JP2011050855A - Exhaust gas purifying apparatus - Google Patents

Exhaust gas purifying apparatus Download PDF

Info

Publication number
JP2011050855A
JP2011050855A JP2009202172A JP2009202172A JP2011050855A JP 2011050855 A JP2011050855 A JP 2011050855A JP 2009202172 A JP2009202172 A JP 2009202172A JP 2009202172 A JP2009202172 A JP 2009202172A JP 2011050855 A JP2011050855 A JP 2011050855A
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
sio
nox
lafeo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009202172A
Other languages
Japanese (ja)
Inventor
Toshiaki Nagayama
敏明 長山
Masahito Kanae
雅人 金枝
Daiki Sato
大樹 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2009202172A priority Critical patent/JP2011050855A/en
Publication of JP2011050855A publication Critical patent/JP2011050855A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust gas purifying apparatus which reduces NOx by CO in an exhaust gas even if hydrocarbon is not included in the exhaust gas and there is no supply means of a reducing agent by the procedure except using the exhaust gas. <P>SOLUTION: The exhaust gas purifying apparatus is composed by arranging an NO selective oxidation catalyst of LaFeO<SB>3</SB>to selectively oxidize NO to NO<SB>2</SB>at the upstream of an exhaust gas flowing passage and arranging an NO<SB>2</SB>reduction catalyst at the downstream thereof. A catalyst consisting of P, Ir and SiO<SB>2</SB>as an NO<SB>2</SB>reduction catalyst is used when the exhaust gas does not contain SO<SB>2</SB>. A catalyst consisting of Ir and SiO<SB>2</SB>or P, Ir and SiO<SB>2</SB>as an NO reduction catalyst is used when the exhaust gas contains SO<SB>2</SB>. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、排ガスを浄化する排ガス浄化装置に係り、特に、窒素酸化物(以下、NOx)を浄化する排ガス浄化装置に関する。   The present invention relates to an exhaust gas purification device that purifies exhaust gas, and more particularly to an exhaust gas purification device that purifies nitrogen oxides (hereinafter referred to as NOx).

環境改善を目的に、ボイラや内燃機関などの熱機関の排ガス中の有害物質である一酸化炭素(CO),NOx,炭化水素(以下HC)の低減が求められている。さらに、地球温暖化防止のため温室ガスである二酸化炭素(CO2)の削減が求められている。 For the purpose of improving the environment, reduction of carbon monoxide (CO), NOx, and hydrocarbons (hereinafter referred to as HC), which are harmful substances in exhaust gas from heat engines such as boilers and internal combustion engines, is required. Furthermore, reduction of carbon dioxide (CO 2 ), which is a greenhouse gas, is required to prevent global warming.

熱機関の排ガス中のNOxを連続的に浄化するには、アンモニア(以下NH3)による選択還元触媒を使う方法,熱分解によりNH3を生成する尿素を使う方法,炭化水素(以下HC)による選択還元触媒を使う方法などがある。また、内燃機関の場合、リーンNOx触媒を用いる方法もある。これは、燃料希薄燃焼排ガス中(以下リーン)でNOxをリーンNOx触媒に吸着し(本願では、吸着と吸蔵を区別せず吸着で統一して記載した)、燃料過剰燃焼排ガス中(以下リッチ)でリーンNOx触媒に吸着したNOxを、排ガス中のCOやHCによって還元浄化している。ディーゼルエンジンの場合、通常はリーンで運転し、燃料の軽油を適宜噴射することでリッチ排ガスを作り出している。このように従来の方法では、還元剤であるNH3,尿素,HC,軽油(成分はHC)を供給するシステムが必要になるため、装置導入費用が高くなると同時に、還元剤の費用が運転コストに上乗せされる。 To continuously purify NOx in exhaust gas from heat engines, a method using a selective reduction catalyst with ammonia (hereinafter referred to as NH 3 ), a method using urea that generates NH 3 by thermal decomposition, and a hydrocarbon (hereinafter referred to as HC) There is a method using a selective reduction catalyst. In the case of an internal combustion engine, there is a method using a lean NOx catalyst. This is because NOx is adsorbed to the lean NOx catalyst in the lean fuel flue gas (hereinafter referred to as lean) (in this application, the adsorption and storage are not differentiated and described as unified) and in the fuel excess combustion exhaust gas (hereinafter rich). The NOx adsorbed on the lean NOx catalyst is reduced and purified by CO or HC in the exhaust gas. In the case of a diesel engine, it is usually operated lean and a rich exhaust gas is produced by appropriately injecting light oil of fuel. As described above, the conventional method requires a system for supplying the reducing agents NH 3 , urea, HC, and light oil (components are HC), which increases the cost of introducing the apparatus and at the same time reduces the operating cost of the reducing agent. Is added.

