durability test apparatus, and a gas containing nitrogen as a main component was passed through the catalyst bed at a flow rate of lOOmLZ for 30 hours. During this time, the catalyst bed temperature was maintained at 1050 ° C.
  • a lean gas obtained by adding 5% oxygen to nitrogen and a rich gas obtained by adding 10% carbon monoxide and nitrogen to nitrogen are used, and these gases are used every 5 minutes. Switched to.
  • the columns labeled “Ce”, “Zr”, “Y”, “La”, “Nd” indicate cerium, zirconium, yttrium in the metal elements other than platinum contained in the exhaust gas purification catalyst.
  • the atomic ratios of lanthanum and lanthanum are listed.
  • V is the mass ratio of platinum in the exhaust gas purification catalyst.
  • AEZ (RE + Zr) shows the altitude for the sum of rare earth elements and zirconium in exhaust gas purification catalysts.
  • the atomic ratio of the potash earth element (in this case, norium) is indicated.
  • the column labeled “50% purification temperature” shows the lowest temperature of the catalyst bed that could purify 50% or more of each component in the model gas.
  • “HC” and “NO” indicate hydrocarbon and nitrogen oxide, respectively.
  • the exhaust gas purifying catalyst according to Examples 1 to 7 can purify the model gas at a lower temperature than the exhaust gas purifying catalyst according to the comparative example. did it. From these results, it can be seen that the exhaust gas purifying catalysts according to Examples 1 to 7 are superior in durability to the exhaust gas purifying catalyst according to the comparative example.
  • the exhaust gas purifying catalyst according to Example 2 was again placed in a flow-type durability test apparatus, and the above-described lean gas was allowed to flow therethrough. Subsequently, the gas flowing through the catalyst bed was switched to the lean gas force rich gas described above. During this time, the temperature of the catalyst bed was maintained at 1050 ° C. Thereafter, the temperature of the catalyst bed was lowered while allowing rich gas to flow through the catalyst bed. After the temperature of the catalyst bed became sufficiently low, the exhaust gas-purifying catalyst was observed with a transmission electron microscope (TEM). Figure 4 shows this TEM image.
  • TEM transmission electron microscope
  • FIG. 4 is a TEM photograph of the exhaust gas purifying catalyst according to Example 2. As shown in Fig. 4, a large amount of platinum (Pt) is deposited on the composite oxide containing normium, and these platinum have extremely small dimensions. As described above, in the exhaust gas purifying catalyst according to Example 2, a large amount of very fine platinum was present on the composite oxide immediately after switching the flow gas from lean gas to rich gas under high temperature conditions.
  • the exhaust gas purifying catalyst according to Example 2 was placed in a flow-type durability test apparatus, the temperature of the catalyst bed was set to 1050 ° C, and the above-described lean gas was allowed to flow therethrough. . Subsequently, the temperature of the catalyst bed was lowered while lean gas was circulated through the catalyst bed. After the temperature of the catalyst bed has become sufficiently low, a part of the exhaust gas purification catalyst is extracted, and the diffraction spectrum is measured with an X-ray diffractometer, as described in Example 1. The solid solution formation rate was investigated by the method of
  • the catalyst bed containing the remaining exhaust gas purification catalyst was heated to 1050 ° C, and the rich gas was circulated through the catalyst bed. Subsequently, the temperature of the catalyst bed was lowered with rich gas flowing through the catalyst bed. After the temperature of the catalyst bed has become sufficiently low, a part of the exhaust gas purification catalyst is extracted and removed. In addition to measuring the diffraction spectrum with an X-ray diffractometer, the solid solution formation rate was examined by the same method as described in Example 1.
  • the catalyst bed containing the remaining exhaust gas purification catalyst was heated to 1050 ° C, and the above-described lean gas was circulated through the catalyst bed. Subsequently, the temperature of the catalyst bed was lowered while lean gas was circulated through the catalyst bed. After the temperature of the catalyst bed has become sufficiently low, a part of the exhaust gas-purifying catalyst is extracted, and the diffraction spectrum is measured with an X-ray diffractometer and the same method as described in Example 1 is used. The solid solution formation rate was examined.
  • FIG. 5 is a graph showing changes in the X-ray diffraction spectrum accompanying the change in the composition of the atmosphere obtained with the exhaust gas purifying catalyst according to Example 2.
  • the horizontal axis indicates the diffraction angle
  • the vertical axis indicates the detection intensity.
  • curve A shows the diffraction spectrum immediately after the first flow of lean gas
  • curve B shows the diffraction spectrum immediately after the rich gas flow
  • curve C shows the diffraction spectrum immediately after the lean gas flow again. The diffraction spectrum at is shown.
  • FIG. 5 shows, as an example, a peak derived from a complex acid compound represented by the chemical formula: BaZrO.
  • FIG. 6 is a graph showing the change in the solid solution formation rate with the change in the composition of the atmosphere obtained by the exhaust gas purifying catalyst according to Example 2.
  • the data indicated by “oxidation” indicates the solid solution formation rate measured immediately after the first flow of lean gas
  • the data indicated by “reduction” indicates the solid solution formation measured immediately after the rich gas flow.
  • the data shown in “Reoxidation” indicates the solid solution formation rate measured immediately after recirculating lean gas.
  • the exhaust gas purifying catalyst according to Example 2 generates a solid solution of the composite oxide and platinum by switching the flow gas to rich gas power lean gas at a high temperature. , By switching the flow gas to lean gas rich gas at high temperature, platinum was precipitated from the complex oxide.
  • the same test was performed on the exhaust gas purifying catalysts according to Examples 1 and 3 to 7, and similar results were obtained. That is, the exhaust gas purifying catalysts according to Examples 1 and 3 to 7 also generate a solid solution of a composite oxide and platinum by switching the flow gas from rich gas to lean gas at high temperature, and flow at high temperature. By switching the gas from lean gas to rich gas, the precipitation of platinum with high complex acid strength occurred.

Abstract

Disclosed is an exhaust gas purifying catalyst (1) containing a rare earth element, an alkaline earth element, zirconium and a noble metal. The atomic ratio of the alkaline earth element relative to the sum of the rare earth element and zirconium is not less than 10 at%. A part of the rare earth element and a part of zirconium form a complex oxide together with at least a part of the alkaline earth element, and this complex oxide and a part of the noble metal form a solid solution.

