JP2011016684A - Oxygen deficit perovskite-type metal oxide excellent in oxygen storage capability, exhaust gas purifying catalyst and functional ceramic containing the metal oxide, and method and apparatus using the metal oxide - Google Patents

Oxygen deficit perovskite-type metal oxide excellent in oxygen storage capability, exhaust gas purifying catalyst and functional ceramic containing the metal oxide, and method and apparatus using the metal oxide Download PDF

Info

Publication number
JP2011016684A
JP2011016684A JP2009161964A JP2009161964A JP2011016684A JP 2011016684 A JP2011016684 A JP 2011016684A JP 2009161964 A JP2009161964 A JP 2009161964A JP 2009161964 A JP2009161964 A JP 2009161964A JP 2011016684 A JP2011016684 A JP 2011016684A
Authority
JP
Japan
Prior art keywords
oxygen
metal oxide
storage capacity
oxygen storage
deficient perovskite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009161964A
Other languages
Japanese (ja)
Inventor
Teruki Motohashi
輝樹 本橋
Shinichi Yoshikawa
信一 吉川
Tomoji Masubuchi
友治 鱒渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Original Assignee
Hokkaido University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC filed Critical Hokkaido University NUC
Priority to JP2009161964A priority Critical patent/JP2011016684A/en
Publication of JP2011016684A publication Critical patent/JP2011016684A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive and practical metal oxide which has sufficient oxygen diffusion ability and oxygen non-stoichiometric property at 500°C or less, is excellent in chemical stability in an high temperature region in the vicinity of 600°C, and has an oxygen storage capability excellent as materials for an exhaust gas purifying catalyst, an oxygen storage material, an oxygen separator, an oxygen remover, an oxygen selector, an oxygen enricher, etc.SOLUTION: The oxygen deficit perovskite-type oxide is represented by formula (1), and is excellent in an oxygen storage capability which is characterized by being operated in a low temperature region of 500°C or less. Formula (1) is expressed by (BaA)B(MnC)O, wherein A is one kind or two kinds or more of alkaline earth metals except Ba, B is one kind or two kinds or more of Y, rare earth elements and Ca, C is one kind or two kinds of Fe and Co, x is 0≤x≤1.0, y is 0≤y≤2.0, and δ is 0≤δ≤1.0.

Description

本発明は、排ガス浄化触媒、その他、酸素分離装置、酸素除去装置、酸素選択装置、酸素富化装置等に利用できる酸素貯蔵能に優れた酸素欠損ペロブスカイト型金属酸化物と、該金属酸化物の利用に関するものである。   The present invention relates to an exhaust gas purifying catalyst, an oxygen-deficient perovskite-type metal oxide having excellent oxygen storage capacity that can be used in an oxygen separation device, an oxygen removal device, an oxygen selection device, an oxygen enrichment device, etc. It is about use.

近年、酸素貯蔵材料という機能性材料が注目を集めている。酸素貯蔵材料とは、多量の酸素を可逆に吸収・放出する物質であり、自動車の排ガスを浄化する触媒、酸素分離装置、酸素除去装置、酸素選択装置、酸素富化装置等への応用が期待されている。   In recent years, functional materials called oxygen storage materials have attracted attention. Oxygen storage material is a substance that absorbs and releases a large amount of oxygen reversibly and is expected to be applied to catalysts for purifying automobile exhaust gas, oxygen separators, oxygen removers, oxygen selectors, oxygen enrichers, etc. Has been.

酸素貯蔵材料には、(i)酸素イオンを選択的にかつ高速で輸送するための高い酸素拡散能、及び、(ii)多量の酸素ガスの吸収・放出を実現するための大きな酸素不定比性が要求される。   The oxygen storage material includes (i) high oxygen diffusivity for selectively transporting oxygen ions at high speed, and (ii) large oxygen non-stoichiometry for realizing absorption and release of a large amount of oxygen gas. Is required.

現在、酸素貯蔵材料として、例えば、CeO2−ZrO2(CZ)(特許文献1、参照)や、Ln22SO4−Ln22S(特許文献2及び非特許文献1〜4、参照)が知られている。CeO2−ZrO2(以下、単に「CZ」ということがある。)は、既に、排ガス浄化触媒として、広く実用化されている(非特許文献5〜7、参照)。 Currently, as an oxygen storage material, for example, CeO 2 —ZrO 2 (CZ) (see Patent Document 1), Ln 2 O 2 SO 4 —Ln 2 O 2 S (Patent Document 2 and Non-Patent Documents 1 to 4, See). CeO 2 —ZrO 2 (hereinafter sometimes simply referred to as “CZ”) has already been widely put into practical use as an exhaust gas purification catalyst (see Non-Patent Documents 5 to 7).

排ガス中の窒素酸化物(NOx)、一酸化炭素(CO)、及び、炭化水素(HC)が燃焼する際、酸素貯蔵材料が、所要量の酸素を吸収又は放出して、燃焼に最適な酸素濃度を実現するので、浄化効率が向上すると考えられている。   When nitrogen oxides (NOx), carbon monoxide (CO), and hydrocarbons (HC) in the exhaust gas burn, the oxygen storage material absorbs or releases the required amount of oxygen and is optimal for combustion. Since the concentration is realized, it is considered that the purification efficiency is improved.

酸素貯蔵材料の性能は、「酸素貯蔵能」(=Oxygen Storage Capacity=OSC)という指標で評価される。OSCは、単位材料量当りの吸収酸素量を示す値である。   The performance of the oxygen storage material is evaluated by an index of “oxygen storage capacity” (= Oxygen Storage Capacity = OSC). OSC is a value indicating the amount of absorbed oxygen per unit material amount.

CZの場合、酸素の吸収・放出現象は、セリウムの価数変化(Ce3+⇔Ce4+)によって発現する。CZのOSC(酸素貯蔵能)の理論値は、下記式より、2.8wt%である。 In the case of CZ, the oxygen absorption / release phenomenon is manifested by a change in the valence of cerium (Ce 3+ ⇔Ce 4+ ). The theoretical value of CZ OSC (oxygen storage capacity) is 2.8 wt% from the following formula.

Ce0.5Zr0.51.75+1/8O2=Ce0.5Zr0.52
しかし、実際には、CZのOSCは2.2wt%程度であり(非特許文献7、参照)、必ずしも充分な値ではないので、OSCが、CZのOSC(=2.8wt%)を超え、かつ、CZより安価(高価な元素を構成成分としない)な酸素貯蔵材料が求められている。
Ce 0.5 Zr 0.5 O 1.75 +1/8 O 2 = Ce 0.5 Zr 0.5 O 2
However, in actuality, the OSC of CZ is about 2.2 wt% (see Non-Patent Document 7), which is not necessarily a sufficient value, so the OSC exceeds the OSC of CZ (= 2.8 wt%), In addition, an oxygen storage material that is cheaper than CZ (not including an expensive element as a constituent) is demanded.

Ln22SO4−Ln22Sは、OSCが18.7wt%と非常に高く、この点が特徴の酸素貯蔵材料であるが、(a)動作温度(600℃〜)を下げられず、高温領域でのみ動作が可能であり、また、(b)Sが徐々に蒸発し、活性を失うので、サイクル特性が良くない等の課題を抱えている。 Ln 2 O 2 SO 4 -Ln 2 O 2 S has an extremely high OSC of 18.7 wt%, and is an oxygen storage material characterized by this point. However, (a) the operating temperature (600 ° C.-) can be lowered. However, the operation is possible only in a high temperature region, and (b) S is evaporated gradually and loses its activity, so that it has problems such as poor cycle characteristics.

それ故、現在、OSCが高く、かつ、動作温度範囲が広い、新規な酸素貯蔵材料が期待されている。   Therefore, at present, a novel oxygen storage material having a high OSC and a wide operating temperature range is expected.

上記酸化物の他、酸素貯蔵材料として、特許文献3に、Ajkmn7+δ(A:3価の希土類元素及びCaの1種又は2種以上、B:アルカリ土類金属元素の1種又は2種以上、C、D:酸素4配位元素の1種又は2種以上で、少なくとも1種は遷移金属元素。ただし、j>0、k>0、それぞれ独立して、m≧0、n≧0で、かつ、j+k+m+n=6で、0<δ≦1.5。)が開示されている。 In addition to the above oxides, as an oxygen storage material, Patent Document 3 discloses A j B k C m D n O 7 + δ (A: one or more of trivalent rare earth elements and Ca, B: alkaline earth. One or more of similar metal elements, C, D: One or more of oxygen tetracoordinate elements, at least one of which is a transition metal element, provided that j> 0 and k> 0, respectively. M ≧ 0, n ≧ 0, j + k + m + n = 6, and 0 <δ ≦ 1.5.).

上記酸化物中、YBaCo47+δは、充分な酸素貯蔵能を備え、400℃以下で動作し、酸素分圧の変化に対する応答が大きいので、実用材料として有力な物質である。しかし、YBaCo47+δは、高温域で、化学的に不安定であり、材料が高温に曝される可能性がある排ガス浄化触媒としては、必ずしも最適な物質ではない。 Among the above oxides, YBaCo 4 O 7 + δ has a sufficient oxygen storage capacity, operates at 400 ° C. or less, and has a large response to changes in oxygen partial pressure, and thus is an effective substance as a practical material. However, YBaCo 4 O 7 + δ is not necessarily an optimum substance as an exhaust gas purification catalyst that is chemically unstable in a high temperature range and the material may be exposed to a high temperature.

いずれにしても、500℃以下で、充分な酸素拡散能及び酸素不定比性を有し、かつ、600℃付近の高温領域にて化学的安定性に優れるとともに、排ガス浄化触媒、酸素貯蔵材料、酸素分離装置、酸素除去装置、酸素選択装置、酸素富化装置等用の材料として優れた酸素貯蔵能を備え、しかも、安価で実用的な金属酸化物の出現が待たれている。   In any case, at 500 ° C. or lower, sufficient oxygen diffusivity and oxygen non-stoichiometry, and excellent chemical stability in a high temperature region near 600 ° C., an exhaust gas purification catalyst, an oxygen storage material, The appearance of an inexpensive and practical metal oxide has been awaited as it has excellent oxygen storage capacity as a material for oxygen separators, oxygen removers, oxygen selectors, oxygen enrichers, and the like.