安価にNOxを還元浄化するには、排ガス中に存在するCOを還元材に用いる方法が考えられる。ところが、熱機関の排ガスには、酸素が数%存在するため、COが排ガス中のO2と反応してCO2になって消費され、NOxの還元が進行にしくいという問題が生じていた。リーンNOx触媒上を例にとってNOxの浄化を説明する。リーンでは、触媒上でNOがNO2に酸化され、NO2がアルカリ金属やアルカリ土類金属上に吸着する。リッチでは、吸着したNO2が還元剤によりN2に還元される。このように、NOxはNO2として存在した場合に還元が進行する。そのため、積極的にNOをNO2の酸化する機能とNO2を還元する機能を組合せた発明がなされている。特許文献1には、セリアとアルミナの複合酸化物にPt担持した第一触媒とNOx吸蔵還元触媒を組合せが記載されている。この組合せでは、リーンにおいて第一触媒でNOをNO2へ酸化し、NOx吸蔵還元触媒でNO吸蔵反応を行い、その後、リッチに切り替えてNOx吸蔵還元触媒のNOxを還元している。そのため、NOx浄化のためには、リーンとリッチの切り替えが必要である。特許文献2には、Ir触媒の第一触媒部とペロブスカイト酸化物の第二触媒から構成され、第二触媒部でNOをNO2に酸化し、第一触媒でHCを用いてNO2をN2に還元している触媒の組合せが記載されている。そのため、この組合せではリーン・リッチ制御が不要であるが、この発明でのIr触媒は反応機構上HCが必要となっている。さらに、ペロブスカイト酸化物のLaCoO3酸化物はNOをNO2に酸化する能力が高いため、COも酸化してしまう。 In order to reduce and purify NOx at a low cost, a method using CO present in the exhaust gas as a reducing material can be considered. However, since the exhaust gas of the heat engine contains several percent of oxygen, there is a problem that CO reacts with O 2 in the exhaust gas to be consumed as CO 2 , and NOx reduction is difficult to proceed. The purification of NOx will be described taking the lean NOx catalyst as an example. In lean, NO is oxidized to NO 2 on the catalyst, and NO 2 is adsorbed on the alkali metal or alkaline earth metal. In the rich state, the adsorbed NO 2 is reduced to N 2 by the reducing agent. Thus, NOx is reduced proceeds when present as NO 2. Therefore, inventions have been made that combine the function of positively oxidizing NO with NO 2 and the function of reducing NO 2 . Patent Document 1 describes a combination of a first catalyst supported by Pt on a composite oxide of ceria and alumina and a NOx storage reduction catalyst. In this combination, in the lean, NO is oxidized to NO 2 by the first catalyst, the NO storage reaction is performed by the NOx storage reduction catalyst, and then the NOx of the NOx storage reduction catalyst is reduced by switching to rich. Therefore, switching between lean and rich is necessary for NOx purification. Patent Document 2 includes a first catalyst part of an Ir catalyst and a second catalyst of a perovskite oxide. The second catalyst part oxidizes NO to NO 2 , and the first catalyst uses HC to convert NO 2 to N 2 . 2 shows a combination of reduced catalysts. For this reason, lean / rich control is not necessary with this combination, but the Ir catalyst in the present invention requires HC in terms of the reaction mechanism. Furthermore, since the LaCoO 3 oxide of the perovskite oxide has a high ability to oxidize NO to NO 2 , CO is also oxidized.

特許文献1では、リーンとリッチへの切り替えが必要であり、常時酸素過剰雰囲気では吸蔵したNOxは還元できない。特許文献2は、還元のためにHCが必要で、ペロブスカイト酸化物のLaCoO3は還元剤のCOを酸化で消費してしまい、COによるNOxの還元が進まない。 In Patent Document 1, it is necessary to switch between lean and rich, and the stored NOx cannot always be reduced in an oxygen-excess atmosphere. In Patent Document 2, HC is required for reduction, and LaCoO 3 as a perovskite oxide consumes CO as a reducing agent by oxidation, and NOx reduction by CO does not proceed.

特開2004−337773号公報JP 2004-337773 A 特開平11−169711号公報JP-A-11-169711

本発明の目的は、排ガス中にHCが含まれなくとも、酸素過剰雰囲気において排ガス中のCOでNOxを還元浄化する排ガス浄化装置を提供することにある。   An object of the present invention is to provide an exhaust gas purification apparatus that reduces and purifies NOx with CO in exhaust gas in an oxygen-excess atmosphere even if HC is not included in the exhaust gas.

すなわち、本発明は、COとNOxを含有し、酸素過剰の排ガスを排出する熱機関の排ガス流路に配置される排ガス浄化装置であって、NOをNO2に酸化する機能を有するLaFeO3で表されるペロブスカイト酸化物触媒を前記排ガス中の上流側に配置し、NO2をN2に還元する触媒を下流側に配置することを特徴としている。なお、ボイラ,内燃機関を熱機関と言う。 That is, the present invention is an exhaust gas purification apparatus that is disposed in an exhaust gas flow path of a heat engine that contains CO and NOx and exhausts exhaust gas containing excess oxygen, and is LaFeO 3 having a function of oxidizing NO to NO 2. The perovskite oxide catalyst represented is arranged on the upstream side in the exhaust gas, and the catalyst for reducing NO 2 to N 2 is arranged on the downstream side. The boiler and internal combustion engine are called heat engines.

本発明では、NOをNO2に酸化する機能を有するLaFeO3と、NO2をN2に還元する触媒を用いる。 In the present invention, LaFeO 3 having a function of oxidizing NO to NO 2 and a catalyst for reducing NO 2 to N 2 are used.

NO2をN2に還元する触媒の具体的組合せとしては、好ましくは、SiO2とIrからなる触媒である。 A specific combination of catalysts for reducing NO 2 to N 2 is preferably a catalyst composed of SiO 2 and Ir.

NO2をN2に還元する触媒の具体的組合せとしては、好ましくは、SiO2とIrとPからなる触媒である。 A specific combination of catalysts for reducing NO 2 to N 2 is preferably a catalyst composed of SiO 2 , Ir and P.

排ガス中のCOを利用してNOxを還元するため、NOxの還元剤であるHCやNH3などを別途供給する手段を必要としない。 Since NOx is reduced using CO in the exhaust gas, no means for separately supplying HC, NH 3 or the like, which is a NOx reducing agent, is required.

排ガス中のCOを利用してNOxを還元するときに、SOxが含まれない場合は、NO2をN2に還元する触媒にSiO2とIrとPからなる触媒を用いることで、NOx浄化率をさらに高めることができる。 When using the CO in the exhaust gas to reduce NOx, if not contain SOx, by using a catalyst composed of SiO 2 and Ir and P in catalyst for reducing NO 2 to N 2, NOx purification rate Can be further enhanced.

排ガス中のCOを利用してNOxを還元するときに、SOxを含む場合は、NO2をN2に還元する触媒にSiO2とIrからなる触媒を用いることでよりNOx浄化率を高めることができる。 When using the CO in the exhaust gas to reduce NOx, if it contains SOx, that enhance the NOx purification rate by using a catalyst composed of SiO 2 and Ir on the catalyst to reduce NO 2 to N 2 it can.

