JPH1047035A - Particulate trap for diesel engine - Google Patents
Particulate trap for diesel engineInfo
- Publication number
- JPH1047035A JPH1047035A JP8209515A JP20951596A JPH1047035A JP H1047035 A JPH1047035 A JP H1047035A JP 8209515 A JP8209515 A JP 8209515A JP 20951596 A JP20951596 A JP 20951596A JP H1047035 A JPH1047035 A JP H1047035A
- Authority
- JP
- Japan
- Prior art keywords
- oxide
- diesel engine
- particulate trap
- group
- filter element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052751 metal Inorganic materials 0.000 claims abstract description 42
- 239000002184 metal Substances 0.000 claims abstract description 42
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims abstract description 19
- 239000002245 particle Substances 0.000 claims abstract description 16
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims abstract description 9
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910001404 rare earth metal oxide Inorganic materials 0.000 claims abstract description 7
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims abstract description 6
- 238000004891 communication Methods 0.000 claims abstract description 5
- 229910000480 nickel oxide Inorganic materials 0.000 claims abstract description 4
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 claims abstract description 4
- 239000011148 porous material Substances 0.000 claims description 26
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 25
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 12
- 238000011049 filling Methods 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 11
- 239000011651 chromium Substances 0.000 claims description 10
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 7
- 239000002131 composite material Substances 0.000 claims description 6
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 6
- 229910052763 palladium Inorganic materials 0.000 claims description 6
- 229910052697 platinum Inorganic materials 0.000 claims description 6
- 229910052703 rhodium Inorganic materials 0.000 claims description 6
- 239000010948 rhodium Substances 0.000 claims description 6
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 6
- 229910001928 zirconium oxide Inorganic materials 0.000 claims description 6
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 claims description 3
- 229910000423 chromium oxide Inorganic materials 0.000 claims description 3
- -1 platinum group metals Chemical class 0.000 claims description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 13
- 229910052799 carbon Inorganic materials 0.000 abstract description 13
- 239000006260 foam Substances 0.000 abstract description 11
- 150000002430 hydrocarbons Chemical class 0.000 abstract description 4
- 239000007788 liquid Substances 0.000 abstract description 4
- 239000000126 substance Substances 0.000 abstract description 4
- 239000004215 Carbon black (E152) Substances 0.000 abstract description 3
- 229930195733 hydrocarbon Natural products 0.000 abstract description 3
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 abstract 1
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 abstract 1
- 229910052726 zirconium Inorganic materials 0.000 abstract 1
- 238000000746 purification Methods 0.000 description 17
- 239000003054 catalyst Substances 0.000 description 9
- 230000007423 decrease Effects 0.000 description 9
- 238000000034 method Methods 0.000 description 9
- 230000003647 oxidation Effects 0.000 description 9
- 238000007254 oxidation reaction Methods 0.000 description 9
- 230000007797 corrosion Effects 0.000 description 7
- 238000005260 corrosion Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 239000010410 layer Substances 0.000 description 6
- 239000002002 slurry Substances 0.000 description 6
- 238000007747 plating Methods 0.000 description 5
- 238000011282 treatment Methods 0.000 description 5
- 239000013078 crystal Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 238000007664 blowing Methods 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 231100000572 poisoning Toxicity 0.000 description 3
- 230000000607 poisoning effect Effects 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000009616 inductively coupled plasma Methods 0.000 description 2
- 230000008595 infiltration Effects 0.000 description 2
- 238000001764 infiltration Methods 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000007088 Archimedes method Methods 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 229910002061 Ni-Cr-Al alloy Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- 230000007815 allergy Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000003183 carcinogenic agent Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011195 cermet Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- 230000005183 environmental health Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000000752 ionisation method Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- GPNDARIEYHPYAY-UHFFFAOYSA-N palladium(ii) nitrate Chemical compound [Pd+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O GPNDARIEYHPYAY-UHFFFAOYSA-N 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- NWAHZABTSDUXMJ-UHFFFAOYSA-N platinum(2+);dinitrate Chemical compound [Pt+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O NWAHZABTSDUXMJ-UHFFFAOYSA-N 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 229910002058 ternary alloy Inorganic materials 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
Landscapes
- Exhaust Gas After Treatment (AREA)
- Processes For Solid Components From Exhaust (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Catalysts (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明はディーゼルエンジン
から排出される主として固体状の炭素粒子および液状、
ガス状または固体状の高分子質炭化水素微粒子(パティ
キュレート)を除去するためのパティキュレートトラッ
プに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates mainly to solid carbon particles and liquids discharged from a diesel engine,
The present invention relates to a particulate trap for removing gaseous or solid high-molecular hydrocarbon fine particles (particulates).
【0002】[0002]
【従来の技術】近年、ディーゼルエンジンから排出され
るパティキュレートが環境衛生上問題になっている。そ
の理由は、パティキュレートが発ガン性物質やアレルギ
ーの原因となる有害物質を含んでおり、かつその粒子径
がほとんど1μm以下の微粒子からなっている。そのた
めパティキュレートは大気中で浮遊しやすく、呼吸器官
等から人体内に取り込まれやすい。従って、これらパテ
ィキュレートのディーゼルエンジンからの排出を規制し
ていく方向で検討が進められている。2. Description of the Related Art In recent years, particulates emitted from diesel engines have become a problem in environmental health. The reason is that the particulate contains a carcinogenic substance or a harmful substance that causes allergy, and is composed of fine particles having a particle diameter of almost 1 μm or less. Therefore, the particulates easily float in the atmosphere and are easily taken into the human body from respiratory organs and the like. Therefore, studies are under way to control the emission of these particulates from diesel engines.
【0003】パティキュレートの浄化方法としては、EG
R(Exsaust Gas Recirculation)を用いたり、燃料噴
射の高圧化等の燃料噴射系の改善、といったエンジン系
の改善によるパティキュレートの発生量低減が図られて
いるが抜本的な決め手がなく、排気通路に排気トラップ
を設置し、パティキュレートをトラップによって捕集
し、後処理により除去することが提案されている(特開
昭58-51235号公報等)。現在までこの後処理法が最も実
用的であると考えられ、耐熱性ガスフィルター(例えば
金属多孔体、ワイヤーメッシュ、目封じタイプのセラミ
ックハニカム等)を用いたものが検討されてきた。これ
は、ディーゼルエンジン排気ガスを濾過してパティキュ
レートを捕集し、捕集量の増大に伴い圧力損失が上昇す
れば、バーナーもしくは電気ヒーター等の加熱手段を用
いて蓄積した炭素系微粒子を燃焼させ、耐熱性ガスフィ
ルターを再生するものである。[0003] As a method for purifying particulates, EG
Although the use of R (Exsaust Gas Recirculation) and the improvement of the engine system, such as the improvement of the fuel injection system by increasing the pressure of the fuel injection, have reduced the amount of particulates generated, the exhaust passage has no fundamental decisive factor. It has been proposed that an exhaust trap is installed in the apparatus, and particulates are collected by the trap and removed by post-processing (Japanese Patent Application Laid-Open No. 58-51235). Up to now, this post-treatment method is considered to be the most practical, and those using a heat-resistant gas filter (for example, a porous metal body, a wire mesh, a plugged-type ceramic honeycomb, etc.) have been studied. This means that particulate matter is collected by filtering the exhaust gas of diesel engines, and if the pressure loss increases as the amount of collection increases, the accumulated carbon-based particles are burned using a heating means such as a burner or an electric heater. Then, the heat-resistant gas filter is regenerated.