Description

明 細 書  Specification
排ガス浄化用触媒  Exhaust gas purification catalyst
技術分野  Technical field
[0001] 本発明は、排ガス浄化用触媒に関する。  [0001] The present invention relates to an exhaust gas purifying catalyst.
背景技術  Background art
[0002] 従来から、自動車の排ガスを処理する排ガス浄ィ匕用触媒としては、セリアやアルミ ナ等の無機酸ィ匕物に白金等の貴金属を担持させてなる三元触媒が広く使用されて いる。この三元触媒では、貴金属は、窒素酸化物の還元反応並びに一酸化炭素及 び炭化水素の酸化反応を促進する役割を担っている。また、無機酸ィ匕物は、貴金属 の比表面積を増大させると共に、反応による発熱を消散させて貴金属のシンタリング を抑制する役割を担っている。特に、セリアは、酸素ストレージ能を有しており、先の 還元反応及び酸化反応を最適化し得る。  Conventionally, as an exhaust gas purification catalyst for treating automobile exhaust gas, a three-way catalyst in which a precious metal such as platinum is supported on an inorganic oxide such as ceria or alumina has been widely used. Yes. In this three-way catalyst, the precious metal plays a role in promoting the reduction reaction of nitrogen oxides and the oxidation reaction of carbon monoxide and hydrocarbons. In addition, inorganic oxides play a role in increasing the specific surface area of the noble metal and suppressing the sintering of the noble metal by dissipating the heat generated by the reaction. In particular, ceria has oxygen storage capacity and can optimize the previous reduction and oxidation reactions.
[0003] ところで、近年、自動車等の自動推進車両は、そのエンジン性能向上に伴い、高速 で走行する機会が増えている。これに加え、大気汚染を防止すベぐ排ガス規制の 強化が進められている。このような背景のもと、自動推進車両の排ガス温度は益々高 くなる傾向にある。  [0003] Incidentally, in recent years, automatic propulsion vehicles such as automobiles have increased opportunities to travel at high speeds as their engine performance has improved. In addition, exhaust gas regulations to prevent air pollution are being strengthened. Against this backdrop, the exhaust gas temperature of self-propelled vehicles tends to become higher and higher.
[0004] また、自動推進車両には、地球温暖化を抑制するために、二酸化炭素排出量の低 減が要求されている。そのため、排ガス浄化用触媒が高温に加熱された状態でェン ジンへの燃料供給を停止する機会が増えて 、る。  [0004] Further, in order to suppress global warming, automatic propulsion vehicles are required to reduce carbon dioxide emissions. As a result, there are more opportunities to stop the fuel supply to the engine while the exhaust gas purification catalyst is heated to a high temperature.
[0005] すなわち、排ガス浄ィ匕用触媒は、従来と比較してより高い温度で使用されると共に 、高温で酸素過剰雰囲気に晒される機会が増加している。したがって、このような使 用環境下でも十分な性能を発揮する排ガス浄化用触媒を実現すベぐ研究開発が 盛んに行われている。  [0005] That is, the exhaust gas purifying catalyst is used at a higher temperature as compared with the prior art, and the opportunity to be exposed to an oxygen-excess atmosphere at a high temperature is increasing. Therefore, there is a lot of research and development to realize an exhaust gas purifying catalyst that exhibits sufficient performance even in such a usage environment.
[0006] f列えば、、特開平 5— 168926号公報と特公平 6— 75675公報と特開 2000— 1691 48号公報とには、セリアの熱安定性を高め、その酸素ストレージ能などの低下を抑制 することが記載されている。具体的には、特開平 5— 168926号公報には、白金族元 素、活性アルミナ、酸ィ匕セリウム、ノリウム化合物及びジルコニウム化合物を含んだ排 ガス浄ィ匕用触媒が記載されている。特公平 6— 75675公報には、触媒担持層がセリ ゥム酸化物とジルコニウム酸化物と触媒金属とを含み、それらセリウム酸化物及びジ ルコユウム酸ィ匕物の少なくとも一部が複合酸ィ匕物又は固溶体として存在している排ガ ス浄化用触媒が記載されている。特開 2000— 169148号公報には、一般式: Ce [0006] For example, Japanese Patent Application Laid-Open No. 5-168926, Japanese Patent Publication No. 6-75675, and Japanese Patent Application Laid-Open No. 2000-169148 disclose that the thermal stability of ceria is increased and its oxygen storage capacity is reduced. It is described to suppress this. Specifically, Japanese Patent Application Laid-Open No. 5-168926 discloses exhaust containing platinum group element, activated alumina, cerium oxide, norium compound and zirconium compound. A catalyst for gas purification is described. Japanese Examined Patent Publication No. 6-75675 discloses that the catalyst support layer contains cerium oxide, zirconium oxide, and catalytic metal, and at least a part of these cerium oxide and zirconium oxide is a complex oxide. Or, an exhaust gas purifying catalyst existing as a solid solution is described. JP 2000-169148 discloses a general formula: Ce
1 _ 1 _
Zr Y O で表されるセリウム系複合酸ィ匕物が記載されて 、る。 A cerium-based complex oxide represented by Zr Y 2 O is described.
+ b) a b 2-b/2  + b) a b 2-b / 2
[0007] また、特開平 10— 358号公報と特開 2001— 129399号公報とには、白金を白金 複合酸化物として存在させることにより、白金のシンタリングを抑制することが記載さ れている。具体的には、特開平 10— 358号公報には、白金と、アルカリ土類金属元 素又は ΠΙΑ族元素カゝら選ばれる 1種以上の元素とを含んだ高耐熱性複合酸ィ匕物を 用いた排ガス浄ィ匕用触媒が記載されている。特開 2001— 129399号公報には、無 機酸化物担体上に白金元素とアルカリ土類金属元素とを含んだ白金複合酸化物層 を備え、それらの間に金属 X(Xは Mg, Ca, Sr, Ba, La, Ceから選ばれる 1種以上 の元素)の酸ィ匕物層が介在した排ガス浄ィ匕用触媒が記載されている。  [0007] Further, Japanese Patent Application Laid-Open No. 10-358 and Japanese Patent Application Laid-Open No. 2001-129399 describe that platinum sintering is suppressed by making platinum present as a platinum composite oxide. . Specifically, Japanese Patent Application Laid-Open No. 10-358 discloses a high heat-resistant composite oxide containing platinum and one or more elements selected from an alkaline earth metal element or a group IV element. A catalyst for exhaust gas purification using is described. In JP 2001-129399 A, a platinum complex oxide layer containing platinum element and an alkaline earth metal element is provided on an inorganic oxide support, and a metal X (X is Mg, Ca, An exhaust gas purifying catalyst is described in which an oxide layer of one or more elements selected from Sr, Ba, La and Ce is interposed.
[0008] し力しながら、単にセリアの熱安定性を高めただけでは、排ガス浄化用触媒を高温 ,例えば 1000°C乃至 1200°C,の酸素過剰雰囲気に晒した場合に、白金がシンタリ ングして、十分な活性が得られない。また、熱安定性に優れた白金複合酸化物を生 成するためには、高温焼成が必要である。そのため、白金複合酸化物を用いた排ガ ス浄ィ匕用触媒の多くは、比表面積が小さぐ活性が不十分である。  [0008] However, if the thermal stability of the ceria is simply increased, platinum is sintered when the exhaust gas purification catalyst is exposed to an oxygen-excess atmosphere at a high temperature, for example, 1000 ° C to 1200 ° C. Thus, sufficient activity cannot be obtained. In addition, high-temperature firing is necessary to produce a platinum composite oxide with excellent thermal stability. For this reason, many exhaust gas purifying catalysts using platinum composite oxide have a small specific surface area and insufficient activity.
発明の開示  Disclosure of the invention
[0009] 本発明の目的は、高温であり且つ酸素濃度が高い雰囲気中で使用した場合であつ ても活性低下が生じ難い排ガス浄ィ匕用触媒を提供することにある。  [0009] An object of the present invention is to provide an exhaust gas purifying catalyst which is less likely to cause a decrease in activity even when used in an atmosphere having a high temperature and a high oxygen concentration.
[0010] 本発明の一側面によると、希土類元素とアルカリ土類元素とジルコニウムと貴金属と を含み、希土類元素とジルコニウムとの和に対するアルカリ土類元素の原子比は 10 原子%以上であり、希土類元素の一部とジルコニウムの一部とはアルカリ土類元素の 少なくとも一部と複合酸化物を形成し、この複合酸ィ匕物と貴金属の一部とは固溶体を 形成して!/ヽる排ガス浄ィ匕用触媒が提供される。  [0010] According to one aspect of the present invention, the rare earth element, the alkaline earth element, zirconium, and a noble metal are included, and the atomic ratio of the alkaline earth element to the sum of the rare earth element and zirconium is 10 atomic% or more. Part of the element and part of zirconium form a composite oxide with at least part of the alkaline earth element, and this composite oxide and part of the noble metal form a solid solution! / Provided exhaust gas purification catalyst.
図面の簡単な説明  Brief Description of Drawings
[0011] [図 1]本発明の一態様に係る排ガス浄化用触媒を概略的に示す図。 [図 2]図 1の排ガス浄ィ匕用触媒が高温条件下で示す状態変化を概略的に示す図。 FIG. 1 is a diagram schematically showing an exhaust gas purifying catalyst according to an embodiment of the present invention. FIG. 2 is a diagram schematically showing a state change of the exhaust gas purifying catalyst of FIG. 1 under high temperature conditions.
[図 3]例 1で生成した粉末の X線回折スペクトルを示すグラフ。  FIG. 3 is a graph showing an X-ray diffraction spectrum of the powder produced in Example 1.
[図 4]例 2に係る排ガス浄ィ匕用触媒の TEM写真。  FIG. 4 is a TEM photograph of an exhaust gas purifying catalyst according to Example 2.
[図 5]例 2に係る排ガス浄ィ匕用触媒について得られた、雰囲気の組成変化に伴う X線 回折スペクトルの変化を示すグラフ。  FIG. 5 is a graph showing changes in the X-ray diffraction spectrum accompanying changes in the atmosphere composition, obtained for the exhaust gas purifying catalyst according to Example 2.
[図 6]例 2に係る排ガス浄ィ匕用触媒について得られた、雰囲気の組成変化に伴う固溶 体形成率の変化を示すグラフ。  FIG. 6 is a graph showing the change in solid solution formation rate with the change in the composition of the atmosphere obtained for the exhaust gas purifying catalyst according to Example 2.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0012] 以下、本発明の態様について説明する。 [0012] Hereinafter, embodiments of the present invention will be described.
図 1は、本発明の一態様に係る排ガス浄ィ匕用触媒を概略的に示す図である。この 排ガス浄ィ匕用触媒 1は粒子を凝集させてなるペレット触媒であり、図 1には、その一粒 子を描いている。この排ガス浄ィ匕用触媒 1は、例えば 1000°C乃至 1200°Cの高温条 件下で使用する。  FIG. 1 is a diagram schematically showing an exhaust gas purifying catalyst according to an embodiment of the present invention. This exhaust gas purifying catalyst 1 is a pellet catalyst formed by agglomerating particles, and FIG. 1 shows one particle. This exhaust gas purification catalyst 1 is used under high temperature conditions of, for example, 1000 ° C to 1200 ° C.