ペロブスカイト酸化物では、組成の活性成分を選択することで、酸化機能を調整することができる。ABO3(A,Bはペロブスカイト構造のサイト)においてAサイトをLaとしたLaBO3(Bサイト元素をBで表記)ペロブスカイト酸化物の場合、HCの酸化能力は高活性Co,Mn,中活性Ni,Fe,Cr,低活性Ti,Alとされている(希土類の材料技術ハンドブック,エヌ・ティー・エス(2008)P524)。本発明では、NOをNO2に酸化しつつ還元剤のCOは酸化しないNO選択酸化性が求められる。各種ペロブスカイトを合成し検討した結果、LaFeO3がNO選択酸化性を有することを見出した。このLaFeO3とNO2をN2に還元する触媒を組合せることにより、酸素過剰排ガス中においてCOを還元剤としてNOを浄化できる。 In the perovskite oxide, the oxidation function can be adjusted by selecting the active component of the composition. In ABO 3 (A and B are sites having a perovskite structure), a LaBO 3 perovskite oxide in which the A site is La (the B site element is represented by B) has a high activity of Co, Mn, and a medium active Ni. , Fe, Cr, low activity Ti, Al (rare earth material technology handbook, NTS (2008) P524). In the present invention, NO selective oxidization property that oxidizes NO to NO 2 but does not oxidize CO of the reducing agent is required. As a result of synthesizing and examining various perovskites, it was found that LaFeO 3 has NO selective oxidation property. By combining this LaFeO 3 and a catalyst that reduces NO 2 to N 2 , NO can be purified using CO as a reducing agent in the oxygen-excess exhaust gas.

酸素過剰排ガス中において、NO2をN2に還元する触媒としては、IrとSiO2からなる触媒や、IrとSiO2にさらにPを加えた触媒が挙げられる。しかしながら、これら具体的な組成に関わらず、酸素過剰排ガス中でNO2をN2に還元できる触媒であれば適用できる。また、排ガスにSO2を含む場合は、NO2をN2に還元できる触媒としてSiO2とIrからなる触媒、排ガスにSO2を含まない場合は、SiO2とIrとPを担持した触媒を用いることで、NOx浄化率をより高めることができる。 Examples of the catalyst for reducing NO 2 to N 2 in oxygen-excess exhaust gas include a catalyst composed of Ir and SiO 2 and a catalyst obtained by further adding P to Ir and SiO 2 . However, regardless of these specific compositions, any catalyst that can reduce NO 2 to N 2 in oxygen-excess exhaust gas can be applied. When the exhaust gas contains SO 2 , a catalyst composed of SiO 2 and Ir as a catalyst capable of reducing NO 2 to N 2. When the exhaust gas does not contain SO 2 , a catalyst supporting SiO 2 , Ir and P is used. By using it, the NOx purification rate can be further increased.

本発明のCOによるNOx還元触媒は、排ガス中にHCが含まれなくとも、排ガス中のCOでNOxを還元浄化できる。その結果、装置コストを安価にでき、また運転コストを低く抑えることができる   The NOx reduction catalyst using CO of the present invention can reduce and purify NOx with CO in the exhaust gas even if the exhaust gas does not contain HC. As a result, the equipment cost can be reduced and the operating cost can be kept low.

NOx浄化性能評価装置の概略図。Schematic of NOx purification performance evaluation apparatus. LaFeO3,LaCoO3,LaMnO3の300℃でのNOx浄化率,CO浄化率,NO酸化率を示す図。LaFeO 3, LaCoO 3, NOx purification rate at 300 ° C. of LaMnO 3, CO purification rates, shows the NO oxidation rate. 比較例3のIr/SiO2を用いた時の、300℃でのNOx浄化率へのNO種の影響を示す図。When using the Ir / SiO 2 of Comparative Example 3, it illustrates the NO species effect on the NOx purification rate at 300 ° C..

本発明をさらに詳細に説明する。   The present invention will be described in further detail.

NO選択酸化触媒であるLaFeO3の原料は、合成方法により硝酸塩,酢酸塩,炭酸塩などが利用できる。合成方法は、錯体重合法,ゾルゲル法,アルコキシド法などがある。単相のLaFeO3を低温で合成できる手法が望ましい。本発明では低温湿式合成法を用いた。この方法は、原料の硝酸塩をエチレングルコールに溶解後、アセチルアセトンを加えて錯体化し、さらにポリビニールアルコール水溶液を添加した後、乾燥,焼成を行い、LaFeO3を合成する手法である。 As a raw material for LaFeO 3 which is a NO selective oxidation catalyst, nitrates, acetates, carbonates and the like can be used by a synthesis method. Examples of the synthesis method include a complex polymerization method, a sol-gel method, and an alkoxide method. A technique capable of synthesizing single-phase LaFeO 3 at a low temperature is desirable. In the present invention, a low temperature wet synthesis method was used. This method is a method of dissolving LaFeO 3 by dissolving raw material nitrate in ethylene glycol, adding acetylacetone to form a complex, adding a polyvinyl alcohol aqueous solution, drying and firing.

NO2をN2に還元する触媒は、IrとSiO2からなる触媒、IrとSiO2とPからなる触媒を記載している。Irの担持量はSiO2に対して2〜0.01wt%添加することでNO2をN2に還元する効果が発現する。Irは貴金属であり、費用と効果を勘案すると1〜0.05wt%が望ましい。PはIrに対してモル比で10から50倍の量を添加することが望ましい。 As the catalyst for reducing NO 2 to N 2 , a catalyst composed of Ir and SiO 2 and a catalyst composed of Ir, SiO 2 and P are described. The effect of reducing NO 2 to N 2 is manifested by adding 2 to 0.01 wt% of Ir with respect to SiO 2 . Ir is a noble metal, and considering the cost and effect, 1 to 0.05 wt% is desirable. P is preferably added in an amount of 10 to 50 times the molar ratio of Ir.

