JPS59169534A - Catalyst for removing fine particles in diesel exhaust gas - Google Patents

Catalyst for removing fine particles in diesel exhaust gas

Info

Publication number
JPS59169534A
JPS59169534A JP58041998A JP4199883A JPS59169534A JP S59169534 A JPS59169534 A JP S59169534A JP 58041998 A JP58041998 A JP 58041998A JP 4199883 A JP4199883 A JP 4199883A JP S59169534 A JPS59169534 A JP S59169534A
Authority
JP
Japan
Prior art keywords
catalyst
carrier
exhaust gas
per
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58041998A
Other languages
Japanese (ja)
Other versions
JPS6349541B2 (en
Inventor
Norio Totsuka
戸塚 範雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KIYATARAA KOGYO KK
Original Assignee
KIYATARAA KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KIYATARAA KOGYO KK filed Critical KIYATARAA KOGYO KK
Priority to JP58041998A priority Critical patent/JPS59169534A/en
Publication of JPS59169534A publication Critical patent/JPS59169534A/en
Publication of JPS6349541B2 publication Critical patent/JPS6349541B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:The titled catalyst for removing fine particles based on carbon in diesel exhaust gas while making the same harmless in good efficiency, obtained by allowing a carrier having a three-dimensional reticulated structure coated with activated alumina to support a specific amount of Rh and a selected metal. CONSTITUTION:The surface of a heat resistance carrier having a three-dimensional reticulated integral structure such as cordierite is coated with 20-200g per 1l of the carrier of activated alumina. This catalyst carrier is allowed to support 0.05-2g per 1l of the carrier of Rh by using an aqueous RhCl3 solution and one or more of elements selected from Cu, Ag, Fe, Mg and Zn. By using this catalyst for removing fine particles in the exhaust gas from a disel engine, the conversion of SO2 to sulfate can be suppressed and particulate can be efficiently removed in a harmless state.

Description

【発明の詳細な説明】 この発明は、ディーゼルエンノンから排出される炭素を
主成分とする微粒子を除去するだめの触媒に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a catalyst for removing particulates mainly composed of carbon emitted from diesel engines.

ディーゼルエンジンから排出される有害成分としては、
ガス状のCO(−酸化炭素)、HC(炭化水素)、NO
X (窒素酸化物)の他に炭素を主成分とする微粒子(
以下パティキュレートという)およびS(硫黄)酸化物
等がある。
Harmful components emitted from diesel engines include:
Gaseous CO (-carbon oxide), HC (hydrocarbon), NO
In addition to X (nitrogen oxides), fine particles whose main component is carbon (
(hereinafter referred to as particulates) and S (sulfur) oxide.

1980年米国環境保護局(EPA )は米国における
ツクティキーレート規制の実施を決定した。この規制値
として、軽量乗用車での0.2g/マイル、軽量トラッ
クでの0.26p/マイルなる案が検討されている。し
たがって、将来これらの規制値に合格する為には何らか
の後処理装置が必要になることは必至である。
In 1980, the US Environmental Protection Agency (EPA) decided to implement tscutiki rate regulations in the United States. A proposed regulation value of 0.2g/mile for light passenger cars and 0.26p/mile for light trucks is being considered. Therefore, in order to pass these regulatory values in the future, it is inevitable that some sort of post-processing device will be required.

ディーゼル排気中の微粒子を除去する方法については、
これまで多くの方法が提案されている。例えば特公昭5
6−29581号に記されているような交錯状金属ワイ
ヤにアルミナを被覆したフィルターに排気ガスを通過さ
せて除去する方法、特開昭56−1201.1号にみら
れるように静電フィルターを通過させる方法、あるいは
特開昭56−72213号のように濾材と加熱ヒーター
とを組み合わせたものに排気ガ′スを通過させて除去す
る方法等、種々の方法がある。また三次元網目構造体の
耐熱物質に触媒能を有する物質(n型半導体酸化物)を
塗布したものに排気ガスを通過させて除去する方法につ
いても特開昭55−137040号等で提案されている
。しかしながら、これらはいずれも自動車等のディーゼ
ル排気中の微粒子を除去する方法としては性能が不充分
であったり、搭載性に難があったり、微粒子の目詰まり
により内燃機関の機能を損う恐れがある等の欠点を有す
る。自動車に搭載する場合の微粒子除去装置としては前
記種々の方法のうち三次元網目構造体に触媒能を有する
物質を塗布したものが、搭載性、価格の点から最も好ま
しい方法である。
For information on how to remove particulates from diesel exhaust,
Many methods have been proposed so far. For example, Tokuko Sho 5
A method of removing exhaust gas by passing it through a filter made of interlaced metal wires coated with alumina as described in No. 6-29581, and an electrostatic filter as shown in JP-A-56-1201.1. There are various methods such as passing the exhaust gas through, or removing the exhaust gas by passing it through a combination of a filter medium and a heater as disclosed in JP-A-56-72213. In addition, a method of removing exhaust gas by passing it through a heat-resistant material of a three-dimensional network structure coated with a substance having catalytic ability (n-type semiconductor oxide) has been proposed in Japanese Patent Laid-Open No. 137040/1983. There is. However, all of these methods have insufficient performance as methods for removing particulates from diesel exhaust from automobiles, etc., are difficult to install, and have the risk of impairing the function of the internal combustion engine due to clogging with particulates. It has some drawbacks. Among the various methods described above, the most preferable method for a particulate removal device to be installed in an automobile is one in which a three-dimensional network structure is coated with a substance having catalytic ability, from the viewpoint of ease of installation and cost.