[0013] 図 1の排ガス浄化用触媒 1は、担体 11と、その表面を部分的に被覆した複合酸ィ匕 物 12a乃至 12cと、担体 11に担持された貴金属 13aとを含んで 、る。  The exhaust gas-purifying catalyst 1 shown in FIG. 1 includes a support 11, composite oxides 12 a to 12 c partially covered on the surface, and a noble metal 13 a supported on the support 11.
[0014] 担体 11は、希土類元素の酸ィ匕物を主成分として含有している。担体 11は、例えば 、ジルコユア(ZrO )をさらに含有することができる。担体 11は、希土類元素とジルコ  [0014] The support 11 contains a rare earth element oxide as a main component. The carrier 11 can further contain, for example, zircoure (ZrO 2). Carrier 11 is composed of rare earth elements and zirco.
2  2
-ゥムとの複合酸化物を主成分として含有してもよ 、。  -It may contain a complex oxide with um as the main component.
[0015] 複合酸化物 12aは、希土類元素とアルカリ土類元素との複合酸ィ匕物を主成分とし て含有している。複合酸ィ匕物 12bは、ジルコニウムとアルカリ土類元素との複合酸ィ匕 物を主成分として含有している。複合酸ィ匕物 12cは、希土類元素とジルコニウムとァ ルカリ土類元素との複合酸化物を主成分として含有している。  [0015] The composite oxide 12a contains a composite oxide of a rare earth element and an alkaline earth element as a main component. The composite oxide 12b contains a composite oxide of zirconium and an alkaline earth element as a main component. The composite oxide 12c contains a composite oxide of a rare earth element, zirconium and an alkaline earth element as a main component.
[0016] 複合酸ィ匕物 12a及び 12cが含んでいる希土類元素は担体 11が含んでいる希土類 元素と同一であり、複合酸ィ匕物 12a乃至 12cは同一のアルカリ土類元素を含んでい る。また、複合酸ィ匕物 12a乃至 12cは、貴金属 13aと同一の貴金属を含有しており、 固溶体を形成している。  [0016] The rare earth elements contained in the composite oxides 12a and 12c are the same as the rare earth elements contained in the carrier 11, and the composite oxides 12a to 12c do not contain the same alkaline earth element. The The composite oxides 12a to 12c contain the same noble metal as the noble metal 13a and form a solid solution.
[0017] ここでは、一例として、担体 11はセリア (CeO )を主成分として含有し、複合酸化物  [0017] Here, as an example, the carrier 11 contains ceria (CeO) as a main component, and a composite oxide.
2  2
12aは化学式: BaCeOで表される複合酸化物からなり、複合酸化物 12bは化学式: BaZrOで表される複合酸ィ匕物力 なり、複合酸ィ匕物 12cは化学式: Ba (Zr, Ce) 012a is composed of a complex oxide represented by the chemical formula: BaCeO, and complex oxide 12b is represented by the chemical formula: The complex acidity represented by BaZrO is the chemical formula: Ba (Zr, Ce) 0
3 3 で表される複合酸化物からなることとする。また、複合酸化物 12a乃至 12cが含む貴 金属及び貴金属 13aは白金 (Pt)であることとする。すなわち、希土類元素としてセリ ゥムを使用し、アルカリ土類元素としてノリウムを使用し、貴金属として白金を使用す ることとする。なお、複合酸ィ匕物 12aと白金との固溶体は例えばィ匕学式: Ba (Ce, Pt) Oで表すことができ、複合酸化物 12bと白金との固溶体は例えば化学式: Ba (Zr, P3 It shall consist of the complex oxide represented by 3. Further, the noble metal and the noble metal 13a included in the composite oxides 12a to 12c are assumed to be platinum (Pt). That is, cerium is used as the rare earth element, norlium is used as the alkaline earth element, and platinum is used as the noble metal. The solid solution of the composite oxide 12a and platinum can be expressed, for example, by the chemical formula: Ba (Ce, Pt) O, and the solid solution of the composite oxide 12b and platinum can be expressed by the chemical formula: Ba (Zr, P
3 Three
t) 0で表すことができ、複合酸ィ匕物 12cと白金との固溶体は例えばィ匕学式: Ba (Zr, t) 0, and the solid solution of the complex oxide 12c and platinum can be expressed, for example, by the formula: Ba (Zr,
3 Three
Ce, Pt) 0で表すことができる。  Ce, Pt) 0.
3  Three
[0018] この排ガス浄ィ匕用触媒 1は、高温条件下で雰囲気の組成を変化させた場合に、可 逆的な状態変化を示す。これについて、図 2を参照しながら説明する。  [0018] This exhaust gas-purifying catalyst 1 exhibits an irreversible state change when the composition of the atmosphere is changed under high temperature conditions. This will be described with reference to FIG.
[0019] 図 2は、図 1の排ガス浄化用触媒が高温条件下で示す状態変化を概略的に示す図 である。図 2において、「Lean」と表記した状態は、例えば 1000°C乃至 1200°Cの高 温条件下で高酸素濃度雰囲気に晒した場合,例えばエンジンへの燃料供給を停止 した場合,に排ガス浄ィ匕用触媒 1が呈する状態を示している。他方、「Rich」と表記し た状態は、例えば 1000°C乃至 1200°Cの高温条件下で低酸素濃度雰囲気に晒した 場合,例えばエンジンに多量の燃料を供給し続けている場合,に排ガス浄ィ匕用触媒 1が呈する状態を示している。  FIG. 2 is a diagram schematically showing a state change of the exhaust gas-purifying catalyst of FIG. 1 under high temperature conditions. In FIG. 2, the state indicated as “Lean” indicates that the exhaust gas purification is performed when exposed to a high oxygen concentration atmosphere under a high temperature condition of 1000 ° C. to 1200 ° C., for example, when the fuel supply to the engine is stopped. This shows the state of the catalyst 1 for metal. On the other hand, the state indicated as “Rich” is an exhaust gas when exposed to a low oxygen concentration atmosphere under a high temperature condition of 1000 ° C. to 1200 ° C., for example, when a large amount of fuel is continuously supplied to the engine. The state where the catalyst 1 for purifier is exhibited is shown.
[0020] 図 2に「Lean」と表記した状態は、図 1を参照しながら説明した状態に相当している 。但し、このとき、貴金属 13aの少なくとも一部は、酸化されている(酸化数が増加して いる)可能性がある。  [0020] The state indicated as "Lean" in FIG. 2 corresponds to the state described with reference to FIG. However, at this time, at least a part of the noble metal 13a may be oxidized (the oxidation number is increased).
[0021] この状態では、主として、貴金属 13aが排ガス浄ィ匕用触媒 1の活性に寄与し、複合 酸ィ匕物 12a乃至 12c中の白金は活性には殆ど寄与しない。しかしながら、排ガス浄 化用触媒 1が「Lean」と表記した状態を呈している期間において、排ガス中の有害成 分 (例えば、窒素酸化物、一酸化炭素、炭化水素など)の濃度,すなわち雰囲気中の 有害成分濃度,は比較的低い。したがって、排ガス浄ィ匕用触媒 1は、十分な性能を 発揮する。  [0021] In this state, the noble metal 13a mainly contributes to the activity of the exhaust gas purification catalyst 1, and platinum in the composite oxides 12a to 12c hardly contributes to the activity. However, during the period when the exhaust gas-purifying catalyst 1 is in the state of “Lean”, the concentration of harmful components (for example, nitrogen oxides, carbon monoxide, hydrocarbons, etc.) in the exhaust gas, that is, in the atmosphere The concentration of harmful components is relatively low. Therefore, the exhaust gas purifying catalyst 1 exhibits sufficient performance.
[0022] 先の高温条件下で雰囲気中の酸素濃度が低くなると、排ガス浄ィ匕用触媒 1は、「Le &11」と表記した状態から「1^11」と表記した状態へと変化する。具体的には、複合酸 化物 12a乃至 12cから白金が析出し、この析出した白金は、複合酸化物 12a乃至 12 cの表面に貴金属 13bを形成する。 [0022] When the oxygen concentration in the atmosphere is lowered under the previous high temperature condition, the exhaust gas purifying catalyst 1 changes from the state indicated as "Le &11" to the state indicated as "1 ^ 11". Specifically, complex acid Platinum is deposited from the compounds 12a to 12c, and the deposited platinum forms a noble metal 13b on the surfaces of the composite oxides 12a to 12c.
[0023] 排ガス浄ィ匕用触媒 1が「Rich」と表記した状態を呈している期間において、排ガス 中の有害成分濃度は比較的高い。すなわち、「Rich」と表記した状態に対応した期 間では、「Lean」と表記した状態に対応した期間と比較して、排ガス浄化用触媒 1に はより高 、活性が要求される。  [0023] During the period when the exhaust gas purifying catalyst 1 is in the state of "Rich", the concentration of harmful components in the exhaust gas is relatively high. That is, in the period corresponding to the state indicated as “Rich”, the exhaust gas-purifying catalyst 1 is required to have higher activity than the period corresponding to the state indicated as “Lean”.
[0024] 貴金属 13bは、貴金属 13aと比較して遥かに小さい。例えば、貴金属 13aの寸法が 数 lOnm程度であるのに対し、貴金属 13bの寸法は数 nm以下である。それゆえ、「R ichjと表記した状態を呈して 、る排ガス浄ィ匕用触媒 1は、「Lean」と表記した状態を 呈している排ガス浄ィ匕用触媒 1と比較して高い活性を有している。したがって、この排 ガス浄ィ匕用触媒 1は、排ガス中の有害成分濃度が高い場合であっても、十分な性能 を発揮する。  [0024] The noble metal 13b is much smaller than the noble metal 13a. For example, the dimension of the noble metal 13a is about several lOnm, while the dimension of the noble metal 13b is several nm or less. Therefore, the exhaust gas purifying catalyst 1 that exhibits the state of “Richj” has higher activity than the exhaust gas purifying catalyst 1 that exhibits the state of “Lean”. is doing. Therefore, the exhaust gas purifying catalyst 1 exhibits sufficient performance even when the concentration of harmful components in the exhaust gas is high.
[0025] 「Rich」と表記した状態を呈して 、る排ガス浄ィ匕用触媒 1は、先の高温条件下で雰 囲気中の酸素濃度が高くなると、「Lean」と表記した状態へと変化する。すなわち、貴 金属 13bを形成している白金と複合酸化物とは固溶体を形成する。なお、白金とセリ ァとが固溶体を形成することは殆どない。  [0025] Exhaust gas purifying catalyst 1 exhibiting a state indicated as "Rich" changes to a state indicated as "Lean" when the oxygen concentration in the atmosphere increases under the previous high-temperature conditions. To do. That is, the platinum forming the noble metal 13b and the composite oxide form a solid solution. Platinum and silica rarely form a solid solution.
[0026] このように、排ガス浄ィ匕用触媒 1は、可逆的な状態変化を生じる。また、この排ガス 浄化用触媒 1は、「Lean」と表記した状態から「Rich」と表記した状態へと変化する毎 に、複合酸ィ匕物 12a乃至 12cの表面に極めて微細な貴金属 13bを形成する。したが つて、この状態は、「Rich」と表記した状態から「Lean」と表記した状態への変化及び その逆変化を生じることにより回復する。自動推進車両では、排ガス中の酸素濃度は 比較的頻繁に変化するので、この排ガス浄ィ匕用触媒 1は、高温で低酸素濃度雰囲気 に晒される場合、常時、高い活性を示し、十分な性能を発揮する。  [0026] Thus, the exhaust gas purifying catalyst 1 undergoes a reversible state change. The exhaust gas-purifying catalyst 1 forms extremely fine noble metal 13b on the surfaces of the composite oxides 12a to 12c each time it changes from the state described as “Lean” to the state expressed as “Rich”. To do. Therefore, this state is recovered by causing a change from a state indicated as “Rich” to a state indicated as “Lean” and vice versa. In auto-propelled vehicles, the oxygen concentration in the exhaust gas changes relatively frequently, so this exhaust gas purification catalyst 1 always exhibits high activity and sufficient performance when exposed to a low oxygen concentration atmosphere at high temperatures. Demonstrate.