触媒の使用形態に特に制限はない。排ガスと効率的に接触できることが望ましいため、接触面積が高くなるように基材に触媒粉末をコートすることがNO選択酸化効果とNO2還元効果が高まる。例えば、自動車の触媒に使用されるハニカム状の基材やボイラ脱硝装置などに用いられる波型の鋼鈑に触媒粉末をコートすると、ガスと触媒の接触効率が高くなる。もちろん、触媒粉末を成形し所定の粒度に分級した粒状触媒を用いてもかまわない。 There is no restriction | limiting in particular in the usage form of a catalyst. Since it is desirable to be able to contact the exhaust gas efficiently, coating the catalyst powder on the base material so as to increase the contact area increases the NO selective oxidation effect and the NO 2 reduction effect. For example, when the catalyst powder is coated on a corrugated steel plate used for a honeycomb base material used in automobile catalysts or boiler denitration equipment, the contact efficiency between the gas and the catalyst increases. Of course, a granular catalyst obtained by forming a catalyst powder and classifying it into a predetermined particle size may be used.

触媒の配置については、排ガス流路内で他の装置や触媒でCOが消費されないことが望ましい。ボイラでは、複数の装置や触媒が排ガス流路に設置される場合、本発明触媒の上流でCOが消費されることは好ましくない。そのため、ボイラ排ガスのダストを落下させた後、もしくは電気集塵機の下流など、酸化反応を伴わない機器の下流に、NO選択酸化触媒のLaFeO3を上流側に、NO2をN2還元する触媒を下流側にして設置することが望ましい。ディーゼルエンジンでは、排ガス流路内に酸化触媒やディーゼルパティキュレートフィルタ(以下、DPF)、そしてNOx選択還元触媒が設置してある。酸化触媒に変えて本発明のNO選択酸化触媒であるLaFeO3を、NOx選択還元触媒の代わりにNO2をN2に還元する触媒を設置することが望ましい。 Regarding the arrangement of the catalyst, it is desirable that the CO is not consumed by another device or catalyst in the exhaust gas passage. In a boiler, when a plurality of devices and catalysts are installed in the exhaust gas flow path, it is not preferable that CO is consumed upstream of the catalyst of the present invention. Therefore, after dropping the dust from the boiler exhaust gas, or downstream of equipment that does not involve an oxidation reaction, such as downstream of the electrostatic precipitator, a catalyst that reduces NO 2 to N 2 on the upstream side with LaFeO 3 of the NO selective oxidation catalyst. It is desirable to install it downstream. In a diesel engine, an oxidation catalyst, a diesel particulate filter (hereinafter referred to as DPF), and a NOx selective reduction catalyst are installed in an exhaust gas passage. Instead of the oxidation catalyst, it is desirable to install LaFeO 3 which is the NO selective oxidation catalyst of the present invention, and a catalyst for reducing NO 2 to N 2 instead of the NOx selective reduction catalyst.

以下に、本発明の実施例を示す。   Examples of the present invention are shown below.

実施例1は、NO選択酸化触媒がLaFeO3の場合である。 Example 1 is a case where the NO selective oxidation catalyst is LaFeO 3 .

LaFeO3は低温湿式合成法で作製した。ABO3の構造式のAにはLaが相当し、BにはFeが相当する。AとBは同一モル数になる。合成ではLaが45mmol、Feが45mmolになるようにした。ビーカにエチレングリコール82.52gを秤量し、La硝酸塩45mmol(19.48g)、それに、Fe硝酸塩45mmol(18.18g)を加えて、約50℃に加熱して混合した。硝酸塩を溶解した後、アセチルアセトンを90mmol(9.01g)加えて10分程度撹拌し、7.5wt%ポリビニールアルコール(以下PVA)水溶液を8.35g加えて更に10分程度撹拌した。乾燥はドラフト内のオイルバスで行った。混合溶液のビーカを、オイルバスに入れ150℃に加熱した。目視で混合溶液の液体がなくなったらオイルバスを200℃に昇温した。混合溶液の液分が蒸発し、薬さじで押しつぶすと粉になるまで6〜12h乾燥させた。乾燥後、ビーカから粉末をかき出し、るつぼに入れ替えて空気中600℃で2h焼成しLaFeO3粉末を得た。原料の硝酸塩の合計量とアセチルアセトン量は同一モル数とした。 LaFeO 3 was produced by a low temperature wet synthesis method. In the structural formula of ABO 3 , La corresponds to La, and B corresponds to Fe. A and B have the same number of moles. In the synthesis, La was 45 mmol and Fe was 45 mmol. In a beaker, 82.52 g of ethylene glycol was weighed, 45 mmol (19.48 g) of La nitrate was added, and 45 mmol (18.18 g) of Fe nitrate was added thereto, and the mixture was heated to about 50 ° C. and mixed. After dissolving the nitrate, 90 mmol (9.01 g) of acetylacetone was added and stirred for about 10 minutes, 8.35 g of a 7.5 wt% polyvinyl alcohol (hereinafter PVA) aqueous solution was added and further stirred for about 10 minutes. Drying was performed in an oil bath in a draft. The mixed solution beaker was placed in an oil bath and heated to 150 ° C. When the liquid of the mixed solution disappeared visually, the oil bath was heated to 200 ° C. The mixed solution was evaporated for 6 to 12 hours until it became powder when crushed with a spoon. After drying, the powder was scraped from the beaker, replaced with a crucible, and calcined in air at 600 ° C. for 2 hours to obtain LaFeO 3 powder. The total amount of raw material nitrate and the amount of acetylacetone were the same number of moles.