特開2005−119949号公報JP 2005-119949 A 特開2008−284512号公報JP 2008-284512 A 国際特許公開WO2007/004681号公報International Patent Publication WO2007 / 004681

坂本淑幸ら、R&D Review of Toyota CRDL 37、14(2002)Yasuyuki Sakamoto et al., R & D Review of Toyota CRDL 37, 14 (2002) M. Machida et al.,Chem. Commun. 662(2004)M. Machida et al., Chem. Commun. 662 (2004) M. Machida et al.,Chem. Mater. 17、1487(2004)M. Machida et al., Chem. Mater. 17, 1487 (2004) K. Ikeue et al., J. Catalysis 248, 46(2007)K. Ikeue et al., J. Catalysis 248, 46 (2007) M. Ozawa et al., J. Alloys and Compd. 193、73(1993)M. Ozawa et al., J. Alloys and Compd. 193, 73 (1993) Y. Nagai et al., Catalysis Today 74, 225(2002)Y. Nagai et al., Catalysis Today 74, 225 (2002) 「いまセリウムがおもしろい」(ティー・アイ・シー出版、2005)“Cerium is interesting now” (Tea I Sea Publishing, 2005)

本発明は、上記要望に鑑み、500℃以下で、充分な酸素拡散能及び酸素不定比性を有し、かつ、600℃付近の高温域にて化学的安定性に優れ、排ガス浄化触媒、酸素貯蔵材料、酸素分離装置、酸素除去装置、酸素選択装置、酸素富化装置等の材料として優れた酸素貯蔵能を備え、しかも、安価で実用的な金属酸化物を提供することを課題とする。さらに、本発明は、優れた酸素貯蔵能を有する金属酸化物を有効に利用する方法及び装置を提供することを課題とする。   In view of the above demand, the present invention has a sufficient oxygen diffusivity and oxygen non-stoichiometry at 500 ° C. or lower, and is excellent in chemical stability in a high temperature region around 600 ° C. It is an object of the present invention to provide a metal oxide that has an excellent oxygen storage ability as a material for storage materials, oxygen separation devices, oxygen removal devices, oxygen selection devices, oxygen enrichment devices, etc., and that is inexpensive and practical. Furthermore, this invention makes it a subject to provide the method and apparatus which utilize effectively the metal oxide which has the outstanding oxygen storage ability.

本発明者らは、酸素貯蔵能が、CeO2−ZrO2(CZ)や、YBaCo47+δの酸素貯蔵能を超える金属酸化物を鋭意探索した。その結果、酸素欠損ペロブスカイト型金属酸化物BaYMn25+δが優れた酸素貯蔵能を有し、かつ、500℃以下の低温域で動作することを見いだした。 The inventors diligently searched for metal oxides whose oxygen storage capacity exceeds that of CeO 2 —ZrO 2 (CZ) and YBaCo 4 O 7 + δ . As a result, it has been found that the oxygen-deficient perovskite metal oxide BaYMn 2 O 5 + δ has an excellent oxygen storage capacity and operates in a low temperature range of 500 ° C. or lower.

本発明は、上記知見に基づいてなされたもので、その要旨は以下のとおりである。   This invention was made | formed based on the said knowledge, and the summary is as follows.

(1)下記式(1)で表され、500℃以下の低温域で動作することを特徴とする酸素貯蔵能に優れた酸素欠損ペロブスカイト型金属酸化物。   (1) An oxygen-deficient perovskite-type metal oxide excellent in oxygen storage capacity, which is represented by the following formula (1) and operates in a low temperature range of 500 ° C. or less.

(Ba1-xx)B(Mn2-yy)O5+δ …(1)
ここで、A:Ba以外のアルカリ土類金属の1種又は2種以上
B:Y、希土類元素、及び、Caの1種又は2種以上
C:Fe及びCoの1種又は2種
x:0≦x≦1.0
y:0≦y≦2.0
δ:0≦δ≦1.0
(2)前記AがSrで、0≦x≦0.5であることを特徴とする前記(1)に記載の酸素貯蔵能に優れた酸素欠損ペロブスカイト型金属酸化物。
(Ba 1−x A x ) B (Mn 2−y C y ) O 5 + δ (1)
Here, A: one or more of alkaline earth metals other than Ba
B: One or more of Y, rare earth elements, and Ca
C: One or two of Fe and Co
x: 0 ≦ x ≦ 1.0
y: 0 ≦ y ≦ 2.0
δ: 0 ≦ δ ≦ 1.0
(2) The oxygen-deficient perovskite metal oxide having excellent oxygen storage capacity as described in (1) above, wherein A is Sr and 0 ≦ x ≦ 0.5.

(3)前記BがYであることを特徴とする前記(1)又は(2)に記載の酸素貯蔵能に優れた酸素欠損ペロブスカイト型金属酸化物。   (3) The oxygen-deficient perovskite metal oxide having excellent oxygen storage capacity as described in (1) or (2) above, wherein B is Y.

(4)前記Bが希土類元素の1種又は2種以上であることを特徴とする前記(1)〜(3)のいずれかに記載の酸素貯蔵能に優れた酸素欠損ペロブスカイト型金属酸化物。   (4) The oxygen-deficient perovskite metal oxide having excellent oxygen storage capacity according to any one of (1) to (3), wherein B is one or more rare earth elements.

(5)前記BがCaであることを特徴とする前記(1)〜(4)のいずれかに記載の酸素貯蔵能に優れた酸素欠損ペロブスカイト型金属酸化物。   (5) The oxygen-deficient perovskite metal oxide excellent in oxygen storage capacity according to any one of (1) to (4), wherein B is Ca.

(6)前記Cが、Fe及びCoの1種又は2種で、前記yが、0≦y≦1.0であることを特徴とする前記(1)〜(5)のいずれかに記載の酸素貯蔵能に優れた酸素欠損ペロブスカイト型金属酸化物。   (6) Said C is 1 type or 2 types of Fe and Co, and said y is 0 <= y <= 1.0, Any one of said (1)-(5) characterized by the above-mentioned An oxygen-deficient perovskite metal oxide with excellent oxygen storage capacity.

(7)前記(1)〜(6)のいずれかに記載の酸素貯蔵能に優れた酸素欠損ペロブスカイト型金属酸化物を含むことを特徴とする排ガス浄化触媒。   (7) An exhaust gas purifying catalyst comprising the oxygen-deficient perovskite metal oxide having excellent oxygen storage capacity according to any one of (1) to (6).

(8)前記(1)〜(6)のいずれかに記載の酸素貯蔵能に優れた酸素欠損ペロブスカイト型金属酸化物を含むことを特徴とする機能セラミックス。   (8) A functional ceramic comprising the oxygen-deficient perovskite metal oxide excellent in oxygen storage capacity according to any one of (1) to (6).

(9)前記(1)〜(6)のいずれかに記載の酸素貯蔵能に優れた酸素欠損ペロブスカイト型金属酸化物を用いて、酸素を貯蔵及び/又は分離する方法であって、酸素の変化量が、該金属酸化物中の全酸素モル量に対し、0を超え21.4%以下の範囲で、酸素を貯蔵及び/又は分離することを特徴とする酸素貯蔵・分離方法。   (9) A method for storing and / or separating oxygen using the oxygen-deficient perovskite metal oxide excellent in oxygen storage capacity according to any one of (1) to (6), wherein oxygen changes A method for storing and / or separating oxygen, characterized in that the amount of oxygen is stored and / or separated in a range of more than 0 and not more than 21.4% with respect to the total molar amount of oxygen in the metal oxide.

(10)前記(1)〜(6)のいずれかに記載の酸素貯蔵能に優れた酸素欠損ペロブスカイト型金属酸化物を備え、貯蔵した酸素を用いて酸化反応を行うことを特徴とする酸化反応装置。   (10) An oxidation reaction comprising the oxygen-deficient perovskite metal oxide having excellent oxygen storage capacity according to any one of (1) to (6), and performing an oxidation reaction using the stored oxygen apparatus.

(11)前記(1)〜(6)のいずれかに記載の酸素貯蔵能に優れた酸素欠損ペロブスカイト型金属酸化物を備え、酸素の貯蔵及び/又は分離によって発生する温熱を用いて加熱を行うことを特徴とする加熱装置。   (11) The oxygen-deficient perovskite metal oxide having an excellent oxygen storage capacity according to any one of the above (1) to (6) is provided, and heating is performed using warm heat generated by oxygen storage and / or separation. A heating device characterized by that.

(12)前記(1)〜(6)のいずれかに記載の酸素貯蔵能に優れた酸素欠損ペロブスカイト型金属酸化物を備え、容器内に存在する不要な不活性ガスや、酸素ガスを除去することを特徴とする酸素除去装置。   (12) The oxygen-deficient perovskite metal oxide having an excellent oxygen storage capacity according to any one of (1) to (6) is provided, and unnecessary inert gas and oxygen gas existing in the container are removed. An oxygen removing device.

本発明の酸素欠損ペロブスカイト型金属酸化物(Ba1-xx)B(Mn2-yy)O5+δ(A:Ba以外のアルカリ土類金属の1種又は2種以上、B:Y、希土類元素、及び、Caの1種又は2種以上、C:Fe及びCoの1種又は2種で、δ:0≦δ≦1.0)は、500℃以下で、多量の酸素を高速で吸収、放出するという顕著な熱重量変化特性を備えているので、排ガス浄化触媒、及び、高性能酸素貯蔵用及び酸素選択膜用機能セラミックスとして最適な物質である。 Oxygen deficiency perovskite-type metal oxide of the present invention (Ba 1-x A x) B (Mn 2-y C y) O 5 + δ (A: 1 or an alkaline earth metal other than Ba or two or more, B : Y, rare earth element and one or more of Ca, C: one or two of Fe and Co, δ: 0 ≦ δ ≦ 1.0) is 500 ° C. or less and a large amount of oxygen Therefore, it is an optimum material for exhaust gas purification catalysts and functional ceramics for high-performance oxygen storage and oxygen selective membranes.

また、本発明の酸素欠損ペロブスカイト型金属酸化物(Ba1-xx)B(Mn2-yy)O5+δを、酸素の高速吸収・放出特性を利用して、酸素吸蔵装置や、酸素分離装置等へ適用すれば、従来の酸素吸収・放出材料を用いる場合より、装置の小型化及び省エネルギーを図ることが可能となる。 Further, the oxygen deficient perovskite type metal oxide (Ba 1-x A x ) B (Mn 2−y C y ) O 5 + δ of the present invention is utilized by utilizing the high-speed absorption / release characteristics of oxygen. If applied to an oxygen separator or the like, it is possible to reduce the size of the apparatus and save energy compared to the case of using a conventional oxygen absorbing / releasing material.

さらに、本発明の酸素欠損ペロブスカイト型金属酸化物(Ba1-xx)B(Mn2-yy)O5+δは、高価なレアメタルCeを含まないので、高価なレアメタルCeを含むCZに替わる実用材料として有望である。 Furthermore, since the oxygen-deficient perovskite metal oxide (Ba 1-x A x ) B (Mn 2−y C y ) O 5 + δ of the present invention does not contain expensive rare metal Ce, it contains expensive rare metal Ce. It is promising as a practical material to replace CZ.

BaYMn25+δの前駆体(YMnO3とBaMnO3-xの混合物)のX線回折パターン(上)と、BaYMn25+δのX線回折パターン(下)を示す図である。Precursor BaYMn 2 O 5 + δ and X-ray diffraction pattern of (YMnO mixture of 3 and BaMnO 3-x) (top) illustrates the BaYMn 2 O 5 + δ X-ray diffraction pattern (bottom). BaYMn25+δのX線回折パターン(図1の下のX線回折パターン)(上)と、熱処理(酸素気流中、600℃で12時間)を施したBaYMn25+δのX線回折パターン(下)を示す図である。X-ray diffraction pattern of BaYMn 2 O 5 + δ (bottom X-ray diffraction pattern in FIG. 1) (top) and X of BaYMn 2 O 5 + δ subjected to heat treatment (in an oxygen stream at 600 ° C. for 12 hours) It is a figure which shows a line diffraction pattern (lower). 合成BaYMn25+δのX線回折パターンとO処理BaYMn25+δのX線回折パターン(図2、参照)における回折ピークの相対強度及び位置の変化を示す図である。Synthesis BaYMn 2 O 5 + δ X-ray diffraction pattern and O processing BaYMn 2 O 5 + δ X-ray diffraction pattern (Fig. 2, reference) is a graph showing changes in relative intensities and positions of the diffraction peak at. 酸素吸収によるBaYMn25+δの結晶構造の変化を示す図である。(a)が、合成BaYMn25+δ(δ≒0)の結晶構造(P4/nmm)を示し、(b)が、酸素を吸収したO処理BaYMn25+δ(δ≒1)の結晶構造(単斜晶P2)を示す。Is a graph showing changes in the crystal structure of BaYMn 2 O 5 + δ by oxygen absorption. (A) shows the crystal structure (P4 / nmm) of the synthetic BaYMn 2 O 5 + δ (δ≈0), and (b) shows the O-treated BaYMn 2 O 5 + δ (δ≈1) that has absorbed oxygen. Shows the crystal structure (monoclinic P2). BaYMn25+δにおけるδが、0→1→0と変化する過程で、X線回折パターンの相対強度と位置がどのように変化したかを示す図である。[Delta] in BaYMn 2 O 5 + δ is, 0 → at 1 → 0 and changing process, which is a diagram illustrating how the relative intensity and position of the X-ray diffraction pattern is how to change. BaYMn25+δを、酸素気流中、及び、5%H2−95%N2の混合ガス気流中で熱履歴を与えた時の重量変化率を示す図である。The BaYMn 2 O 5 + δ, in an oxygen stream, and a diagram showing the weight change rate when given heat history at 5% H 2 in -95% N 2 mixed gas flow. ガス雰囲気の温度を500℃に固定し、ガス雰囲気を、酸素雰囲気と、5%H2−95%N2の混合ガス雰囲気に、交互に切り替えて行った熱重量分析の結果(重量変化率)を示す図である。Thermogravimetric analysis results (weight change rate) performed by alternately switching the gas atmosphere to an oxygen atmosphere and a mixed gas atmosphere of 5% H 2 -95% N 2 while fixing the temperature of the gas atmosphere to 500 ° C. FIG. 5%H2−95%N2の混合ガス雰囲気を酸素雰囲気に切り替えた直後の重量変化(増加)率の変化を示す図である。After that, a 5% H 2 mixed gas atmosphere of -95% N 2 is a graph showing changes in weight change (increase) rate immediately after switching to an oxygen atmosphere. 酸素吸収・放出を繰り返した後の熱重量分析前後におけるBaYMn25+δのX線回折パターンを示す図である。Is a diagram showing an X-ray diffraction pattern of BaYMn 2 O 5 + δ in the thermal gravimetric analysis before and after after repeated oxygen absorbing and desorbing. 酸素ゲッター同時封管法を実施する試料合成実験の一態様を示す図である。It is a figure which shows the one aspect | mode of the sample-synthesis experiment which implements an oxygen getter simultaneous sealed tube method.

まず、本発明の酸素欠損ペロブスカイト型金属酸化物(Ba1-xx)B(Mn2-yy)O5+δの製造方法について、x=0、y=0、B=Yとして説明する。 First, regarding the method for producing the oxygen-deficient perovskite type metal oxide (Ba 1-x A x ) B (Mn 2−y C y ) O 5 + δ of the present invention, x = 0, y = 0, and B = Y. explain.

出発原料として、Y23、BaCO3、及び、Mn23を用い、これらを、Ba:Y:Mn=1:1:2となるように混合した。混合粉末を、窒素気流中で、1000℃で12時間、仮焼し、前駆体(YMnO3とBaMnO3-xの混合物)を作製した。メノウ乳鉢中で粉砕して、加圧し、錠剤形状(約0.1g)に成形した。 Y 2 O 3 , BaCO 3 , and Mn 2 O 3 were used as starting materials, and these were mixed so that Ba: Y: Mn = 1: 1: 2. The mixed powder was calcined at 1000 ° C. for 12 hours in a nitrogen stream to prepare a precursor (mixture of YMnO 3 and BaMnO 3-x ). The mixture was pulverized in an agate mortar, pressed, and formed into a tablet shape (about 0.1 g).

成形体を、4個、アルミナ坩堝に入れ、このアルミナ坩堝と、酸素ゲッター剤(例えば、FeOを等重量の0.4g)を入れたアルミナ坩堝を石英管に封入し、1100℃で24時間、焼成した(図10、参照。この方法を、以下「酸素ゲッター同時封管法」ということがある。)。焼成後、石英管を、氷水中に投入して急冷した。   Four compacts were put into an alumina crucible, and the alumina crucible and an alumina crucible containing an oxygen getter agent (for example, 0.4 g of FeO of equal weight) were sealed in a quartz tube, and the mixture was sealed at 1100 ° C. for 24 hours. Firing was performed (see FIG. 10). This method is hereinafter sometimes referred to as “oxygen getter simultaneous sealing method”. After firing, the quartz tube was put into ice water and quenched.

1100℃での平衡酸素分圧は10-11atmであるので、石英管中で、
6FeO+O2=2Fe34
の反応が生じ、酸素量(5+δ)が適正量に調整された、単一相のBaYMn25+δを作製することができる。
Since the equilibrium partial pressure of oxygen at 1100 ° C is 10 -11 atm,
6FeO + O 2 = 2Fe 3 O 4
Thus, a single-phase BaYMn 2 O 5 + δ in which the oxygen amount (5 + δ) is adjusted to an appropriate amount can be produced.

単一相のBaYMn25+δが生成したことは、X線回折法で確認した。図1に、BaYMn25+δの前駆体(YMnO3とBaMnO3-xの混合物)のX線回折パターン(上)と、BaYMn25+δ(δ≒0、P4/nmm、a=5.548Å、c=7.655Å)のX線回折パターン(下)を示す。 The formation of single phase BaYMn 2 O 5 + δ was confirmed by X-ray diffraction. 1, the precursor of BaYMn 2 O 5 + δ and X-ray diffraction pattern of (YMnO mixture of 3 and BaMnO 3-x) (upper), BaYMn 2 O 5 + δ (δ ≒ 0, P4 / nmm, a = 5.548 Å, c = 7.655 Å) (bottom).

BaYMn25+δのX線回折パターンから、酸素ゲッター同時封管法で、単一相のBaYMn25+δを合成できたことが解る。 From X-ray diffraction pattern of BaYMn 2 O 5 + δ, oxygen getter simultaneously sealed tube method, it is found that it was able to synthesize BaYMn 2 O 5 + δ single phase.

BaYMn25+δの酸素量(5+δ)は、既知のX線回折パターンから類推でき、後出の図6及び図7より求まるδ値と合致することを確認した。 The oxygen amount (5 + δ) of BaYMn 2 O 5 + δ can be inferred from a known X-ray diffraction pattern and confirmed to match the δ value obtained from FIGS. 6 and 7 described later.

次に、合成した単一相BaYMn25+δ(以下「合成BYMO」ということがある。)が、優れた酸素貯蔵特性を有する物質であることの確認試験について説明する。 Next, a confirmation test for confirming that the synthesized single phase BaYMn 2 O 5 + δ (hereinafter sometimes referred to as “synthetic BYMO”) is a substance having excellent oxygen storage characteristics will be described.

合成した単一相の合成BYMOの酸素量を制御するため、合成BYMOに、酸素気流中で、600℃で12時間の熱処理を施した。   In order to control the oxygen amount of the synthesized single-phase synthetic BYMO, the synthetic BYMO was subjected to heat treatment at 600 ° C. for 12 hours in an oxygen stream.

図2に、熱処理で酸素を吸収したBaYMn25+δ(以下「O処理BYMO」ということがある。)のX線回折パターン(下)を、合成BYMOのX線回折パターン(図1の下のX線回折パターン)(上)とともに示す。 FIG. 2 shows an X-ray diffraction pattern (below) of BaYMn 2 O 5 + δ (hereinafter sometimes referred to as “O-treated BYMO”) that has absorbed oxygen by heat treatment, and an X-ray diffraction pattern (of FIG. 1) of synthetic BYMO. It is shown together with (lower X-ray diffraction pattern) (upper).

O処理BYMOのX線回折パターンは、δ≒1の場合のX線回折パターンを示し、単斜晶P2、a=5.522Å、b=5.517Å、c=7.608Å、及び、β=90.33°の単位格子を仮定して、回折ピークの指数付けをすることができた。   The X-ray diffraction pattern of O-treated BYMO shows the X-ray diffraction pattern when δ≈1, and monoclinic crystal P2, a = 5.5225, b = 5.517Å, c = 7.608Å, and β = Assuming a 90.33 ° unit cell, the diffraction peaks could be indexed.

図2において、合成BYMOのX線回折パターンとO処理BYMOのX線回折パターンは類似しているが、回折ピークの相対強度及び位置は変化している。この変化を、図3に示す。[202]の回折ビーク、[220]の回折ビーク、及び、([004]+[221]+[203])の回折ビークの相対強度及び位置が変化していることが解る。   In FIG. 2, the X-ray diffraction pattern of the synthetic BYMO and the X-ray diffraction pattern of the O-treated BYMO are similar, but the relative intensity and position of the diffraction peak are changed. This change is shown in FIG. It can be seen that the relative intensity and position of the [202] diffraction beak, the [220] diffraction beak, and the ([004] + [221] + [203]) diffraction beak change.

即ち、図4に示すように、酸素気流中の熱処理で、結晶構造がP4/nmmの合成BYMO(δ≒0)(図中(a)、参照)が酸素を吸収することにより、基本骨格構造は不変のまま、単斜晶P2のO処理BYMO(δ≒1)(図中(b)、参照)に変化した。   That is, as shown in FIG. 4, by a heat treatment in an oxygen stream, a synthetic BYMO (δ≈0) (see (a) in the figure) having a crystal structure of P4 / nmm absorbs oxygen, thereby obtaining a basic skeleton structure. Remained unchanged, and changed to O-treated BYMO (δ≈1) of monoclinic crystal P2 (see (b) in the figure).

本発明者らは、次いで、酸素を吸収したO処理BYMO(δ≒1)に、5%H2−95%N2の混合ガス気流中、500℃で還元熱処理を施し、X線回折パターンを測定した。 Next, the present inventors performed a reduction heat treatment at 500 ° C. in a mixed gas stream of 5% H 2 -95% N 2 on O-treated BYMO (δ≈1) that has absorbed oxygen, and obtained an X-ray diffraction pattern. It was measured.

その結果、O処理BYMO(δ≒1)を還元処理して得たBaYMn25+δのX線回折パターンは、合成BYMO(δ≒0)のX線回折パターンとほぼ同じであり、O処理BYMO(δ≒1)は、還元熱処理で、元の合成BYMO(δ≒0)の結晶構造(P4/nmm)に戻ったことが判明した。 As a result, the X-ray diffraction pattern of BaYMn 2 O 5 + δ obtained by reducing the O-treated BYMO (δ≈1) is almost the same as the X-ray diffraction pattern of the synthetic BYMO (δ≈0). It was found that the treated BYMO (δ≈1) returned to the crystal structure (P4 / nmm) of the original synthetic BYMO (δ≈0) by the reduction heat treatment.

図5に、BaYMn25+δにおけるδが、0→1→0と変化する過程で、X線回折パターンの相対強度と位置がどのように変化したかを示す。図中、上のX線回折パターンが合成BYMO(δ≒0)のX線回折パターンであり、下のX線回折パターンが、還元処理後のBaYMn25+δ(δ≒0)のX線回折パターンである。 FIG. 5 shows how the relative intensity and position of the X-ray diffraction pattern changed in the process of changing δ in BaYMn 2 O 5 + δ from 0 → 1 → 0. In the drawing, the upper X-ray diffraction pattern is an X-ray diffraction pattern of synthetic BYMO (δ≈0), and the lower X-ray diffraction pattern is an X of BaYMn 2 O 5 + δ (δ≈0) after reduction treatment. It is a line diffraction pattern.

本発明者らは、BaYMn25+δの酸素吸収・放出(酸素貯蔵)特性をさらに調査するため、BaYMn25+δに、酸素気流中、及び、5%H2−95%N2の混合ガス気流中で、所要の熱履歴を与え、熱天秤を用いて熱重量分析を行った。その結果を図6に示す。なお、重量変化は、重量変化(増加又は減少)率ΔW(%)として、縦軸に示した。 In order to further investigate the oxygen absorption / release (oxygen storage) characteristics of BaYMn 2 O 5 + δ , the present inventors added BaYMn 2 O 5 + δ to an oxygen stream and 5% H 2 −95% N. The required thermal history was given in the mixed gas stream 2 and thermogravimetric analysis was performed using a thermobalance. The result is shown in FIG. The weight change is indicated on the vertical axis as a weight change (increase or decrease) rate ΔW (%).

BaYMn25+δ(δ≒0)を、酸素気流中で、600℃まで、昇温速度1℃/分で加熱した。物質重量は、200℃付近から増加し始め、390℃(酸素吸収完了温度)で飽和した(図6中、(a)の昇温線、参照)。物質重量の増加は、酸素量(δ)の変化、即ち、酸素の吸収によるものである。重量増加率ΔW(%)は、3.75%である(図6、参照)。 BaYMn 2 O 5 + δ (δ≈0) was heated in an oxygen stream to 600 ° C. at a heating rate of 1 ° C./min. The substance weight began to increase from around 200 ° C. and was saturated at 390 ° C. (oxygen absorption completion temperature) (see the temperature rise line in FIG. 6). The increase in the substance weight is due to a change in the amount of oxygen (δ), that is, absorption of oxygen. The weight increase rate ΔW (%) is 3.75% (see FIG. 6).

重量増加率“3.75%”は、δ≒0.97に相当し、δ=1で期待されるΔW(%)=3.85%とほぼ一致する。また、“3.75%”は、CeO2−ZrO2の酸素貯蔵能(OSC)“2.8%”を大きく超える値である。 The weight increase rate “3.75%” corresponds to δ≈0.97, which substantially coincides with ΔW (%) = 3.85% expected when δ = 1. Further, “3.75%” is a value that greatly exceeds the oxygen storage capacity (OSC) “2.8%” of CeO 2 —ZrO 2 .

その後、BaYMn25+δ(δ≒0.97)を、酸素気流中で冷却した。物質重量は、ほぼ一定であった(図6中、(b)の冷却線、参照)。 Thereafter, BaYMn 2 O 5 + δ (δ≈0.97) was cooled in an oxygen stream. The substance weight was almost constant (see the cooling line (b) in FIG. 6).

続いて、BaYMn25+δ(δ≒0.97)を、5%H2−95%N2の混合ガス気流中で、600℃まで、昇温速度1℃/分で加熱した。物質重量は、200℃付近から減少し始め、490℃(酸素放出完了温度)で飽和した(図6中、(c)の昇温線、参照)。600℃からの冷却過程で、物質重量は、ほぼ一定であり、冷却後の重量は、熱重量分析前の重量と一致した(図6中、(d)の冷却線、参照)。 Subsequently, BaYMn 2 O 5 + δ (δ≈0.97) was heated to 600 ° C. at a heating rate of 1 ° C./min in a mixed gas stream of 5% H 2 -95% N 2 . The substance weight began to decrease from around 200 ° C. and was saturated at 490 ° C. (oxygen release completion temperature) (see the temperature rise line in FIG. 6 (c)). During the cooling process from 600 ° C., the weight of the substance was almost constant, and the weight after cooling coincided with the weight before thermogravimetric analysis (see the cooling line (d) in FIG. 6).

物質重量の減少は、酸素量(δ)の変化、即ち、酸素の放出によるものであり、冷却後の重量が、熱重量分析前の重量と一致したことは、5%H2−95%N2の混合ガス気流中での還元熱処理で、BaYMn25+δ(δ≒0.97)は、吸収した酸素を全て放出し、元のBaYMn25+δ(δ≒0)に戻ったことを示している。 The decrease in the weight of the substance is due to a change in the amount of oxygen (δ), that is, the release of oxygen, and the fact that the weight after cooling matched the weight before thermogravimetric analysis was 5% H 2 −95% N in the reduction heat treatment in a mixed gas flow of 2, BaYMn 2 O 5 + δ (δ ≒ 0.97) , all the absorbed oxygen released, returns to the original BaYMn 2 O 5 + δ (δ ≒ 0) It shows that.

本発明者らは、熱重量分析の前後で、BaYMn25+δのX線回折パターンが一致することを確認した。 The present inventors have confirmed that the X-ray diffraction patterns of BaYMn 2 O 5 + δ match before and after thermogravimetric analysis.

BaYMn25+δは、200〜500℃の低温域で、酸素吸収・放出現象を呈する物質である。 BaYMn 2 O 5 + δ is a substance that exhibits an oxygen absorption / release phenomenon in a low temperature range of 200 to 500 ° C.

以上のことから、BaYMn25+δは、実用温度域で、CeO2−ZrO2の酸素貯蔵能を大きく超える、優れた酸素貯蔵能を備える物質であることが解る。 From the above, the BaYMn 2 O 5 + δ, in a practical temperature range, greatly exceeds the oxygen storage capacity of the CeO 2 -ZrO 2, it can be seen that a substance with excellent oxygen storage capacity.

本発明者らは、さらに、BaYMn25+δの重量変化、即ち、酸素吸収・放出の可逆性と迅速性を調査した。酸素吸収・放出の可逆性と迅速性は、酸素貯蔵用又は酸素選択膜用の機能セラミックスとして重要である。 The inventors further investigated the weight change of BaYMn 2 O 5 + δ , that is, the reversibility and rapidity of oxygen absorption / release. The reversibility and rapidity of oxygen absorption / release are important as functional ceramics for oxygen storage or oxygen selective membranes.

本発明者らは、ガス雰囲気の温度を、BaYMn25+δ(δ≒1)の酸素放出完了温度490℃を僅かに超える500℃に固定し、ガス雰囲気を、酸素雰囲気と、5%H2−95%N2の混合ガス雰囲気に、交互に切り替えて、熱天秤を用いて熱重量分析を行った。その結果を、図7に示す。 The inventors fixed the temperature of the gas atmosphere at 500 ° C., slightly exceeding the oxygen release completion temperature of 490 ° C. of BaYMn 2 O 5 + δ (δ≈1). The thermogravimetric analysis was performed using a thermobalance by alternately switching to a mixed gas atmosphere of H 2 -95% N 2 . The result is shown in FIG.

図7から、BaYMn25+δ(δ≒1)の重量は、酸素雰囲気中で直ちに増加し、ガス雰囲気が、5%H2−95%N2の混合ガス雰囲気に切り替わると、直ちに減少することが解る。ガス雰囲気の切り替えによる重量変化率ΔW(%)は、3.75〜3.80%であり、BaYMn25+δ(δ=1)で期待されるΔW(%)=3.85%と略一致した。このことは、BaYMn25+δが、酸素の吸収・放出現象において、優れた可逆性を備えていることを意味している。 From FIG. 7, the weight of BaYMn 2 O 5 + δ (δ≈1) immediately increases in an oxygen atmosphere, and immediately decreases when the gas atmosphere is switched to a mixed gas atmosphere of 5% H 2 -95% N 2. I understand what to do. The weight change rate ΔW (%) by switching the gas atmosphere is 3.75 to 3.80%, and ΔW (%) expected to be BaYMn 2 O 5 + δ (δ = 1) = 3.85%. It almost agreed. This means that BaYMn 2 O 5 + δ has excellent reversibility in the oxygen absorption / release phenomenon.

図6及び図7から、BaYMn25+δが、酸素吸収・放出(酸素貯蔵)特性を備えていることが解る。この点が、本発明の基礎をなす知見である。 6 and 7 that BaYMn 2 O 5 + δ has oxygen absorption / release (oxygen storage) characteristics. This is the knowledge forming the basis of the present invention.

また、BaYMn25+δの酸素の吸収・放出現象において注目すべきことは、重量が増加する速度、即ち、酸素吸収速度が極めて速いことである。 Also, what should be noted in the oxygen absorption / release phenomenon of BaYMn 2 O 5 + δ is that the rate of weight increase, that is, the oxygen absorption rate is extremely high.

図8に、5%H2−95%N2の混合ガス雰囲気を酸素雰囲気に切り替えた直後の重量変化(増加)率の変化を示す。図8から、5%H2−95%N2の混合ガス雰囲気を酸素雰囲気に切り替えた直後、約10秒で、重量増加率が飽和値に達していることが解る。なお、図8には、酸素の吸収・放出に伴う、BaYMn25+δの温度変化を示したが、酸素吸収時の600℃への温度上昇は、酸素吸収で生じる酸化反応によるものと考えられ、酸素放出時の550℃への温度上昇は、水素の燃焼熱によるものと考えられる。 FIG. 8 shows a change in the weight change (increase) rate immediately after switching the mixed gas atmosphere of 5% H 2 -95% N 2 to the oxygen atmosphere. FIG. 8 shows that the weight increase rate reaches the saturation value in about 10 seconds immediately after switching the mixed gas atmosphere of 5% H 2 -95% N 2 to the oxygen atmosphere. FIG. 8 shows the temperature change of BaYMn 2 O 5 + δ accompanying oxygen absorption / release. The temperature rise to 600 ° C. during oxygen absorption is due to an oxidation reaction caused by oxygen absorption. It is considered that the temperature rise to 550 ° C. during oxygen release is due to the heat of combustion of hydrogen.

本発明者らは、酸素吸収・放出を繰り返す過程で、相分解が起きないか否かを確認するため、熱重量分析の前後で、BaYMn25+δのX線回折パターンを測定した。その結果を、図9に示す。図9において、上が、合成BYMOのX線回折パターンであり、下が、酸素吸収・放出を3回繰り返した後のBaYMn25+δ(δ≒0)のX線回折パターンである。図9から、酸素吸収・放出を繰り返す過程で、相分解が起きないことが解る。 The inventors measured the X-ray diffraction pattern of BaYMn 2 O 5 + δ before and after thermogravimetric analysis in order to confirm whether or not phase decomposition occurred in the process of repeating oxygen absorption / release. The result is shown in FIG. In FIG. 9, the upper is an X-ray diffraction pattern of synthetic BYMO, and the lower is an X-ray diffraction pattern of BaYMn 2 O 5 + δ (δ≈0) after repeating oxygen absorption / release three times. It can be seen from FIG. 9 that phase decomposition does not occur in the process of repeating oxygen absorption / release.

BaYMn25+δの可逆性に優れかつ急速に発現する酸素の吸収・放出現象は、これまで知られていない現象であり、BaYMn25+δが、酸素貯蔵用又は酸素選択膜用の実用的な機能セラミックスとして有用なものであることを示している。 BaYMn 2 O 5 + δ is an oxygen absorption / release phenomenon that is excellent in reversibility and rapidly expressed, and is a phenomenon that has not been known so far. BaYMn 2 O 5 + δ is used for oxygen storage or oxygen selective membranes. It is shown to be useful as a practical functional ceramic.

以上、BaYMn25+δの酸素貯蔵能について説明したが、本発明の酸素欠損ペロブスカイト型金属酸化物は、BaYMn25+δに限られない。本発明の酸素欠損ペロブスカイト型金属酸化物は、下記式(1)で示される金属酸化物である。 Although the oxygen storage capacity of BaYMn 2 O 5 + δ has been described above, the oxygen-deficient perovskite metal oxide of the present invention is not limited to BaYMn 2 O 5 + δ . The oxygen-deficient perovskite metal oxide of the present invention is a metal oxide represented by the following formula (1).

(Ba1-xx)B(Mn2-yy)O5+δ …(1)
ここで、A:Ba以外のアルカリ土類金属の1種又は2種以上
B:Y、希土類元素、及び、Caの1種又は2種以上
C:Fe及びCoの1種又は2種
x:0≦x≦1.0
y:0≦y≦2.0
δ:0≦δ≦1.0
(Ba 1−x A x ) B (Mn 2−y C y ) O 5 + δ (1)
Here, A: one or more of alkaline earth metals other than Ba
B: One or more of Y, rare earth elements, and Ca
C: One or two of Fe and Co
x: 0 ≦ x ≦ 1.0
y: 0 ≦ y ≦ 2.0
δ: 0 ≦ δ ≦ 1.0

Baサイトには、複数の元素が固溶可能であるので、Baを、Ba以外のアルカリ土類金属の1種又は2種以上で置換してもよい。置換量は、原子比で、0〜1.0(全量)が可能である。Ba以外のアルカリ土類金属は、Srが好ましい。置換量xは、層状構造の形成を促進するBaを多く含む、0〜0.5が好ましい。   Since a plurality of elements can be dissolved in the Ba site, Ba may be substituted with one or more of alkaline earth metals other than Ba. The amount of substitution can be 0 to 1.0 (total amount) by atomic ratio. The alkaline earth metal other than Ba is preferably Sr. The substitution amount x is preferably 0 to 0.5 containing a large amount of Ba that promotes the formation of the layered structure.

Bサイトには、複数の元素が固溶可能である。Bは、Y、希土類元素、及び、Caの1種又は2種以上である。Bとしては、Yが好ましく、希土類元素は、Laや、Ybが好ましい。Bサイトには、イオン半径の小さいCaも入り得る。   A plurality of elements can be dissolved in the B site. B is one or more of Y, rare earth elements, and Ca. B is preferably Y, and the rare earth element is preferably La or Yb. Ca with a small ion radius can also enter the B site.

Mnサイトにも、複数の元素が固溶可能である。Mnは、Mnと同様に遷移金属のFe及びCoの1種又は2種で置換することができる。Mnの全量を、Fe及びCoの1種又は2種で置換してもよい。それ故、置換量yは、原子比で、0〜2.0であるが、Mn量が増えると、酸素貯蔵能が向上するので、0〜1.0が好ましい。   A plurality of elements can be dissolved in the Mn site. Mn can be substituted with one or two of transition metals Fe and Co in the same manner as Mn. The total amount of Mn may be substituted with one or two of Fe and Co. Therefore, although the substitution amount y is 0 to 2.0 in terms of atomic ratio, 0 to 1.0 is preferable because the oxygen storage capacity improves as the amount of Mn increases.

酸素量δは、0〜1.0である。δが0であると、過剰酸素を含まない骨格構造だけの組成に対応する。δが1.0であると、ペロブスカイト結晶構造中の酸素欠損サイトが全て埋まった組成に対応する。したがって、酸素量δは、0〜1.0の範囲で、自由に変化する。   The oxygen amount δ is 0 to 1.0. When δ is 0, it corresponds to a composition having only a skeleton structure that does not contain excess oxygen. When δ is 1.0, this corresponds to a composition in which all oxygen deficient sites in the perovskite crystal structure are filled. Therefore, the oxygen amount δ is freely changed in the range of 0 to 1.0.

BaYMn25+δ以外に、好ましい元素の組合せとして、BaLaMn25+δ、BaYbMn25+δ、Ba(Y、La)Mn25+δ、Ba(Yb、Y、La)Mn25+δを挙げることができる。また、(Ba、Sr)YMn25+δ、Ba(Y、Ca)Mn25+δ、(Ba、Sr)(Y、Ca)Mn25+δ、BaY(Mn、Fe)25+δ、BaY(Mn、Co)25+δ、BaYFe25+δ、BaYCo25+δも、好ましい元素の組合せである。 In addition to BaYMn 2 O 5 + δ , preferred element combinations include BaLaMn 2 O 5 + δ , BaYbMn 2 O 5 + δ , Ba (Y, La) Mn 2 O 5 + δ , Ba (Yb, Y, La) Mention may be made of Mn 2 O 5 + δ . Also, (Ba, Sr) YMn 2 O 5 + δ , Ba (Y, Ca) Mn 2 O 5 + δ , (Ba, Sr) (Y, Ca) Mn 2 O 5 + δ , BaY (Mn, Fe) 2 O 5 + δ , BaY (Mn, Co) 2 O 5 + δ , BaYFe 2 O 5 + δ , and BaYCo 2 O 5 + δ are also preferable element combinations.

なお、本発明の酸素欠損ペロブスカイト型金属酸化物の酸素吸収・放出量の制御は、通常、0〜1気圧で行なうことができる。上記金属酸化物において、δ=1の状態にするのには、1気圧の酸素ガスで充分である。   The oxygen absorption / release amount of the oxygen-deficient perovskite metal oxide of the present invention can be controlled usually at 0 to 1 atm. In the above metal oxide, oxygen gas at 1 atm is sufficient to make δ = 1.

次に、本発明の実施例について説明するが、実施例で採用する条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Next, examples of the present invention will be described. The conditions adopted in the examples are one example of conditions used for confirming the feasibility and effects of the present invention, and the present invention is an example of this one condition. It is not limited to. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

(実施例1)
(1-1) 原料として、BaCO3、Y23、及び、Mn23を用い、酸素ゲッター同時封管法で、BaYMn25+δを合成した。BaCO3、Y23、及び、Mn23の粉末を、Ba:Y:Mn=1:1:2となるように混合し、混合粉末を、窒素気流中で、1000℃、12時間、仮焼し、前駆体(YMnO3とBaMnO3-xの混合物)を作製した。前駆体を、メノウ乳鉢中で粉砕した後、加圧し、錠剤形状(約0.1g)に成形した。
Example 1
(1-1) BaYMn 2 O 5 + δ was synthesized by an oxygen getter simultaneous sealing method using BaCO 3 , Y 2 O 3 and Mn 2 O 3 as raw materials. BaCO 3 , Y 2 O 3 , and Mn 2 O 3 powders were mixed so that Ba: Y: Mn = 1: 1: 2, and the mixed powder was 1000 ° C. for 12 hours in a nitrogen stream. And calcining to prepare a precursor (mixture of YMnO 3 and BaMnO 3-x ). The precursor was pulverized in an agate mortar and then pressed to form a tablet shape (about 0.1 g).

図10に示すように、成形体試料1を4個入れたアルミナ坩堝3aと、FeO(酸素ゲッター剤)2を0.4g(成形体試料4個と等重量)を入れたアルミナ坩堝3bを、両端に、スペーサーとして石英ロッド5を配置して、11mmφの石英管4に封入した(酸素ゲッター同時封管法)。封入した石英管4を、1100℃で24時間、加熱した。加熱後、石英管を、氷水中に投入して急冷した。   As shown in FIG. 10, an alumina crucible 3a containing four compact samples 1 and an alumina crucible 3b containing 0.4 g of FeO (oxygen getter agent) 2 (equal weight to four compact samples) Quartz rods 5 were arranged at both ends as spacers and sealed in 11 mmφ quartz tubes 4 (oxygen getter simultaneous sealing method). The enclosed quartz tube 4 was heated at 1100 ° C. for 24 hours. After heating, the quartz tube was put into ice water and quenched.

石英管から取り出した成形体試料(以下「合成試料」という。)が、単一相のBaYMn25+δであることを、X線回折法で確認した(図1、参照)。酸素量(5+δ)は、既知のX線回折パターンから、δ≒0と類推した。結晶構造は、P4/nmmであり、格子定数は、a=5.548Å、c=7.655Åであった。 It was confirmed by an X-ray diffraction method that the molded body sample taken out of the quartz tube (hereinafter referred to as “synthetic sample”) was single-phase BaYMn 2 O 5 + δ (see FIG. 1). The amount of oxygen (5 + δ) was estimated as δ≈0 from a known X-ray diffraction pattern. The crystal structure was P4 / nmm, and the lattice constants were a = 5.548Å and c = 7.655Å.

(1-2) 合成試料に、酸素気流中、600℃で熱処理を施して、酸素量を調整した。酸素気流中で熱処理を施した試料(以下「O2−処理試料」という。)について、X線回折法で相同定と構造解析を行った。 (1-2) The synthesized sample was heat-treated at 600 ° C. in an oxygen stream to adjust the amount of oxygen. A sample subjected to heat treatment in an oxygen stream (hereinafter referred to as “O 2 -treated sample”) was subjected to phase identification and structural analysis by an X-ray diffraction method.

2−処理試料のX線回折パターンは、合成試料のX線回折パターンに似ているが、回折ピークの相対強度及び位置は変化した(図2、参照)。O2−処理試料のX線回折パターンは、δ≒1.0のX線回折パターンと一致し、結晶構造は、単斜晶P2、a=5.522Å、b=5.517Å、c=7.608Å、β=90.33°の単位格子を仮定することにより指数付けすることができた。 The X-ray diffraction pattern of the O 2 -treated sample resembles that of the synthetic sample, but the relative intensity and position of the diffraction peaks changed (see FIG. 2). The X-ray diffraction pattern of the O 2 -treated sample coincides with the X-ray diffraction pattern of δ≈1.0, and the crystal structure is monoclinic P2, a = 5.522Å, b = 5.517Å, c = 7 It was possible to index by assuming a unit cell of .608 cm, β = 90.33 °.

(1-3) 続いて、δ≒1.0のO2処理試料に、5%H−95%Nの混合ガス気流中、500°Cで還元熱処理を施した。5%H−95%Nの混合ガス気流中で熱処理を施した試料(以下「5%H2−処理試料」という。)について、X線回折法で、相同定と構造解析を行った。5%H2−処理試料のX線回折パターンは、合成試料のX線回折パターンとほぼ同じであり(図5、参照)、δが、元のδ≒0に戻ることを確認した。 (1-3) Subsequently, a reduction heat treatment was performed on an O 2 treated sample with δ≈1.0 at 500 ° C. in a mixed gas stream of 5% H 2 -95% N 2 . Phase identification and structural analysis were performed by X-ray diffractometry on a sample heat treated in a mixed gas stream of 5% H 2 -95% N 2 (hereinafter referred to as “5% H 2 -treated sample”). . The X-ray diffraction pattern of the 5% H 2 -treated sample was almost the same as the X-ray diffraction pattern of the synthetic sample (see FIG. 5), and it was confirmed that δ returned to the original δ≈0.

(実施例2)
(2-1) BaYMn25+δの酸素吸収・放出特性を調査するため、酸素気流中、及び、5%H−95%Arの混合ガス気流中において熱重量分析を行った。δ≒0の試料を、酸素気流中で600℃まで、1℃/分で昇温した。
(Example 2)
(2-1) In order to investigate the oxygen absorption / release characteristics of BaYMn 2 O 5 + δ , thermogravimetric analysis was performed in an oxygen stream and in a mixed gas stream of 5% H 2 -95% Ar. The sample of δ≈0 was heated up to 600 ° C. in an oxygen stream at 1 ° C./min.

試料重量は、200℃付近から増加し始め、390℃以上で飽和した。この重量増加は、酸素量の変化によるものと考えられる。重量増加率は、3.75%であり、この値は、BaYMn25+δの酸素量変化Δδ=0.97に相当し、期待される重量増加率3.85%(Δδ=1.0)とほぼ一致する。その後の酸素気流中での冷却過程において、試料重量はほぼ一定であった(図6、参照)。 The sample weight started to increase from around 200 ° C. and was saturated at 390 ° C. or higher. This increase in weight is thought to be due to a change in the amount of oxygen. The weight increase rate is 3.75%, and this value corresponds to the oxygen amount change Δδ = 0.97 of BaYMn 2 O 5 + δ , and the expected weight increase rate is 3.85% (Δδ = 1. 0). In the subsequent cooling process in the oxygen stream, the sample weight was almost constant (see FIG. 6).

(2-2) 続いて、δ≒1.0の試料を、5%H−95%Arの混合ガス気流中で、600°Cまで、1℃/分で昇温した。200℃付近から重量減少(酸素放出に対応する現象)が見られ、490℃以上で試料重量が飽和した(図6、参照)。600℃から冷却した後の試料重量は、熱重量分析前と完全に一致しており、吸収した酸素を全て放出して、元のδ≒0の試料に戻ったことを確認した。なお、熱重量分析前後のX線回折パターンは、ほぼ完全に一致した。 (2-2) Subsequently, the sample of δ≈1.0 was heated to 600 ° C. at 1 ° C./min in a mixed gas stream of 5% H 2 -95% Ar. A weight decrease (a phenomenon corresponding to oxygen release) was observed from around 200 ° C., and the sample weight was saturated at 490 ° C. or higher (see FIG. 6). The sample weight after cooling from 600 ° C. completely coincided with that before thermogravimetric analysis, and it was confirmed that all absorbed oxygen was released and returned to the original sample of δ≈0. Note that the X-ray diffraction patterns before and after thermogravimetric analysis almost completely matched.

(実施例3)
(3-1) 温度を500℃に固定し、ガス雰囲気を、Oと5%H−95%Arに、交互に切り替えながら熱重量分析を行った。試料重量は、酸素気流中で直ちに増加し、5%H−95%Arの混合ガス気流中で、直ちに減少した(図7、参照)。重量変化量は、BaYMn25+δのOSC値「3.85wt%」にほぼ一致した。また、この重量変化量は、ガス雰囲気に対する優れた可逆性を示している。
(Example 3)
(3-1) The thermogravimetric analysis was performed while the temperature was fixed at 500 ° C. and the gas atmosphere was alternately switched between O 2 and 5% H 2 -95% Ar. The sample weight immediately increased in the oxygen stream and immediately decreased in the mixed gas stream of 5% H 2 -95% Ar (see FIG. 7). The amount of weight change almost coincided with the OSC value “3.85 wt%” of BaYMn 2 O 5 + δ . Moreover, this weight change has shown the outstanding reversibility with respect to gas atmosphere.

重量増加速度、即ち、酸素吸収速度が極めて速く、酸素ガスに切り替えた後、約10秒で試料重量が飽和した(図8、参照)。本発明のBaYMn25+δが優れた酸素吸収能を有していることが解る。 The rate of weight increase, that is, the oxygen absorption rate was extremely fast, and the sample weight was saturated in about 10 seconds after switching to oxygen gas (see FIG. 8). It can be seen that the BaYMn 2 O 5 + δ of the present invention has an excellent oxygen absorption capacity.

(3-2) 熱重量分析後の試料のX線回折パターンは、熱重量分析前の試料とほぼ同じX線回折パターンを示しており、酸素の吸収・放出現象の際に、相分解を伴わないことを確認した(図9、参照)。即ち、BaYMn25+δの基本骨格は、一連の手順を経ても不変であり、酸素の吸収・放出現象のみが起きていることを確認した。 (3-2) The X-ray diffraction pattern of the sample after thermogravimetric analysis shows almost the same X-ray diffraction pattern as that of the sample before thermogravimetric analysis, which is accompanied by phase decomposition during the oxygen absorption / release phenomenon. It was confirmed that there was no (see FIG. 9). That is, it was confirmed that the basic skeleton of BaYMn 2 O 5 + δ was unchanged even after a series of procedures, and only oxygen absorption / release phenomenon occurred.

前述したように、本発明の酸素欠損ペロブスカイト型金属酸化物(Ba1-xx)B(Mn2-yy)O5+δ(A:Ba以外のアルカリ土類金属の1種又は2種以上、B:Y、希土類元素、及び、Caの1種又は2種以上、C:Fe及びCoの1種又は2種で、δ:0≦δ≦1.0)は、500℃以下で、多量の酸素を高速で吸収、放出するという顕著な熱重量変化特性を備えているので、排ガス浄化触媒、及び、高性能酸素貯蔵用及び酸素選択膜用機能セラミックスとして最適な物質である。 As described above, the oxygen-deficient perovskite metal oxide (Ba 1-x A x ) B (Mn 2−y C y ) O 5 + δ (A: one of the alkaline earth metals other than Ba or 2 or more, B: Y, rare earth elements, and one or more of Ca, C: one or two of Fe and Co, δ: 0 ≦ δ ≦ 1.0) is 500 ° C. or less Therefore, since it has a remarkable thermogravimetric change characteristic of absorbing and releasing a large amount of oxygen at a high speed, it is an optimum material as an exhaust gas purification catalyst and a functional ceramic for high performance oxygen storage and oxygen selective membrane.

また、本発明の酸素欠損ペロブスカイト型金属酸化物(Ba1-xx)B(Mn2-yy)O5+δを、酸素の高速吸収・放出特性を利用して、酸素吸蔵装置や、酸素分離装置等へ適用すれば、従来の酸素吸収・放出材料を用いる場合より、装置の小型化及び省エネルギーを図ることが可能となる。 Further, the oxygen deficient perovskite type metal oxide (Ba 1-x A x ) B (Mn 2−y C y ) O 5 + δ of the present invention is utilized by utilizing the high-speed absorption / release characteristics of oxygen. If applied to an oxygen separator or the like, it is possible to reduce the size of the apparatus and save energy compared to the case of using a conventional oxygen absorbing / releasing material.

さらに、本発明の酸素欠損ペロブスカイト型金属酸化物(Ba1-xx)B(Mn2-yy)O5+δは、高価なレアメタルCeを含まないので、高価なレアメタルCeを含むCZに替わる実用材料として有望である。したがって、本発明は、産業上の利用可能性が大きいものである。 Furthermore, since the oxygen-deficient perovskite metal oxide (Ba 1-x A x ) B (Mn 2−y C y ) O 5 + δ of the present invention does not contain expensive rare metal Ce, it contains expensive rare metal Ce. It is promising as a practical material to replace CZ. Therefore, the present invention has great industrial applicability.

1 成形体(試料)
2 FeO(酸素ゲッター剤)
3a、3b アルミナ坩堝
4 石英管
5 石英ロッド
1 Molded body (sample)
2 FeO (oxygen getter agent)
3a, 3b Alumina crucible 4 Quartz tube 5 Quartz rod

Claims (12)

下記式(1)で表され、500℃以下の低温域で動作することを特徴とする酸素貯蔵能に優れた酸素欠損ペロブスカイト型金属酸化物。
(Ba1-xx)B(Mn2-yy)O5+δ …(1)
ここで、A:Ba以外のアルカリ土類金属の1種又は2種以上
B:Y、希土類元素、及び、Caの1種又は2種以上
C:Fe及びCoの1種又は2種
x:0≦x≦1.0
y:0≦y≦2.0
δ:0≦δ≦1.0
An oxygen-deficient perovskite-type metal oxide excellent in oxygen storage capacity, which is represented by the following formula (1) and operates in a low temperature range of 500 ° C. or less.
(Ba 1−x A x ) B (Mn 2−y C y ) O 5 + δ (1)
Here, A: one or more of alkaline earth metals other than Ba
B: One or more of Y, rare earth elements, and Ca
C: One or two of Fe and Co
x: 0 ≦ x ≦ 1.0
y: 0 ≦ y ≦ 2.0
δ: 0 ≦ δ ≦ 1.0
前記AがSrで、0≦x≦0.5であることを特徴とする請求項1に記載の酸素貯蔵能に優れた酸素欠損ペロブスカイト型金属酸化物。   2. The oxygen-deficient perovskite metal oxide having excellent oxygen storage capacity according to claim 1, wherein A is Sr and 0 ≦ x ≦ 0.5. 前記BがYであることを特徴とする請求項1又は2に記載の酸素貯蔵能に優れた酸素欠損ペロブスカイト型金属酸化物。   The oxygen-deficient perovskite metal oxide having excellent oxygen storage capacity according to claim 1 or 2, wherein B is Y. 前記Bが希土類元素の1種又は2種以上であることを特徴とする請求項1〜3のいずれか1項に記載の酸素貯蔵能に優れた酸素欠損ペロブスカイト型金属酸化物。   The oxygen-deficient perovskite metal oxide excellent in oxygen storage capacity according to any one of claims 1 to 3, wherein B is one or more rare earth elements. 前記BがCaであることを特徴とする請求項1〜4のいずれか1項に記載の酸素貯蔵能に優れた酸素欠損ペロブスカイト型金属酸化物。   The oxygen-deficient perovskite metal oxide having excellent oxygen storage capacity according to any one of claims 1 to 4, wherein B is Ca. 前記Cが、Fe及びCoの1種又は2種で、前記yが、0≦y≦1.0であることを特徴とする請求項1〜5のいずれか1項に記載の酸素貯蔵能に優れた酸素欠損ペロブスカイト型金属酸化物。   The oxygen storage capacity according to any one of claims 1 to 5, wherein the C is one or two of Fe and Co, and the y is 0 ≦ y ≦ 1.0. Excellent oxygen-deficient perovskite metal oxide. 請求項1〜6のいずれか1項に記載の酸素貯蔵能に優れた酸素欠損ペロブスカイト型金属酸化物を含むことを特徴とする排ガス浄化触媒。   An exhaust gas purifying catalyst comprising the oxygen-deficient perovskite metal oxide excellent in oxygen storage capacity according to any one of claims 1 to 6. 請求項1〜6のいずれか1項に記載の酸素貯蔵能に優れた酸素欠損ペロブスカイト型金属酸化物を含むことを特徴とする機能セラミックス。   A functional ceramic comprising the oxygen-deficient perovskite metal oxide excellent in oxygen storage capacity according to any one of claims 1 to 6. 請求項1〜6のいずれか1項に記載の酸素貯蔵能に優れた酸素欠損ペロブスカイト型金属酸化物を用いて、酸素を貯蔵及び/又は分離する方法であって、酸素の変化量が、該金属酸化物中の全酸素モル量に対し、0を超え21.4%以下の範囲で、酸素を貯蔵及び/又は分離することを特徴とする酸素貯蔵・分離方法。   A method for storing and / or separating oxygen using the oxygen-deficient perovskite-type metal oxide excellent in oxygen storage capacity according to any one of claims 1 to 6, wherein the amount of oxygen change is An oxygen storage / separation method characterized by storing and / or separating oxygen in a range of more than 0 to 21.4% or less with respect to the total amount of oxygen in the metal oxide. 請求項1〜6のいずれか1項に記載の酸素貯蔵能に優れた酸素欠損ペロブスカイト型金属酸化物を備え、貯蔵した酸素を用いて酸化反応を行うことを特徴とする酸化反応装置。   An oxidation reaction apparatus comprising the oxygen-deficient perovskite metal oxide excellent in oxygen storage capacity according to any one of claims 1 to 6 and performing an oxidation reaction using stored oxygen. 請求項1〜6のいずれか1項に記載の酸素貯蔵能に優れた酸素欠損ペロブスカイト型金属酸化物を備え、酸素の貯蔵及び/又は分離によって発生する温熱を用いて加熱を行うことを特徴とする加熱装置。   It comprises the oxygen-deficient perovskite metal oxide excellent in oxygen storage capacity according to any one of claims 1 to 6, and is heated using heat generated by storage and / or separation of oxygen, Heating device. 請求項1〜6のいずれか1項に記載の酸素貯蔵能に優れた酸素欠損ペロブスカイト型金属酸化物を備え、容器内に存在する不要な不活性ガスや、酸素ガスを除去することを特徴とする酸素除去装置。   It comprises the oxygen-deficient perovskite metal oxide excellent in oxygen storage capacity according to any one of claims 1 to 6, and is characterized by removing unnecessary inert gas and oxygen gas present in the container. To remove oxygen.
JP2009161964A 2009-07-08 2009-07-08 Oxygen deficit perovskite-type metal oxide excellent in oxygen storage capability, exhaust gas purifying catalyst and functional ceramic containing the metal oxide, and method and apparatus using the metal oxide Pending JP2011016684A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009161964A JP2011016684A (en) 2009-07-08 2009-07-08 Oxygen deficit perovskite-type metal oxide excellent in oxygen storage capability, exhaust gas purifying catalyst and functional ceramic containing the metal oxide, and method and apparatus using the metal oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009161964A JP2011016684A (en) 2009-07-08 2009-07-08 Oxygen deficit perovskite-type metal oxide excellent in oxygen storage capability, exhaust gas purifying catalyst and functional ceramic containing the metal oxide, and method and apparatus using the metal oxide

Publications (1)

Publication Number Publication Date
JP2011016684A true JP2011016684A (en) 2011-01-27

Family

ID=43594783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009161964A Pending JP2011016684A (en) 2009-07-08 2009-07-08 Oxygen deficit perovskite-type metal oxide excellent in oxygen storage capability, exhaust gas purifying catalyst and functional ceramic containing the metal oxide, and method and apparatus using the metal oxide

Country Status (1)

Country Link
JP (1) JP2011016684A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011121829A (en) * 2009-12-11 2011-06-23 Hokkaido Univ Manganese oxide excellent in oxygen storage ability, various materials including the oxide, method and apparatus using the oxide
WO2012093599A1 (en) * 2011-01-05 2012-07-12 本田技研工業株式会社 Exhaust gas purifying catalyst
WO2013153915A1 (en) * 2012-04-10 2013-10-17 三井金属鉱業株式会社 Catalyst for purifying exhaust gas
JP2013255911A (en) * 2012-06-14 2013-12-26 Mitsubishi Chemicals Corp Catalyst for producing synthesis gas and production method of synthesis gas
WO2014163235A1 (en) * 2013-04-01 2014-10-09 ㈜후산 Mixed metal oxide catalyst for treating exhaust gas, preparation method therefor and treatment method for exhaust gas using same
WO2016132932A1 (en) * 2015-02-18 2016-08-25 国立大学法人北海道大学 Catalyst for oxygen reduction reaction and air electrode for metal-air secondary batteries
JP2016193815A (en) * 2015-03-31 2016-11-17 三菱化学株式会社 Oxygen excess type metal oxide and production method therefor, and oxygen concentration apparatus and oxygen adsorption and desorption apparatus
EP3147262A1 (en) * 2015-09-22 2017-03-29 Akademia Gorniczo-Hutnicza im. Stanislawa Staszica w Krakowie A perovskite-based oxide for oxygen storage and a method for preparation thereof
JP2020131125A (en) * 2019-02-20 2020-08-31 三菱重工業株式会社 Denitration catalyst, and denitration device
JP2020142194A (en) * 2019-03-06 2020-09-10 堺化学工業株式会社 Oxygen adsorbent
JP2021115508A (en) * 2020-01-24 2021-08-10 株式会社デンソー Modification catalyst and manufacturing method thereof
JP2022009583A (en) * 2016-07-01 2022-01-14 三菱ケミカル株式会社 Oxygen excess type metal oxide, manufacturing method and recycling method therefor, oxygen condensation device and oxygen adsorption and desorption device
WO2022050356A1 (en) * 2020-09-02 2022-03-10 三菱ケミカル株式会社 Metal oxide, oxygen storage material, oxygen absorption and desorption apparatus, oxygen absorption and desorption method, oxygen concentrator and oxygen concentration method
JP2022093419A (en) * 2017-09-04 2022-06-23 三菱ケミカル株式会社 Method for producing oxygen excess metal oxide

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04504860A (en) * 1990-01-10 1992-08-27 ユニオン、カーバイド、ケミカルズ、アンド、プラスチックス、カンパニー、インコーポレイテッド Double pervskite catalyst for oxidative coupling
JPH08325014A (en) * 1995-05-30 1996-12-10 Nippon Soken Inc Novel multiple oxide
JPH0986928A (en) * 1994-10-04 1997-03-31 Nissan Motor Co Ltd A-site deficient perovskite double oxide and catalyst composed thereof
JPH1157474A (en) * 1997-08-11 1999-03-02 Isuzu Ceramics Kenkyusho:Kk Exhaust gas cleaning apparatus
JP2005166397A (en) * 2003-12-02 2005-06-23 Central Res Inst Of Electric Power Ind Oxygen ion conductor using stratiform cobalt oxide, and fuel cell using it
JP2007099554A (en) * 2005-10-03 2007-04-19 Murata Mfg Co Ltd Oxide conductor ceramic composition and resistor
JP2008156188A (en) * 2006-12-26 2008-07-10 National Institute Of Advanced Industrial & Technology METHOD FOR PRODUCING A-SITE LAYERED ORDERED PEROVSKITE Mn OXIDE THIN FILM
JP2009131774A (en) * 2007-11-30 2009-06-18 Nissan Motor Co Ltd Pm oxidation catalyst and exhaust gas cleaning catalyst comprising the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04504860A (en) * 1990-01-10 1992-08-27 ユニオン、カーバイド、ケミカルズ、アンド、プラスチックス、カンパニー、インコーポレイテッド Double pervskite catalyst for oxidative coupling
JPH0986928A (en) * 1994-10-04 1997-03-31 Nissan Motor Co Ltd A-site deficient perovskite double oxide and catalyst composed thereof
JPH08325014A (en) * 1995-05-30 1996-12-10 Nippon Soken Inc Novel multiple oxide
JPH1157474A (en) * 1997-08-11 1999-03-02 Isuzu Ceramics Kenkyusho:Kk Exhaust gas cleaning apparatus
JP2005166397A (en) * 2003-12-02 2005-06-23 Central Res Inst Of Electric Power Ind Oxygen ion conductor using stratiform cobalt oxide, and fuel cell using it
JP2007099554A (en) * 2005-10-03 2007-04-19 Murata Mfg Co Ltd Oxide conductor ceramic composition and resistor
JP2008156188A (en) * 2006-12-26 2008-07-10 National Institute Of Advanced Industrial & Technology METHOD FOR PRODUCING A-SITE LAYERED ORDERED PEROVSKITE Mn OXIDE THIN FILM
JP2009131774A (en) * 2007-11-30 2009-06-18 Nissan Motor Co Ltd Pm oxidation catalyst and exhaust gas cleaning catalyst comprising the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6011015817; 岡本 裕司 ほか: 'Ca置換したA-サイトオーダ・ダブルペロブスカイト酸化物Ba(Y,Ca)Mn2O5+deltaの磁気特性' 第51回応用物理学関係連合講演会講演予稿集 第51巻第1号, 200403, 第190ページ上段 *
JPN6013044393; 小野嘉夫,外編: 触媒の事典 , 20001101, p.515, 朝倉書店 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011121829A (en) * 2009-12-11 2011-06-23 Hokkaido Univ Manganese oxide excellent in oxygen storage ability, various materials including the oxide, method and apparatus using the oxide
WO2012093599A1 (en) * 2011-01-05 2012-07-12 本田技研工業株式会社 Exhaust gas purifying catalyst
JPWO2012093599A1 (en) * 2011-01-05 2014-06-09 本田技研工業株式会社 Exhaust gas purification catalyst
JP5864443B2 (en) * 2011-01-05 2016-02-17 本田技研工業株式会社 Exhaust gas purification catalyst
WO2013153915A1 (en) * 2012-04-10 2013-10-17 三井金属鉱業株式会社 Catalyst for purifying exhaust gas
CN104203402A (en) * 2012-04-10 2014-12-10 三井金属矿业株式会社 Catalyst for purifying exhaust gas
JP2013255911A (en) * 2012-06-14 2013-12-26 Mitsubishi Chemicals Corp Catalyst for producing synthesis gas and production method of synthesis gas
WO2014163235A1 (en) * 2013-04-01 2014-10-09 ㈜후산 Mixed metal oxide catalyst for treating exhaust gas, preparation method therefor and treatment method for exhaust gas using same
JPWO2016132932A1 (en) * 2015-02-18 2017-11-30 国立大学法人北海道大学 Catalyst for oxygen reduction reaction and air electrode for metal-air secondary battery
WO2016132932A1 (en) * 2015-02-18 2016-08-25 国立大学法人北海道大学 Catalyst for oxygen reduction reaction and air electrode for metal-air secondary batteries
JP2016193815A (en) * 2015-03-31 2016-11-17 三菱化学株式会社 Oxygen excess type metal oxide and production method therefor, and oxygen concentration apparatus and oxygen adsorption and desorption apparatus
EP3147262A1 (en) * 2015-09-22 2017-03-29 Akademia Gorniczo-Hutnicza im. Stanislawa Staszica w Krakowie A perovskite-based oxide for oxygen storage and a method for preparation thereof
JP2022009583A (en) * 2016-07-01 2022-01-14 三菱ケミカル株式会社 Oxygen excess type metal oxide, manufacturing method and recycling method therefor, oxygen condensation device and oxygen adsorption and desorption device
JP7235261B2 (en) 2016-07-01 2023-03-08 三菱ケミカル株式会社 Oxygen-excess metal oxide, method for producing and regenerating the same, and oxygen concentrator and oxygen adsorption/desorption device
JP2022093419A (en) * 2017-09-04 2022-06-23 三菱ケミカル株式会社 Method for producing oxygen excess metal oxide
JP2020131125A (en) * 2019-02-20 2020-08-31 三菱重工業株式会社 Denitration catalyst, and denitration device
JP2020142194A (en) * 2019-03-06 2020-09-10 堺化学工業株式会社 Oxygen adsorbent
JP2021115508A (en) * 2020-01-24 2021-08-10 株式会社デンソー Modification catalyst and manufacturing method thereof
JP7255503B2 (en) 2020-01-24 2023-04-11 株式会社デンソー Reforming catalyst and method for producing the same
WO2022050356A1 (en) * 2020-09-02 2022-03-10 三菱ケミカル株式会社 Metal oxide, oxygen storage material, oxygen absorption and desorption apparatus, oxygen absorption and desorption method, oxygen concentrator and oxygen concentration method

Similar Documents

Publication Publication Date Title
JP2011016684A (en) Oxygen deficit perovskite-type metal oxide excellent in oxygen storage capability, exhaust gas purifying catalyst and functional ceramic containing the metal oxide, and method and apparatus using the metal oxide
JP5773350B2 (en) Method for storing and / or separating oxygen using brown mirrorite type manganese oxide
Demont et al. Solar thermochemical conversion of CO 2 into fuel via two-step redox cycling of non-stoichiometric Mn-containing perovskite oxides
Demont et al. High redox activity of Sr-substituted lanthanum manganite perovskites for two-step thermochemical dissociation of CO 2
KR101790093B1 (en) Catalyst for manufacturing thermochemical fuel, and method for manufacturing thermochemical fuel
Kang et al. Enhanced thermochemical CO 2 splitting over Mg-and Ca-doped ceria/zirconia solid solutions
Wang et al. Efficient catalytic removal of diesel soot over Mg substituted K/La0. 8Ce0. 2CoO3 perovskites with large surface areas
US20090206297A1 (en) Oxygen excess type metal oxide, ceramic for oxygen storage and/or an oxygen selective membrane, and methods and apparatuses using said metal oxide
Nair et al. Insights into the redox performance of non–stoichiometric lanthanum manganite perovskites for solar thermochemical CO2 splitting
Gokon et al. Thermochemical two-step water splitting cycle using perovskite oxides based on LaSrMnO3 redox system for solar H2 production
Sastre et al. Exploring the redox behavior of La 0.6 Sr 0.4 Mn 1− x Al x O 3 perovskites for CO 2-splitting in thermochemical cycles
Klimkowicz et al. Crystal structure and oxygen storage properties of BaLnMn2O5+ δ (Ln: Pr, Nd, Sm, Gd, Dy, Er and Y) oxides
Gigantino et al. Thermochemical energy storage via isothermal carbonation-calcination cycles of MgO-stabilized SrO in the range of 1000–1100 C
Hlongwa et al. Exploring the thermochemical heat storage capacity of AMn2O4 (A= Li or Cu) spinels
Kang et al. CO 2 splitting via two step thermochemical reactions over doped ceria/zirconia solid solutions
Lekse et al. An experimental and computational investigation of the oxygen storage properties of BaLnFe 2 O 5+ δ and BaLnCo 2 O 5+ δ (Ln= La, Y) perovskites
Shen et al. Effect of A/B-site substitution on oxygen production performance of strontium cobalt based perovskites for CO 2 capture application
Klimkowicz et al. Reversible oxygen intercalation in hexagonal Y 0.7 Tb 0.3 MnO 3+ δ: toward oxygen production by temperature-swing absorption in air
Coker et al. Compositional and operational impacts on the thermochemical reduction of CO 2 to CO by iron oxide/yttria-stabilized zirconia
Yin et al. Oxygen sorption and desorption properties of Sr–Co–Fe oxide
KR20190141248A (en) Mixed Oxides with Improved Resistance and NOX Storage Capacity
Medkhali et al. Divalent transition metals substituted LaFeO3 perovskite catalyst for nitrous oxide decomposition
Świerczek et al. Oxygen storage-related properties of substituted BaLnMn 2 O 5+ δ A-site ordered manganites
Yin et al. Effect of dopant addition on oxygen sorption properties of La-Sr-Co-Fe-O perovskite type oxide
JP6724487B2 (en) Oxygen-excessive metal oxide, method for producing the same, oxygen concentrator and oxygen adsorption/desorption device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141022

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20141225

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20150206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151126