[0027] また、この排ガス浄ィ匕用触媒 1では、貴金属 13aは、雰囲気の組成や温度に拘らず 、排ガス浄ィ匕用触媒 1の活性に寄与する。したがって、この排ガス浄ィ匕用触媒 1は、 高温で高い酸素濃度雰囲気に晒される場合に十分な性能を発揮するのに加え、初 期使用時や低温条件下でも十分な性能を発揮する。  [0027] In the exhaust gas purifying catalyst 1, the noble metal 13a contributes to the activity of the exhaust gas purifying catalyst 1 regardless of the composition and temperature of the atmosphere. Therefore, the exhaust gas-purifying catalyst 1 exhibits sufficient performance when exposed to an atmosphere of high oxygen concentration at high temperatures, and also exhibits sufficient performance during initial use and low-temperature conditions.
[0028] さらに、この排ガス浄ィ匕用触媒 1では、上記の通り、高温条件下で雰囲気中の酸素 濃度が高くなると、貴金属 13bと複合酸化物 12a乃至 12cとは固溶体を形成する。そ のため、この排ガス浄ィ匕用触媒 1は、高酸素濃度雰囲気中での白金の蒸発減が少な い。 [0028] Further, in the exhaust gas purifying catalyst 1, as described above, oxygen in the atmosphere under high temperature conditions. As the concentration increases, the noble metal 13b and the composite oxides 12a to 12c form a solid solution. For this reason, this exhaust gas purification catalyst 1 has a small evaporation loss of platinum in a high oxygen concentration atmosphere.
[0029] 以上、希土類元素としてセリウムを使用した場合を例に説明したが、希土類元素と して他の元素を使用してもよい。例えば、ランタン、プラセオジム、ネオジムなどを使 用してもよい。また、複数の希土類元素を使用してもよい。  [0029] Although the case where cerium is used as the rare earth element has been described above as an example, other elements may be used as the rare earth element. For example, lantern, praseodymium, neodymium, etc. may be used. A plurality of rare earth elements may be used.
[0030] アルカリ土類元素として、ノリウム以外の元素を使用してもよい。例えば、ストロンチ ゥム、カルシウム及びマグネシウムなどを使用してもよい。また、複数のアルカリ土類 元素を使用してもよい。 [0030] Elements other than norium may be used as the alkaline earth element. For example, strontium, calcium and magnesium may be used. A plurality of alkaline earth elements may be used.
[0031] 貴金属として、白金以外の元素を使用してもよい。例えば、パラジウム及びロジウム などの白金族元素を使用してもよい。また、複数の貴金属を使用してもよい。  [0031] Elements other than platinum may be used as the noble metal. For example, platinum group elements such as palladium and rhodium may be used. A plurality of noble metals may be used.
[0032] この排ガス浄ィ匕用触媒 1では、希土類元素とジルコニウムとの和に対するアルカリ 土類元素の原子比は、 10原子%以上とし、典型的には 20原子%以上とする。また、 この原子比は、例えば 100原子%以下とし、典型的には 80原子%以下とする。  [0032] In the exhaust gas purification catalyst 1, the atomic ratio of the alkaline earth element to the sum of the rare earth element and zirconium is 10 atomic% or more, and typically 20 atomic% or more. The atomic ratio is, for example, 100 atomic% or less, and typically 80 atomic% or less.
[0033] この原子比が小さい場合、担体 11に対する複合酸化物 12の体積比が小さい。そ のため、雰囲気の組成変動による排ガス浄ィ匕用触媒 1の性能回復が不十分となるこ とがある。また、この原子比を過剰に大きくすると、排ガス浄ィ匕用触媒 1が担持してい る全貴金属に占める貴金属 13aの割合が低くなる。そのため、高温且つ高酸素濃度 条件下において十分な触媒活性が得られないことがある。カロえて、この原子比を過 剰に大きくすると、高温使用時に担体 11の耐熱性が低下し、その結果、貴金属のシ ンタリングが生じ易くなることがある。  When this atomic ratio is small, the volume ratio of the composite oxide 12 to the support 11 is small. Therefore, the performance recovery of the exhaust gas purifying catalyst 1 due to the change in the composition of the atmosphere may be insufficient. Further, when this atomic ratio is excessively increased, the ratio of the noble metal 13a to the total noble metal supported by the exhaust gas purification catalyst 1 is reduced. Therefore, sufficient catalytic activity may not be obtained under high temperature and high oxygen concentration conditions. If the atomic ratio is excessively increased, the heat resistance of the support 11 is lowered during high temperature use, and as a result, noble metal sintering may occur easily.
[0034] 排ガス浄ィ匕用触媒 1の貴金属含量は、例えば 0. 01質量%乃至 10質量%の範囲 内とし、典型的には 0. 1質量%乃至 5質量%の範囲内とする。貴金属含量が小さい 場合、十分な触媒活性が得られないことがある。貴金属含量が大きい場合、貴金属 のシンタリングが生じ易くなることがある。  [0034] The precious metal content of the exhaust gas purification catalyst 1 is, for example, in the range of 0.01% by mass to 10% by mass, and typically in the range of 0.1% by mass to 5% by mass. If the noble metal content is low, sufficient catalytic activity may not be obtained. When the noble metal content is high, sintering of the noble metal may occur easily.
[0035] 排ガス浄ィ匕用触媒 1が担持している全貴金属に占める固溶体を形成している貴金 属の割合 (以下、固溶体形成率という)は、例えば、 10%乃至 80%の範囲内とする。 固溶体形成率が小さい場合、貴金属のシンタリングに起因した活性低下を抑制する 効果が不十分となることがある。固溶体形成率が大きい場合、初期活性が不十分と なることがある。 [0035] The ratio of the precious metal forming the solid solution to the total precious metal carried by the exhaust gas purification catalyst 1 (hereinafter referred to as the solid solution formation rate) is, for example, within a range of 10% to 80%. And When the solid solution formation rate is small, the decrease in activity due to sintering of noble metals is suppressed. The effect may be insufficient. When the solid solution formation rate is large, the initial activity may be insufficient.
[0036] この排ガス浄ィ匕用触媒 1は、例えば、以下の方法により製造することができる。  [0036] The exhaust gas purifying catalyst 1 can be produced, for example, by the following method.
まず、希土類元素とジルコユアとの複合酸化物を主成分として含有した粉末状の担 体 11を準備し、そのスラリーを調製する。このとき、分散媒としては、例えば水を使用 する。次に、このスラリーに貴金属塩溶液を添加し、これを濾過する。続いて、濾過ケ ークの乾燥及び焼成を順次行う。このようにして、担体 11に貴金属を担持させる。  First, a powdery support 11 containing a complex oxide of a rare earth element and zirconium oxide as a main component is prepared, and a slurry thereof is prepared. At this time, for example, water is used as the dispersion medium. Next, a noble metal salt solution is added to the slurry and this is filtered. Subsequently, the filter cake is sequentially dried and fired. In this way, the support 11 is loaded with the noble metal.
[0037] 次いで、貴金属を担持した担体 11を、アルカリ土類塩溶液に添加する。さら〖こ、こ のスラリーを加熱して液体を十分に除去する。このようにして、担体 11にアルカリ土類 元素を担持させる。  [0037] Next, the carrier 11 supporting the noble metal is added to the alkaline earth salt solution. Sarako, this slurry is heated to sufficiently remove the liquid. In this way, the alkaline earth element is supported on the support 11.
[0038] 担体 11にアルカリ土類元素を担持させる方法に特に制限はない。例えば、貴金属 を担持した担体 11にアルカリ土類塩溶液を含浸させる方法、共沈を利用する方法、 アルカリ土類金属のアルコキシドを使用する方法などを利用してもよい。  [0038] There is no particular limitation on the method of supporting the alkaline earth element on the support 11. For example, a method of impregnating a carrier 11 supporting a noble metal with an alkaline earth salt solution, a method using coprecipitation, a method using an alkoxide of an alkaline earth metal, or the like may be used.
[0039] その後、貴金属及びアルカリ土類元素を担持した担体 11を酸化雰囲気中で焼成 する。これにより、複合酸化物 12a乃至 12cを生成すると共に、これら複合酸化物 12 a乃至 12cと貴金属との固溶体を生成して、図 1に示す粒子を得る。  [0039] Thereafter, the carrier 11 carrying the noble metal and the alkaline earth element is fired in an oxidizing atmosphere. Thus, the composite oxides 12a to 12c are generated, and a solid solution of the composite oxides 12a to 12c and the noble metal is generated, and the particles shown in FIG. 1 are obtained.
[0040] さらに、焼成後の粉末を圧縮成形し、必要に応じ、成形物を粉砕する。以上のよう にして、ペレット状の排ガス浄ィ匕用触媒 1を得る。  [0040] Further, the fired powder is compression-molded, and the molded product is pulverized as necessary. As described above, a pellet-shaped exhaust gas purification catalyst 1 is obtained.
[0041] この方法では、焼成温度は、例えば約 700°C乃至約 1100°Cの範囲内とする。焼成 温度が低い場合、複合酸化物 12a乃至 12cを生成し難ぐこれら複合酸化物 12a乃 至 12cに貴金属を固溶させることが難しい。焼成温度が高い場合、担体 11の比表面 積が低下し、これに伴い、担体 11上に貴金属 13aを良好に分散させることが難しくな る。そのため、高い活性が得られないことがある。  [0041] In this method, the firing temperature is, for example, in the range of about 700 ° C to about 1100 ° C. When the firing temperature is low, it is difficult to form noble metals in these composite oxides 12a to 12c, which are difficult to produce the composite oxides 12a to 12c. When the calcination temperature is high, the specific surface area of the carrier 11 decreases, and accordingly, it becomes difficult to satisfactorily disperse the noble metal 13a on the carrier 11. Therefore, high activity may not be obtained.
[0042] 以上、排ガス浄ィ匕用触媒 1がペレット触媒である場合を例に説明したが、排ガス浄 化用触媒 1は様々な形態をとり得る。例えば、排ガス浄ィ匕用触媒 1は、モノリス触媒で あってもよい。  As described above, the case where the exhaust gas purifying catalyst 1 is a pellet catalyst has been described as an example, but the exhaust gas purifying catalyst 1 can take various forms. For example, the exhaust gas purifying catalyst 1 may be a monolith catalyst.
[0043] 以下、本発明の例について説明する。  [0043] Examples of the present invention will be described below.
[0044] (例 1) 硝酸セリウム [Ce (NO ) ]とォキシ硝酸ジルコニウム [ZrO (NO ) ]とを、セリウムと [0044] (Example 1) Cerium nitrate [Ce (NO)] and zirconium oxynitrate [ZrO (NO)] and cerium
3 3 3 2  3 3 3 2