合成した粉末は性能評価のため粒状に成形した。合成した粉末約10gを金型に入れ、圧力500kg/cm2で1分間保持し成形した。その後、目開きが0.85mmと1.7mmのふるいを用い、ふるい上で成形体を粉砕して粒径0.85〜1.7mmに分級しLaFeO3及びIr/SiO2の粒状触媒を得た。 The synthesized powder was formed into granules for performance evaluation. About 10 g of the synthesized powder was placed in a mold, and held at a pressure of 500 kg / cm 2 for 1 minute for molding. After that, using a sieve with openings of 0.85 mm and 1.7 mm, the compact is pulverized on the sieve and classified to a particle size of 0.85 to 1.7 mm to obtain a granular catalyst of LaFeO 3 and Ir / SiO 2. It was.

実施例2は、NO選択酸化触媒がLaFeO3,NO2をN2に還元する触媒がIrとSiO2からなる場合である。 Example 2 is a case where the NO selective oxidation catalyst is composed of Ir and SiO 2 for reducing LaFeO 3 and NO 2 to N 2 .

LaFeO3は実施例1と同一の方法で作製した。NO2をN2に還元する触媒は、SiO2粉末に硝酸Irを含浸した。水量をSiO2粉末の吸水量に合わせたIr水溶液をSiO2粉末に含浸し、150℃に加熱したホットプレート上でテフロン(登録商標)製の薬さじで撹拌しながら蒸発乾固した。その後、大気中で600℃,1時間焼成しIr担持SiO2粉末(以下Ir/SiO2)を得た。Ir担持量は0.5wt%とした。 LaFeO 3 was produced by the same method as in Example 1. As a catalyst for reducing NO 2 to N 2 , SiO 2 powder was impregnated with Ir nitrate. The Ir aqueous solution the combined water to water absorption of the SiO 2 powder was impregnated with SiO 2 powder, and evaporated to dryness with stirring with a Teflon-made spatula on a hot plate heated to 0.99 ° C.. Thereafter, 600 ° C. in air to obtain Ir-on SiO 2 powder was calcined 1 hour (hereinafter Ir / SiO 2). The amount of Ir supported was 0.5 wt%.

合成した粉末は実施例1と同様に金型成形後粉砕・分級し粒状に成形した。   The synthesized powder was molded into a granule in the same manner as in Example 1, and then pulverized and classified.

実施例3は、実施例2で作製したLaFeO3とNO2をN2に還元する触媒がSiO2とIrとPからなる場合である。LaFeO3は実施例1と同一工程で作製した。NO2をN2に還元する触媒はSiO2粉末にIrを担持後、さらにPを担持した。水量をSiO2粉末の吸水量に合わせたIr水溶液をSiO2粉末に含浸し、150℃に加熱したホットプレート上でテフロン(登録商標)製の薬さじで撹拌しながら蒸発乾固した。その後、大気中で600℃,1時間焼成しIr/SiO2触媒粉末を得た。Ir担持量は0.5wt%とした。Ir/SiO2触媒粉末にリン酸試薬を用いてPを担持し触媒粉末を得た(以下P/Ir/SiO2)。方法はIrをSiO2に担持する際と同様である。P担持量はP/Irのモル比で10とした。 In Example 3, the catalyst for reducing LaFeO 3 and NO 2 prepared in Example 2 to N 2 is composed of SiO 2 , Ir, and P. LaFeO 3 was produced in the same process as in Example 1. As a catalyst for reducing NO 2 to N 2 , Ir was supported on SiO 2 powder, and further P was supported. The Ir aqueous solution the combined water to water absorption of the SiO 2 powder was impregnated with SiO 2 powder, and evaporated to dryness with stirring with a Teflon-made spatula on a hot plate heated to 0.99 ° C.. Thereafter, it was calcined at 600 ° C. for 1 hour in the air to obtain an Ir / SiO 2 catalyst powder. The amount of Ir supported was 0.5 wt%. A catalyst powder was obtained by supporting P on the Ir / SiO 2 catalyst powder using a phosphoric acid reagent (hereinafter referred to as P / Ir / SiO 2 ). The method is the same as when Ir is supported on SiO 2 . The amount of P supported was 10 in terms of a P / Ir molar ratio.

作製した触媒粉末は実施例1に示した方法で粒状に成形した。   The produced catalyst powder was formed into granules by the method shown in Example 1.

実施例4は、実施例2のLaFeO3,Ir/SiO2をハニカムにコートした場合である。水:SiO2ゾル(固形分濃度20%):触媒粉末の比率が52g:52g:16gとした混合液を、アルミナポットに投入し遠心ボールミルで1時間粉砕しスラリーを作製した。このスラリーを用いてコージェライトハニカム(400セル/平方インチ)にディップ法でコートした。コート量はSiO2バインダを除いたハニカム容積当たりの触媒量として100g/Lとした。乾燥後、大気中600℃で1時間焼成した。 Example 4 is a case where the honeycomb was coated with LaFeO 3 and Ir / SiO 2 of Example 2. A mixture of water: SiO 2 sol (solid content concentration 20%): catalyst powder ratio of 52 g: 52 g: 16 g was put into an alumina pot and pulverized with a centrifugal ball mill for 1 hour to prepare a slurry. Using this slurry, a cordierite honeycomb (400 cells / square inch) was coated by a dip method. The coating amount was 100 g / L as the amount of catalyst per honeycomb volume excluding the SiO 2 binder. After drying, it was calcined at 600 ° C. for 1 hour in the air.

実施例5は、実施例3のLaFeO3,P/Ir/SiO2をハニカムにコートした場合である。実施例3と同様にスラリー化しハニカムにコートした。 Example 5 is a case where the honeycomb was coated with LaFeO 3 and P / Ir / SiO 2 of Example 3. As in Example 3, the slurry was formed and coated on the honeycomb.

〔比較例1〕
比較例1は、ペロブスカイト酸化物LaCoO3の粒状触媒である。硝酸Co,硝酸Laを原料に実施例1のLaFeO3と同様に低温湿式合成法で作製した。作製した粉末は実施例1と同様に粒状化した。
Comparative Example 1
Comparative Example 1 is a granular catalyst of perovskite oxide LaCoO 3 . In the same manner as LaFeO 3 in Example 1, it was prepared by a low temperature wet synthesis method using Co nitrate and La nitrate as raw materials. The produced powder was granulated in the same manner as in Example 1.