ところで、ディーゼル排気の微粒子を燃焼無害化除去す
るだめの触媒としては、吸着炭化水素の燃焼性に優れた
ものが好ましい。すなわち、微粒子中の主成分は炭素で
あるが、炭素に直接作用し、これをガス化燃焼させるこ
とは600℃以上の高温を心安とし、実用上極めて困難
であるか、吸着された炭化水素の燃焼を着火源として炭
素を主体とした微粒子を燃焼除去することは可能である
By the way, as a catalyst for burning and detoxifying particulates of diesel exhaust, it is preferable to use a catalyst that has excellent combustibility of adsorbed hydrocarbons. In other words, the main component in the fine particles is carbon, but it is extremely difficult to act directly on the carbon to gasify and burn it at high temperatures of 600°C or higher, and it is extremely difficult to do so in practice. It is possible to remove fine particles mainly composed of carbon by using combustion as an ignition source.

この吸着炭化水素を燃焼させる触媒物質としては、白金
(pt )、パラジウム(pa )、ロジウム(Rh 
)等の貴金属成分が最も有効である。
Catalytic materials for burning this adsorbed hydrocarbon include platinum (pt), palladium (pa), and rhodium (Rh).
) are the most effective.

しかしながら、従来のpt触媒、Pd触媒をディーゼル
排気除去に使用すると硫酸ミストのようなサルフェート
を生成するという問題を生ずる。すなわち、通常、ディ
ーゼルエンヅンでは、ガソリンに比べて、S含有量の多
い軽油が使用さ扛るが、軽油中のSはエンノン燃焼室で
酸化されSO2になって排出される。しだがって、ディ
ーゼル車では、通常のガソリン車に比へ10倍程度のS
02が含まれているのが普通である。
However, when conventional PT catalysts and Pd catalysts are used for diesel exhaust removal, a problem arises in that they produce sulfates such as sulfuric acid mist. That is, diesel engines normally use light oil that has a higher S content than gasoline, but the S in the light oil is oxidized in the combustion chamber and is discharged as SO2. Therefore, diesel cars have about 10 times more S than regular gasoline cars.
02 is normally included.

このようなディーゼル排気に対して、pt、pt−Pd
XPd等の成分を有する従来型の貴金属系触媒を使用す
ると、排気中のsu2は酸化されてS03になり、低温
域で水分と結合して帆酸ミストあるいは*酸化合物(所
請サルフェート)となる。
For such diesel exhaust, pt, pt-Pd
When a conventional noble metal catalyst containing components such as XPd is used, su2 in the exhaust gas is oxidized to S03, which combines with water at low temperatures to form acid mist or *acid compounds (sulfates). .

このように生成したサルフェートはパティキュレート測
定用フィルターで捕捉烙れZ、ため排気5コの微粒子(
パティキーレートの一部)として検出され、従来型のp
t触媒、Pd触媒のように、サルフェート生成が多い場
合には、触媒入口ガス中の微粒子成分より、出口ガス中
の方がかえって・炉ティキーレート量が多くなるという
不都合を生ずる。ま7’r、、Rh触媒は、pt触媒、
Pd触媒のようなサルフェート生成が多いという欠点は
ないか、資源的に産出量が少いためにコストが旨いとい
う欠点かめる。
The sulfate generated in this way is captured by a filter for particulate measurement, so that the 5 particulates (
is detected as part of the conventional p
When a large amount of sulfate is produced, such as in the case of a T catalyst or a Pd catalyst, a disadvantage arises in that the amount of furnace tiki rate in the outlet gas becomes larger than that of the fine particle component in the catalyst inlet gas. Ma7'r, Rh catalyst is pt catalyst,
Does it have the disadvantage of producing a large amount of sulfate like Pd catalysts, or does it have the disadvantage of being expensive due to the small amount of resource produced?

本発、明娼らは、このような実情に鑑みて鋭慧検削の結
果、S02のサルフェートへの転化を丹えかつ・ぐティ
キーレートを効率よく無害化除去できるようなディーゼ
ル排気中の微粒子除去用触媒を提供することに成功した
ものである。
In view of these circumstances, the present inventor, Akira et al., has developed a method of fine particles in diesel exhaust that can efficiently detoxify and remove the tikilate, which prevents the conversion of S02 to sulfate. We succeeded in providing a removal catalyst.

しかしてこの発明の触媒は、三次元網目構造を勾する耐
熱性一体型構造体担体の表面に活性アルミナを該担体1
7当り20〜200g被覆してなる触媒担体に、ロジウ
ムを該触媒担体11当り0.05〜2g担持させるとと
もに、銅、銀、鉄、マグネシウムおよび亜鉛から選ばれ
た少くとも1神を担持さゼてなるものである。
However, in the catalyst of the present invention, activated alumina is applied to the surface of a heat-resistant integrated structure support having a three-dimensional network structure.
A catalyst carrier coated with 20 to 200 g of rhodium per catalyst carrier 11 is coated with 0.05 to 2 g of rhodium per catalyst carrier 11, and at least one element selected from copper, silver, iron, magnesium, and zinc is supported on the catalyst carrier. That's what happens.

この発明に用いられる三次元網目構造体担体は耐熱性が
あり低熱膨張率を有するコーノエライト質のセラミック
が望ましいが、耐熱性金属質のものも使用することがで
きる。セラミックの三次元網目構造体については、例え
ば特開昭56−50165号、特開昭56−62509
号、あるいは特開昭56−418b8号に開示されてい
る。またその製造方法については、特開13956−5
0165号にセラミックス原料、水および気泡安定剤か
らなるスラリーに空気を混合、しながら攪拌して泡状ス
ラリーを作成し、この泡状スラリーを型に注入後、乾燥
して水分を除去した固形品を形成し、この固形品を焼成
して多孔質とすることを特徴とする多孔質セラミックス
成型品の製造方法が開示されている。さらに、特開昭5
6−62509号には、内部連通空間を有する三次元網
状構造をなした電比ルが0.3〜0.6のセラミック多
孔体骨格の格子表面にこの骨格の重量に対して3〜40
重i%の活性アルミナと0.5〜10重量−のアルミニ
ウム用の7ラツクスとからなる活性層を被覆することに
より多孔セラミック構造物を製造する方法が示され、ま
だ特開昭56−41868号には、有機ポリイソシアネ
ート化合物と、分子中に少くとも2個の活性水素原子を
有する化合物と、セラミックス原料と、水と、セルオー
プン性の高い界面活性剤と、必要に応じて発泡剤とを混
合して、発泡させ該発泡体を焼成することを特徴とする
網状多孔質セラミックスの製造方法が開示されている。
The three-dimensional network structure carrier used in the present invention is desirably a cornoelite ceramic which is heat resistant and has a low coefficient of thermal expansion, but a heat resistant metal carrier may also be used. Regarding ceramic three-dimensional network structures, for example, JP-A No. 56-50165 and JP-A No. 56-62509
No. 56-418b8. Regarding the manufacturing method, please refer to Japanese Patent Application Laid-Open No. 13956-5
No. 0165 describes a solid product in which a slurry consisting of ceramic raw materials, water, and a bubble stabilizer is mixed with air and stirred to create a foamy slurry, and this foamy slurry is poured into a mold and then dried to remove moisture. A method for manufacturing a porous ceramic molded article is disclosed, which is characterized by forming a solid article and firing the solid article to make it porous. In addition, JP-A-5
No. 6-62509 discloses that on the lattice surface of a ceramic porous skeleton having a three-dimensional network structure with an internal communication space and having an electrical ratio of 0.3 to 0.6, a lattice of 3 to 40
A method for producing porous ceramic structures by coating an active layer consisting of 7% by weight of activated alumina and 0.5 to 10% by weight of 7 lux for aluminum has been shown and is still disclosed in JP-A-56-41868. contains an organic polyisocyanate compound, a compound having at least two active hydrogen atoms in the molecule, a ceramic raw material, water, a surfactant with high cell openness, and a blowing agent if necessary. A method for producing a reticulated porous ceramic is disclosed, which comprises mixing, foaming, and firing the foam.

一力、耐熱性金属質三次元網目構造体については例えば
、特開昭56−55504号に示されており、かつその
製造方法については、内部に立体的に多方向に連通ずる
と共に外部にも連通ずる空間を有する有機物で作った原
型をこの廟機物の焼結温度では分解しない埋没材の液状
物にその内部まで液状埋没材を充満させて埋め込み、埋
没材を乾燥固化する工程と、該工程に続き該埋没材を加
熱し、有機物で作った原型を分解消滅せしめ、埋没材内
部に該原型と同形状の穴を有する埋没材からなる型を作
る工程と、この工程の後焼結性を有する金属粉末又はセ
ラミックス粉末と有機粘結剤さらに有機溶媒もし。
For example, a heat-resistant three-dimensional metallic network structure is disclosed in Japanese Patent Application Laid-Open No. 56-55504, and a method for manufacturing the same is described in which the inside is three-dimensionally communicated in multiple directions and the outside is also connected. A step of embedding a prototype made of an organic substance having a communicating space in a liquid investment material that does not decompose at the sintering temperature of the tombstone, filling it to the inside with liquid investment material, and drying and solidifying the investment material; Following the process, the investment material is heated to decompose and eliminate the original mold made of organic matter, and a mold made of the investment material that has a hole in the same shape as the original mold is created inside the investment material, and after this step, sintering is performed. If it has metal powder or ceramic powder and organic binder and further organic solvent.

くは水とが混合された流動性懸濁液を該埋没材からなる
型の穴に流し込みこれを乾燥固化する工程と該工程に次
いで流動性懸濁液中の金属粉末又はセラミックス粉末の
焼結温度で、粘結剤を消滅させながらこれら粉末を焼結
させる工程と、この工程の次に該焼結体から埋没材から
なる型を取り除く工程とを有することを特徴とする多孔
質体の製造方法が特開昭56−55504号に開示され
ている。コーノエライト質構造体の場合、見掛嵩密度は
0.2〜0.6、孔径は6〜30メツシユのものが好ま
しい。寸だ担体表面の被覆に用いられる活性アルミナは
γ、δ、η、に、ρ、θ等いずれのものであってもよい
が、αアルミナのように比表面積の極めて小さい不活性
アルミナは炭化水素吸着力が低く・やティキュレートの
捕集率も低いため使用することができない。担体表面へ
の活性アルミナ被覆翔は担体11当り20〜20011
が適当である。被覆t、1が担体11当り209未満で
あるとパーティキュレート除去率が小さく、一方担体1
1当り200gをこえると圧力損失上昇が大きくなる。
A step of pouring a fluid suspension mixed with water into the hole of the mold made of the investment material and drying and solidifying it, and then sintering the metal powder or ceramic powder in the fluid suspension. Production of a porous body, comprising the steps of: sintering these powders at high temperature while extinguishing the binder; and following this step, removing a mold made of investment material from the sintered body. A method is disclosed in Japanese Patent Application Laid-Open No. 56-55504. In the case of a cornoelitic structure, the apparent bulk density is preferably 0.2 to 0.6 and the pore diameter is preferably 6 to 30 mesh. The activated alumina used to coat the surface of the carrier may be γ, δ, η, ρ, θ, etc., but inert alumina with an extremely small specific surface area such as α alumina is a hydrocarbon. It cannot be used because of its low adsorption power and low ticulate collection rate. Activated alumina coating on the surface of the carrier is 20 to 20011 per 11 of the carrier.
is appropriate. When the coating t,1 is less than 209 per carrier 11, the particulate removal rate is small;
If the weight exceeds 200g per unit, the pressure loss will increase significantly.

触媒成分であるRhの担持に使用される塩としては、塩
化ロジウム、硝酸ロジウム、硫酸ロジウム、ロジウムア
ンミン化合物等があり、これらの塩を酸性あるいは塩基
性水溶液にするか、有機溶媒中に溶解させ、所定のRh
濃度に調整したのち、これらの溶液を含浸吸着させるこ
とによりRhを担描することができる。担持するRhの
担持量については、活性アルミナの被覆された触媒担体
11当り0.05〜2yが好ましい。担持量が触媒担体
1ノ当り0.05g未満であると、触媒性能が不十分で
あり、一方担持量が触媒担体1ノ当り2gをこすと、相
持量の増加による効果の上昇がみられない。その他の担
持成分の担持に使用される塩としては、塩化物、硝酸塩
、硫酸塩等が好適である。
Salts used to support Rh, a catalyst component, include rhodium chloride, rhodium nitrate, rhodium sulfate, rhodium ammine compounds, etc. These salts can be made into acidic or basic aqueous solutions, or dissolved in organic solvents. , a given Rh
After adjusting the concentration, Rh can be applied by impregnating and adsorbing these solutions. The amount of Rh supported is preferably 0.05 to 2y per activated alumina coated catalyst carrier 11. If the supported amount is less than 0.05 g per catalyst carrier, the catalyst performance will be insufficient, while if the supported amount is less than 2 g per catalyst carrier, no increase in effectiveness will be seen due to an increase in the supported amount. . As the salts used for supporting other supported components, chlorides, nitrates, sulfates, etc. are suitable.

以下、この発明についての実施例を比較例とともに記述
する。
Examples of this invention will be described below along with comparative examples.

比較例1 コーソエライト質三次元網目構造体]シ体(直径120
m、長さ130+mn、粒度13メツシー、見掛嵩比重
0.35)に活性アルミナ110 gC担体11当り7
5g)を被覆し、110℃で乾燥し、700℃で焼成し
、触媒担体を得た。ついで、V触媒担体11当り0,1
gのRhが担持されるように濃度の調整されたRhCt
5溶液中に、上記活性アルミナの被覆された触媒担体を
含浸させ、100℃で乾燥したのち空気中500℃で2
時間焼成して、完成触媒Bを得た。この触媒Bについて
後記の装置および方法により触媒の性能評価試験(パテ
ィキュレート除去率、サルフェート生成蓋、および触媒
の圧力損失上昇についての試験)をおこない、その結果
を第2図〜第4図に示した。
Comparative Example 1 Corsoelite three-dimensional network structure] Shi body (diameter 120
m, length 130+mn, particle size 13 mesh, apparent bulk specific gravity 0.35), activated alumina 110 gC carrier 11/7
5g) was coated, dried at 110°C, and calcined at 700°C to obtain a catalyst carrier. Then, 0.1 per V catalyst carrier 11
RhCt whose concentration was adjusted so that g of Rh was supported
The catalyst carrier coated with activated alumina was impregnated in the 5 solution, dried at 100°C, and then soaked in the air at 500°C.
A completed catalyst B was obtained by calcination for a period of time. Catalyst B was subjected to catalyst performance evaluation tests (tests for particulate removal rate, sulfate generation lid, and catalyst pressure loss increase) using the equipment and method described later, and the results are shown in Figures 2 to 4. Ta.

実施例1 比較例1で得た触媒Bの触媒担体11当りにつき、0.
1モルのCuが担持されるように濃度の調整されたCu
 (NO3)2溶液中に核触媒Bを浸潰したのち、溶液
よりとりだし、100℃で乾燥し、さらに500℃の空
気中で2時間焼成して完成触媒Hを得た。この触媒Hに
ついて比較例1と同一方法で触媒の性能評価試験をおこ
ない、その結果を第2図〜第4図に示した。
Example 1 Per 11 catalyst carriers of catalyst B obtained in Comparative Example 1, 0.
Cu whose concentration is adjusted so that 1 mol of Cu is supported
After the nuclear catalyst B was immersed in the (NO3)2 solution, it was taken out from the solution, dried at 100°C, and further calcined in air at 500°C for 2 hours to obtain a completed catalyst H. A catalyst performance evaluation test was conducted on this catalyst H in the same manner as in Comparative Example 1, and the results are shown in FIGS. 2 to 4.

実施例2 比較例1で得だ触媒Bの触媒担体11当りにつき、01
モルのAgが担持されるように濃度の調整されたAgN
O3溶液中に該触媒Bを浸漬したのち、溶液よりとりだ
し、100℃で乾燥し、さらに500℃の空気中で2時
間焼成して完成触媒Iを得た。この触媒Iについて比較
例1と同一方法で触媒の性能評価試験をおこない、その
結果を第2図〜第4図に示した。
Example 2 Per 11 catalyst carriers of catalyst B obtained in Comparative Example 1, 0.01
AgN whose concentration is adjusted so that moles of Ag are supported
After immersing the catalyst B in an O3 solution, it was taken out from the solution, dried at 100°C, and further calcined in air at 500°C for 2 hours to obtain a completed catalyst I. A catalyst performance evaluation test was conducted on this catalyst I in the same manner as in Comparative Example 1, and the results are shown in FIGS. 2 to 4.

実施例3 比較例1で得た触媒Bの触媒担体11当りにつき、01
モルのFeが担持されるように濃度の調整されだFe(
NO3)2溶液中に該触媒Bを含浸させたのち、浴液よ
シと9だし、100℃で乾燥し、さらに500℃の空気
中で2時間焼成して完成触媒Jを得だ。この触媒Jにつ
いて比較例1と同一方法で触媒の性能評価試験をおこな
い、その結果を第2図〜第4図に示した。
Example 3 01 per 11 catalyst carriers of catalyst B obtained in Comparative Example 1
The concentration was adjusted so that moles of Fe were supported.
After impregnating the catalyst B in the NO3)2 solution, the bath solution was poured out, dried at 100°C, and further calcined in air at 500°C for 2 hours to obtain the finished catalyst J. A catalyst performance evaluation test was conducted on this catalyst J in the same manner as in Comparative Example 1, and the results are shown in FIGS. 2 to 4.

実施例4、 比較例1で得た触媒Bの触媒担体11当りにつき、0.
1モルのMgが担持されるように濃度の調整されたMg
(NOx)2溶液中に該触媒Bを浸漬したのち、M液よ
りとりだし、100℃で乾燥し、さらに500℃の空気
中で2時間焼成して完成触媒Kを得だ。この触媒Kにつ
いて比較例1と同一方法で触媒の性能評価試験をおこな
い、その結果を第2図〜第4図に示した。
Example 4, per 11 catalyst carriers of catalyst B obtained in Comparative Example 1, 0.
Mg concentration adjusted so that 1 mol of Mg is supported
After immersing the catalyst B in the (NOx)2 solution, it was taken out from the M solution, dried at 100°C, and further calcined in air at 500°C for 2 hours to obtain the finished catalyst K. A catalyst performance evaluation test was conducted on this catalyst K in the same manner as in Comparative Example 1, and the results are shown in FIGS. 2 to 4.

実施例5 比較例1で得た触媒Bの触媒担体11当りにつき、0.
1モルのZnが担持されるように濃度の調整されたZn
(NO3)2溶液中に該触媒Bを浸漬したのち、溶液よ
りとりだし、100℃で乾燥し、さらに500℃の空気
中で2時間焼成して完成触媒りを得た。この触媒りにつ
いて比較例1と拘一方法で触媒の性能評価試験をおこ々
い、その結果を第2図〜第4図に示した。
Example 5 Per 11 catalyst carriers of catalyst B obtained in Comparative Example 1, 0.
Zn concentration adjusted so that 1 mol of Zn is supported
After immersing the catalyst B in the (NO3)2 solution, it was taken out from the solution, dried at 100°C, and further calcined in air at 500°C for 2 hours to obtain a finished catalyst. A catalyst performance evaluation test was conducted on this catalyst using Comparative Example 1 and the specific method, and the results are shown in FIGS. 2 to 4.

比較例2 比較例1で得た触媒Bの触媒担体1ノ当りにつき、01
モルのMnが担持されるように濃度の調整されたMn(
NO3)2溶液中に該触媒Bを浸漬したのち、溶液より
とりだし、100℃で乾燥し、さらに500℃の空気中
で2時間焼成して完成触媒Mk得た。この触媒Mについ
て比較例1と同一方法で触媒の性能評価試験をおこない
、その結果を第2図〜第4図に示した。
Comparative Example 2 01 per catalyst carrier of catalyst B obtained in Comparative Example 1
The concentration of Mn (
After immersing the catalyst B in the NO3)2 solution, it was taken out from the solution, dried at 100°C, and further calcined in air at 500°C for 2 hours to obtain a completed catalyst Mk. A catalyst performance evaluation test was conducted on this catalyst M in the same manner as in Comparative Example 1, and the results are shown in FIGS. 2 to 4.

比較例3 比較例1で得た触媒Bの触媒担体11当りにつき、0.
1モルのCrが担持されるように疾度の調整されたCr
(NO3)3溶液中に該触媒Bを浸漬したのち、浴液よ
りとりだし、100℃で乾燥し、さらに500℃の空気
中で2時間焼成して完成触媒Nを得た。この触媒Nにつ
いて比較例1と同一方法で触媒の性能評価試験をおこな
い、その結果を第2図〜第4図に示した。
Comparative Example 3 Per 11 catalyst carriers of catalyst B obtained in Comparative Example 1, 0.
Cr whose velocity is adjusted so that 1 mol of Cr is supported
After immersing the catalyst B in the (NO3)3 solution, it was taken out from the bath liquid, dried at 100°C, and further calcined in air at 500°C for 2 hours to obtain a finished catalyst N. A catalyst performance evaluation test was conducted on this catalyst N in the same manner as in Comparative Example 1, and the results are shown in FIGS. 2 to 4.

比較例4 コーソエライト質三次元網目構造体担体(W径120+
in、長さ130 wn 、粒度13メツシユ、見掛比
重0.35)に活性アルミナ110 g(担体1)当り
75g)を被覆し、110℃で乾燥し、さらに700℃
で焼成して触媒担体を得た。ついで、該触媒担体11当
り0.05 g、0.5,9,1.09および2.0g
のRhが担持されるように濃度の調整されたRhCt3
溶液中に上記活性アルミナの被覆された触媒担体を浸漬
したのち、液よりとりだし、100℃で乾燥し、さらに
500℃の空気中で2時間焼成して、完成触媒AXCX
DおよびEを得た。これらの触媒A、C,DおよびEに
つき比較例1と同一方法で夫々の触媒の性、能評価試験
をおこない、その結果を第2図〜第4図に示した。
Comparative Example 4 Corsoelite three-dimensional network structure carrier (W diameter 120+
in, length 130 wn, particle size 13 mesh, apparent specific gravity 0.35) was coated with 110 g activated alumina (75 g per 1 carrier), dried at 110°C, and further heated at 700°C.
A catalyst carrier was obtained by calcination. Then, 0.05 g, 0.5, 9, 1.09 and 2.0 g per 11 of the catalyst carriers.
The concentration of RhCt3 is adjusted so that Rh is supported.
After immersing the catalyst carrier coated with activated alumina in the solution, it was taken out from the solution, dried at 100°C, and further calcined in air at 500°C for 2 hours to obtain the completed catalyst AXCX.
D and E were obtained. Catalysts A, C, D, and E were subjected to performance evaluation tests in the same manner as in Comparative Example 1, and the results are shown in FIGS. 2 to 4.

比較例5 コージェライト質三次元網目構造体担体(直径1201
11I++1長さ130IIII++1粒度13メツシ
ュ、見掛比重0.35)に活性アルミナ11oN’(担
体11当り75g)を被覆し、110℃で乾燥し、さら
に700℃で焼成して触媒担体を得た。ついで、該触媒
担体11当り042gのptが担持されるように濃度の
調整されたノニトロソアミノ白金溶液中に上記活性アル
ミナの被覆された触媒担体を浸漬したのち液よりとりだ
し、100℃で乾燥し、さらに400℃の空気中で3時
間焼成して完成触媒Fを得た。この触媒Fにつき比較例
1と同一方法で触媒の性能評価試験をおこない、その結
果を第2図〜第4図に示しだ。
Comparative Example 5 Cordierite three-dimensional network structure carrier (diameter 1201
11I++1 length 130III++1 particle size 13 mesh, apparent specific gravity 0.35) was coated with activated alumina 11oN' (75 g per 11 carrier), dried at 110°C, and further calcined at 700°C to obtain a catalyst carrier. Next, the catalyst carrier coated with activated alumina was immersed in a nonitrosaminoplatinum solution whose concentration was adjusted so that 042 g of pt was supported on each catalyst carrier 11, and then taken out from the solution and dried at 100°C. Then, the catalyst was further calcined in air at 400° C. for 3 hours to obtain a completed catalyst F. A catalyst performance evaluation test was conducted on this catalyst F in the same manner as in Comparative Example 1, and the results are shown in FIGS. 2 to 4.

比較例6 コージエライト質三次元網目構造体担体(@径120m
mX長さ130調、粒度13メツシユ、見掛比重0.3
5)に活性アルミナ110g(担体11当り75g)を
被覆し、110℃で乾燥し、さらVこ700℃で焼成し
て触媒担体を得た。ついで、該触媒担体11当り1gの
Pdが担持されるように濃度の調整された塩化バラジュ
ウム溶液中に上記活性アルミナの被覆された触媒担体r
浸漬したのち、水素化ホウ素ナトリウムで還元し、さら
に湯洗後、100℃で乾燥し、500℃の空気中で1時
間焼成して完成触媒Gを得た。
Comparative Example 6 Cordierite three-dimensional network structure carrier (@120 m diameter
mX length 130 scale, particle size 13 mesh, apparent specific gravity 0.3
5) was coated with 110 g of activated alumina (75 g per 11 carriers), dried at 110°C, and further calcined at 700°C to obtain a catalyst carrier. Next, the activated alumina-coated catalyst carrier r was placed in a baradium chloride solution whose concentration was adjusted so that 1 g of Pd was supported per catalyst carrier 11.
After immersion, the catalyst was reduced with sodium borohydride, washed with hot water, dried at 100°C, and calcined in air at 500°C for 1 hour to obtain a completed catalyst G.

この触媒Gにつき比較例1と同一方法で触媒の性能評価
試験をおこない、その結果を第2図〜第4図に示した。
A catalyst performance evaluation test was conducted on this catalyst G in the same manner as in Comparative Example 1, and the results are shown in FIGS. 2 to 4.

上記の実施例工ないし5、比較例工ないし6によって得
られた触媒A−Nについて性能評価試験を実施した。性
能評価試験装置の概略図を第1図に示した。エンノン1
にはトヨタ自動車工業製2,2.00 cc L型エン
ジンを使用した。エンジンの運転条件は2.00 Or
pm 、負荷は8kg−mで試験を実施しだ。このエン
ジン1の排気系の途中に上記触媒を充填した捕集容器2
を取り付け、また捕集容器2の前後には、サンプリング
パイプを設け、夫々の途中に三方コック4、フィルター
ケース6、吸引ポンプ7、ガスメータ8を取り付けた。
A performance evaluation test was conducted on the catalysts A-N obtained in the above-mentioned Examples to 5 and Comparative Examples to 6. A schematic diagram of the performance evaluation test equipment is shown in Figure 1. ennon 1
A 2.2.00 cc L-type engine manufactured by Toyota Motor Corporation was used. Engine operating condition is 2.00 Or
pm, and the load was 8 kg-m. Collection container 2 filled with the catalyst in the middle of the exhaust system of this engine 1
A sampling pipe was installed before and after the collection container 2, and a three-way cock 4, a filter case 6, a suction pump 7, and a gas meter 8 were installed in the middle of each pipe.

フィルターケースまでのサンプリングパイプには加熱用
ヒーター3を巻いた。
A heating heater 3 was wrapped around the sampling pipe leading to the filter case.

サンプリングガス温が低いと水分が凝縮し、サンプリン
グパイプにパティキュレートが付着してしまい、正確な
パティキュレート量が測定できなくなる。加熱用ヒータ
ー3は水分の凝縮を防ぐために巻いた。吸引ポンプ7は
排気ガスを定流速で流すために、快たガスメータ8は排
気ガスを通過させる容量を測定するために設置した。フ
ィルターケース6には直径47■のテフロンコートした
フィルターを収納した。なお、マノメーター5は後述す
るように、触媒の圧力損失上昇を測定するために図示の
ように設置した。
If the sampling gas temperature is low, moisture will condense and particulates will adhere to the sampling pipe, making it impossible to accurately measure the amount of particulates. The heating heater 3 was wrapped to prevent moisture condensation. A suction pump 7 was installed to flow the exhaust gas at a constant flow rate, and a gas meter 8 was installed to measure the capacity of the exhaust gas to pass through. The filter case 6 contained a Teflon-coated filter with a diameter of 47 cm. Note that the manometer 5 was installed as shown in the figure in order to measure the increase in pressure loss of the catalyst, as will be described later.

三方コック4の切や換えにより排気ガスを流したシ止め
たりして測定をおこなったが、パティキュレート量の測
定方法はフィルターケース6内のテフロンコートしたフ
ィルターに40Aの排気ガスを通過させ、触媒前後にお
いて捕集した排気中のパティキュレートの重量を測定す
る方法によりおこなった。
The measurement was carried out by switching on and off the exhaust gas by switching the three-way cock 4, but the particulate amount was measured by passing the 40A exhaust gas through a Teflon-coated filter in the filter case 6, This was done by measuring the weight of particulates in the exhaust gas collected before and after the test.

・ぐティキュレート除去率の算出は次式でおこない、そ
の結果を第2図に示した。
- The ticulate removal rate was calculated using the following formula, and the results are shown in Figure 2.

パティキーレート除去率(粥 つぎに、触媒A−Nを用いたときの、排気中のサルフェ
ート量の測定をおこなった。その測定はパティキュレー
ト測定と同様の方法でサンプリングしたフィルターを用
いてバリウムートリン光度滴定法によシ定量分析を行っ
た。結果を第3図に示した。さらに、圧力損失の上昇の
測定については、第1図に示す性能評価試験装置にお、
いて、触媒容器前側に水銀マノメーターを設[L、エン
ジンを2.00 Orpmで運転開始した時の触媒容器
の前圧と、24時間のエンノン運転後の前圧とをそれぞ
れ測定し、その差圧が触媒の圧力損失上昇に相当すると
して算出した。
Particulate removal rate (porridge)Next, we measured the amount of sulfate in the exhaust gas when catalyst A-N was used.The measurement was carried out using barium phosphorus luminosity using a filter sampled in the same manner as the particulate measurement. Quantitative analysis was performed using the titration method.The results are shown in Figure 3.Furthermore, to measure the increase in pressure drop, the performance evaluation test equipment shown in Figure 1 was used.
A mercury manometer was installed in front of the catalyst container [L, the front pressure of the catalyst container when the engine was started at 2.00 rpm and the front pressure after 24 hours of engine operation were measured, and the differential pressure was calculated. It was calculated on the assumption that this corresponds to the increase in pressure loss of the catalyst.

得られた結果を第4図に示した。The results obtained are shown in FIG.

以上の実施例および比較例の結果を基にして、下表に、
各触媒の・ぐティキュレート除去率、サルフェート量、
圧力損失上昇、およびコストについての総合評価を示し
だ。これらから明らかなように、比較例に示した触媒は
パティギーレ−ト除去率、サルフェート生成量、圧力損
失上昇およびコストのいずれかの点で欠点があるのに対
し、本発明(実施例)の触媒はパティキュレート除去率
、サルフェート生成量、圧力損失上昇およびコストとも
満足するものであり、極めて災用性の高いものであるこ
とがわかる。
Based on the results of the above examples and comparative examples, the table below shows
・Guticulate removal rate, sulfate amount,
A comprehensive evaluation of pressure drop increase and cost is shown. As is clear from these, the catalysts shown in the comparative examples have drawbacks in terms of particulate rate removal rate, amount of sulfate produced, increase in pressure loss, and cost, whereas the catalysts of the present invention (example) It can be seen that the particulate removal rate, the amount of sulfate produced, the increase in pressure drop, and the cost are satisfactory, and that it is extremely useful.

表 ○・・・良、△・・・町、×・・・不可table ○...Good, △...Town, ×...Not acceptable

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はディーゼル排気中のパティキュレート除去用触
媒の性能評価装置の概略図、第2図は、この発明の触媒
(H,I、JXKおよびL)および比較触媒(A、BX
CXDXEXF、G、MおよびN)を用いて排気中のノ
Rティ千−レートを除去した場合の・ゼティキーレート
除去率を示す直線図および棒線図、第3図は触媒H,I
、JXK、LXA、B、C,D、E、F、G、Mおよび
Nを用いた場合のサルフェート生成量を示す直線図およ
び棒線図、ならひに第4図は、触媒H,I、JXK、L
、AXB、C,DXE。 FXGXMおよびNを用い、2,000 rpmで24
時間エンジンを運転した時の運転開始時に対する触媒の
圧力損失上昇を示す曲線図および棒線図である。 1・・・エンノン、2・・・捕集容器、3・・・加熱用
ヒーター、4・・・三方コック、5・・・マノメーター
、6・・・フィルターケース、7・・・吸引ボンデ、8
・・・ガスメーター。
Fig. 1 is a schematic diagram of a performance evaluation device for a catalyst for removing particulates from diesel exhaust, and Fig. 2 shows catalysts of the present invention (H, I, JXK, and L) and comparative catalysts (A, BX).
Figure 3 is a straight line diagram and a bar diagram showing the removal rate of the zeti-key rate in the exhaust gas using catalysts H, I, and CXDXEXF, G, M, and N.
, JXK, LXA, B, C, D, E, F, G, M and N. JXK,L
, AXB, C, DXE. 24 at 2,000 rpm using FXGXM and N
FIG. 2 is a curve diagram and a bar diagram showing an increase in pressure loss of the catalyst with respect to the start of operation when the engine is operated for an hour. DESCRIPTION OF SYMBOLS 1... Ennon, 2... Collection container, 3... Heating heater, 4... Three-way cock, 5... Manometer, 6... Filter case, 7... Suction bonde, 8
...Gas meter.

Claims (1)

【特許請求の範囲】[Claims] 三次元網目構造を有する耐熱性一体構造体担体の表面に
活性アルミナを該担体11当り20〜200g被覆して
なる触媒担体に、ロジウムを該触媒担体11当り0.0
5〜2y担持させるとともに、銅、銀、鉄、マグネシウ
ムおよび亜鉛から選ばれた少くとも1種を担持させてな
るディーゼル排気中の微粒子除去用触媒。
A catalyst carrier formed by coating the surface of a heat-resistant monolithic structure carrier having a three-dimensional network structure with 20 to 200 g of activated alumina per carrier 11 was coated with 0.0 g of rhodium per catalyst carrier 11.
A catalyst for removing particulates from diesel exhaust, which supports 5 to 2y and at least one selected from copper, silver, iron, magnesium and zinc.
JP58041998A 1983-03-14 1983-03-14 Catalyst for removing fine particles in diesel exhaust gas Granted JPS59169534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58041998A JPS59169534A (en) 1983-03-14 1983-03-14 Catalyst for removing fine particles in diesel exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58041998A JPS59169534A (en) 1983-03-14 1983-03-14 Catalyst for removing fine particles in diesel exhaust gas

Publications (2)

Publication Number Publication Date
JPS59169534A true JPS59169534A (en) 1984-09-25
JPS6349541B2 JPS6349541B2 (en) 1988-10-05

Family

ID=12623873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58041998A Granted JPS59169534A (en) 1983-03-14 1983-03-14 Catalyst for removing fine particles in diesel exhaust gas

Country Status (1)

Country Link
JP (1) JPS59169534A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6231817B1 (en) 1997-12-15 2001-05-15 Sumitomo Electric Industries, Ltd. Exhaust emission control device and method of manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0241251U (en) * 1988-09-12 1990-03-22

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6231817B1 (en) 1997-12-15 2001-05-15 Sumitomo Electric Industries, Ltd. Exhaust emission control device and method of manufacturing the same
EP0925823B1 (en) * 1997-12-15 2005-04-06 Sumitomo Electric Industries, Ltd. Exhaust emission control device and method of manufacturing the same
US6939824B2 (en) 1997-12-15 2005-09-06 Sumitomo Electric Industries, Ltd. Exhaust emission control device and method of manufacturing the same

Also Published As

Publication number Publication date
JPS6349541B2 (en) 1988-10-05

Similar Documents

Publication Publication Date Title
JP3061399B2 (en) Diesel engine exhaust gas purification catalyst and purification method
US4451441A (en) Method for exhaust gas treatment
JP5697299B2 (en) Catalytic converter
US5882607A (en) Exhaust gas cleaner and method for cleaning exhaust gas
US4426320A (en) Catalyst composition for exhaust gas treatment
JP4907860B2 (en) Filter catalyst
EP1368107B1 (en) A catalyzed diesel particulate matter exhaust filter
JPS5933023B2 (en) Method for producing catalyst composition
JPH03249948A (en) Catalyst for purifying exhaust gas from diesel engine
CN103316709A (en) Catalyst for the removal of nitrogen oxides and method for the removal of nitrogen oxides with the same
JP2007296518A (en) Catalyst and device for cleaning exhaust gas
JP4210552B2 (en) Diesel engine exhaust gas purification catalyst and method for producing the same
GB2091584A (en) Composition and method for exhaust gas treatment
JP2004330118A (en) Filter for clarifying exhaust gas
JPH04200637A (en) Catalyst for cleaning exhausted gas of diesel engine
JPH11276907A (en) Catalyst for purifying exhaust gas and its production
EP0925823B1 (en) Exhaust emission control device and method of manufacturing the same
KR101274468B1 (en) Oxidation Catalyst for purifying the exhaust gas of diesel engine
JPS59169534A (en) Catalyst for removing fine particles in diesel exhaust gas
JP3786522B2 (en) Exhaust gas purification catalyst
WO1993020937A1 (en) Device for cleaning exhaust fumes
JPH0442063B2 (en)
JPS6258776B2 (en)
JPS6256783B2 (en)
JP3433885B2 (en) Diesel exhaust gas purification catalyst