ジルコニウムとの原子比が 50: 50となるように秤量し、これらを 500mLの脱イオン水 中に添加した。十分に攪拌した後、室温で、この水溶液に 10質量%の水酸ィ匕アンモ -ゥム水溶液を滴下して共沈を生じさせた。この沈殿物を含んだ水溶液を 60分間攪 拌し、次いで、濾過した。  They were weighed so that the atomic ratio with zirconium was 50:50, and these were added to 500 mL of deionized water. After thorough stirring, a 10% by mass aqueous solution of ammonium hydroxide was added dropwise to the aqueous solution at room temperature to cause coprecipitation. The aqueous solution containing the precipitate was stirred for 60 minutes and then filtered.
[0045] 次に、濾過ケークを脱イオン水で十分に洗浄し、 110°Cで乾燥させた。この乾燥品 は、大気雰囲気中、 500°Cで 3時間の仮焼成に供した。得られた仮焼成品は乳鉢で 粉砕し、さらに、大気雰囲気中、 800°Cで 5時間の本焼成に供した。  [0045] Next, the filter cake was thoroughly washed with deionized water and dried at 110 ° C. This dried product was subjected to pre-baking at 500 ° C for 3 hours in an air atmosphere. The obtained pre-baked product was pulverized in a mortar and further subjected to main baking at 800 ° C. for 5 hours in an air atmosphere.
[0046] このようにして得られた粉末にっ 、て、 X線回折計で回折スペクトルを測定した。そ の結果、この粉末は、化学式: (Ce, Zr) 0で表される酸ィ匕物力 なることを確認でき  [0046] The powder thus obtained was measured for a diffraction spectrum by an X-ray diffractometer. As a result, it can be confirmed that this powder has an acidity represented by the chemical formula: (Ce, Zr) 0.
2  2
た。また、この粉末の比表面積は 90m2/gであった。 It was. The specific surface area of this powder was 90 m 2 / g.
[0047] 次に、先の酸化物粉末を 50g秤量し、これを 500mLの脱イオン水中に添カ卩した。 [0047] Next, 50 g of the above oxide powder was weighed and added to 500 mL of deionized water.
超音波攪拌を 10分間行うことにより酸化物粉末を脱イオン水中に十分に分散させ、 続いて、このスラリーにジニトロジァミン白金硝酸溶液を添加した。ジニトロジァミン白 金硝酸溶液の濃度及び添加量は、最終製品としての排ガス浄ィ匕用触媒にぉ ヽて、 白金担持量が 1質量%となるように調節した。  The oxide powder was sufficiently dispersed in deionized water by performing ultrasonic stirring for 10 minutes, and then a dinitrodiammine platinum nitric acid solution was added to the slurry. The concentration and addition amount of the dinitrodiammine gold nitric acid solution were adjusted so that the amount of platinum supported was 1% by mass over the exhaust gas purification catalyst as the final product.
[0048] その後、このスラリーを吸引濾過した。濾液を誘導結合高周波プラズマ (ICP)分光 分析に供した結果、スラリー中の白金のほぼ全てが濾過ケーク中に存在していること が分かった。 [0048] Thereafter, the slurry was subjected to suction filtration. The filtrate was subjected to inductively coupled radio frequency plasma (ICP) spectroscopy analysis and found that almost all of the platinum in the slurry was present in the filter cake.
[0049] 次に、濾過ケークを 110°Cで 12時間乾燥させた。続いて、これを、大気中、 500°C で焼成した。これにより、先の酸化物に白金を担持させた。  [0049] Next, the filter cake was dried at 110 ° C for 12 hours. Subsequently, this was fired at 500 ° C. in the atmosphere. As a result, platinum was supported on the above oxide.
[0050] その後、酢酸バリウムを lOOmLの脱イオン水中に溶解させた。次いで、白金を担持 した酸ィ匕物を 50g秤量し、これを酢酸バリウム水溶液中に添加した。なお、酢酸バリゥ ム水溶液の濃度は、最終製品としての排ガス浄ィ匕用触媒において、セリウムとジルコ -ゥムとの和に対するバリウムの原子比が 10. 0原子%となるように調節した。  [0050] Thereafter, barium acetate was dissolved in lOOmL of deionized water. Next, 50 g of an oxide containing platinum was weighed and added to an aqueous barium acetate solution. The concentration of the barium acetate aqueous solution was adjusted so that the atomic ratio of barium to the sum of cerium and zirconium was 10.0 atomic% in the exhaust gas purification catalyst as the final product.
[0051] 次に、このスラリーを加熱して、余分な水分を除去した。続いて、これを、大気中、 1 000°Cで 3時間焼成した。これにより、バリウムを含んだ複合酸化物を生じさせると共 に、この複合酸化物と白金との固溶体を生成した。 [0052] 以上のようにして得られた粉末にっ 、て、 X線回折計で回折スペクトルを測定した。 その結果を図 3に示す。 [0051] Next, this slurry was heated to remove excess water. Subsequently, this was calcined in the atmosphere at 1 000 ° C. for 3 hours. As a result, a complex oxide containing barium was produced, and a solid solution of the complex oxide and platinum was formed. [0052] The powder obtained as described above was measured for a diffraction spectrum by an X-ray diffractometer. The results are shown in Fig. 3.
[0053] 図 3は、例 1で生成した粉末の X線回折スペクトルを示すグラフである。図中、横軸 は回折角を示し、縦軸は回折強度を示している。図 3に示すように、この粉末は、化 学式:(Ce, Zr) 0で表される複合酸化物に加え、化学式: BaCeOで表される複合  FIG. 3 is a graph showing an X-ray diffraction spectrum of the powder produced in Example 1. In the figure, the horizontal axis indicates the diffraction angle, and the vertical axis indicates the diffraction intensity. As shown in Fig. 3, this powder has a chemical formula: (Ce, Zr) 0 in addition to a composite oxide represented by chemical formula: BaCeO.
2 3  twenty three
酸化物と、化学式: BaZrOで表される複合酸化物と、化学式: Ba (Zr, Ce) 0で表さ  Oxide, chemical formula: Composite oxide represented by BaZrO, Chemical formula: Ba (Zr, Ce) 0
3 3 れる複合酸化物とを含有して!/ヽた。  3 3 containing complex oxide!
[0054] また、上記のようにして得られた粉末の一部を抜き取り、これを、室温に維持した 10 %のフッ化水素水溶液中に 12時間浸漬させた。なお、この条件は、先の粉末のうち ノリウムを含んだ複合酸ィ匕物のみが溶解する条件である。続いて、この液を濾過し、 濾液を ICP分光分析に供した。その結果、濾液の白金含量から、白金の 45%が固溶 体を形成していること,すなわち固溶体形成率が 45%であること,が分かった。  [0054] A part of the powder obtained as described above was extracted and immersed in a 10% hydrogen fluoride aqueous solution maintained at room temperature for 12 hours. This condition is a condition in which only the complex oxide containing norium in the previous powder dissolves. Subsequently, this liquid was filtered, and the filtrate was subjected to ICP spectroscopic analysis. As a result, it was found from the platinum content of the filtrate that 45% of platinum formed a solid solution, that is, the solid solution formation rate was 45%.
[0055] 次に、先の粉体を圧縮成形した。さらに、この成形物を粉砕し、粒径が約 0. 5mm 乃至約 1. Ommのペレット状の排ガス浄ィ匕用触媒を得た。  [0055] Next, the above powder was compression molded. Further, this molded product was pulverized to obtain a pellet-shaped exhaust gas purifying catalyst having a particle size of about 0.5 mm to about 1. Omm.
[0056] (例 2)  [0056] (Example 2)
最終製品においてセリウムとジルコニウムとの和に対するノリウムの原子比が 30原 子%となるように酢酸バリウム水溶液の濃度及び添加量を調節したこと以外は、例 1 で説明したのと同様の方法により排ガス浄ィ匕用触媒を製造した。  Exhaust gas was treated in the same way as described in Example 1 except that the concentration and amount of barium acetate aqueous solution were adjusted so that the atomic ratio of norium to the sum of cerium and zirconium in the final product was 30 atomic%. A catalyst for purifier was produced.
[0057] 本例でも、例 1で説明したのと同様の方法により、白金担持量と固溶体形成率とを 調べた。その結果、本例では、白金担持量は 1質量%であり、固溶体形成率は 65% であった。  In this example, the amount of platinum supported and the solid solution formation rate were examined by the same method as described in Example 1. As a result, in this example, the amount of platinum supported was 1% by mass and the solid solution formation rate was 65%.
[0058] (例 3)  [0058] (Example 3)
最終製品においてセリウムとジルコニウムとの和に対するノリウムの原子比が 50原 子%となるように酢酸バリウム水溶液の濃度及び添加量を調節したこと以外は、例 1 で説明したのと同様の方法により排ガス浄ィ匕用触媒を製造した。  Exhaust gas was exhausted by the same method as described in Example 1 except that the concentration and amount of barium acetate aqueous solution were adjusted so that the atomic ratio of norium to the sum of cerium and zirconium in the final product was 50 atomic%. A catalyst for purifier was produced.
[0059] 本例でも、例 1で説明したのと同様の方法により、白金担持量と固溶体形成率とを 調べた。その結果、本例では、白金担持量は 1質量%であり、固溶体形成率は 70% であった。 [0060] (例 4) In this example as well, the amount of platinum supported and the solid solution formation rate were examined by the same method as described in Example 1. As a result, in this example, the amount of platinum supported was 1% by mass and the solid solution formation rate was 70%. [0060] (Example 4)
最終製品においてセリウムとジルコニウムとの和に対するノ リウムの原子比が 80原 子%となるように酢酸バリウム水溶液の濃度及び添加量を調節したこと以外は、例 1 で説明したのと同様の方法により排ガス浄ィ匕用触媒を製造した。  Except that the concentration and amount of barium acetate aqueous solution were adjusted so that the atomic ratio of norium to the sum of cerium and zirconium in the final product was 80 atomic%, the same method as described in Example 1 was used. An exhaust gas purification catalyst was produced.
[0061] 本例でも、例 1で説明したのと同様の方法により、白金担持量と固溶体形成率とを 調べた。その結果、本例では、白金担持量は 1質量%であり、固溶体形成率は 85% であった。  In this example as well, the amount of platinum supported and the solid solution formation rate were examined by the same method as described in Example 1. As a result, in this example, the amount of platinum supported was 1% by mass and the solid solution formation rate was 85%.
[0062] (例 5)  [0062] (Example 5)
最終製品においてセリウムとジルコニウムとの和に対するノ リウムの原子比が 100 原子%となるように酢酸バリウム水溶液の濃度及び添加量を調節したこと以外は、例 1で説明したのと同様の方法により排ガス浄ィ匕用触媒を製造した。  Exhaust gas was exhausted by the same method as described in Example 1 except that the concentration and amount of barium acetate aqueous solution were adjusted so that the atomic ratio of norium to the sum of cerium and zirconium in the final product was 100 atomic%. A catalyst for purifier was produced.
[0063] 本例でも、例 1で説明したのと同様の方法により、白金担持量と固溶体形成率とを 調べた。その結果、本例では、白金担持量は 1質量%であり、固溶体形成率は 85% であった。  [0063] In this example as well, the amount of platinum supported and the solid solution formation rate were examined by the same method as described in Example 1. As a result, in this example, the amount of platinum supported was 1% by mass and the solid solution formation rate was 85%.
[0064] (比較例)  [0064] (Comparative example)
白金を担持した酸ィ匕物の酢酸バリウム水溶液中への添加からその後の焼成までを 行わな力 たこと以外は、例 1で説明したのと同様の方法により排ガス浄ィ匕用触媒を 製造した。  Exhaust gas purification catalyst was produced in the same manner as described in Example 1 except that the addition of the platinum-supported oxide to the barium acetate aqueous solution and subsequent firing was not performed. .