〔比較例2〕
比較例2は、ペロブスカイト酸化物LaMnO3の粒状触媒である。硝酸Mn,硝酸Laを原料に実施例1のLaFeO3と同様に低温湿式合成法で作製した。作製した粉末は実施例1と同様に粒状化した。
[Comparative Example 2]
Comparative Example 2 is a granular catalyst of perovskite oxide LaMnO 3 . As in the case of LaFeO 3 of Example 1, it was prepared by a low temperature wet synthesis method using Mn nitrate and La nitrate as raw materials. The produced powder was granulated in the same manner as in Example 1.

〔比較例3〕
比較例3は実施例2中に記載した粒状のIr/SiO2だけの場合である。
[Comparative Example 3]
Comparative Example 3 is the case of only the granular Ir / SiO 2 described in Example 2.

〔比較例4〕
比較例4は実施例3中に記載した粒状のP/Ir/SiO2だけの場合である。
[Comparative Example 4]
Comparative Example 4 is the case of only the granular P / Ir / SiO 2 described in Example 3.

〔比較例5〕
比較例5は実施例34中に記載したハニカムのIr/SiO2だけの場合である。
[Comparative Example 5]
Comparative Example 5 is the case of only Ir / SiO 2 of the honeycomb described in Example 34.

〔比較例6〕
比較例6は実施例5中に記載したハニカムのP/Ir/SiO2だけの場合である。
[Comparative Example 6]
Comparative Example 6 is the case of the honeycomb P / Ir / SiO 2 described in Example 5 alone.

(NOx浄化性能試験例)
作製した触媒のNOx,CO浄化性能を評価した。図1は評価装置の概略である。電気炉内の固定床流通式反応管に触媒をセットし、表1に示すガスを流通した。
(Example of NOx purification performance test)
The prepared catalyst was evaluated for NOx and CO purification performance. FIG. 1 is an outline of an evaluation apparatus. A catalyst was set in a fixed bed flow type reaction tube in an electric furnace, and the gas shown in Table 1 was circulated.

Figure 2011050855
Figure 2011050855

水は滴下して加えた。触媒入口温度を所定温度に調整し、触媒出口ガスをNOx分析計で測定した。ペロブスカイト酸化物の評価時は、粒状触媒を用い、表1評価(a)のガスを使用した。ガス量は2.0L/minとしSV30000h-1に合わせた。Ir/SiO2およびP/Ir/SiO2使用時は、表1の還元ガスで、600℃,30分保持してから評価した。性能評価では、表1の評価(b)または評価(c)ガスを用いた。ガス量は3.0L/minとし、粒状触媒ではSV200000/h、ハニカム触媒ではSV30000/hに合わせた。LaFeO3とNO2還元触媒を組合せた場合は、ガス量は3L/minとしており、触媒全体に対する見掛けのSVは単独で評価した場合と比較して半分に低下した。NOx浄化率は1式で定義した。使用したNOx分析計はN2Oを測定できないが、別途N2O濃度測定を実施したがN2Oはほとんど検出されなかったことから、1式により求めたNOx浄化率はNOxからN2への転化率を意味する。CO浄化率は2式で定義した。COはNO−CO反応またNO2−CO反応のNOx還元とCO−O反応のCO酸化反応で消費される。CO浄化率は両者の反応の和である。NO酸化率は3式で定義した。 Water was added dropwise. The catalyst inlet temperature was adjusted to a predetermined temperature, and the catalyst outlet gas was measured with a NOx analyzer. When evaluating the perovskite oxide, a granular catalyst was used, and the gas shown in Table 1 (a) was used. The amount of gas was 2.0 L / min, and was adjusted to SV30000h- 1 . When using Ir / SiO 2 and P / Ir / SiO 2 , evaluation was performed after holding at 600 ° C. for 30 minutes with the reducing gas shown in Table 1. In performance evaluation, evaluation (b) or evaluation (c) gas of Table 1 was used. The amount of gas was 3.0 L / min, and it was adjusted to SV200000 / h for the granular catalyst and SV30000 / h for the honeycomb catalyst. When the LaFeO 3 and NO 2 reduction catalyst were combined, the gas amount was 3 L / min, and the apparent SV with respect to the entire catalyst was reduced by half compared to the case where it was evaluated alone. The NOx purification rate was defined by one formula. The NOx analyzer used cannot measure N 2 O, but N 2 O concentration was measured separately, but almost no N 2 O was detected. Therefore, the NOx purification rate obtained from equation 1 was changed from NOx to N 2 . The conversion rate of The CO purification rate was defined by two formulas. CO is consumed by the CO oxidation reaction of NOx reduction and CO-O reaction NO-CO reaction also NO 2 -CO reactions. The CO purification rate is the sum of both reactions. The NO oxidation rate was defined by three formulas.

Figure 2011050855
Figure 2011050855

図2はペロブスカイト酸化物のLaFeO3,LaCoO3,LaMnO3の300℃のNOx浄化率,CO浄化率,NO酸化率である。NO選択酸化触媒は、CO浄化率が低くかつNO酸化率が高いことが望ましい。実施例1のLaFeO3はCO浄化率が2%、NO酸化率が39%に対し、比較例1のLaCoO3はCO浄化率が52%に達している。比較例2のLaMnO3はCO浄化率が33%、NO酸化率が13%であった。これらより、NO選択還元触媒にはLaFeO3が適していることがわかった。 FIG. 2 shows the NOx purification rate, the CO purification rate, and the NO oxidation rate at 300 ° C. of the perovskite oxides LaFeO 3 , LaCoO 3 , and LaMnO 3 . The NO selective oxidation catalyst desirably has a low CO purification rate and a high NO oxidation rate. LaFeO 3 of Example 1 has a CO purification rate of 2% and NO oxidation rate of 39%, while LaCoO 3 of Comparative Example 1 has a CO purification rate of 52%. LaMnO 3 of Comparative Example 2 had a CO purification rate of 33% and a NO oxidation rate of 13%. From these, it was found that LaFeO 3 is suitable for the NO selective reduction catalyst.

図3は比較例3のIr/SiO2を用いた時の300℃でのNOx浄化率へのNO種の影響である。O2がない場合は、NOx浄化率はNO2ガスを流通した場合に93%、NOガスを流通した場合に3%であり、圧倒的にNO2種で存在した場合に浄化されていた。そこに酸素とSO2が共存するとNOx浄化率の差は縮まるが、やはりNO2種で存在した場合にNOx浄化率は高くなっていた。これらより、酸素共存下でもNO2種で存在するとNOx浄化率が高くなった。 FIG. 3 shows the effect of NO species on the NOx purification rate at 300 ° C. when Ir / SiO 2 of Comparative Example 3 is used. In the absence of O 2 , the NOx purification rate was 93% when NO 2 gas was circulated, and 3% when NO gas was circulated, and was purified when it was predominantly present as NO 2 species. When oxygen and SO 2 coexist there, the difference in the NOx purification rate is reduced, but the NOx purification rate is high when the NO 2 species still exists. From these, the NOx purification rate increased when it was present as NO 2 species even in the presence of oxygen.

表2は、表1の評価(b)ガスを用いた時のNOx浄化率である。   Table 2 shows the NOx purification rate when the evaluation (b) gas in Table 1 is used.

Figure 2011050855
Figure 2011050855

SO2を3.5ppm含んでいる。比較例3と実施例2の比較からNO選択酸化触媒とNO2還元触媒(Ir/SiO2)を組合せるとNOx浄化率が5ポイント高くなった。このLaFeO3の組合せの効果は比較例5と実施例4の比較から分かるようにハニカムでも同様である。排ガスにSO2が含まれる場合は、NO2還元触媒にP/Ir/SiO2を用いた場合もLaFeO3との組合せることによりNOx浄化率は向上し(比較例4と実施例3の比較)、その向上効果はハニカムでも確認できた(比較例6と実施例5の比較)。 It contains 3.5 ppm of SO 2 . From the comparison between Comparative Example 3 and Example 2, when the NO selective oxidation catalyst and the NO 2 reduction catalyst (Ir / SiO 2 ) were combined, the NOx purification rate increased by 5 points. The effect of this combination of LaFeO 3 is the same in the honeycomb as can be seen from the comparison between Comparative Example 5 and Example 4. When SO 2 is contained in the exhaust gas, the NOx purification rate is improved by combining with LaFeO 3 even when P / Ir / SiO 2 is used as the NO 2 reduction catalyst (comparison between Comparative Example 4 and Example 3). ), The improvement effect was confirmed even in the honeycomb (Comparison between Comparative Example 6 and Example 5).

表3は、SO2を含んでいない表1の評価(c)ガスを用いた時のNOx浄化率である。 Table 3 shows the NOx purification rate when using the evaluation (c) gas of Table 1 that does not contain SO 2 .

Figure 2011050855
Figure 2011050855

比較例3と実施例2の比較からSO2を含まない場合、NO選択酸化触媒とNO2還元触媒(Ir/SiO2)を組合せても、Ir/SiO2の活性が発現しないためNOx浄化率がほとんどない。しかし、比較例4に示すようにP/Ir/SiO2を用いるとSO2を含まない場合でもNOx浄化率22%が得られた。P/Ir/SiO2にLaFeO3を組合せるとNOx浄化率は更に高まり28%になった(表3,実施例3)。このLaFeO3組合せの効果は、比較例6と実施例5の比較から分かるようにハニカムでも同様である。排ガスにSO2が含まれない場合は、NO2還元触媒にはSO2が非共存状態でも活性が得られるP/Ir/SiO2を用いて、NO選択酸化触媒であるLaFeO3との組合せることによりNOx浄化率は向上した。 From the comparison between Comparative Example 3 and Example 2, when SO 2 is not included, even if a NO selective oxidation catalyst and a NO 2 reduction catalyst (Ir / SiO 2 ) are combined, the Ir / SiO 2 activity does not appear, so the NOx purification rate. There is almost no. However, as shown in Comparative Example 4, when P / Ir / SiO 2 was used, a NOx purification rate of 22% was obtained even when SO 2 was not included. When LaFeO 3 was combined with P / Ir / SiO 2 , the NOx purification rate was further increased to 28% (Table 3, Example 3). The effect of this LaFeO 3 combination is the same in the honeycomb as can be seen from the comparison between Comparative Example 6 and Example 5. If it does not contain SO 2 in the exhaust gas, the NO 2 reduction catalyst with P / Ir / SiO 2 SO 2 is the activity can be obtained even with a non-coexistence, combined with LaFeO 3 is NO selective oxidation catalyst As a result, the NOx purification rate was improved.

SO2共存時は、NO2還元触媒がIr/SiO2,P/Ir/SiO2いずれの場合でもNO選択酸化触媒のLaFeO3と組合せて高NOx浄化活性が得られた。SO2非共存時は、NO2還元触媒がP/Ir/SiO2の場合にNO選択酸化触媒のLaFeO3と組合せて高NOx浄化活性が得られた。 When SO 2 coexists, high NOx purification activity is obtained in combination with the NO selective oxidation catalyst LaFeO 3 regardless of whether the NO 2 reduction catalyst is Ir / SiO 2 or P / Ir / SiO 2 . In the absence of SO 2, high NOx purification activity was obtained in combination with LaFeO 3 as the NO selective oxidation catalyst when the NO 2 reduction catalyst was P / Ir / SiO 2 .

1a 反応管
1b 電気炉
1c 触媒
1d 水ポンプ
1e リーンモデルガス
1a reaction tube 1b electric furnace 1c catalyst 1d water pump 1e lean model gas

Claims (4)

COとNOxを含有し、酸素過剰の排ガスを排出する熱機関の排ガス流路に配置される排ガス浄化装置であって、
NOをNO2に酸化する機能を有するLaFeO3で表されるペロブスカイト酸化物触媒を前記排ガス中の上流側に配置し、NO2をN2に還元する触媒を下流側に配置することを特徴とする排ガス浄化装置。
An exhaust gas purification apparatus that is disposed in an exhaust gas flow path of a heat engine that contains CO and NOx and exhausts exhaust gas containing excess oxygen,
A perovskite oxide catalyst represented by LaFeO 3 having a function of oxidizing NO to NO 2 is arranged upstream of the exhaust gas, and a catalyst for reducing NO 2 to N 2 is arranged downstream. Exhaust gas purification device.
請求項1において、前記排ガスは、SOxを含む熱機関から排出される排ガス以外の還元剤供給手段を具備せず、前記NO2をN2に還元する触媒が、SiO2とIrからなる触媒であることを特徴とする排ガス浄化装置。 2. The exhaust gas according to claim 1, wherein the exhaust gas is not provided with a reducing agent supply means other than exhaust gas discharged from a heat engine containing SOx, and the catalyst for reducing NO 2 to N 2 is a catalyst made of SiO 2 and Ir. An exhaust gas purification apparatus characterized by being. 請求項1において、前記排ガスは、SOxを含まない熱機関から排出される排ガス以外の還元剤供給手段を具備せず、前記NO2をN2に還元する触媒が、SiO2とIrとPを担持した触媒であることを特徴とする排ガス浄化装置。 2. The exhaust gas according to claim 1, wherein the exhaust gas does not include any reducing agent supply means other than the exhaust gas discharged from the heat engine not containing SOx, and the catalyst for reducing the NO 2 to N 2 is SiO 2 , Ir and P. An exhaust gas purification apparatus, which is a supported catalyst. 請求項1乃至3のいずれか1項において、前記排ガスの炭化水素の濃度がNOxの濃度未満であり、熱機関から排出される排ガス以外の還元剤供給手段を具備しないことを特徴とする排ガス浄化装置。   The exhaust gas purification according to any one of claims 1 to 3, wherein the exhaust gas has a hydrocarbon concentration less than the NOx concentration and does not include a reducing agent supply means other than the exhaust gas discharged from the heat engine. apparatus.
JP2009202172A 2009-09-02 2009-09-02 Exhaust gas purifying apparatus Pending JP2011050855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009202172A JP2011050855A (en) 2009-09-02 2009-09-02 Exhaust gas purifying apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009202172A JP2011050855A (en) 2009-09-02 2009-09-02 Exhaust gas purifying apparatus

Publications (1)

Publication Number Publication Date
JP2011050855A true JP2011050855A (en) 2011-03-17

Family

ID=43940447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009202172A Pending JP2011050855A (en) 2009-09-02 2009-09-02 Exhaust gas purifying apparatus

Country Status (1)

Country Link
JP (1) JP2011050855A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115573A1 (en) * 2013-01-25 2014-07-31 株式会社村田製作所 Catalyst for oxidation of nitrogen oxides, and method for oxidation of nitrogen oxides
CN109420512A (en) * 2017-09-04 2019-03-05 中国科学院上海硅酸盐研究所 A kind of catalysis material and its preparation method and application based on phosphoric acid modification

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115573A1 (en) * 2013-01-25 2014-07-31 株式会社村田製作所 Catalyst for oxidation of nitrogen oxides, and method for oxidation of nitrogen oxides
CN109420512A (en) * 2017-09-04 2019-03-05 中国科学院上海硅酸盐研究所 A kind of catalysis material and its preparation method and application based on phosphoric acid modification

Similar Documents

Publication Publication Date Title
US10260395B2 (en) Nitrous oxide removal catalysts for exhaust systems
KR101634390B1 (en) CATALYSTS FOR DUAL OXIDATION OF AMMONIA AND CARBON MONOXIDE WITH LOW TO NO NOx FORMATION
US7976784B2 (en) Methods and systems including CO oxidation catalyst with low NO to NO2 conversion
JP5864443B2 (en) Exhaust gas purification catalyst
WO2006013998A1 (en) Process for catalytic reduction of nitrogen oxides
JP2010519039A (en) Bifunctional catalysts for selective ammonia oxidation
WO2009087852A1 (en) Exhaust gas cleaner
CN101534932A (en) Catalyst, method for its preparation and system to reduce NOx in an exhaust gas stream
KR20080027720A (en) Gas purification method, gas purification apparatus and gas purification catalyst
JP2006289211A (en) Ammonia oxidation catalyst
JP2008238069A (en) Purification device for exhaust gas, purification method for exhaust gas, and purification catalyst
JP2007239616A (en) Exhaust emission control device, exhaust emission control method, and purification catalyst
JP2011050855A (en) Exhaust gas purifying apparatus
JP2009138591A (en) Exhaust emission control device, exhaust emission control method, and nox emission control catalyst of thermal engine
JP6126858B2 (en) Exhaust gas purification device for internal combustion engine
JP4290391B2 (en) Method and apparatus for catalytic removal of nitrogen oxides
JP5307644B2 (en) Exhaust gas purification catalyst carrier, exhaust gas purification catalyst, and exhaust gas purification catalyst honeycomb structure
JP2006175304A (en) Particulate substance cleaning apparatus
JP2649217B2 (en) Exhaust gas purifying material and exhaust gas purifying method
JP2010203328A (en) Exhaust emission control device for thermal engine, exhaust emission control method and nox elimination catalyst
JP2009297628A (en) APPARATUS AND METHOD FOR CLEANING EXHAUST GAS OF HEAT ENGINE AND NOx CLEANING CATALYST
JP2010201348A (en) Device for cleaning exhaust gas
JP2005218976A (en) Emission gas purification catalyst and its producing method
JP2009056459A (en) Catalyst and method for cleaning exhaust gas
JP2010051862A (en) Catalyst, and exhaust gas cleaning device with the same