【0004】[0004]
【発明が解決しようとする課題】一方ディーゼル排気ガ
ス中のパティキュレートには、炭素粒子の他、液状もし
くはガス化した炭化水素化合物(以下HCと略)が含まれ
ている。炭素粒子は、従来のディーゼルエンジンパティ
キュレートフィルターにより除去されるが、HCは排気ガ
ス中ではガス化あるいは液状化しているため、上記耐熱
性ガスフィルターのような固形物を濾過するものでは充
分に除去されない。さらに、上記のパティキュレート浄
化の後処理においても、高温排気ガス中に含まれる炭素
粒子とHCとを同時に効率よく除去することが課題となっ
ている。本発明は上記問題点と課題をもとに、炭素粒子
とHCとを同時に除去する解決手段として得られたもので
ある。On the other hand, particulates in diesel exhaust gas contain liquid or gasified hydrocarbon compounds (hereinafter abbreviated as HC) in addition to carbon particles. Carbon particles are removed by a conventional diesel engine particulate filter. However, since HC is gasified or liquefied in exhaust gas, it is sufficiently removed by a solid material such as the above-mentioned heat-resistant gas filter. Not done. Further, in the post-treatment of the particulate purification, there is a problem that carbon particles and HC contained in high-temperature exhaust gas are simultaneously and efficiently removed. The present invention has been obtained based on the above problems and problems as a solution for simultaneously removing carbon particles and HC.
【0005】[0005]
【課題を解決するための手段】本発明のディーゼルエン
ジン用パティキュレートトラップは、排気系の途中に設
置された容器と、前記容器内にフィルターエレメントが
装着されたディーゼルエンジン排気ガス浄化用パティキ
ュレートトラップであり、前記フィルターエレメント
が、(1)連通空孔を有する耐熱性金属3次元発泡構造多
孔体を骨格とし、(2)その表面に積層された、酸化チタ
ン、酸化ジルコニウム、希土類酸化物よりなる群より選
択される1種以上の酸化物と、酸化アルミニウムとの混
合物および/もしくは複合酸化物と、(3)さらにその上
に積層される白金、パラジウム、ロジウムよりなる群よ
り選択される1種以上の白金族金属からなり、このフィ
ルターエレメントの連通空孔の平均孔径が10μm以上10
0μm以下であることを特徴とするものである。A particulate trap for a diesel engine according to the present invention comprises a container installed in the exhaust system, and a particulate trap for purifying a diesel engine exhaust gas in which a filter element is mounted in the container. Wherein the filter element comprises (1) a heat-resistant metal three-dimensional foamed structure porous body having communicating pores as a skeleton, and (2) a titanium oxide, a zirconium oxide, and a rare earth oxide laminated on the surface thereof. A mixture and / or composite oxide of one or more oxides selected from the group and aluminum oxide, and (3) one or more selected from the group consisting of platinum, palladium and rhodium further laminated thereon The average pore diameter of the communicating pores of the filter element is at least 10 μm
It is characterized by being not more than 0 μm.
【0006】あるいは、前記フィルターエレメントが、
(1)連通空孔を有する耐熱性金属3次元発泡構造多孔体
を骨格とし、(2)その表面に積層された酸化チタン、酸
化ジルコニウム、希土類酸化物よりなる群より選択され
る1種以上の酸化物と、酸化アルミニウムと、さらに酸
化鉄、酸化クロム、酸化ニッケルよりなる群より選択さ
れる1種以上の酸化物の混合物及び/若しくは複合酸化
物と、(3)さらにその上に積層される白金、パラジウ
ム、ロジウムよりなる群より選択される1種以上の白金
族金属からなり、このフィルターエレメントの連通空孔
の平均孔径が10μm以上100μm以下であることを特徴
とするものである。Alternatively, the filter element is
(1) A heat-resistant metal three-dimensional foam structure porous body having communicating pores is used as a skeleton, and (2) at least one kind selected from the group consisting of titanium oxide, zirconium oxide, and rare earth oxide laminated on the surface thereof An oxide, aluminum oxide, and a mixture and / or composite oxide of one or more oxides selected from the group consisting of iron oxide, chromium oxide, and nickel oxide, and (3) further laminated thereon The filter element is made of at least one platinum group metal selected from the group consisting of platinum, palladium, and rhodium, and has an average pore diameter of 10 μm to 100 μm in the filter element.
【0007】本発明の効果をさらに向上させるには、前
記耐熱性金属3次元発泡構造多孔体が、Cr:15〜30重量
%、Al:1〜15重量%、残部Ni及び不可避成分からなるも
のを用いるのが好ましく、そして、その耐熱性金属3次
元発泡構造多孔体の表面にあらかじめ酸化アルミニウム
の層を形成させることにより、金属と酸化物の密着性を
強化でき好ましい。In order to further improve the effect of the present invention, the heat-resistant metal three-dimensionally foamed porous structure comprises Cr: 15 to 30% by weight, Al: 1 to 15% by weight, balance Ni and unavoidable components. It is preferable to form a layer of aluminum oxide in advance on the surface of the heat-resistant metal three-dimensional foamed porous body, so that the adhesion between the metal and the oxide can be enhanced.
【0008】さらには、前記フィルターエレメントの充
填率が5〜35vol.%であるとより好ましい。また、前記
酸化物の合計量が、耐熱性金属3次元発泡構造多孔体10
0重量部に対して、5〜30重量部とすると、強度や性能に
バランスがとれ、よりよい結果を得られる。そして、そ
の酸化物の組成が酸化物総量中の酸化アルミニウム含有
率として10〜85重量%であると触媒担持力に優れたもの
となる。It is more preferable that the filling rate of the filter element is 5 to 35 vol.%. In addition, the total amount of the oxide is a heat-resistant metal three-dimensional foamed porous body 10.
When the amount is 5 to 30 parts by weight with respect to 0 part by weight, the strength and performance are balanced, and better results can be obtained. When the composition of the oxide is 10 to 85% by weight as the aluminum oxide content in the total amount of the oxide, the catalyst carrying power is excellent.
【0009】[0009]
【発明の実施の形態】本発明によるディーゼルエンジン
用パティキュレートトラップは、フィルターエレメント
の骨格が連通空孔を有する耐熱性金属3次元発泡構造多
孔体であり、その連通空孔の平均孔径を10μm以上100
μm以下とすることで、排気ガスパティキュレート中の
炭素粒子をフィルターエレメントの深さ方向で捕集・除
去すると同時に、フィルターエレメントに含まれる上記
酸化物と白金族金属とによる触媒効果により排気ガスパ
ティキュレート中のHCを効率よく除去することができ
る。BEST MODE FOR CARRYING OUT THE INVENTION A particulate trap for a diesel engine according to the present invention is a heat-resistant metal three-dimensional foamed porous structure in which a skeleton of a filter element has communicating pores, and the communicating pores have an average pore diameter of 10 μm or more. 100
When the particle size is not more than μm, carbon particles in the exhaust gas particulates are collected and removed in the depth direction of the filter element, and at the same time, the exhaust gas particulates are catalyzed by the oxide and the platinum group metal contained in the filter element. HC in the curate can be efficiently removed.
【0010】連通空孔の平均孔径が10μm以上100μm
以下である理由は、連通空孔の平均孔径が10μmより小
さい場合、ディーゼルエンジン排気ガスを流すに従い、
フィルターエレメント表面上に炭素粒子が堆積してしま
うため、排気ガス中のHC成分の触媒反応を阻害され、そ
の結果HC浄化率が低下してしまう問題が生じる。これと
同時に目詰りを起こし圧力損失の増大を招くという問題
も生じる。逆に、連通空孔の平均孔径が100μmを越え
ると、炭素粒子の捕集効率低下、触媒反応率低下に伴う
HC除去効率低下が顕著となるからである。ここで連通空
孔の平均孔径は、電子顕微鏡等の顕微鏡観察による概ね
30個以上の空孔の平均径より求めることができる。[0010] The average diameter of the communicating pores is 10 µm or more and 100 µm.
The reason is as follows, when the average pore diameter of the communication holes is smaller than 10 μm, as the diesel engine exhaust gas flows,
Since carbon particles accumulate on the filter element surface, the catalytic reaction of the HC component in the exhaust gas is hindered, resulting in a problem that the HC purification rate decreases. At the same time, there is a problem that clogging occurs and pressure loss increases. Conversely, if the average pore diameter of the communication pores exceeds 100 μm, the trapping efficiency of carbon particles decreases, and the catalyst reaction rate decreases.
This is because the decrease in HC removal efficiency becomes significant. Here, the average pore diameter of the communicating pores is roughly determined by observation with a microscope such as an electron microscope.
It can be determined from the average diameter of 30 or more holes.
【0011】また、フィルターエレメントの充填率を5
〜35vol.%とすると、特に排気ガス浄化性能が良好であ
り、かつ炭素粒子捕集に伴う圧力損失の上昇も最小限に
抑えることができ、好ましい。則ち、フィルターエレメ
ントの充填率が5vol.%より小さい場合、排気ガス中の
パティキュレートのフィルターエレメントへの衝突確率
が著しく小さくなるため、充分な排気ガス浄化性能を得
ることができない。Further, the filling rate of the filter element is set to 5
When it is set to 35 vol.%, The exhaust gas purification performance is particularly good, and the rise in pressure loss accompanying the collection of carbon particles can be minimized, which is preferable. In other words, when the filling rate of the filter element is smaller than 5 vol.%, The probability of the particulates in the exhaust gas colliding with the filter element becomes extremely small, so that sufficient exhaust gas purification performance cannot be obtained.
【0012】逆に、フィルターエレメントの充填率が35
vol.%より大きい場合、初期の排気ガス浄化性能は良好
であるものの、ディーゼルエンジン排気ガスを流すに従
い、炭素粒子の捕集に伴う孔の閉塞が顕著となるため、
排気ガス中のHC成分の触媒反応を阻害され、その結果HC
浄化率が低下してしまう問題が生じる。これと同時に圧
力損失上昇が顕著となり、このことが結果としてエンジ
ン出力の低下、燃費の悪化を招くため好ましくない。Conversely, the filling factor of the filter element is 35
If the volume is larger than vol.%, the initial exhaust gas purification performance is good, but as the diesel engine exhaust gas flows, the clogging of the pores due to the collection of carbon particles becomes significant,
The catalytic reaction of HC components in the exhaust gas is hindered, resulting in HC
There is a problem that the purification rate is reduced. At the same time, the pressure loss rises remarkably, and this results in a decrease in engine output and a deterioration in fuel economy, which is not preferable.
【0013】前記孔径や充填率を制御するには、素材と
なる発泡ウレタン樹脂のセル数とNiメッキにおけるメッ
キ条件によりメッキ厚を変えることで可変である。セル
数は1インチあたりの孔径数で表現されるので、即ち孔
径の大きさが変わる。またメッキ厚を厚くすれば、孔径
が小となると同時に充填率が大きくなる。この制御でコ
ントロールできない場合は、出来上がった金属多孔体を
加圧することにより孔径を小とし、充填率を大にするこ
とが出来る。The hole diameter and the filling rate can be controlled by changing the plating thickness depending on the number of cells of the urethane foam resin as a raw material and the plating conditions in Ni plating. The number of cells is represented by the number of holes per inch, that is, the size of the holes varies. If the plating thickness is increased, the hole diameter becomes smaller and the filling rate becomes larger. When the control cannot be performed by this control, the pore diameter can be reduced and the filling rate can be increased by pressurizing the formed metal porous body.
【0014】フィルターエレメントに積層される触媒成
分が、酸化チタン、酸化ジルコニウム、希土類酸化物よ
りなる群より選択される1種以上の酸化物と、酸化アル
ミニウムとの混合物および/もしくは複合酸化物、そし
てその上に白金、パラジウム、ロジウムよりなる群より
選択される1種以上の白金族金属を積層させることによ
り、HC酸化性能に優れ、かつSO2のSO3への酸化を抑制
し、同時にSO2等のSOx成分による触媒被毒に対しても優
れた耐被毒性能を示す。The catalyst component laminated on the filter element is a mixture and / or composite oxide of aluminum oxide with one or more oxides selected from the group consisting of titanium oxide, zirconium oxide and rare earth oxide; and platinum thereon, palladium, by laminating at least one platinum group metal selected from the group consisting of rhodium, excellent HC oxidation performance, and to suppress the oxidation of SO 3 in SO 2, simultaneously SO 2 exhibits excellent耐被poison performance to the catalyst poisoning by SO x components and the like.
【0015】さらにもう一つの発明として、フィルター
エレメントに積層される触媒成分が、酸化チタン、酸化
ジルコニウム、希土類酸化物よりなる群より選択される
1種以上の酸化物と、酸化アルミニウムと、さらに酸化
鉄、酸化クロム、酸化ニッケルよりなる群より選択され
る1種以上の酸化物の混合物及び/若しくは複合酸化物
と、さらにその上に白金、パラジウム、ロジウムよりな
る群より選択される1種以上の白金族金属を積層せしめ
ることにより、HC酸化性能を損なうことなく、より一層
優れたSO2酸化抑制と耐被毒性能を有するものである。
ここで前記酸化物の比表面積は5m2/g以上であること
が好ましい。その理由は、該比表面積が5m2/gより小
さいと、その表面に白金族金属を微細かつ多量に分散さ
せることが困難になるため、充分な触媒性能を得るのが
困難になるためである。According to still another aspect of the present invention, the catalyst component laminated on the filter element includes at least one oxide selected from the group consisting of titanium oxide, zirconium oxide, and rare earth oxide, aluminum oxide, and oxide. A mixture and / or composite oxide of one or more oxides selected from the group consisting of iron, chromium oxide, and nickel oxide, and one or more oxides selected from the group consisting of platinum, palladium, and rhodium By laminating a platinum group metal, it is possible to have a more excellent SO 2 oxidation suppression and poisoning resistance without impairing the HC oxidation performance.
Here, the specific surface area of the oxide is preferably 5 m 2 / g or more. The reason is that if the specific surface area is smaller than 5 m 2 / g, it becomes difficult to disperse the platinum group metal finely and in a large amount on the surface, so that it becomes difficult to obtain sufficient catalytic performance. .
【0016】前記酸化物量は、耐熱性金属3次元発泡構
造多孔体100重量部に対して、5〜30重量部であることが
好ましい。その理由は、5重量部より少ない場合、酸化
物による耐腐食性向上の効果が認められないからであ
り、逆に30重量部を越えると酸化物の熱膨張係数と耐熱
性金属3次元発泡構造多孔体の熱膨張係数との差異によ
り生じる応力が大きくなり、その結果酸化物が剥離しや
すくなるためである。そして、酸化物の耐熱性金属3次
元発泡構造多孔体への付着量の制御は、酸化物を液体に
てスラリー化する際のスラリーの濃度・粘度を調整し、
また、多孔体に塗布後、エアブローによる過剰物を除去
する際のエアー圧・ブロー時間を変化させることにより
可能となる。It is preferable that the amount of the oxide is 5 to 30 parts by weight based on 100 parts by weight of the heat-resistant metal three-dimensional foamed porous body. The reason is that when the amount is less than 5 parts by weight, the effect of improving the corrosion resistance by the oxide is not recognized. Conversely, when the amount exceeds 30 parts by weight, the thermal expansion coefficient of the oxide and the heat-resistant metal three-dimensional foam structure are reduced. This is because the stress generated due to the difference from the thermal expansion coefficient of the porous body increases, and as a result, the oxide is easily peeled. The control of the amount of the oxide attached to the heat-resistant metal three-dimensional foam structure porous body is performed by adjusting the concentration and viscosity of the slurry when the oxide is slurried with a liquid,
In addition, it becomes possible by changing the air pressure and the blowing time when removing excess material by air blowing after coating on the porous body.
【0017】さらに、前記酸化物中の酸化アルミニウム
の含有率は10〜85wt%であることが好ましい。その理
由は、酸化アルミニウム含有率が10wt%より少ない場
合、フィルターエレメントの骨格をなす連通空孔を有す
る耐熱性金属3次元発泡構造多孔体と前記酸化物との密
着性が乏しく、腐食性ガスを含んだ排気ガスが流れ、か
つ温度変化が激しいという過酷な環境下において剥離を
生じやすくなるためである。逆に85wt%より多い場
合、SO2のSO3への酸化が顕著となると同時に、SO2等のS
Ox成分による触媒被毒も生じやすくなるからである。Furthermore, the content of aluminum oxide in the oxide is preferably 10 to 85 wt%. The reason is that when the aluminum oxide content is less than 10 wt%, the adhesiveness between the heat-resistant metal three-dimensional foam structure porous body having the communicating pores forming the skeleton of the filter element and the oxide is poor, and the corrosive gas is reduced. This is because peeling is likely to occur in a harsh environment in which the contained exhaust gas flows and the temperature changes drastically. If conversely greater than 85 wt%, at the same time as the oxidation of SO 2 to SO 3 becomes significant, S, such as SO 2
This is because catalyst poisoning by the Ox component is likely to occur.
【0018】酸化アルミニウムとしては、γ型結晶相を
有する酸化アルミニウムを用いると、多孔性のため触媒
担持に優れると同時に断熱効果が高いので、耐熱性向上
の観点からも好ましく、特に酸化アルミニウムに含まれ
るγ型結晶相が酸化アルミニウム100重量部に対して50
重量部以上含まれるとその効果は顕著である。また、γ
型結晶相酸化アルミニウム中にLa等の希土類元素酸化物
が存在するとγ型結晶相がより一層安定化されるため好
ましく、γ型結晶相酸化アルミニウム100重量部に対し
て0.1重量部以上含まれるとその効果が認められる。As aluminum oxide, aluminum oxide having a γ-type crystal phase is preferable from the viewpoint of improving heat resistance because it is excellent in supporting a catalyst due to its porosity and has a high heat insulating effect. Γ-type crystal phase is 50
The effect is remarkable when it is contained by weight or more. Also, γ
The presence of a rare earth element oxide such as La in the aluminum oxide of the crystalline phase is preferable because the γ-type crystal phase is further stabilized, and is preferably contained in an amount of 0.1 part by weight or more based on 100 parts by weight of the aluminum oxide of the γ-type crystalline phase The effect is recognized.
【0019】フィルターエレメントの骨格をなす耐熱性
金属3次元発泡構造多孔体がCr:15〜30重量%、残部N
i、Al及び不可避成分からなる組成とすることにより、
より一層の耐腐食性能向上を図ることができ好ましく、
特にAl:1重量%以上にてその耐腐食性向上効果が顕著で
ある。しかしながらAl含有率が高くなるに従い、耐熱性
金属3次元発泡構造多孔体が脆化するため振動耐久性が
低下する。この観点より、Al含有率は1重量%以上15重
量%以下であることが好ましい。The heat-resistant metal three-dimensionally foamed porous structure constituting the skeleton of the filter element is composed of 15 to 30% by weight of Cr and the balance of N
By having a composition consisting of i, Al and unavoidable components,
It is possible to further improve the corrosion resistance performance, it is preferable,
In particular, the effect of improving corrosion resistance is remarkable at Al: 1% by weight or more. However, as the Al content increases, the heat-resistant metal three-dimensional foamed porous structure becomes brittle, and the vibration durability decreases. From this viewpoint, the Al content is preferably from 1% by weight to 15% by weight.
【0020】さらに、前記耐熱性金属3次元発泡構造多
孔体の表面にアルミニウム酸化物層をあらかじめ存在さ
せると、より一層の耐腐食性能向上を図ることができ好
ましい。このアルミニウム酸化物層は、前記耐熱性金属
3次元発泡構造多孔体を大気中、水蒸気中での酸化処
理、あるいは硝酸、硫酸等の酸化性溶液への浸漬処理、
アルミニウム化合物の塗布・焼付け処理、CVD等のコ
ーティング処理、及びこれら処理の組合せにより得るこ
とができるが、いずれの工程を用いても良い。Further, it is preferable that an aluminum oxide layer is previously provided on the surface of the heat-resistant metal three-dimensionally foamed porous structure since corrosion resistance can be further improved. The aluminum oxide layer is formed by oxidizing the heat-resistant metal three-dimensional foamed porous structure in air or water vapor, or immersing the porous body in an oxidizing solution such as nitric acid or sulfuric acid.
Although it can be obtained by coating and baking treatment of an aluminum compound, coating treatment such as CVD, and a combination of these treatments, any process may be used.
【0021】[0021]
(実施例1) フィルターエレメントに用いる耐熱性金
属3次元発泡構造多孔体としては、住友電気工業(株)
製のNi基3次元網状構造多孔体(商品名:セルメット)
を用いた。セルメットは、導電化処理した3次元発泡体
構造を有するウレタン樹脂フォームにNiめっき層を電解
めっき法により形成した後、熱処理により樹脂成分を燃
焼除去させて形成されたNi材質を基本材質とする。セル
メットには、数種類のセル数を持つ品番があり、#5〜
#7が本発明には適している。実験的にさらに細かい孔
径(セル数大)のものも用いている。(Example 1) As a heat-resistant metal three-dimensional foam structure porous body used for a filter element, Sumitomo Electric Industries, Ltd.
Ni-based three-dimensional mesh porous structure (trade name: Celmet)
Was used. Celmet has a Ni material formed by forming an Ni plating layer on a conductive urethane resin foam having a three-dimensional foam structure by an electrolytic plating method and then burning and removing a resin component by a heat treatment as a basic material. Celmet has a product number with several types of cells.
# 7 is suitable for the present invention. Experimentally, a finer pore diameter (large number of cells) is also used.
【0022】セルメットを内径120mm,外径132mm,
長さ250mmの筒体形状に加工した後、拡散浸透法によ
り合金化処理することにより、連通空孔を有する筒状耐
熱性金属3次元発泡構造多孔体を得た。これをICP(誘
導結合型プラズマ発光分光)分析法により組成分析を行
った結果、Crを22重量%、Alを7重量%、残部がNi及び
不純物成分であった。The cermet was made 120 mm in inner diameter, 132 mm in outer diameter,
After processing into a cylindrical shape having a length of 250 mm, an alloying process was performed by a diffusion infiltration method to obtain a cylindrical heat-resistant metal three-dimensional foamed porous structure having communicating pores. This was subjected to composition analysis by ICP (Inductively Coupled Plasma Emission Spectroscopy) analysis. As a result, it was found that Cr was 22% by weight, Al was 7% by weight, and the balance was Ni and impurity components.
【0023】次に、酸化チタン、酸化アルミニウムの酸
化物粉末を準備した。酸化アルミニウムはγ型結晶相を
含むものを用い、酸化アルミニウム中には耐熱性向上の
ため酸化ランタンを1重量%加えた。酸化チタン50重量
部、酸化アルミニウム50重量部からなる酸化物混合粉末
をイオン交換水中に分散させ、均一なスラリーを作製し
た。ここで、酸化物混合物の比表面積はBET法により
求めた結果、67m2/gであった。Next, an oxide powder of titanium oxide and aluminum oxide was prepared. Aluminum oxide containing a γ-type crystal phase was used, and 1% by weight of lanthanum oxide was added to the aluminum oxide to improve heat resistance. An oxide mixed powder comprising 50 parts by weight of titanium oxide and 50 parts by weight of aluminum oxide was dispersed in ion-exchanged water to prepare a uniform slurry. Here, the specific surface area of the oxide mixture was 67 m 2 / g as a result of being determined by the BET method.
【0024】前記スラリーは濃度・粘度を調節し、その
中に、筒状にした耐熱性金属3次元発泡構造多孔体を浸
漬し、引き上げた後、余分なスラリーをエアーブローの
エアー圧・ブロー時間をコントロールして除去し、大気
中950℃にて焼成することにより酸化物コート層を形成
した。酸化物量は耐熱性金属3次元発泡構造多孔体100
重量部に対してほぼ20重量部であった。さらに、白金族
金属化合物水溶液として、ジニトロジアミン白金硝酸溶
液とジニトロジアミンパラジウム硝酸溶液を酸化物コー
ト層が形成された耐熱性金属3次元発泡構造多孔体に塗
布、焼成することにより、筒状フィルターエレメントを
得た。フィルターエレメントの充填率をアルキメデス法
により求めた結果、24vol.%であった。The concentration and viscosity of the slurry are adjusted, and a tubular heat-resistant metal three-dimensional foamed porous body is immersed in the slurry, and the slurry is pulled up. Was controlled and removed, and baked at 950 ° C. in the air to form an oxide coat layer. The amount of oxide is heat-resistant metal, three-dimensional foamed porous structure 100
It was approximately 20 parts by weight based on parts by weight. Further, as a platinum group metal compound aqueous solution, a dinitrodiamine platinum nitrate solution and a dinitrodiamine palladium nitrate solution are applied to the heat-resistant metal three-dimensional foam structure porous body on which the oxide coat layer is formed, and fired to form a cylindrical filter element. I got The filling factor of the filter element was determined by the Archimedes method and was found to be 24 vol.%.
【0025】上記筒状フィルターエレメントと、トラッ
プ容器からパティキュレートトラップを構成し、ディー
ゼル排気ガスを筒体の内側の空間に導入し、フィルター
エレメントを透過して筒体外側へ流れ、フィルターエレ
メントを透過する際にパティキュレートの捕集除去と酸
化触媒によりHCが燃焼除去されるようにした。排気量34
00cc、4気筒の直噴射式のディーゼルエンジン車のシ
ャシダイナモ排気ガス経路に、パティキュレートトラッ
プを取り付けた。これに排気ガス分析装置を取り付け、
パティキュレートトラップ前後での排気ガス組成分析を
行った。A particulate trap is formed from the cylindrical filter element and the trap container, and diesel exhaust gas is introduced into the space inside the cylinder, flows through the filter element, flows outside the cylinder, and passes through the filter element. At this time, HC was burned and removed by the collection and removal of particulates and the oxidation catalyst. Displacement 34
A particulate trap was mounted on the chassis dynamo exhaust gas path of a 00 cc, 4-cylinder, direct-injection diesel engine vehicle. Attach an exhaust gas analyzer to this,
Exhaust gas composition analysis before and after the particulate trap was performed.
【0026】トラップ容器前後より排気ガスのサンプリ
ングを行い、排気ガス中のTHC(全炭化水素)量を水素
炎イオン化法により測定した。トラップ容器前よりサン
プリングした排気ガス中のTHC量をTHCin、トラップ容器
後よりサンプリングした排気ガス中のTHC量をTHCoutと
した時、HC浄化率を(1−THCout/THCin)×100(%)
で表現した。そして、作製したパティキュレートトラッ
プについて、ディーゼルエンジン排気ガスを流し始めた
時点および流し始めてから30分後のHC浄化率を採取し
た。同様にして、平均孔径を変化させたパティキュレー
トトラップ(サンプル2〜10)を試験した。結果を表
1に示す。Exhaust gas was sampled from before and after the trap vessel, and the amount of THC (total hydrocarbon) in the exhaust gas was measured by a flame ionization method. When the THC amount in the exhaust gas sampled from the front of the trap container is THCin, and the THC amount in the exhaust gas sampled from the rear of the trap container is THCout, the HC purification rate is (1-THCout / THCin) × 100 (%).
It was expressed by. Then, for the produced particulate trap, the HC purification rate at the time when the exhaust gas of the diesel engine was started to flow and 30 minutes after the start of the flow was collected. Similarly, the particulate traps (samples 2 to 10) having different average pore sizes were tested. Table 1 shows the results.
【0027】[0027]
【表1】 [Table 1]
【0028】この結果より、平均孔径が10μm未満であ
ると、HC浄化率は流し始めた時点では良好であるが、す
ぐに目詰まりして浄化率が低下する。平均孔径が100μ
mを越えると、触媒効率の低下により、最初からHC浄化
率が低いままになる。According to the results, when the average pore diameter is less than 10 μm, the HC purification rate is good at the beginning of the flow, but is immediately clogged and the purification rate decreases. Average pore size is 100μ
When m exceeds m, the HC purification rate remains low from the beginning due to a decrease in catalyst efficiency.
【0029】(実施例2) 実施例1と同様に、フィル
ターエレメントの充填率を変化させたものを作製し(サ
ンプル11〜18)、このエレメントを用いてディーゼ
ルエンジン用パティキュレートトラップを作製した。そ
のときのHC浄化率を表2に示す。表2から、フィルター
エレメントの充填率が5vol.%以上35vol.%以下の範囲
でHC浄化率が安定して高いことが解る。フィルターエレ
メントの充填率が37vol.%になると排気ガスを流すに伴
い、フィルター目詰りによるHC浄化率低下が顕著であ
る。Example 2 In the same manner as in Example 1, filters having different filling rates of filter elements were manufactured (samples 11 to 18), and a particulate trap for a diesel engine was manufactured using the elements. Table 2 shows the HC purification rates at that time. From Table 2, it can be seen that the HC purification rate is stably high when the filling rate of the filter element is in the range of 5 vol.% To 35 vol.%. When the filling rate of the filter element reaches 37 vol.%, The HC purification rate is significantly reduced due to filter clogging as the exhaust gas flows.
【0030】[0030]
【表2】 [Table 2]
【0031】[0031]
【実施例3】実施例1の方法で、種々の酸化物コート層
を有するフィルターエレメントを作製し、ディーゼルエ
ンジン用パティキュレートトラップに組み上げた(サン
プル19〜35)。その試験結果を表3に示す。この結
果から、耐熱性金属3次元構造体多孔体100重量部に対
する酸化物量が少ないとHC浄化率の値が低下する。表3
から、酸化物量が5重量部以上は必要である。好ましく
は10重量部以上である。この実験では、さらにSO2酸化
率を採取し、また排気ガス温度100℃と750℃とを30分づ
つ繰返し、これの100サイクル後での金属骨格と酸化物
との剥離の有無、骨格の腐食の有無についても調査し
た。表3にあわせて示す。Example 3 Filter elements having various oxide coating layers were produced by the method of Example 1 and assembled into a particulate trap for a diesel engine (samples 19 to 35). Table 3 shows the test results. From this result, when the amount of the oxide is small with respect to 100 parts by weight of the heat-resistant metal three-dimensional structure porous body, the value of the HC purification rate decreases. Table 3
Therefore, the amount of oxide must be 5 parts by weight or more. It is preferably at least 10 parts by weight. In this experiment, the oxidation rate of SO 2 was further sampled, and the exhaust gas temperature was repeated at 100 ° C and 750 ° C for 30 minutes. Was also investigated. The results are shown in Table 3.
【0032】[0032]
【表3】 [Table 3]
【0033】表3から、酸化アルミニウムの含有率が多
いとSO2酸化率が増大し好ましくない。また、酸化アル
ミニウムの含有率が少なすぎるとHC浄化率の低下を招く
ことがわかる。さらにサンプル27では、酸化物の量が
多すぎ、剥離が起こり、金属骨格が腐食している。酸化
物の量が少なすぎると、同様に腐食の原因となる。以上
から酸化物中の酸化アルミニウム含有率は10〜75重量%
が好ましく、また金属骨格に対する酸化物の重量部は5
〜30重量部にするのがよい。As shown in Table 3, when the content of aluminum oxide is large, the SO 2 oxidation rate is undesirably increased. Also, it is found that when the content of aluminum oxide is too small, the HC purification rate is reduced. Further, in Sample 27, the amount of oxide was too large, peeling occurred, and the metal skeleton was corroded. If the amount of the oxide is too small, it also causes corrosion. From the above, the content of aluminum oxide in the oxide is 10 to 75% by weight.
And the weight part of the oxide relative to the metal skeleton is 5
It is good to use up to 30 parts by weight.
【0034】[0034]
【実施例4】前記と同様に実施例1の方法で、原料酸化
物の比表面積を変えた物を用いてフィルターエレメント
を作製し、パティキュレートトラップに組み上げた(サ
ンプル36〜41)。金属骨格に付着する酸化物量は、
エアー圧とブロー時間を調節し、またスラリー濃度を変
えて骨格に対する酸化物重量部をほぼ20重量部とした。
この結果を表4に示す。酸化物比表面積が小、即ち酸化
物の粒度が粗い物はHC浄化率が良くない。このデータと
表3のサンプル30をあわせて酸化物比表面積は5m2/
g以上が好ましい。Example 4 In the same manner as described above, a filter element was prepared using the raw material oxide having a changed specific surface area by the method of Example 1, and assembled into a particulate trap (samples 36 to 41). The amount of oxide attached to the metal skeleton is
The air pressure and blowing time were adjusted, and the slurry concentration was changed so that the weight part of the oxide relative to the skeleton was almost 20 parts by weight.
Table 4 shows the results. A substance having a small oxide specific surface area, that is, a substance having a coarse particle size of the oxide has a poor HC purification rate. By combining this data with Sample 30 in Table 3, the oxide specific surface area was 5 m 2 /
g or more is preferable.
【0035】[0035]
【表4】 [Table 4]
【0036】[0036]
【実施例5】次に金属骨格についての実験を行った。実
施例1と同様、筒状にした金属3次元発泡構造多孔体を
拡散浸透法でCrとAlを加え、Ni−Cr−Alの3元合金とし
た。特にCrの比率を変化させた。Alについては、最終比
率が7wt%になるように、原料比率を調整しほぼ7wt
%になった。この金属骨格を実施例1に準拠してフィル
ターユニットにし、パティキュレートトラップに組み上
げた(サンプル42〜49)。このサンプルを750℃の
ディーゼル排気ガス中に100時間さらしたのち前後の重
量を量り重量変化率とした。試験結果を表5に示す。表
5からCrの含有率が少ないと腐食が早まり、多すぎると
加工性に問題があり、最適なCr含有量は15〜30wt%が
好ましい。Embodiment 5 Next, an experiment on a metal skeleton was performed. Similarly to Example 1, Cr and Al were added to a cylindrical porous metal body having a three-dimensional foam structure by a diffusion infiltration method to obtain a Ni-Cr-Al ternary alloy. In particular, the ratio of Cr was changed. For Al, adjust the raw material ratio so that the final ratio is 7 wt%, and
%Became. This metal skeleton was used as a filter unit in accordance with Example 1 and assembled in a particulate trap (samples 42 to 49). After exposing this sample to diesel exhaust gas at 750 ° C. for 100 hours, the weight before and after the exposure was measured and defined as the weight change rate. Table 5 shows the test results. According to Table 5, when the content of Cr is small, corrosion is accelerated, and when too large, there is a problem in workability, and the optimum Cr content is preferably 15 to 30 wt%.
【0037】[0037]
【表5】 [Table 5]
【0038】[0038]
【実施例6】実施例5と同様に、今度はCrの比率をほぼ
22wt%に固定し、Alの比率を変化させた。以降実施例
5と同じ操作でパティキュレートトラップを組み上げ
(サンプル50〜55)、実施例5と同様の試験をし
た。結果を表6に示す。この結果から、Alの比率におい
てもCrと同様に適度な比率が必要である。即ち、Alが少
ないと腐食が早まり、多すぎると加工性が問題になる。
Alの比率を1〜15wt%とするのが好ましい。Embodiment 6 As in Embodiment 5, this time, the ratio of Cr was substantially reduced.
It was fixed at 22 wt% and the ratio of Al was changed. Thereafter, a particulate trap was assembled by the same operation as in Example 5 (samples 50 to 55), and the same test as in Example 5 was performed. Table 6 shows the results. From this result, it is necessary to set an appropriate ratio of Al as well as Cr. That is, if the amount of Al is small, corrosion is accelerated, and if the amount is too large, workability becomes a problem.
It is preferable that the ratio of Al is 1 to 15 wt%.
【0039】[0039]
【表6】 [Table 6]
【0040】[0040]
【発明の効果】以上のように、本発明になるディーゼル
エンジン用パティキュレートトラップにより、ディーゼ
ル排気ガス中の炭素粒子とHCとの同時除去が可能とな
る。さらにはSO2のSO3への酸化を抑制することが可能で
あり、ディーゼル排気ガス浄化に役立ち、地球の大気汚
染防止に有効なものとなる。As described above, the particulate trap for a diesel engine according to the present invention enables simultaneous removal of carbon particles and HC in diesel exhaust gas. Further, it is possible to suppress the oxidation of SO 2 to SO 3 , which is useful for purifying diesel exhaust gas and is effective for preventing air pollution of the earth.
フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01J 23/40 ZAB B01D 53/36 103C 23/63 B01J 23/56 301A (72)発明者 岡本 ▲曉▼ 兵庫県伊丹市昆陽北一丁目1番1号 住友 電気工業株式会社伊丹製作所内Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI Technical display location B01J 23/40 ZAB B01D 53/36 103C 23/63 B01J 23/56 301A (72) Inventor Okamoto ▲ Akira ▼ Hyogo 1-1 1-1 Kunyokita, Itami-shi, Japan Sumitomo Electric Industries, Ltd. Itami Works
Claims (7)
ィキュレートトラップであって、前記フィルターエレメ
ントが、連通空孔を有する耐熱性金属3次元発泡構造多
孔体からなる骨格と、その表面に積層された酸化チタ
ン、酸化ジルコニウム、希土類酸化物よりなる群より選
択される1種以上の酸化物と、酸化アルミニウムとの混
合物および/もしくは複合酸化物と、さらにその上に積
層された白金、パラジウム、ロジウムよりなる群より選
択される1種以上の白金族金属からなり、このフィルタ
ーエレメントの連通空孔の平均孔径が10μm以上100μ
m以下であることを特徴とするディーゼルエンジン用パ
ティキュレートトラップ。1. A particulate trap for purifying a diesel engine exhaust gas, wherein the filter element is composed of a skeleton made of a heat-resistant metal three-dimensional foamed porous body having communicating pores, and titanium oxide laminated on the surface thereof. , A mixture of at least one oxide selected from the group consisting of zirconium oxide and rare earth oxides, aluminum oxide, and / or a composite oxide, and a platinum, palladium, and rhodium layer further laminated thereon The filter element is made of at least one platinum group metal selected from the group consisting of:
m or less, the particulate trap for a diesel engine.
ィキュレートトラップであって、前記フィルターエレメ
ントが、連通空孔を有する耐熱性金属3次元発泡構造多
孔体からなる骨格と、その表面に積層された酸化チタ
ン、酸化ジルコニウム、希土類酸化物よりなる群より選
択される1種以上の酸化物と、酸化アルミニウムとの混
合物と、酸化鉄、酸化クロム、酸化ニッケルよりなる群
より選択される1種以上の酸化物および/もしくは複合
酸化物と、さらにその上に積層された白金、パラジウ
ム、ロジウムよりなる群より選択される1種以上の白金
族金属からなり、このフィルターエレメントの連通空孔
の平均孔径が10μm以上100μm以下であることを特徴
とするディーゼルエンジン用パティキュレートトラッ
プ。2. A particulate trap for purifying exhaust gas of a diesel engine, wherein the filter element is composed of a heat-resistant metal three-dimensional foamed porous body having communicating pores, and titanium oxide laminated on the surface thereof. , A mixture of at least one oxide selected from the group consisting of zirconium oxide and rare earth oxides and aluminum oxide, and one or more oxides selected from the group consisting of iron oxide, chromium oxide and nickel oxide And / or a composite oxide and one or more platinum group metals selected from the group consisting of platinum, palladium and rhodium further laminated thereon, and the average pore diameter of the communication pores of the filter element is 10 μm or more. A particulate trap for a diesel engine having a particle size of 100 μm or less.
が、Cr:15〜30重量%、Al:1〜15重量%、残部Ni及び不
可避成分からなる請求項1または2記載のディーゼルエ
ンジン用パティキュレートトラップ。3. The diesel engine according to claim 1, wherein the heat-resistant metal three-dimensional foamed porous structure comprises 15 to 30% by weight of Cr, 1 to 15% by weight of Al, the balance of Ni and unavoidable components. Particulate trap.
表面にさらにアルミニウム酸化物層を有する請求項1〜
3のいずれかに記載のディーゼルエンジン用パティキュ
レートトラップ。4. The heat-resistant metal three-dimensional foamed porous body further has an aluminum oxide layer on a surface thereof.
3. The particulate trap for a diesel engine according to any one of 3.
〜35vol.%である請求項1〜4のいずれかに記載のディ
ーゼルエンジン用パティキュレートトラップ。5. The filling rate of the filter element is 5
The particulate trap for a diesel engine according to any one of claims 1 to 4, wherein the amount is 35 vol.
元発泡構造多孔体100重量部に対して、5〜30重量部であ
る請求項1〜5のいずれかに記載のディーゼルエンジン
用パティキュレートトラップ。6. The diesel engine according to claim 1, wherein a total amount of the oxide is 5 to 30 parts by weight based on 100 parts by weight of the heat-resistant metal three-dimensional foamed porous body. Particulate trap.
有率が10〜85重量%である請求項1〜6のいずれかに記
載のディーゼルエンジン用パティキュレートトラップ。7. The particulate trap for a diesel engine according to claim 1, wherein an aluminum oxide content in the total amount of the oxides is 10 to 85% by weight.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8209515A JPH1047035A (en) | 1996-08-08 | 1996-08-08 | Particulate trap for diesel engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8209515A JPH1047035A (en) | 1996-08-08 | 1996-08-08 | Particulate trap for diesel engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1047035A true JPH1047035A (en) | 1998-02-17 |
Family
ID=16574079
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8209515A Pending JPH1047035A (en) | 1996-08-08 | 1996-08-08 | Particulate trap for diesel engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1047035A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002025072A1 (en) * | 2000-09-20 | 2002-03-28 | Toyota Jidosha Kabushiki Kaisha | Exhaust emission control filter and method of controlling exhaust emission |
WO2002040836A1 (en) * | 2000-11-17 | 2002-05-23 | Toyota Jidosha Kabushiki Kaisha | Exhaust emission control device and method of controlling exhaust emission |
JP2009072764A (en) * | 2007-09-21 | 2009-04-09 | Waertsilae Schweiz Ag | Exhaust gas particle filter and method for manufacturing exhaust gas particle filter |
WO2009128175A1 (en) | 2008-04-14 | 2009-10-22 | 三井金属鉱業株式会社 | Particulate combustion catalyst, particulate filter and exhaust gas purifying apparatus |
WO2009144847A1 (en) | 2008-05-29 | 2009-12-03 | 三井金属鉱業株式会社 | Particulate combustion catalyst, particulate filter and exhaust gas purifying apparatus |
JP2010540217A (en) * | 2007-09-28 | 2010-12-24 | ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト | Removal of particles from exhaust gas of internal combustion engines operated mainly with stoichiometric mixtures |
WO2011004689A1 (en) | 2009-07-06 | 2011-01-13 | 三井金属鉱業株式会社 | Particulate combustion catalyst |
WO2012090577A1 (en) | 2010-12-27 | 2012-07-05 | 三井金属鉱業株式会社 | Particulate combustion catalyst, production method therefor, particulate filter and production method therefor |
JP2012196620A (en) * | 2011-03-22 | 2012-10-18 | Sumitomo Electric Ind Ltd | Gas decomposing element, method for production thereof, and ammonia decomposition method |
DE112011104673T5 (en) | 2011-01-05 | 2013-10-17 | Honda Motor Co., Ltd. | Exhaust gas purifying catalyst and exhaust gas purifying catalyst system |
DE112011104676T5 (en) | 2011-01-05 | 2013-12-05 | Honda Motor Co., Ltd. | Exhaust gas purifying catalyst |
JP2014509350A (en) * | 2011-02-14 | 2014-04-17 | 新東工業株式会社 | Mold material, mold breathable member, mold mold material and mold breathable member manufacturing method |
-
1996
- 1996-08-08 JP JP8209515A patent/JPH1047035A/en active Pending
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6945036B2 (en) | 2000-09-20 | 2005-09-20 | Toyota Jidosha Kabushiki Kaisha | Exhaust emission control filter and method of controlling exhaust emission |
WO2002025072A1 (en) * | 2000-09-20 | 2002-03-28 | Toyota Jidosha Kabushiki Kaisha | Exhaust emission control filter and method of controlling exhaust emission |
WO2002040836A1 (en) * | 2000-11-17 | 2002-05-23 | Toyota Jidosha Kabushiki Kaisha | Exhaust emission control device and method of controlling exhaust emission |
US6829891B2 (en) | 2000-11-17 | 2004-12-14 | Toyota Jidosha Kabushiki Kaisha | Exhaust emission control device and method of controlling exhaust emission |
JP2009072764A (en) * | 2007-09-21 | 2009-04-09 | Waertsilae Schweiz Ag | Exhaust gas particle filter and method for manufacturing exhaust gas particle filter |
JP2010540217A (en) * | 2007-09-28 | 2010-12-24 | ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト | Removal of particles from exhaust gas of internal combustion engines operated mainly with stoichiometric mixtures |
WO2009128175A1 (en) | 2008-04-14 | 2009-10-22 | 三井金属鉱業株式会社 | Particulate combustion catalyst, particulate filter and exhaust gas purifying apparatus |
WO2009144847A1 (en) | 2008-05-29 | 2009-12-03 | 三井金属鉱業株式会社 | Particulate combustion catalyst, particulate filter and exhaust gas purifying apparatus |
US9393522B2 (en) | 2008-05-29 | 2016-07-19 | Mitsui Mining & Smelting Co., Ltd. | Method for combusting diesel exhaust gas |
WO2011004689A1 (en) | 2009-07-06 | 2011-01-13 | 三井金属鉱業株式会社 | Particulate combustion catalyst |
WO2012090577A1 (en) | 2010-12-27 | 2012-07-05 | 三井金属鉱業株式会社 | Particulate combustion catalyst, production method therefor, particulate filter and production method therefor |
DE112011104673T5 (en) | 2011-01-05 | 2013-10-17 | Honda Motor Co., Ltd. | Exhaust gas purifying catalyst and exhaust gas purifying catalyst system |
DE112011104676T5 (en) | 2011-01-05 | 2013-12-05 | Honda Motor Co., Ltd. | Exhaust gas purifying catalyst |
JP2014509350A (en) * | 2011-02-14 | 2014-04-17 | 新東工業株式会社 | Mold material, mold breathable member, mold mold material and mold breathable member manufacturing method |
JP2012196620A (en) * | 2011-03-22 | 2012-10-18 | Sumitomo Electric Ind Ltd | Gas decomposing element, method for production thereof, and ammonia decomposition method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1083485A (en) | Device for the purification of exhaust gases | |
JP6436615B2 (en) | Partial filter substrate including SCR catalyst, exhaust treatment system, and engine exhaust treatment method | |
EP3778018A1 (en) | Exhaust gas purification device | |
JPH1047035A (en) | Particulate trap for diesel engine | |
EP3081284B1 (en) | Exhaust gas purification apparatus | |
JPH0751522A (en) | Metal filter having high corrosion resistance | |
JP2009136833A (en) | Method for producing monolithic catalyst for exhaust gas cleaning and monolithic catalyst | |
DE102020110011A1 (en) | Exhaust gas cleaning device | |
WO2014103597A1 (en) | Catalyst composition for exhaust gas purification and catalyst for exhaust gas purification | |
JP2010517743A (en) | Gas filtration structure with corrugated walls | |
EP0450897B1 (en) | Heat-resistant metal monolith and manufacturing method therefor | |
FR2498471A1 (en) | COMPOSITION AND PROCESS FOR TREATING EXHAUST GAS | |
EP0925823B1 (en) | Exhaust emission control device and method of manufacturing the same | |
JP4900663B2 (en) | Exhaust gas purification filter and manufacturing method thereof | |
JP6627813B2 (en) | Method for producing particulate filter with catalyst | |
JP2010269270A (en) | Honeycomb structure type filter | |
EP0626188A1 (en) | Exhaust gas cleaning filter medium and method of manufacturing the same | |
JPH01142208A (en) | Filter for collecting diesel particulate | |
JP5014086B2 (en) | Exhaust gas purification catalyst | |
JPH02102315A (en) | Particulate oxidation catalyst filter and catalyst device | |
US20050220678A1 (en) | Exhaust gas clarification catalyst carrying article | |
Cantrell et al. | Next generation nanospring-enhanced catalytic converters | |
CN117120161A (en) | Catalyst composition for exhaust gas purification and catalyst for exhaust gas purification | |
JPS59169534A (en) | Catalyst for removing fine particles in diesel exhaust gas | |
JP2006051475A (en) | Exhaust gas purification catalyst and method for manufacturing the same |