[0065] 本例でも、例 1で説明したのと同様の方法により、白金担持量を調べた。その結果、 本例では、白金担持量は 1質量%であった。  [0065] In this example as well, the amount of platinum supported was examined by the same method as described in Example 1. As a result, in this example, the platinum loading was 1% by mass.
[0066] (例 6) [0066] (Example 6)
本例では、まず、化学式: (Ce, Zr, Y) 0で表される酸化物粉末を以下の方法で  In this example, first, an oxide powder represented by the chemical formula: (Ce, Zr, Y) 0 is converted by the following method.
2  2
生成した。  Generated.
[0067] すなわち、まず、硝酸セリウム [Ce (NO ) ]とォキシ硝酸ジルコニウム [ZrO (NO )  [0067] That is, first, cerium nitrate [Ce (NO)] and zirconium oxynitrate [ZrO (NO)]
3 3 3 2 3 3 3 2
]と硝酸イットリウム [Y (NO ) ]とを、セリウムとジルコニウムとイットリウムとの原子比が ] And yttrium nitrate [Y (NO)], the atomic ratio of cerium, zirconium and yttrium
3 3  3 3
45 : 50 : 5となるように秤量し、これらを 500mLの脱イオン水中に添カ卩した。十分に攪 拌した後、室温で、この水溶液に 10質量%の水酸ィ匕アンモ-ゥム水溶液を滴下して 共沈を生じさせた。この沈殿物を含んだ水溶液を 60分間攪拌し、次いで、濾過した。 [0068] 次に、濾過ケークを脱イオン水で十分に洗浄し、 110°Cで乾燥させた。この乾燥品 は、大気雰囲気中、 500°Cで 3時間の仮焼成に供した。得られた仮焼成品は乳鉢で 粉砕し、さらに、大気雰囲気中、 800°Cで 5時間の本焼成に供した。 These were weighed so as to be 45: 50: 5, and added to 500 mL of deionized water. After thorough stirring, a 10% by mass aqueous solution of ammonium hydroxide was added dropwise to the aqueous solution at room temperature to cause coprecipitation. The aqueous solution containing the precipitate was stirred for 60 minutes and then filtered. [0068] Next, the filter cake was thoroughly washed with deionized water and dried at 110 ° C. This dried product was subjected to pre-baking at 500 ° C for 3 hours in an air atmosphere. The obtained pre-baked product was pulverized in a mortar and further subjected to main baking at 800 ° C. for 5 hours in an air atmosphere.
[0069] このようにして得られた粉末にっ 、て、 X線回折計で回折スペクトルを測定した。そ の結果、この粉末は、化学式: (Ce, Zr, Y) 0で表される酸ィ匕物力もなることを確認  [0069] The powder thus obtained was measured for a diffraction spectrum by an X-ray diffractometer. As a result, it was confirmed that this powder also has the acidity represented by the chemical formula: (Ce, Zr, Y) 0
2  2
できた。また、この粉末の比表面積は 90m2Zgであった。 did it. The specific surface area of this powder was 90 m 2 Zg.
[0070] 次に、この酸化物粉末を化学式: (Ce, Zr) 0で表される酸化物粉末の代わりに使 [0070] Next, this oxide powder was used instead of the oxide powder represented by the chemical formula: (Ce, Zr) 0.
2  2
用すると共に、最終製品においてセリウムとジルコニウムとの和に対するノリウムの原 子比が 30原子%となるように酢酸バリウム水溶液の濃度及び添加量を調節したこと 以外は、例 1で説明したのと同様の方法により排ガス浄ィ匕用触媒を製造した。  Except that the concentration and amount of barium acetate aqueous solution were adjusted so that the atomic ratio of norium to the sum of cerium and zirconium in the final product was 30 atomic%. A catalyst for exhaust gas purification was produced by the method described above.
[0071] 本例でも、例 1で説明したのと同様の方法により、白金担持量と固溶体形成率とを 調べた。その結果、本例では、白金担持量は 1質量%であり、固溶体形成率は 80% であった。  [0071] In this example as well, the amount of platinum supported and the solid solution formation rate were examined by the same method as described in Example 1. As a result, in this example, the amount of platinum supported was 1% by mass and the solid solution formation rate was 80%.
[0072] (例 7)  [0072] (Example 7)
本例では、まず、化学式: (Ce, Zr, La, Nd) 0で表される酸化物粉末を以下の方  In this example, first, an oxide powder represented by the chemical formula: (Ce, Zr, La, Nd) 0 is
2  2
法で生成した。  Generated by the method.
[0073] すなわち、まず、硝酸セリウム [Ce (NO ) ]とォキシ硝酸ジルコニウム [ZrO (NO )  [0073] That is, first, cerium nitrate [Ce (NO)] and zirconium oxynitrate [ZrO (NO)]
3 3 3 2 3 3 3 2
]と硝酸ランタン [La (NO ) ]と硝酸ネオジム [Nd(NO ) ]とを、セリウムとジルコユウ ], Lanthanum nitrate [La (NO)] and neodymium nitrate [Nd (NO)], cerium and zircoyu
3 3 3 3  3 3 3 3
ムとランタンとネオジムとの原子比が 50 : 35 : 10 : 5となるように秤量し、これらを 500m Lの脱イオン水中に添加した。十分に攪拌した後、室温で、この水溶液に 10質量% の水酸ィ匕アンモニゥム水溶液を滴下して共沈を生じさせた。この沈殿物を含んだ水 溶液を 60分間攪拌し、次いで、濾過した。  The atomic ratio of lanthanum, lanthanum, and neodymium was weighed to 50: 35: 10: 5, and these were added to 500 mL of deionized water. After sufficiently stirring, at room temperature, a 10% by mass aqueous solution of ammonium hydroxide was added dropwise to the aqueous solution to cause coprecipitation. The aqueous solution containing the precipitate was stirred for 60 minutes and then filtered.
[0074] 次に、濾過ケークを脱イオン水で十分に洗浄し、 110°Cで乾燥させた。この乾燥品 は、大気雰囲気中、 500°Cで 3時間の仮焼成に供した。得られた仮焼成品は乳鉢で 粉砕し、さらに、大気雰囲気中、 800°Cで 5時間の本焼成に供した。  [0074] Next, the filter cake was thoroughly washed with deionized water and dried at 110 ° C. This dried product was subjected to pre-baking at 500 ° C for 3 hours in an air atmosphere. The obtained pre-baked product was pulverized in a mortar and further subjected to main baking at 800 ° C. for 5 hours in an air atmosphere.
[0075] このようにして得られた粉末にっ 、て、 X線回折計で回折スペクトルを測定した。そ の結果、この粉末は、化学式: (Ce, Zr, La, Nd) 0で表される酸ィ匕物力 なることを  [0075] The powder thus obtained was measured for a diffraction spectrum by an X-ray diffractometer. As a result, this powder has the following chemical formula: (Ce, Zr, La, Nd) 0
2  2
確認できた。また、この粉末の比表面積は 90m2Zgであった。 [0076] 次に、この酸ィ匕物粉末を用いたこと以外は、例 6で説明したのと同様の方法により 排ガス浄化用触媒を製造した。 It could be confirmed. The specific surface area of this powder was 90 m 2 Zg. [0076] Next, an exhaust gas purification catalyst was produced by the same method as described in Example 6 except that this acid oxide powder was used.
[0077] 本例でも、例 1で説明したのと同様の方法により、白金担持量と固溶体形成率とを 調べた。その結果、本例では、白金担持量は 1質量%であり、固溶体形成率は 70% であった。 In this example as well, the amount of platinum supported and the solid solution formation rate were examined by the same method as described in Example 1. As a result, in this example, the amount of platinum supported was 1% by mass and the solid solution formation rate was 70%.
[0078] 次に、これら排ガス浄化用触媒の耐久性を以下の方法により調べた。  [0078] Next, the durability of these exhaust gas-purifying catalysts was examined by the following method.
まず、各排ガス浄ィ匕用触媒を流通式の耐久試験装置内に配置し、触媒床に窒素を 主成分としたガスを lOOmLZ分の流量で 30時間流通させた。この間、触媒床温度 は 1050°Cに維持した。また、触媒床に流通させるガスとしては、窒素に酸素を 5%加 えてなるリーンガスと、窒素に一酸ィ匕炭素を 10%加えてなるリッチガスとを使用し、こ れらガスは 5分毎に切り替えた。  First, each exhaust gas purification catalyst was placed in a flow-type durability test apparatus, and a gas containing nitrogen as a main component was passed through the catalyst bed at a flow rate of lOOmLZ for 30 hours. During this time, the catalyst bed temperature was maintained at 1050 ° C. In addition, as the gas to be circulated through the catalyst bed, a lean gas obtained by adding 5% oxygen to nitrogen and a rich gas obtained by adding 10% carbon monoxide and nitrogen to nitrogen are used, and these gases are used every 5 minutes. Switched to.
[0079] その後、これら排ガス浄化用触媒を、常圧固定床流通反応装置内に配置した。次 いで、触媒床にモデルガスを流通させながら、触媒床温度を 100°Cから 500°Cまで 1 2°CZ分の速度で昇温させ、その間の排ガス浄ィ匕率を連続的に測定した。なお、モ デルガスとしては、酸化性成分 (酸素及び窒素酸化物)と還元性成分 (一酸化炭素、 炭化水素、水素)とをィ匕学量論的に当量としたガスを使用した。その結果を、以下の 表に示す。  [0079] Thereafter, these exhaust gas-purifying catalysts were placed in an atmospheric pressure fixed bed flow reactor. Next, while circulating the model gas through the catalyst bed, the catalyst bed temperature was raised from 100 ° C to 500 ° C at a rate of 12 ° CZ, and the exhaust gas purification rate during that time was continuously measured. . As the model gas, a gas having stoichiometric equivalents of oxidizing components (oxygen and nitrogen oxides) and reducing components (carbon monoxide, hydrocarbons, hydrogen) was used. The results are shown in the table below.
[表 1] [table 1]
Figure imgf000015_0001
Figure imgf000015_0001
上記表において、「Ce」、「Zr」、「Y」、「La」、「Nd」と表記した列には、排ガス浄ィ匕 用触媒が含む白金以外の金属元素に占めるセリウム、ジルコニウム、イットリウム、ラ ンタン、ネオジムの原子比をそれぞれ記載している。「1^」と表記した列には、排ガス 浄化用触媒に占める白金の質量比を記載して V、る。「AEZ (RE+Zr)」と表記した 列には、排ガス浄ィヒ用触媒における希土類元素とジルコニウムとの和に対するアル カリ土類元素(ここではノ リウム)の原子比を記載している。「50%浄ィ匕温度」と表記し た列には、モデルガスに含まれる各成分の 50%以上を浄ィ匕できた触媒床の最低温 度を記載している。「HC」及び「NO」は、それぞれ、炭化水素及び窒素酸化物を示 している。 In the above table, the columns labeled “Ce”, “Zr”, “Y”, “La”, “Nd” indicate cerium, zirconium, yttrium in the metal elements other than platinum contained in the exhaust gas purification catalyst. The atomic ratios of lanthanum and lanthanum are listed. In the column labeled “1 ^”, V is the mass ratio of platinum in the exhaust gas purification catalyst. The column labeled “AEZ (RE + Zr)” shows the altitude for the sum of rare earth elements and zirconium in exhaust gas purification catalysts. The atomic ratio of the potash earth element (in this case, norium) is indicated. The column labeled “50% purification temperature” shows the lowest temperature of the catalyst bed that could purify 50% or more of each component in the model gas. “HC” and “NO” indicate hydrocarbon and nitrogen oxide, respectively.
[0081] この表に示すように、例 1乃至 7に係る排ガス浄ィ匕用触媒は、比較例に係る排ガス 浄化用触媒と比較して、モデルガスをより低い温度で浄ィ匕することができた。この結 果から、例 1乃至 7に係る排ガス浄ィ匕用触媒は、比較例に係る排ガス浄化用触媒と比 較して、耐久性に優れていることが分かる。  [0081] As shown in this table, the exhaust gas purifying catalyst according to Examples 1 to 7 can purify the model gas at a lower temperature than the exhaust gas purifying catalyst according to the comparative example. did it. From these results, it can be seen that the exhaust gas purifying catalysts according to Examples 1 to 7 are superior in durability to the exhaust gas purifying catalyst according to the comparative example.
[0082] 次に、例 2に係る排ガス浄化用触媒を流通式の耐久試験装置内に再度配置し、こ れに上記のリーンガスを流通させた。続いて、触媒床に流通させるガスをリーンガス 力 上記のリッチガスへと切り替えた。なお、この間、触媒床の温度は 1050°Cに維持 した。その後、触媒床にリッチガスを流通させたまま触媒床を降温した。触媒床の温 度が十分に低くなつた後、この排ガス浄化用触媒を透過電子顕微鏡 (TEM)で観察 した。この TEM像を図 4に示す。  [0082] Next, the exhaust gas purifying catalyst according to Example 2 was again placed in a flow-type durability test apparatus, and the above-described lean gas was allowed to flow therethrough. Subsequently, the gas flowing through the catalyst bed was switched to the lean gas force rich gas described above. During this time, the temperature of the catalyst bed was maintained at 1050 ° C. Thereafter, the temperature of the catalyst bed was lowered while allowing rich gas to flow through the catalyst bed. After the temperature of the catalyst bed became sufficiently low, the exhaust gas-purifying catalyst was observed with a transmission electron microscope (TEM). Figure 4 shows this TEM image.
[0083] 図 4は、例 2に係る排ガス浄ィ匕用触媒の TEM写真である。図 4に示すように、ノ リウ ムを含んだ複合酸ィ匕物上には多数の白金 (Pt)が析出しており、これら白金は寸法が 極めて小さい。このように、例 2に係る排ガス浄化用触媒では、高温条件下で流通ガ スをリーンガスからリッチガスへと切り替えた直後において、複合酸化物上に極めて 微細な白金が多数存在して 、た。  FIG. 4 is a TEM photograph of the exhaust gas purifying catalyst according to Example 2. As shown in Fig. 4, a large amount of platinum (Pt) is deposited on the composite oxide containing normium, and these platinum have extremely small dimensions. As described above, in the exhaust gas purifying catalyst according to Example 2, a large amount of very fine platinum was present on the composite oxide immediately after switching the flow gas from lean gas to rich gas under high temperature conditions.
[0084] 次に、例 2に係る排ガス浄ィ匕用触媒を流通式の耐久試験装置内に配置し、触媒床 の温度を 1050°Cに設定して、これに上記のリーンガスを流通させた。続いて、触媒 床にリーンガスを流通させたまま触媒床を降温した。触媒床の温度が十分に低くなつ た後、排ガス浄ィ匕用触媒の一部を抜き取り、これについて、 X線回折計で回折スぺク トルを測定すると共に、例 1で説明したのと同様の方法により固溶体形成率を調べた  [0084] Next, the exhaust gas purifying catalyst according to Example 2 was placed in a flow-type durability test apparatus, the temperature of the catalyst bed was set to 1050 ° C, and the above-described lean gas was allowed to flow therethrough. . Subsequently, the temperature of the catalyst bed was lowered while lean gas was circulated through the catalyst bed. After the temperature of the catalyst bed has become sufficiently low, a part of the exhaust gas purification catalyst is extracted, and the diffraction spectrum is measured with an X-ray diffractometer, as described in Example 1. The solid solution formation rate was investigated by the method of
[0085] 次に、残りの排ガス浄ィ匕用触媒を含んだ触媒床を 1050°Cに昇温し、これに上記の リッチガスを流通させた。続いて、触媒床にリッチガスを流通させたまま触媒床を降温 した。触媒床の温度が十分に低くなつた後、排ガス浄ィ匕用触媒の一部を抜き取り、こ れについて、 X線回折計で回折スペクトルを測定すると共に、例 1で説明したのと同 様の方法により固溶体形成率を調べた。 [0085] Next, the catalyst bed containing the remaining exhaust gas purification catalyst was heated to 1050 ° C, and the rich gas was circulated through the catalyst bed. Subsequently, the temperature of the catalyst bed was lowered with rich gas flowing through the catalyst bed. After the temperature of the catalyst bed has become sufficiently low, a part of the exhaust gas purification catalyst is extracted and removed. In addition to measuring the diffraction spectrum with an X-ray diffractometer, the solid solution formation rate was examined by the same method as described in Example 1.
[0086] その後、残りの排ガス浄ィ匕用触媒を含んだ触媒床を 1050°Cに昇温し、これに上記 のリーンガスを流通させた。続いて、触媒床にリーンガスを流通させたまま触媒床を 降温した。触媒床の温度が十分に低くなつた後、排ガス浄化用触媒の一部を抜き取 り、これについて、 X線回折計で回折スペクトルを測定すると共に、例 1で説明したの と同様の方法により固溶体形成率を調べた。  [0086] Thereafter, the catalyst bed containing the remaining exhaust gas purification catalyst was heated to 1050 ° C, and the above-described lean gas was circulated through the catalyst bed. Subsequently, the temperature of the catalyst bed was lowered while lean gas was circulated through the catalyst bed. After the temperature of the catalyst bed has become sufficiently low, a part of the exhaust gas-purifying catalyst is extracted, and the diffraction spectrum is measured with an X-ray diffractometer and the same method as described in Example 1 is used. The solid solution formation rate was examined.
[0087] 図 5は、例 2に係る排ガス浄ィ匕用触媒にっ 、て得られた、雰囲気の組成変化に伴う X線回折スペクトルの変化を示すグラフである。図中、横軸は回折角を示し、縦軸は 検出強度を示している。また、図中、曲線 Aはリーンガスを最初に流通させた直後に おける回折スペクトルを示し、曲線 Bはリッチガスを流通させた直後における回折スぺ タトルを示し、曲線 Cはリーンガスを再度流通させた直後における回折スペクトルを示 している。  FIG. 5 is a graph showing changes in the X-ray diffraction spectrum accompanying the change in the composition of the atmosphere obtained with the exhaust gas purifying catalyst according to Example 2. In the figure, the horizontal axis indicates the diffraction angle, and the vertical axis indicates the detection intensity. In the figure, curve A shows the diffraction spectrum immediately after the first flow of lean gas, curve B shows the diffraction spectrum immediately after the rich gas flow, and curve C shows the diffraction spectrum immediately after the lean gas flow again. The diffraction spectrum at is shown.
[0088] 図 5には、一例として、化学式: BaZrOで表される複合酸ィ匕物に由来したピークを  [0088] FIG. 5 shows, as an example, a peak derived from a complex acid compound represented by the chemical formula: BaZrO.
3  Three
描いている。この図に示すように、化学式: BaZrOで表される複合酸化物に由来し  I'm drawing. As shown in this figure, it is derived from the complex oxide represented by the chemical formula: BaZrO.
3  Three
たピークの位置は、流通ガスをリーンガスからリッチガスへと切り替えることにより低角 側にシフトし、流通ガスをリッチガス力もリーンガスへと切り替えることにより高角側へと シフトした。また、このピークの位置は、流通ガスをリーンガスからリッチガスへと再び 切り替えることにより低角側にシフトした。このことから、先の複合酸化物は、雰囲気の 糸且成変化に応じて可逆的な状態変化を示すことが分力る。  The peak position shifted to the low angle side by switching the flow gas from lean gas to rich gas, and shifted to the high angle side by switching the flow gas from rich gas to lean gas. The peak position shifted to the low angle side by switching the flow gas from lean gas to rich gas again. From this, it can be concluded that the above complex oxide shows a reversible state change in accordance with the change in the atmosphere.
[0089] 図 6は、例 2に係る排ガス浄ィ匕用触媒にっ 、て得られた、雰囲気の組成変化に伴う 固溶体形成率の変化を示すグラフである。図中、「酸化」で表記したデータはリーン ガスを最初に流通させた直後に測定した固溶体形成率を示し、「還元」で表記したデ ータはリッチガスを流通させた直後に測定した固溶体形成率を示し、「再酸化」で表 記したデータはリーンガスを再度流通させた直後に測定した固溶体形成率を示して いる。 [0089] FIG. 6 is a graph showing the change in the solid solution formation rate with the change in the composition of the atmosphere obtained by the exhaust gas purifying catalyst according to Example 2. In the figure, the data indicated by “oxidation” indicates the solid solution formation rate measured immediately after the first flow of lean gas, and the data indicated by “reduction” indicates the solid solution formation measured immediately after the rich gas flow. The data shown in “Reoxidation” indicates the solid solution formation rate measured immediately after recirculating lean gas.
[0090] 図 6から明らかなように、例 2に係る排ガス浄ィ匕用触媒は、高温で流通ガスをリッチ ガス力 リーンガスへと切り替えることにより複合酸ィ匕物と白金との固溶体を生成し、 高温で流通ガスをリーンガス力 リッチガスへと切り替えることにより複合酸ィ匕物から の白金の析出を生じた。また、例 1及び 3乃至 7に係る排ガス浄ィ匕用触媒についても 同様の試験を行ったところ、これと同様の結果が得られた。すなわち、例 1及び 3乃至 7に係る排ガス浄ィ匕用触媒も、高温で流通ガスをリッチガスカゝらリーンガスへと切り替 えることにより複合酸ィ匕物と白金との固溶体を生成し、高温で流通ガスをリーンガスか らリッチガスへと切り替えることにより複合酸ィ匕物力もの白金の析出を生じた。 As is clear from FIG. 6, the exhaust gas purifying catalyst according to Example 2 generates a solid solution of the composite oxide and platinum by switching the flow gas to rich gas power lean gas at a high temperature. , By switching the flow gas to lean gas rich gas at high temperature, platinum was precipitated from the complex oxide. The same test was performed on the exhaust gas purifying catalysts according to Examples 1 and 3 to 7, and similar results were obtained. That is, the exhaust gas purifying catalysts according to Examples 1 and 3 to 7 also generate a solid solution of a composite oxide and platinum by switching the flow gas from rich gas to lean gas at high temperature, and flow at high temperature. By switching the gas from lean gas to rich gas, the precipitation of platinum with high complex acid strength occurred.
さらなる利益及び変形は、当業者には容易である。それゆえ、本発明は、そのより 広 ヽ側面にぉ 、て、ここに記載された特定の記載や代表的な態様に限定されるべき ではない。したがって、添付の請求の範囲及びその等価物によって規定される本発 明の包括的概念の真意又は範囲力 逸脱しない範囲内で、様々な変形が可能であ る。  Further benefits and variations are readily apparent to those skilled in the art. Therefore, the present invention should not be limited to the specific descriptions and representative embodiments described herein in its broader aspects. Accordingly, various modifications may be made without departing from the true spirit or scope of the present invention as defined by the appended claims and their equivalents.

Claims

請求の範囲 The scope of the claims
[I] 希土類元素とアルカリ土類元素とジルコニウムと貴金属とを含み、希土類元素とジ ルコ -ゥムとの和に対するアルカリ土類元素の原子比は 10原子%以上であり、希土 類元素の一部とジルコニウムの一部とはアルカリ土類元素の少なくとも一部と複合酸 化物を形成し、この複合酸化物と貴金属の一部とは固溶体を形成している排ガス浄 化用触媒。  [I] It contains rare earth elements, alkaline earth elements, zirconium and noble metals, and the atomic ratio of alkaline earth elements to the sum of rare earth elements and zirconium is 10 atomic% or more. Part of the zirconium and part of the zirconium form a composite oxide with at least a part of the alkaline earth element, and the composite oxide and a part of the noble metal form a solid solution.
[2] 希土類元素としてセリウムを含んだ請求項 1に記載の排ガス浄化用触媒。  [2] The exhaust gas-purifying catalyst according to claim 1, comprising cerium as a rare earth element.
[3] セリウム以外の希土類元素をさらに含んだ請求項 2に記載の排ガス浄ィ匕用触媒。 [3] The exhaust gas purifying catalyst according to claim 2, further comprising a rare earth element other than cerium.
[4] 希土類元素としてイットリウムをさらに含んだ請求項 2に記載の排ガス浄ィ匕用触媒。 4. The exhaust gas purifying catalyst according to claim 2, further comprising yttrium as a rare earth element.
[5] アルカリ土類元素としてノリウムを含んだ請求項 3に記載の排ガス浄ィ匕用触媒。 [5] The exhaust gas purifying catalyst according to claim 3, comprising norlium as an alkaline earth element.
[6] 前記原子比は 100原子%以下である請求項 5に記載の排ガス浄化用触媒。 6. The exhaust gas purifying catalyst according to claim 5, wherein the atomic ratio is 100 atomic% or less.
[7] 前記貴金属の含量は 0. 01質量%乃至 10質量%の範囲内にある請求項 6に記載 の排ガス浄化用触媒。 7. The exhaust gas purifying catalyst according to claim 6, wherein the content of the noble metal is in the range of 0.01 mass% to 10 mass%.
[8] 前記貴金属のうちの 10%乃至 80%が前記固溶体を形成している請求項 7に記載 の排ガス浄化用触媒。  8. The exhaust gas purifying catalyst according to claim 7, wherein 10% to 80% of the noble metal forms the solid solution.
[9] アルカリ土類元素としてノリウムを含んだ請求項 2に記載の排ガス浄ィ匕用触媒。  [9] The exhaust gas purifying catalyst according to claim 2, comprising norlium as an alkaline earth element.
[10] 前記原子比は 100原子%以下である請求項 9に記載の排ガス浄化用触媒。 10. The exhaust gas purifying catalyst according to claim 9, wherein the atomic ratio is 100 atomic% or less.
[II] 前記貴金属の含量は 0. 01質量%乃至 10質量%の範囲内にある請求項 10に記 載の排ガス净化用触媒。  [II] The exhaust gas hatching catalyst according to claim 10, wherein the content of the noble metal is in the range of 0.01% by mass to 10% by mass.
[12] 前記貴金属のうちの 10%乃至 80%が前記固溶体を形成している請求項 11に記 載の排ガス净化用触媒。  12. The exhaust gas hatching catalyst according to claim 11, wherein 10% to 80% of the noble metal forms the solid solution.
[13] アルカリ土類元素としてノリウムを含んだ請求項 1に記載の排ガス浄ィ匕用触媒。  [13] The exhaust gas purifying catalyst according to claim 1, comprising norlium as an alkaline earth element.
[14] 前記原子比は 100原子%以下である請求項 1に記載の排ガス浄化用触媒。 14. The exhaust gas purifying catalyst according to claim 1, wherein the atomic ratio is 100 atomic% or less.
[15] 前記貴金属の含量は 0. 01質量%乃至 10質量%の範囲内にある請求項 1に記載 の排ガス浄化用触媒。 15. The exhaust gas purifying catalyst according to claim 1, wherein the content of the noble metal is in the range of 0.01% by mass to 10% by mass.
[16] 前記貴金属のうちの 10%乃至 80%が前記固溶体を形成している請求項 1に記載 の排ガス浄化用触媒。  16. The exhaust gas purifying catalyst according to claim 1, wherein 10% to 80% of the noble metal forms the solid solution.
PCT/JP2006/311106 2005-06-16 2006-06-02 Exhaust gas purifying catalyst WO2006134787A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06756927A EP1913999A4 (en) 2005-06-16 2006-06-02 Exhaust gas purifying catalyst
US11/915,317 US8133839B2 (en) 2005-06-16 2006-06-02 Exhaust gas-purifying catalyst
CN2006800213548A CN101198404B (en) 2005-06-16 2006-06-02 Exhaust gas purifying catalyst

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-176522 2005-06-16
JP2005176522A JP4979900B2 (en) 2005-06-16 2005-06-16 Exhaust gas purification catalyst

Publications (1)

Publication Number Publication Date
WO2006134787A1 true WO2006134787A1 (en) 2006-12-21

Family

ID=37532151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/311106 WO2006134787A1 (en) 2005-06-16 2006-06-02 Exhaust gas purifying catalyst

Country Status (6)

Country Link
US (1) US8133839B2 (en)
EP (2) EP1913999A4 (en)
JP (1) JP4979900B2 (en)
CN (1) CN101198404B (en)
WO (1) WO2006134787A1 (en)
ZA (1) ZA200710440B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4775954B2 (en) * 2006-03-28 2011-09-21 株式会社豊田中央研究所 Exhaust gas purification catalyst and regeneration method thereof
CN101415490A (en) 2006-03-28 2009-04-22 株式会社丰田中央研究所 Exhaust-gas cleaning catalyst, its regeneration method, exhaust-gas cleaning apparatus and exhaust-gas cleaning method using it
JP4997176B2 (en) * 2008-06-05 2012-08-08 ダイハツ工業株式会社 Exhaust gas purification catalyst composition
JP5396118B2 (en) * 2009-03-25 2014-01-22 三井金属鉱業株式会社 Internal combustion engine exhaust gas purification catalyst material and internal combustion engine exhaust gas purification catalyst
JP5621109B2 (en) * 2009-08-06 2014-11-05 株式会社キャタラー Exhaust gas purification catalyst
JP5942550B2 (en) * 2011-08-22 2016-06-29 マツダ株式会社 Particulate combustion catalyst and method for producing the same
JP5576420B2 (en) * 2012-03-21 2014-08-20 トヨタ自動車株式会社 Exhaust gas purification catalyst
GB201616812D0 (en) 2016-10-04 2016-11-16 Johnson Matthey Public Limited Company NOx adsorber catalyst
GB2554859A (en) * 2016-10-04 2018-04-18 Johnson Matthey Plc NOx adsorber catalyst
CN113557076B (en) * 2019-03-22 2024-04-02 株式会社村田制作所 Exhaust gas purifying catalyst and exhaust gas treatment device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05168927A (en) * 1991-06-10 1993-07-02 Nippon Shokubai Co Ltd Exhaust gas purifying catalyst and purifying device using the same
JPH0699069A (en) * 1992-09-18 1994-04-12 Cataler Kogyo Kk Catalyst for purification of exhaust gas
JPH10182155A (en) * 1996-10-07 1998-07-07 Toyota Central Res & Dev Lab Inc Multiple oxide, multiple oxide support and catalyst containing the multiple oxide
JPH10218620A (en) * 1997-02-04 1998-08-18 Daihatsu Motor Co Ltd Oxygen-storable cerium compound oxide
JP2002204955A (en) * 2001-01-10 2002-07-23 Toyota Motor Corp Catalyst for exhaust gas cleaning
JP2004243305A (en) * 2002-10-11 2004-09-02 Daihatsu Motor Co Ltd Exhaust gas purifying catalyst

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0644999B2 (en) * 1988-04-30 1994-06-15 株式会社豊田中央研究所 Exhaust gas purification catalyst
CA2064977C (en) * 1991-04-05 1998-09-22 Eiichi Shiraishi Catalyst for purifying exhaust gas
JPH0675675A (en) 1991-06-24 1994-03-18 Mitsubishi Electric Corp Keyboard
JP2581872B2 (en) 1992-05-15 1997-02-12 エヌ・イーケムキャット株式会社 Exhaust gas purification catalyst for internal combustion engine excellent in heat resistance and method for producing the same
FR2714370B1 (en) * 1993-12-24 1996-03-08 Rhone Poulenc Chimie Precursor of a composition and composition based on a mixed oxide of cerium and zirconium, method of preparation and use.
JP3304771B2 (en) 1995-07-20 2002-07-22 トヨタ自動車株式会社 Exhaust gas purification catalyst
DE69728341T2 (en) * 1996-10-07 2004-12-30 Kabushiki Kaisha Toyota Chuo Kenkyusho Compound oxide, composite oxide carrier and catalyst
JP2000169148A (en) 1998-12-02 2000-06-20 Daihatsu Motor Co Ltd Cerium-based multiple oxide
US6335305B1 (en) * 1999-01-18 2002-01-01 Kabushiki Kaisha Toyota Chuo Kenkyusho Catalyst for purifying exhaust gas
US6881384B1 (en) * 1999-08-30 2005-04-19 Daihatsu Motor Co., Ltd. Catalytic converter for cleaning exhaust gas
JP3757715B2 (en) 1999-11-09 2006-03-22 トヨタ自動車株式会社 Exhaust gas purification catalyst
AU1461201A (en) * 1999-12-28 2001-07-09 Corning Incorporated Zeolite/alumina catalyst support compositions and method of making the same
US6387338B1 (en) * 2000-03-15 2002-05-14 Delphi Technologies, Inc. Preparation of multi-component Ce, Zr, Mox high oxygen-ion-conduct/oxygen-storage-capacity materials
JP2003072262A (en) * 2001-09-03 2003-03-12 Motoji Fujimoto Tag slip
US7576032B2 (en) * 2003-12-17 2009-08-18 Daihatsu Motor Co., Ltd. Catalyst composition
US7399728B2 (en) * 2003-12-19 2008-07-15 Umicore Ag & Co Kg Catalyst formulation, exhaust system, and gas treatment device
JP4959129B2 (en) * 2004-02-16 2012-06-20 株式会社キャタラー Exhaust gas purification catalyst

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05168927A (en) * 1991-06-10 1993-07-02 Nippon Shokubai Co Ltd Exhaust gas purifying catalyst and purifying device using the same
JPH0699069A (en) * 1992-09-18 1994-04-12 Cataler Kogyo Kk Catalyst for purification of exhaust gas
JPH10182155A (en) * 1996-10-07 1998-07-07 Toyota Central Res & Dev Lab Inc Multiple oxide, multiple oxide support and catalyst containing the multiple oxide
JPH10218620A (en) * 1997-02-04 1998-08-18 Daihatsu Motor Co Ltd Oxygen-storable cerium compound oxide
JP2002204955A (en) * 2001-01-10 2002-07-23 Toyota Motor Corp Catalyst for exhaust gas cleaning
JP2004243305A (en) * 2002-10-11 2004-09-02 Daihatsu Motor Co Ltd Exhaust gas purifying catalyst

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1913999A4 *

Also Published As

Publication number Publication date
EP1913999A1 (en) 2008-04-23
JP2006346587A (en) 2006-12-28
EP2698197A1 (en) 2014-02-19
US8133839B2 (en) 2012-03-13
US20090036300A1 (en) 2009-02-05
EP1913999A4 (en) 2009-02-11
CN101198404A (en) 2008-06-11
ZA200710440B (en) 2008-11-26
CN101198404B (en) 2012-10-10
JP4979900B2 (en) 2012-07-18

Similar Documents

Publication Publication Date Title
JP5216189B2 (en) Exhaust gas purification catalyst
JP5459927B2 (en) Exhaust gas purification catalyst
JP4959129B2 (en) Exhaust gas purification catalyst
JP4979900B2 (en) Exhaust gas purification catalyst
US7759278B2 (en) Exhaust gas-purifying catalyst
JP4465305B2 (en) Exhaust gas purification catalyst
JP4435750B2 (en) Exhaust gas purification catalyst and method for producing the same
JP5196656B2 (en) Exhaust gas purification catalyst and method for producing the same
JP4775953B2 (en) Exhaust gas purification catalyst and regeneration method thereof
JP6889012B2 (en) Diesel oxidation catalyst for light oil combustion and exhaust gas purification device for diesel engine using this
JP4775954B2 (en) Exhaust gas purification catalyst and regeneration method thereof
CN106944094B (en) Catalyst for exhaust gas purification

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680021354.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006756927

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11915317

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE