JP2009297628A - APPARATUS AND METHOD FOR CLEANING EXHAUST GAS OF HEAT ENGINE AND NOx CLEANING CATALYST - Google Patents

APPARATUS AND METHOD FOR CLEANING EXHAUST GAS OF HEAT ENGINE AND NOx CLEANING CATALYST Download PDF

Info

Publication number
JP2009297628A
JP2009297628A JP2008153659A JP2008153659A JP2009297628A JP 2009297628 A JP2009297628 A JP 2009297628A JP 2008153659 A JP2008153659 A JP 2008153659A JP 2008153659 A JP2008153659 A JP 2008153659A JP 2009297628 A JP2009297628 A JP 2009297628A
Authority
JP
Japan
Prior art keywords
exhaust gas
nox
catalyst
amount
heat engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008153659A
Other languages
Japanese (ja)
Inventor
Masahito Kanae
雅人 金枝
Hidehiro Iizuka
秀宏 飯塚
Toshiaki Nagayama
敏明 長山
Daiki Sato
大樹 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2008153659A priority Critical patent/JP2009297628A/en
Publication of JP2009297628A publication Critical patent/JP2009297628A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus and a method for cleaning the exhaust gas of heat engines which cleans NO<SB>x</SB>in the exhaust gas of an oxygen excessive atmosphere with a high NO<SB>x</SB>cleaning capability and an NO<SB>x</SB>cleaning catalyst used in them. <P>SOLUTION: An NO<SB>x</SB>cleaning catalyst cleaning NO<SB>x</SB>in exhaust gas by reduction with CO as a reducing agent is arranged in an exhaust gas passage of a heat engine emitting an exhaust gas of an atmosphere excessive in oxygen with respect to the stoichiometric quantity. The NO<SB>x</SB>cleaning catalyst comprises a porous support containing cerium (Ce) and catalytically active ingredients supported on the porous support and including at least one selected from silver (Ag), iridium (Ir), rhodium (Rh), platinum (Pt) and palladium (Pd) and cobalt (Co). <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、熱機関から排出される酸素過剰雰囲気の排ガス中の窒素酸化物(NOx)を浄化する熱機関の排ガス浄化装置,排ガス浄化方法及びそれに用いるNOx浄化触媒に関する。   The present invention relates to an exhaust gas purifying apparatus, an exhaust gas purifying method, and an NOx purifying catalyst used therefor for purifying nitrogen oxides (NOx) in exhaust gas in an oxygen-excess atmosphere exhausted from a heat engine.

近年、空燃比(ガス中の空気と燃料との比)を燃料希薄とするリーンバーンエンジンやディーゼルエンジン、あるいはガスタービンや化学プラント等のように酸素過剰の雰囲気下で運転する熱機関の増加にともない、過剰酸素下で窒素酸化物(NOx)を浄化する方法が要求されている。   In recent years, there has been an increase in the number of heat engines that operate under an oxygen-rich atmosphere, such as lean burn engines, diesel engines, gas turbines, chemical plants, etc., where the air-fuel ratio (ratio of air to fuel in the gas) is lean. Accordingly, a method for purifying nitrogen oxide (NOx) under excess oxygen is required.

過剰酸素下でもNOxを浄化する方法としては、アンモニアを還元剤として酸化チタン系触媒上でNOxを選択的に接触還元する方法が提案されており、ボイラーやガスタービンの排ガス浄化に適用されている(例えば、特許文献1参照)。   As a method of purifying NOx even under excess oxygen, a method of selectively catalytically reducing NOx on a titanium oxide catalyst using ammonia as a reducing agent has been proposed and applied to exhaust gas purification of boilers and gas turbines. (For example, refer to Patent Document 1).

しかし、アンモニアは刺激臭を有するため安全性に問題があり、更にアンモニア自体のコストもかかる。   However, since ammonia has an irritating odor, there is a problem in safety, and further, the cost of ammonia itself is high.

そこで、排ガス中に元々含有している水素,一酸化炭素(CO),炭化水素(HC)等の還元剤を用いてNOxを還元して浄化する方法が提案されている。   Therefore, a method for reducing and purifying NOx using a reducing agent such as hydrogen, carbon monoxide (CO), and hydrocarbon (HC) originally contained in the exhaust gas has been proposed.

例えば特許文献2には、金属酸化物からなる多孔質の担体に、ロジウム(Rh)及び銀を担持したNOx浄化触媒を用いてNOxを還元して浄化する方法が記載されており、過剰の酸素を含有する排ガス中の炭化水素,CO及びNOxを同時に除去することが記載されている。   For example, Patent Document 2 describes a method of reducing and purifying NOx using a NOx purifying catalyst supporting rhodium (Rh) and silver on a porous carrier made of a metal oxide, and an excess of oxygen. The simultaneous removal of hydrocarbons, CO and NOx in exhaust gas containing benzene is described.

また、特許文献3には、排ガス中の炭化水素を不完全燃焼させることで、酸素を含有する排ガス中のNOxの還元効率が高まることが記載されている。   Patent Document 3 describes that the reduction efficiency of NOx in exhaust gas containing oxygen is increased by incomplete combustion of hydrocarbons in exhaust gas.

特許文献4には、NOx吸蔵触媒を用いて、空燃比がリーンの時には排ガス中のNOxを一旦酸化して触媒に捕捉させて、一定量のNOxが捕捉された場合に、空燃比をストイキもしくはリッチに切り替えて、捕捉されたNOxを浄化する技術が記載されている。   In Patent Document 4, when a NOx storage catalyst is used, when the air-fuel ratio is lean, NOx in the exhaust gas is once oxidized and trapped by the catalyst, and when a certain amount of NOx is trapped, the air-fuel ratio is stoichiometric or A technique for purifying trapped NOx by switching to rich is described.

さらに、特許文献5には、NOx吸蔵触媒の前段に水素生成触媒を設置する浄化装置が記載されている。特許文献5には、貴金属を含有する水素生成触媒を用いることで、水蒸気改質反応が進行し、活性が向上することが記載されている。   Furthermore, Patent Document 5 describes a purification device in which a hydrogen generation catalyst is installed in front of a NOx storage catalyst. Patent Document 5 describes that by using a hydrogen generation catalyst containing a noble metal, the steam reforming reaction proceeds and the activity is improved.

しかしながら、特許文献2および3には、炭化水素,CO、あるいは不完全燃焼時の生成物を用いてNOxを還元して浄化することが記載されているが、NOxに対する浄化効率が十分ではない。さらに、炭化水素が排ガス中に存在しなければNOxを効率よく浄化できない。また、特許文献4に開示された技術によれば、NOxの還元効率は高まるが、空燃比をリッチにする必要があり、エンジンの制御が不可欠であることからボイラー等のプラントには適用しにくい。さらに、リッチ時に燃料が多く消費されるため燃費の悪化につながる。特許文献5に開示された技術においても、水蒸気改質反応を生じさせるためには空燃比をリッチにすることが必要であり、特許文献4と同様の不具合が生じる。特許文献2乃至5には、上記の不具合に対処する方法は記載されていない。   However, Patent Documents 2 and 3 describe that NOx is reduced and purified using hydrocarbons, CO, or products during incomplete combustion, but the purification efficiency for NOx is not sufficient. Furthermore, NOx cannot be efficiently purified unless hydrocarbons are present in the exhaust gas. Further, according to the technique disclosed in Patent Document 4, although the NOx reduction efficiency is increased, it is necessary to make the air-fuel ratio rich, and engine control is indispensable, so that it is difficult to apply to plants such as boilers. . Furthermore, fuel consumption is reduced because a large amount of fuel is consumed when rich. Even in the technique disclosed in Patent Document 5, it is necessary to make the air-fuel ratio rich in order to cause the steam reforming reaction, and the same problems as in Patent Document 4 occur. Patent Documents 2 to 5 do not describe a method for dealing with the above problem.

特公昭52−22839号公報Japanese Examined Patent Publication No. 52-22839 特開平8−998号公報JP-A-8-998 特開平6−319953号公報JP-A-6-319953 特開平11−319564号公報JP 11-319564 A 特開2003−10646号公報JP 2003-10646 A

本発明の目的は、酸素過剰雰囲気の排ガス中のNOxを高いNOx浄化性能で浄化する熱機関の排ガス浄化装置,排ガス浄化方法及びそれに用いるNOx浄化触媒を提供することにある。   An object of the present invention is to provide an exhaust gas purification device for an exhaust gas, an exhaust gas purification method, and a NOx purification catalyst used therefor, which purify NOx in exhaust gas in an oxygen-excess atmosphere with high NOx purification performance.

すなわち、本発明の熱機関の排ガス浄化装置は、化学量論量よりも過剰な酸素雰囲気の排ガスを排出する熱機関の排ガス流路に配置され、一酸化炭素(CO)を還元剤として前記排ガス中の窒素酸化物(NOx)を還元して浄化するNOx浄化触媒を備える熱機関の排ガス浄化装置であって、前記NOx浄化触媒が、セリウム(Ce)を含む多孔質担体と、前記多孔質担体上に担持され、銀(Ag),イリジウム(Ir),ロジウム(Rh),白金(Pt)及びパラジウム(Pd)から選ばれる少なくとも1種と、コバルト(Co)とを含む触媒活性成分とを有することを特徴としている。   That is, the exhaust gas purification apparatus for a heat engine according to the present invention is disposed in an exhaust gas flow path of a heat engine that exhausts exhaust gas in an oxygen atmosphere that is in excess of the stoichiometric amount, and the exhaust gas using carbon monoxide (CO) as a reducing agent. An exhaust gas purification apparatus for a heat engine comprising a NOx purification catalyst that reduces and purifies nitrogen oxides (NOx) therein, wherein the NOx purification catalyst contains cerium (Ce), and the porous carrier And a catalytically active component containing at least one selected from silver (Ag), iridium (Ir), rhodium (Rh), platinum (Pt) and palladium (Pd) and cobalt (Co). It is characterized by that.

本発明の熱機関の排ガス浄化方法は、Ceを含む多孔質担体と、前記多孔質担体上に担持され、Ag,Ir,Rh,Pt及びPdから選ばれる少なくとも1種と、Coとを含む触媒活性成分とを有するNOx浄化触媒を用いて、COを還元剤として、熱機関から排出される化学量論量よりも過剰な酸素雰囲気の排ガス中のNOxを還元して浄化することを特徴としている。   The exhaust gas purification method for a heat engine according to the present invention includes a porous support containing Ce, a catalyst supported on the porous support and containing at least one selected from Ag, Ir, Rh, Pt and Pd, and Co. Using a NOx purification catalyst having an active component, CO is used as a reducing agent to reduce and purify NOx in exhaust gas in an oxygen atmosphere that is in excess of the stoichiometric amount discharged from the heat engine. .

本発明のNOx浄化触媒は、COを還元剤として、化学量論量よりも過剰な酸素雰囲気の排ガス中のNOxを還元して浄化するNOx浄化触媒であって、Ceを含む多孔質担体と、前記多孔質担体上に担持され、Ag,Ir,Rh,Pt及びPdから選ばれる少なくとも1種と、Coとを含む触媒活性成分とを備えることを特徴としている。   The NOx purification catalyst of the present invention is a NOx purification catalyst that reduces and purifies NOx in exhaust gas in an oxygen atmosphere in excess of the stoichiometric amount using CO as a reducing agent, a porous carrier containing Ce, It is supported on the porous carrier and comprises at least one selected from Ag, Ir, Rh, Pt and Pd, and a catalytically active component containing Co.

なお、本発明において、化学量論量とは、排ガス中に含まれるO2及びCOが互いに過不足無く反応する場合の、O2及びCOの量を意味する。 In the present invention, the stoichiometric amount means the amount of O 2 and CO when O 2 and CO contained in the exhaust gas react with each other without excess or deficiency.

排ガス中にO2,CO及びNOが含有されている場合に、これら3種のガスにおける反応として下記(1)(2)式が考えられる。 When O 2 , CO and NO are contained in the exhaust gas, the following equations (1) and (2) can be considered as reactions in these three gases.

2NO+2CO → 2CO2+N2 …(1)
2CO+O2 → 2CO2 …(2)
例えば、排ガス中にCOが1000ppm存在する場合、O2が500ppm以下であれば、(1)式よりも(2)式が優先して進行してもCOは残留し、(1)式の反応が生じやすくなる可能性がある。
2NO + 2CO → 2CO 2 + N 2 (1)
2CO + O 2 → 2CO 2 (2)
For example, when 1000 ppm of CO is present in the exhaust gas, if O 2 is 500 ppm or less, CO remains even if the formula (2) is advanced over the formula (1), and the reaction of the formula (1) May be more likely to occur.

一方、化学量論量よりも過剰な酸素雰囲気とは、(2)式が優先して進行した場合、COが全て酸化されうる酸素量であることを意味する。すなわち、排ガス中にCOが1000ppm存在する場合では、O2が500ppmよりも多い場合を意味する。この場合、(2)式が優先して進行するとCOが全て酸化されてしまい、(1)式の反応が進まない。 On the other hand, an oxygen atmosphere that is excessive than the stoichiometric amount means that the amount of oxygen that can be completely oxidized by CO when the formula (2) advances preferentially. That is, when 1000 ppm of CO is present in the exhaust gas, this means a case where O 2 is greater than 500 ppm. In this case, if the formula (2) preferentially proceeds, all the CO is oxidized and the reaction of the formula (1) does not proceed.

本発明の排ガス浄化方法,排ガス浄化装置及びNOx浄化触媒によれば、過剰な酸素雰囲気で運転される熱機関からの排ガスに含まれるNOxを、還元剤としてCOを用いて効率よく浄化することができ、熱機関のNOx排出量を抑制することができる。   According to the exhaust gas purification method, exhaust gas purification device, and NOx purification catalyst of the present invention, NOx contained in exhaust gas from a heat engine operated in an excessive oxygen atmosphere can be efficiently purified using CO as a reducing agent. It is possible to suppress the NOx emission amount of the heat engine.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

一般に、ボイラー等から排出される排ガスは、化学量論量よりも過剰な酸素雰囲気であることが多い。ボイラーからの排ガスには、NOx以外にCOが含まれているので、下記の(3)式の還元反応が進めばNOxは還元されて浄化される。しかし、酸素雰囲気であることから、多くの場合、COの燃焼反応が優先して進んでしまい、(3)式の反応は進行しにくい。   In general, exhaust gas discharged from a boiler or the like is often in an oxygen atmosphere that is in excess of the stoichiometric amount. Since the exhaust gas from the boiler contains CO in addition to NOx, NOx is reduced and purified if the reduction reaction of the following formula (3) proceeds. However, since it is an oxygen atmosphere, in many cases, the combustion reaction of CO proceeds with priority, and the reaction of the formula (3) hardly proceeds.

NOx+CO → N2,CO2 …(3)
本発明者らは、鋭意検討した結果、COを還元剤として、排ガス中のNOxを浄化するNOx浄化触媒として、セリウム(Ce)を含む多孔質担体と、この多孔質担体上に担持され、銀(Ag),イリジウム(Ir),ロジウム(Rh),白金(Pt)及びパラジウム(Pd)から選ばれる少なくとも1種と、Co(コバルト)とを含む触媒活性成分とを備えたNOx浄化触媒を使用すると、(3)式の反応が進み、NOxが浄化されることを明らかにした。
NOx + CO → N 2 , CO 2 (3)
As a result of intensive studies, the inventors of the present invention have used a porous carrier containing cerium (Ce) as a NOx purification catalyst that purifies NOx in exhaust gas using CO as a reducing agent, and is supported on the porous carrier and silver. A NOx purification catalyst comprising at least one selected from (Ag), iridium (Ir), rhodium (Rh), platinum (Pt) and palladium (Pd) and a catalytic active component containing Co (cobalt) is used. Then, it was clarified that the reaction of the formula (3) proceeds and NOx is purified.

触媒活性成分に、Ag,Ir,Rh,Pt及びPdから選ばれる少なくとも1種と、Coとが共存することで、NOxがNとOに解離しやすくなり、さらに、多孔質担体として高い酸素吸蔵能のCeを使用することで、NOxが解離して生成したOが多孔質担体に取り込まれやすくなり、NOxの解離反応が促進される。多孔質担体に取り込まれたOは、(6)式にしたがって、COにより除去される。また、(4)式の反応が進むことで、(5)式の反応が進みやすくなる。   Coexistence with at least one selected from Ag, Ir, Rh, Pt and Pd as a catalytically active component makes it easy for NOx to dissociate into N and O, and furthermore, high oxygen storage as a porous carrier. By using Ce having the capacity, O generated by dissociating NOx is easily taken into the porous carrier, and the dissociation reaction of NOx is promoted. O taken in the porous carrier is removed by CO according to the equation (6). Further, the reaction of the formula (4) proceeds, so that the reaction of the formula (5) easily proceeds.

NOx → N+O …(4)
N+N → N2 …(5)
O+CO → CO2 …(6)
多孔質担体としては、Ceを有する酸素吸蔵能を備えたものであれば限定されず、例えば、セリア(CeO2),セリア−ジルコニア(例えば、Ce0.1Zr0.92,Ce0.3Zr0.72,Ce0.5Zr0.52,Ce0.7Zr0.32,Ce0.9Zr0.12)などの金属酸化物が挙げられ、これらにプラセオジム(Pr),イットリウム(Y)の少なくとも一方を添加してもよい。
NOx → N + O (4)
N + N → N 2 (5)
O + CO → CO 2 (6)
The porous carrier is not limited as long as it has an oxygen storage capacity with Ce, and for example, ceria (CeO 2 ), ceria-zirconia (eg, Ce 0.1 Zr 0.9 O 2 , Ce 0.3 Zr 0.7 O 2). , Ce 0.5 Zr 0.5 O 2 , Ce 0.7 Zr 0.3 O 2 , Ce 0.9 Zr 0.1 O 2 ), etc., and at least one of praseodymium (Pr) and yttrium (Y) may be added thereto. Good.

多孔質担体は、基材上に担持させてもよい。この場合には、NOx浄化性能を向上させる上で、多孔質担体の担持量は、基材1Lに対して50g以上400g以下であることが好ましい。多孔質担体の担持量が50g未満であると、多孔質担体の効果は不十分となり、一方、400gを超えると、多孔質担体自体の比表面積が低下し、基材がハニカム形状の場合に目詰まりが生じやすい。   The porous carrier may be supported on the substrate. In this case, in order to improve the NOx purification performance, the loading amount of the porous carrier is preferably 50 g or more and 400 g or less with respect to 1 L of the base material. When the loading amount of the porous carrier is less than 50 g, the effect of the porous carrier becomes insufficient. On the other hand, when the loading amount exceeds 400 g, the specific surface area of the porous carrier itself is reduced, and this is the case when the substrate has a honeycomb shape. Clogging is likely to occur.

触媒活性成分のCoの担持量は、好ましくは、多孔質担体1.9mol部に対して元素換算で0.005mol部以上2.5mol部以下であり、より好ましくは、0.01mol部以上2mol部以下である。Coの担持量が0.005mol部未満であると、担持効果は不十分となり、一方、2.5mol部を越えると、触媒自体の比表面積が低下して活性低下につながりやすくなる。触媒活性成分のAgの担持量は、上記のCoと同様である。ここで、mol部とは、各成分のmol数換算での含有比率を意味する。例えば、A成分2mol部に対してB成分の担持量が1mol部とは、A成分の絶対量の多少に関わらず、mol数換算でA成分が2に対し、B成分が1の割合で担持されていることを意味する。   The supported amount of Co as the catalytically active component is preferably 0.005 mol part or more and 2.5 mol part or less, more preferably 0.01 mol part or more and 2 mol part or less in terms of element with respect to 1.9 mol part of the porous carrier. It is as follows. When the amount of Co supported is less than 0.005 mol part, the effect of supporting is insufficient. On the other hand, when the amount exceeds 2.5 mol part, the specific surface area of the catalyst itself decreases and the activity tends to decrease. The amount of Ag supported as the catalytically active component is the same as that of Co described above. Here, the mol part means the content ratio of each component in terms of mol number. For example, when the loading amount of B component is 1 mol part with respect to 2 mol part of A component, the loading of B component is 1 with respect to A component 2 in terms of mol, regardless of the absolute amount of A component. Means that

触媒活性成分のIrの担持量は、好ましくは、多孔質担体1.9mol部に対して元素換算で0.001mol部以上0.5mol部以下であり、より好ましくは、0.002mol部以上0.4mol部以下である。Irの担持量が0.001mol部未満であると、担持効果は不十分となり、一方、0.5mol部を越えると、触媒自体の比表面積が低下し、さらに触媒コストが高くなる。触媒活性成分のRh,Pt,Pdの担持量については、上記のIrと同様である。   The supported amount of Ir as the catalytically active component is preferably 0.001 mol part or more and 0.5 mol part or less, more preferably 0.002 mol part or more and 0.00 mol part or less, in terms of element with respect to 1.9 mol part of the porous carrier. 4 mol parts or less. When the amount of Ir supported is less than 0.001 mol part, the effect of supporting is insufficient. On the other hand, when the amount exceeds 0.5 mol part, the specific surface area of the catalyst itself decreases and the catalyst cost increases. The supported amounts of the catalytically active components Rh, Pt, and Pd are the same as for Ir described above.

触媒活性成分のCoの粒子径は、NOx浄化反応を促進する上で、1nm以下が好ましい。これにより、触媒活性成分を高分散でき、触媒活性成分の表面積が向上し、微粒子特有の触媒性能を発現させることができる。Coの粒子径は、触媒活性成分の原料,触媒調製温度,触媒調製時の多孔質担体と触媒活性成分原料との接触時間等を制御することで調整できる。   The particle diameter of the catalytically active component Co is preferably 1 nm or less in order to promote the NOx purification reaction. Thereby, the catalytically active component can be highly dispersed, the surface area of the catalytically active component can be improved, and the catalytic performance peculiar to the fine particles can be expressed. The particle diameter of Co can be adjusted by controlling the raw material of the catalytic active component, the catalyst preparation temperature, the contact time between the porous carrier and the catalytic active component raw material during catalyst preparation, and the like.

NOx浄化触媒の調製方法としては、例えば、含浸法,混練法,共沈法,ゾルゲル法,イオン交換法,蒸着法等の物理的調製方法や化学反応を利用した調製方法等などを用いることができる。なかでも、化学反応を利用した調整方法が好ましく、触媒活性成分の原料と多孔質担体との接触が強固になり、触媒活性成分のシンタリング等を防止できる。   As a preparation method of the NOx purification catalyst, for example, a physical preparation method such as an impregnation method, a kneading method, a coprecipitation method, a sol-gel method, an ion exchange method, a vapor deposition method, a preparation method using a chemical reaction, or the like is used. it can. Among them, an adjustment method using a chemical reaction is preferable, and the contact between the raw material of the catalytically active component and the porous carrier becomes strong, and sintering of the catalytically active component can be prevented.

NOx浄化触媒の出発原料としては、硝酸化合物,酢酸化合物,錯体化合物,水酸化物,炭酸化合物,有機化合物などの種々の化合物,金属,金属酸化物を用いることができる。触媒活性成分のCoは、金属アルコキシド,カルボニル化合物,Co(CO)3NOなどの有機金属化合物を出発原料として調製されることが好ましく、例えば、Co(O−i−C37)2,Co4(CO)12を出発原料として用いることがより好ましい。これらを多孔質担体上のOH基と反応させることで、Coを多孔質担体上に均一に高分散させて担持させることができる。 As a starting material for the NOx purification catalyst, various compounds such as nitric acid compounds, acetic acid compounds, complex compounds, hydroxides, carbonate compounds, organic compounds, metals, and metal oxides can be used. The catalytically active component Co is preferably prepared using a metal alkoxide, a carbonyl compound, or an organometallic compound such as Co (CO) 3 NO as a starting material. For example, Co (Oi-C 3 H 7 ) 2 , More preferably, Co 4 (CO) 12 is used as a starting material. By reacting these with OH groups on the porous carrier, Co can be uniformly dispersed and supported on the porous carrier.

NOx浄化触媒の形状としては、用途に応じて適宜調整でき、例えば、コージェライト,SiC,ステンレス等の各種材料からなるハニカム構造体に、本発明のNOx浄化触媒をコーティングして得られるハニカム形状をはじめ、ペレット状,板状,粒状,粉末状などが挙げられる。ハニカム形状の場合、その基材はコ−ジェライトが最適であるが、触媒温度が高まる恐れがある場合には、触媒活性成分と反応しにくい基材、例えば金属製の基材を用いることが好ましい。また、多孔質担体と触媒活性成分のみでハニカムを形成してもよい。   The shape of the NOx purification catalyst can be appropriately adjusted according to the application. For example, the honeycomb shape obtained by coating the NOx purification catalyst of the present invention on a honeycomb structure made of various materials such as cordierite, SiC, stainless steel, etc. First, pellets, plates, granules, powders, and the like can be mentioned. In the case of the honeycomb shape, cordierite is optimal as the base material. However, when there is a risk that the catalyst temperature may increase, it is preferable to use a base material that does not easily react with the catalytic active component, for example, a metal base material. . Alternatively, the honeycomb may be formed with only the porous carrier and the catalytically active component.

NOx浄化触媒に接触する排ガスの流量をF、該触媒の体積をVとした場合に、体積空間速度(F/V)が30000/h以下であることが好ましい。これにより、高いNOx浄化活性を得ることができ、NOxの浄化反応を促進できる。   When the flow rate of the exhaust gas contacting the NOx purification catalyst is F and the volume of the catalyst is V, the volume space velocity (F / V) is preferably 30000 / h or less. Thereby, a high NOx purification activity can be obtained, and a NOx purification reaction can be promoted.

NOx浄化触媒に接触する排ガス中に含まれるHCの量が、炭素原子換算で、該触媒に接触する排ガス中のCOの量と同等、もしくはCOの量よりも少なくなるようにCO量を調整するCO量調整手段、またはHC量を調整するHC量調整手段を、NOx浄化触媒の前段に配置することが好ましい。CO量調整手段は、排ガス流路にCOを注入してCO量を調整するものであり、例えばCOタンクやCO注入口を備えたものである。HC量調整手段は、CO量に対するHC量を低減するものであり、例えばHC吸着剤などである。このようにCO量に対するHC量を減らすことで、排ガス中のHCがNOx浄化触媒に接触しにくくなり、該触媒の触媒活性成分にHCが吸着されるのを防止でき、COを還元剤としたNOxの還元反応が進行しやくなる。   Adjust the amount of CO so that the amount of HC contained in the exhaust gas in contact with the NOx purification catalyst is equivalent to or less than the amount of CO in the exhaust gas in contact with the catalyst in terms of carbon atoms. It is preferable that the CO amount adjusting means or the HC amount adjusting means for adjusting the HC amount is disposed in front of the NOx purification catalyst. The CO amount adjusting means adjusts the CO amount by injecting CO into the exhaust gas flow path, and includes, for example, a CO tank and a CO inlet. The HC amount adjusting means reduces the HC amount relative to the CO amount, and is, for example, an HC adsorbent. By reducing the amount of HC relative to the amount of CO in this way, it becomes difficult for HC in the exhaust gas to come into contact with the NOx purification catalyst, and it is possible to prevent HC from being adsorbed by the catalytically active component of the catalyst, and CO is used as a reducing agent. The reduction reaction of NOx easily proceeds.

なお、HC量,CO量の調整は、熱機関の燃焼状態を調整して行ってもよい。   The HC amount and CO amount may be adjusted by adjusting the combustion state of the heat engine.

NOx浄化触媒に流入するCOの量が、排ガス中のNOxを全て浄化しうる量に満たない場合がある。その場合には、上述したCO量調整手段で、排ガス流路にCOを注入して、NOx浄化触媒に接触するCOの量を増加させる。   There are cases where the amount of CO flowing into the NOx purification catalyst is less than the amount capable of purifying all of the NOx in the exhaust gas. In that case, the CO amount adjusting means described above injects CO into the exhaust gas passage to increase the amount of CO in contact with the NOx purification catalyst.

NOx浄化触媒のCO酸化率が高い場合には、NOx浄化触媒層の入口付近でCOが消費されてしまい、NOx浄化触媒の全体にCOが行き渡らず、NOx浄化反応が効率よく生じない恐れがある。この場合には、排ガス流路に沿って、複数個のNOx浄化触媒を設置し、さらに、NOx浄化触媒とNOx浄化触媒との間の排ガス流路にCO量調整手段を配置することが好ましい。   When the CO oxidation rate of the NOx purification catalyst is high, CO is consumed in the vicinity of the inlet of the NOx purification catalyst layer, so that the CO does not spread over the entire NOx purification catalyst, and the NOx purification reaction may not occur efficiently. . In this case, it is preferable to install a plurality of NOx purification catalysts along the exhaust gas flow path, and to further dispose the CO amount adjusting means in the exhaust gas flow path between the NOx purification catalyst and the NOx purification catalyst.

NOx浄化触媒に流入するCOの量は、該触媒に接触するNOxの量に対してモル比で3倍以上になるように、上述したCO量調整手段をNOx浄化触媒の前段に配置することが好ましい。NOx浄化触媒のCO酸化率が高い場合、NOx浄化触媒層の入口付近でCOの一部が消費されてしまい、NOx浄化触媒全体にCOが行き渡らない。このようにCO量調整手段でNOx浄化触媒に接触するCO量を調整することで、NOx浄化反応を促進することができる。   The above-mentioned CO amount adjusting means may be arranged in the preceding stage of the NOx purification catalyst so that the amount of CO flowing into the NOx purification catalyst is three times or more in molar ratio with respect to the amount of NOx in contact with the catalyst. preferable. When the CO oxidation rate of the NOx purification catalyst is high, a part of CO is consumed in the vicinity of the inlet of the NOx purification catalyst layer, and CO does not reach the entire NOx purification catalyst. Thus, the NOx purification reaction can be promoted by adjusting the amount of CO in contact with the NOx purification catalyst by the CO amount adjusting means.

なお、NOx量に対するCO量の調整は、熱機関の燃焼状態を調整して行ってもよい。   The adjustment of the CO amount relative to the NOx amount may be performed by adjusting the combustion state of the heat engine.

NOx浄化触媒に流入するCOまたはHCの量が、排ガス中のNOxを全て浄化しうる量に満たない場合には、NOx浄化触媒の前段または後段に、NH3を還元剤としてNOxを還元する触媒、すなわちNH3脱硝触媒を配置してもよい。この場合、NH3脱硝触媒の前段に、NH3タンクやNH3注入口を備えたNH3供給手段を配置して、該触媒に還元剤としてNH3を供給する。これにより、NOxがNH3脱硝触媒で還元されて浄化される。NH3脱硝触媒としては、例えば、酸化チタン(TiO2)あるいはゼオライトを担体とし、活性成分としてバナジウム(V),鉄(Fe),モリブデン(Mo)等を含むものを用いることができる。 When the amount of CO or HC flowing into the NOx purification catalyst is less than the amount capable of purifying all NOx in the exhaust gas, a catalyst that reduces NOx using NH 3 as a reducing agent before or after the NOx purification catalyst That is, an NH 3 denitration catalyst may be arranged. In this case, in front of the NH 3 denitration catalyst, by placing the NH 3 supply means having a NH 3 tank and NH 3 inlet, supplying the NH 3 as a reducing agent to the catalyst. Thereby, NOx is reduced and purified by the NH 3 denitration catalyst. As the NH 3 denitration catalyst, for example, a catalyst using titanium oxide (TiO 2 ) or zeolite as a carrier and containing vanadium (V), iron (Fe), molybdenum (Mo) or the like as active components can be used.

このNH3脱硝触媒を本発明のNOx浄化触媒と混合して一体化し、還元剤としてCO,NH3を流入させてNOxを浄化することもできる。この場合、触媒の設置に要するスペースを少なくできる。 This NH 3 denitration catalyst can be mixed and integrated with the NOx purification catalyst of the present invention, and NOx can be purified by introducing CO and NH 3 as reducing agents. In this case, the space required for installing the catalyst can be reduced.

本発明は、化学量論量よりも過剰な酸素雰囲気の排ガスを排出する熱機関に好適に用いることができる。本発明は、化学量論量と同等もしくはそれ以下の酸素雰囲気(リッチガス)の排ガスを排出する熱機関にも使用可能であるが、その場合には、熱機関もしくは排ガス流路に添加される燃料が多くなり、コストの増加を招きやすい。このため、特に、空燃比をリッチにする必要がなければ、熱機関の燃焼状態を調整して、NOx浄化触媒に流入する排ガスの空燃比を間欠的にストイキ〜リッチ状態に切り替えずに、常にリーン状態に保つことが好ましい。   The present invention can be suitably used for a heat engine that exhausts exhaust gas in an oxygen atmosphere that is in excess of the stoichiometric amount. The present invention can also be used in a heat engine that discharges exhaust gas in an oxygen atmosphere (rich gas) that is equal to or less than the stoichiometric amount. In this case, the fuel added to the heat engine or the exhaust gas passage is used. This is likely to increase costs. Therefore, in particular, unless the air-fuel ratio needs to be rich, the combustion state of the heat engine is adjusted and the air-fuel ratio of the exhaust gas flowing into the NOx purification catalyst is not switched intermittently from the stoichiometric to rich state. It is preferable to maintain a lean state.

NOx浄化触媒に流入するCOの量が、排ガス中のNOxを全て浄化しうる量に満たない場合には、熱機関の燃焼状態を調整することで、NOx浄化触媒に流入するCO量,NOx量を調整してもよい。この場合には、排ガス流路にCOを注入してCO量を調整するCO量調整手段が不要になる。   When the amount of CO flowing into the NOx purification catalyst is less than the amount that can completely purify NOx in the exhaust gas, the amount of CO and NOx flowing into the NOx purification catalyst is adjusted by adjusting the combustion state of the heat engine. May be adjusted. In this case, the CO amount adjusting means for adjusting the CO amount by injecting CO into the exhaust gas passage becomes unnecessary.

NOx浄化触媒の後段にNOxセンサーを設けてもよい。NOxセンサーは、NOx浄化触媒の後段に含まれるNOx量、すなわちNOx浄化触媒で浄化されずに残存するNOx量を計測するものである。NOxセンサーによるNOx量の計測結果に応じて、NOx浄化触媒に流入するCO量を調整する。NOxセンサーで計測した結果、NOx浄化触媒の後段にNOxが多く残存している場合には、NOx浄化触媒の前段に、上述したCO量調整手段を配置して、NOx浄化触媒の前段の排気流路にCOを注入してNOx浄化触媒に流入するCO量が増えるように調整する。一方、NOxセンサーで計測した結果、NOx浄化触媒の後段にNOxが計測できないほど微量であった場合には、CO量調整手段で注入するCO量を低減すればよい。なお、CO量調整手段以外に、熱機関の燃焼状態を調整して、NOx浄化触媒に流入するCO量を調整することもできる。このようにNOxセンサーでNOx浄化触媒の後段のNOx量を計測することで、高いNOx浄化活性を維持することができ、大気へのCOの流出を低減でき、浄化されずに残存するNOx量を低減するための最適なCOの添加量を決めることができる。   A NOx sensor may be provided after the NOx purification catalyst. The NOx sensor measures the amount of NOx contained in the subsequent stage of the NOx purification catalyst, that is, the amount of NOx remaining without being purified by the NOx purification catalyst. The amount of CO flowing into the NOx purification catalyst is adjusted according to the measurement result of the NOx amount by the NOx sensor. As a result of measurement by the NOx sensor, when a large amount of NOx remains in the subsequent stage of the NOx purification catalyst, the above-mentioned CO amount adjusting means is arranged in the previous stage of the NOx purification catalyst, and the exhaust flow before the NOx purification catalyst is arranged. Adjustment is made so that the amount of CO flowing into the NOx purification catalyst is increased by injecting CO into the passage. On the other hand, as a result of measurement by the NOx sensor, if the amount of NOx is so small that it cannot be measured after the NOx purification catalyst, the amount of CO injected by the CO amount adjusting means may be reduced. In addition to the CO amount adjusting means, the amount of CO flowing into the NOx purification catalyst can also be adjusted by adjusting the combustion state of the heat engine. Thus, by measuring the NOx amount at the latter stage of the NOx purification catalyst with the NOx sensor, high NOx purification activity can be maintained, CO outflow to the atmosphere can be reduced, and the amount of NOx remaining without being purified can be reduced. An optimum amount of CO to be reduced can be determined.

〔実施例〕
以下、本発明の実施例を説明するが、本発明はこれらの実施例に限られるものではない。
〔Example〕
Examples of the present invention will be described below, but the present invention is not limited to these examples.

(NOx浄化触媒の調製法)
市販のCeO2(第一稀元素化学工業社製、HS)をシュレンクフラスコに入れて200℃の温度で9時間、真空脱気を行った後、脱水したTHF(テトラヒドロフラン)を添加してシュレンクフラスコの中でN2下においてCeO2をTHF中にけん濁させた。また、CoのアルコキシドであるCo(O−i−C37)2をN2下で別のシュレンクフラスコの中に入れ、THFに溶解させた。次に、このCo溶液をTHF中にけん濁しているCeO2へ添加し、15hの撹拌を行った。その後、撹拌を止め、THFを真空排気で除去した後、大気中で120℃×2hの乾燥処理、更に400℃×2hの熱処理を行うことで触媒活性成分のCoが担持されたCeO2の触媒粉である、Co/CeO2を得た。Coの添加量はCeO2が1gに対し、金属元素換算で0.6mmolとした。次いで、得られたCo/CeO2粉に対し、硝酸Agを水に溶解させたものを含浸し、大気中で120℃×2hの乾燥処理、更に400℃×2hの熱処理を行った。以上の方法により、CeO2に対し、Co,Agを担持した実施例触媒1を得た。Agの添加量は、CeO2が1g当り、金属元素換算で0.1mmolとした。さらに、硝酸Agの代わりに硝Ir,硝酸Rh,ジニトロジアンミンPt,硝酸Pdを用いたこと以外は実施例触媒1と同じ方法で、実施例触媒2〜5を得た。Ir,Rh,Pt,Pdの添加量は、CeO2が1g当り、金属元素換算で0.05mmolとした。
(Preparation method of NOx purification catalyst)
Commercially available CeO 2 (Daiichi Rare Element Chemical Industries, Ltd., HS) was placed in a Schlenk flask, vacuum degassed at 200 ° C. for 9 hours, dehydrated THF (tetrahydrofuran) was added, and the Schlenk flask was added. CeO 2 was suspended in THF under N 2 . In addition, Co (Oi-C 3 H 7 ) 2 , which is an alkoxide of Co, was placed in another Schlenk flask under N 2 and dissolved in THF. Next, this Co solution was added to CeO 2 suspended in THF and stirred for 15 h. Thereafter, the stirring was stopped, after removal of the THF by vacuum evacuation, 120 ° C. × 2h drying treatment, further 400 ° C. × 2h heat treatment of the catalyst active ingredients by performing Co is CeO 2 that is supported in the catalyst in air A Co / CeO 2 powder was obtained. The amount of Co added was 0.6 mmol in terms of metal element with respect to 1 g of CeO 2 . Next, the obtained Co / CeO 2 powder was impregnated with water in which Ag nitrate was dissolved in water, and subjected to a drying treatment at 120 ° C. for 2 hours and a heat treatment at 400 ° C. for 2 hours in the air. By the above method, Example catalyst 1 carrying Co and Ag with respect to CeO 2 was obtained. The addition amount of Ag is, CeO 2 is per 1g, was 0.1mmol in terms of metal element. Further, Example Catalysts 2 to 5 were obtained in the same manner as Example Catalyst 1 except that Ni, Ir, Rh, dinitrodiammine Pt, and Pd nitrate were used instead of Ag nitrate. The amount of Ir, Rh, Pt, and Pd added was 0.05 mmol in terms of metal element per gram of CeO 2 .

一方、上記の方法で得られたCo/CeO2を比較例触媒1とした。さらに、比較例触媒2として、比較例触媒1と同様の方法により、VO(o−n−C49)3をCeO2に担持した触媒を調製した。表1に調製した触媒一覧を示す。 On the other hand, Co / CeO 2 obtained by the above method was used as Comparative Example Catalyst 1. Further, as Comparative Example Catalyst 2, a catalyst in which VO (on-C 4 H 9 ) 3 was supported on CeO 2 was prepared by the same method as Comparative Example Catalyst 1. Table 1 shows a list of prepared catalysts.

Figure 2009297628
Figure 2009297628

(触媒性能評価方法)
触媒の性能を評価するため、次の条件でNOx浄化性能試験を行った。
(Catalyst performance evaluation method)
In order to evaluate the performance of the catalyst, a NOx purification performance test was conducted under the following conditions.

容量4c.c.の粒状触媒(直径0.75mm〜1.5mm)を石英ガラス製反応管中に固定した。この反応管を電気炉中に導入し、反応管に導入されるガス温度が300℃となるように加熱制御した。反応管に導入されるガスは、化学量論量よりも過剰な酸素雰囲気を有する排ガスを模擬するモデルガスとした。モデルガスの組成は、NOx:150ppm,CO:1500ppm,O2:3%,H2O:3%,N2:残部とした。体積空間速度(F/V)は30,000/hとした。 A granular catalyst (diameter 0.75 mm to 1.5 mm) with a capacity of 4 c.c. was fixed in a reaction tube made of quartz glass. The reaction tube was introduced into an electric furnace, and the heating was controlled so that the gas temperature introduced into the reaction tube was 300 ° C. The gas introduced into the reaction tube was a model gas that simulates an exhaust gas having an oxygen atmosphere in excess of the stoichiometric amount. The composition of the model gas was NOx: 150 ppm, CO: 1500 ppm, O 2 : 3%, H 2 O: 3%, N 2 : balance. The volume space velocity (F / V) was 30,000 / h.

触媒のNOx浄化性能は、次式に示す計算式によりNOx浄化率を求めることで判定した。   The NOx purification performance of the catalyst was determined by obtaining the NOx purification rate using the calculation formula shown below.

NOx浄化率(%)=((触媒に流入したNOx量)−(触媒から流出したNOx量))
÷(触媒に流入したNOx量)×100
NOx purification rate (%) = ((NOx amount flowing into the catalyst) − (NOx amount flowing out from the catalyst))
÷ (NOx amount flowing into the catalyst) x 100

(検討結果)
実施例触媒1〜5及び比較例触媒1,2のCOによるNOx浄化率を評価した。図1にNOx浄化率を示す。比較例触媒1,2ではNOx浄化率が10%以下であるのに対し、実施例触媒1〜5では15%以上の高いNOx浄化率を示すことが確認された。
(Study results)
The NOx purification rates by CO of Example Catalysts 1 to 5 and Comparative Example Catalysts 1 and 2 were evaluated. FIG. 1 shows the NOx purification rate. It was confirmed that the NOx purification rates of Comparative Examples Catalysts 1 and 2 were 10% or less, while Example Catalysts 1 to 5 showed a high NOx purification rate of 15% or more.

よって、触媒活性成分として、Ag,Ir,Rh,Pt及びPdから選ばれた少なくとも1種と、Coとを用いることで、高いNOx浄化率が得られることは明らかである。   Therefore, it is clear that a high NOx purification rate can be obtained by using at least one selected from Ag, Ir, Rh, Pt and Pd and Co as the catalytic active component.

実施例1において、CeO2の代わりに、CeZrO粉(第一稀元素化学工業社製),Prを添加したCeZrO粉,Yを添加したCeZrO粉を用いたこと以外は実施例触媒2と同様の調製法により、各粉体にCo及びIrを添加した実施例触媒6〜8を調製した。一方、実施例2において、CeO2の代わりに、Al23(サソール製)を用いたこと以外は実施例触媒2と同様の調製法を用いて、各粉体にCo及びIrを添加した比較例触媒3を調製した。表2に調製した触媒一覧を示す。 In Example 1, CeZrO powder (manufactured by Daiichi Rare Element Chemical Co., Ltd.), CeZrO powder to which Pr was added, and CeZrO powder to which Y was added were used instead of CeO 2 . Example catalysts 6 to 8 in which Co and Ir were added to each powder were prepared by the preparation method. On the other hand, in Example 2, Co and Ir were added to each powder using the same preparation method as Example Catalyst 2 except that Al 2 O 3 (manufactured by Sasol) was used instead of CeO 2 . Comparative catalyst 3 was prepared. Table 2 shows a list of prepared catalysts.

Figure 2009297628
Figure 2009297628

実施例触媒6〜8,比較例触媒3について、COによるNOx浄化率を図2に示す。   FIG. 2 shows the NOx purification rate by CO for Example Catalysts 6 to 8 and Comparative Example Catalyst 3.

多孔質担体としてZr,Pr及びYから選ばれる少なくとも1種と、Ceとを含む場合には、NOx浄化率が25%に到達し、高い浄化率を示すことがわかる。多孔質担体がAl23の比較例触媒3は、5%の浄化率しか得られなかった。 When at least one selected from Zr, Pr and Y as the porous carrier and Ce are included, it can be seen that the NOx purification rate reaches 25% and a high purification rate is exhibited. Comparative Example Catalyst 3 in which the porous carrier was Al 2 O 3 was only able to obtain a purification rate of 5%.

よって、多孔質担体として、Zr,Pr及びYの少なくとも1つと、Ceとを含む実施例触媒6〜8は、高いNOx浄化率が得られることは明らかである。   Therefore, it is clear that Example Catalysts 6 to 8 containing at least one of Zr, Pr and Y and Ce as the porous carrier can obtain a high NOx purification rate.

実施例触媒2において、触媒活性成分のCo原料として、金属アルコキシドではなく、硝酸塩を用いて調製した実施例触媒9を得た。表3に実施例触媒9を示す。実施例触媒2で用いたCeO2に対し、硝酸Co水溶液を含浸法にて添加した後、120℃で乾燥し、400℃×2hの焼成を施すことで、CoをCeO2へ担持させた。Ir添加法及びCo,Ir担持量は、実施例触媒2と同様である。 In Example catalyst 2, Example catalyst 9 prepared using nitrate instead of metal alkoxide as the Co raw material for the catalytically active component was obtained. Table 3 shows Example catalyst 9. An aqueous Co nitrate solution was added to the CeO 2 used in Example Catalyst 2 by an impregnation method, and then dried at 120 ° C. and calcined at 400 ° C. for 2 hours to support Co on CeO 2 . The Ir addition method and the Co and Ir loadings are the same as in Example Catalyst 2.

図3に、実施例触媒9のNOx浄化率を、Coのアルコキシドを用いて調製した実施例触媒2のNOx浄化率を示す。図3より、硝酸塩を用いて調製した実施例触媒9のNOx浄化率は16%程度であり、原料としてCoのアルコキシドを使用した実施例触媒2に比べると、NOx浄化率は低かったが、比較的高いNOx浄化率が得られた。   FIG. 3 shows the NOx purification rate of the example catalyst 9 prepared by using the Co alkoxide as the NOx purification rate of the example catalyst 9. From FIG. 3, the NOx purification rate of Example Catalyst 9 prepared using nitrate was about 16%. Compared to Example Catalyst 2 using Co alkoxide as a raw material, the NOx purification rate was low. A high NOx purification rate was obtained.

Figure 2009297628
Figure 2009297628

排ガス中に炭化水素(HC)が共存する影響を評価するために、モデルガスの組成をNOx:150ppm,CO:1500ppm,C36:500ppm,O2:3%,H2O:3%,N2:残部とし、体積空間速度(F/V)を30,000/hとして、このモデルガスを使用して、実施例触媒1,2,4によるNOx浄化率を評価した。図4に、C36の有無に関するNOx浄化率を示す。 In order to evaluate the effect of coexistence of hydrocarbons (HC) in the exhaust gas, the composition of the model gas is NOx: 150 ppm, CO: 1500 ppm, C 3 H 6 : 500 ppm, O 2 : 3%, H 2 O: 3% , N 2 : The remainder, the volume space velocity (F / V) was set to 30,000 / h, and this model gas was used to evaluate the NOx purification rate by the catalyst examples 1, 2, and 4. FIG. 4 shows the NOx purification rate related to the presence or absence of C 3 H 6 .

排ガス中にC36が共存する場合には、実施例触媒1,2,4のNOx浄化率は10%以下となり、大きく低下する。 When C 3 H 6 coexists in the exhaust gas, the NOx purification rates of the catalyst examples 1, 2, and 4 are 10% or less, which is greatly reduced.

よって、本発明のNOx浄化触媒は、NOx浄化触媒に流入する炭化水素(HC)量が、炭素原子換算で、CO量以下である雰囲気で使用することが好ましい。   Therefore, the NOx purification catalyst of the present invention is preferably used in an atmosphere in which the amount of hydrocarbon (HC) flowing into the NOx purification catalyst is not more than the CO amount in terms of carbon atoms.

CO濃度の影響を評価するために、モデルガスの組成をNOx:150ppm,CO:250ppm〜1500ppm,O2:3%,H2O:3%,N2:残部とし、体積空間速度(F/V)を30,000/hとして、CO濃度を変化させた場合の実施例触媒2のNOx浄化率を評価した。図5に、CO濃度に対するNOx浄化率の変化を示す。 In order to evaluate the influence of CO concentration, the composition of the model gas is NOx: 150 ppm, CO: 250 ppm to 1500 ppm, O 2 : 3%, H 2 O: 3%, N 2 : balance, and volume space velocity (F / Vx was set to 30,000 / h, and the NOx purification rate of Example catalyst 2 when the CO concentration was changed was evaluated. FIG. 5 shows the change in the NOx purification rate with respect to the CO concentration.

CO濃度が250ppmの場合でも、NOx浄化率は19%あり十分高いが、CO濃度を高めて450ppm以上、すなわちモル比でNOxに対して3倍以上の濃度とすることでNOx浄化率は20%を超え、更に高いNOx浄化率を示すようになる。   Even when the CO concentration is 250 ppm, the NOx purification rate is 19% and is sufficiently high, but the NOx purification rate is 20% by increasing the CO concentration to 450 ppm or more, that is, a concentration three times or more that of NOx in terms of molar ratio. And a higher NOx purification rate is exhibited.

よって、本発明のNOx浄化触媒は、CO濃度がNOx濃度に対してモル比で3倍以上の雰囲気で使用することが好ましい。   Therefore, the NOx purification catalyst of the present invention is preferably used in an atmosphere in which the CO concentration is at least 3 times the molar ratio with respect to the NOx concentration.

体積空間速度(F/V)の影響を評価するために、モデルガスの組成をNOx:150ppm,CO:1500ppm,O2:3%,H2O:3%,N2:残部とし、体積空間速度(F/V)を7500/h〜45,000/hとして、体積空間速度(F/V)を変化させた場合の実施例触媒2のNOx浄化率を評価した。図6に、体積空間速度(F/V)に対するNOx浄化率の変化を示す。 In order to evaluate the effect of the volume space velocity (F / V), the composition of the model gas is NOx: 150 ppm, CO: 1500 ppm, O 2 : 3%, H 2 O: 3%, N 2 : the balance, and the volume space The NOx purification rate of Example catalyst 2 when the volume space velocity (F / V) was changed at a speed (F / V) of 7500 / h to 45,000 / h was evaluated. FIG. 6 shows the change in the NOx purification rate with respect to the volume space velocity (F / V).

体積空間速度(F/V)を低くするとともにNOx浄化率は向上し、体積空間速度(F/V)を30000/h以下とすることで、NOx浄化率は20%を超え、高いNOx浄化率を示すようになる。   Lowering the volume space velocity (F / V) and improving the NOx purification rate, and making the volume space velocity (F / V) 30000 / h or less, the NOx purification rate exceeds 20%, and the high NOx purification rate Will come to show.

よって、本発明のNOx浄化触媒は、体積空間速度(F/V)が30000/h以下の雰囲気で使用することが好ましい。   Therefore, the NOx purification catalyst of the present invention is preferably used in an atmosphere having a volume space velocity (F / V) of 30000 / h or less.

図7(a)は、本発明の排ガス浄化装置の一実施形態の構成を模式的に示す図である。この排ガス浄化装置は、ボイラーの排ガス流路に実施例触媒2を2個設置し、触媒間に、CO量調整手段としてCOガス注入口を配置している。実施例触媒2はCO酸化能が高く、図1で示したデータを取得した実験の場合、NOx浄化触媒の後段から排出されるCO量は0ppmであった。   Fig.7 (a) is a figure which shows typically the structure of one Embodiment of the exhaust gas purification apparatus of this invention. In this exhaust gas purifying apparatus, two example catalysts 2 are installed in an exhaust gas flow path of a boiler, and a CO gas inlet is disposed between the catalysts as a CO amount adjusting means. The catalyst of Example 2 has a high CO oxidation ability, and in the experiment where the data shown in FIG. 1 was acquired, the amount of CO discharged from the subsequent stage of the NOx purification catalyst was 0 ppm.

一方、図7(b)のように、実施例触媒2を2個並べるだけでは、後段のNOx浄化触媒にCOが流入しないため、NOx浄化率は向上しない。   On the other hand, as shown in FIG. 7B, simply arranging two example catalysts 2 will not improve the NOx purification rate because CO does not flow into the downstream NOx purification catalyst.

よって、図7(a)のように、触媒間にCOガス注入口を設けることで、後段のNOx浄化触媒にもCOが流入するため、NOx浄化率が向上する。   Therefore, as shown in FIG. 7A, by providing the CO gas inlet between the catalysts, CO flows into the subsequent NOx purification catalyst, so that the NOx purification rate is improved.

図8に、本発明の排ガス浄化装置の一実施例を示す。この排ガス浄化装置は、ボイラーの排ガス流路の流れに沿って、実施例触媒2,NH3供給手段としてNH3注入口,NH3脱硝触媒(Ti−V系触媒)を配置している。ボイラーからのNOx排出量が極めて多い場合、もしくは熱機関からのCO排出量が少ない場合には、実施例触媒2のみではNOxを十分に浄化できないため、図8に示すような排ガス浄化装置を使用する。図8に示す浄化装置によれば、NOxの高い浄化性能が得られる。 FIG. 8 shows an embodiment of the exhaust gas purifying apparatus of the present invention. The exhaust gas purifying apparatus, along the flow of exhaust gas flow path of a boiler, NH 3 inlet as for example catalyst 2, NH 3 supply means, are arranged NH 3 denitration catalyst (Ti-V-based catalyst). If the NOx emission from the boiler is very large, or if the CO emission from the heat engine is small, NOx cannot be sufficiently purified by the catalyst of Example 2 alone, so an exhaust gas purification device as shown in FIG. 8 is used. To do. According to the purification apparatus shown in FIG. 8, high NOx purification performance can be obtained.

図9に、本発明の排ガス浄化装置の一実施例を示す。排ガス浄化装置は、ボイラー1の排ガス流路に配置されており、NOx浄化触媒6,CO量調整手段(COタンク3,CO注入口4),COセンサー2,NOx浄化触媒入口ガス温度センサー5,NOxセンサー7及び制御ユニット8を備えている。   FIG. 9 shows an embodiment of the exhaust gas purifying apparatus of the present invention. The exhaust gas purification device is disposed in the exhaust gas flow path of the boiler 1, and includes a NOx purification catalyst 6, a CO amount adjusting means (CO tank 3, CO inlet 4), a CO sensor 2, a NOx purification catalyst inlet gas temperature sensor 5. A NOx sensor 7 and a control unit 8 are provided.

以下に、この排ガス浄化装置を用いた排ガス浄化方法を説明する。   Below, the exhaust gas purification method using this exhaust gas purification apparatus is demonstrated.

ボイラー1から排出された排ガスは、化学量論量よりも過剰な酸素雰囲気であり、酸素以外にCO,NOxを含んでいる。排ガスがNOx浄化触媒6に接触すると、排ガス中のCOとNOxとが反応しNOxが除去される。   The exhaust gas discharged from the boiler 1 has an oxygen atmosphere that is more than the stoichiometric amount, and contains CO and NOx in addition to oxygen. When the exhaust gas contacts the NOx purification catalyst 6, CO and NOx in the exhaust gas react to remove NOx.

NOx浄化触媒6に流入する排ガスの温度は、NOx浄化触媒の入口付近に配置されたNOx浄化触媒入口ガス温度センサー5により常にモニターされている。また、排ガスのCO濃度は、COセンサー2により測定されている。これらセンサーの信号は、全て制御ユニット8へ入力される。制御ユニット8では、ボイラー及び排ガス浄化装置の状態を評価して、適切な燃焼条件,浄化条件に制御する。   The temperature of the exhaust gas flowing into the NOx purification catalyst 6 is constantly monitored by the NOx purification catalyst inlet gas temperature sensor 5 disposed in the vicinity of the inlet of the NOx purification catalyst. The CO concentration of the exhaust gas is measured by the CO sensor 2. All signals from these sensors are input to the control unit 8. The control unit 8 evaluates the states of the boiler and the exhaust gas purification device, and controls them to appropriate combustion conditions and purification conditions.

大気中に排出されるNOx量は、NOx浄化触媒6の後流に設置されたNOxセンサー7で常に測定される。NOxセンサー7がNOx量を多いと判定した場合には、制御ユニット8がボイラーの燃焼状態を変更する制御を行い、ボイラーの排ガス中のCO濃度(CO量)を増加させるか、または、COタンク3からCOを排ガス流路に注入する制御を行う。このようにすることで、NOx浄化触媒6に流入するCO量を増やして、排ガス中のNOx量を低減することができる。   The amount of NOx discharged into the atmosphere is always measured by a NOx sensor 7 installed downstream of the NOx purification catalyst 6. When the NOx sensor 7 determines that the amount of NOx is large, the control unit 8 performs control to change the combustion state of the boiler to increase the CO concentration (CO amount) in the exhaust gas of the boiler, or the CO tank 3 to control the injection of CO into the exhaust gas flow path. By doing in this way, the amount of CO flowing into the NOx purification catalyst 6 can be increased, and the amount of NOx in the exhaust gas can be reduced.

よって、この排ガス浄化装置及び浄化方法によれば、化学量論量よりも過剰な酸素雰囲気の排ガスを排出する熱機関に対して、NOxの排出量を効果的に低減することができる。   Therefore, according to this exhaust gas purification apparatus and purification method, the NOx emission amount can be effectively reduced with respect to a heat engine that exhausts exhaust gas in an oxygen atmosphere that is in excess of the stoichiometric amount.

触媒活性成分が異なる各種NOx浄化触媒について、COによるNOx浄化活性を示す図。The figure which shows NOx purification activity by CO about various NOx purification catalysts from which a catalyst active component differs. 担体成分が異なる各種NOx浄化触媒について、COによるNOx浄化活性を示す図。The figure which shows NOx purification activity by CO about various NOx purification catalysts from which a carrier component differs. 触媒活性成分の原料を変えたものについて、COによるNOx浄化活性を示す図。The figure which shows NOx purification activity by CO about what changed the raw material of a catalyst active component. 各種NOx浄化触媒について、排ガス中のC36の有無によるNOx浄化活性の違いを示す図。For various NOx purifying catalyst, it shows the difference in NOx purification activity by the presence or absence of C 3 H 6 in the exhaust gas. NOx浄化触媒について、排ガス中のCO濃度によるNOx浄化活性の変化を示す図。The figure which shows the change of NOx purification activity by the CO density | concentration in waste gas about a NOx purification catalyst. NOx浄化触媒について、排ガスの体積空間速度(F/V)によるNOx浄化活性の変化を示す図。The figure which shows the change of NOx purification activity by the volume space velocity (F / V) of exhaust gas about a NOx purification catalyst. (a)は2個のNOx浄化触媒の間にCO注入口を設けた熱機関排ガス浄化装置の構成図、(b)は2個のNOx浄化触媒を排ガス流路に沿って設置した熱機関排ガス浄化装置の構成図。(A) is a block diagram of a heat engine exhaust gas purification apparatus in which a CO inlet is provided between two NOx purification catalysts, and (b) is a heat engine exhaust gas in which two NOx purification catalysts are installed along an exhaust gas flow path. The block diagram of a purification apparatus. NOx浄化触媒の後段にNH3脱硝触媒を設けた熱機関の排ガス浄化装置の構成図。Diagram of the exhaust gas purifying apparatus of the heat engine provided with a NH 3 denitration catalyst downstream of the NOx purifying catalyst. 本発明の排ガス浄化装置の一実施態様を模式的に示す図。The figure which shows typically one embodiment of the exhaust gas purification apparatus of this invention.

符号の説明Explanation of symbols

1 ボイラー
2 COセンサー
3 COタンク
4 CO注入口
5 NOx浄化触媒入口ガス温度センサー
6 NOx浄化触媒
7 NOxセンサー
8 制御ユニット
1 Boiler 2 CO sensor 3 CO tank 4 CO inlet 5 NOx purification catalyst inlet gas temperature sensor 6 NOx purification catalyst 7 NOx sensor 8 Control unit

Claims (16)

化学量論量よりも過剰な酸素雰囲気の排ガスを排出する熱機関の排ガス流路に配置され、一酸化炭素(CO)を還元剤として前記排ガス中の窒素酸化物(NOx)を還元して浄化するNOx浄化触媒を備える熱機関の排ガス浄化装置であって、前記NOx浄化触媒が、セリウム(Ce)を含む多孔質担体と、前記多孔質担体上に担持され、銀(Ag),イリジウム(Ir),ロジウム(Rh),白金(Pt)及びパラジウム(Pd)から選ばれる少なくとも1種と、コバルト(Co)とを含む触媒活性成分とを有することを特徴とする熱機関の排ガス浄化装置。   It is arranged in the exhaust gas flow path of a heat engine that exhausts exhaust gas in an oxygen atmosphere that is more than the stoichiometric amount, and purifies by reducing nitrogen oxide (NOx) in the exhaust gas using carbon monoxide (CO) as a reducing agent. An exhaust gas purifying apparatus for a heat engine comprising a NOx purifying catalyst, wherein the NOx purifying catalyst is supported on the porous carrier containing cerium (Ce), silver (Ag), iridium (Ir) ), Rhodium (Rh), platinum (Pt), and palladium (Pd), and a catalytically active component containing cobalt (Co), and an exhaust gas purification apparatus for a heat engine. 前記多孔質担体が、さらに、ジルコニウム(Zr),プラセオジム(Pr)及びイットリウム(Y)から選ばれる少なくとも1種を含む金属酸化物であることを特徴とする請求項1に記載の熱機関の排ガス浄化装置。   2. The exhaust gas of a heat engine according to claim 1, wherein the porous carrier is a metal oxide containing at least one selected from zirconium (Zr), praseodymium (Pr), and yttrium (Y). Purification equipment. 前記NOx浄化触媒に接触する排ガス中の炭化水素(HC)の量が、炭素原子換算で、該触媒に接触するCOの量と同等、またはCOの量よりも少なくなるようにCO量を調整するCO量調整手段、またはHC量を調整するHC量調整手段を配置することを特徴とする請求項1または2に記載の熱機関の排ガス浄化装置。   The amount of CO is adjusted so that the amount of hydrocarbon (HC) in the exhaust gas in contact with the NOx purification catalyst is equivalent to or less than the amount of CO in contact with the catalyst in terms of carbon atoms. The exhaust gas purifying apparatus for a heat engine according to claim 1 or 2, wherein a CO amount adjusting means or an HC amount adjusting means for adjusting the HC amount is arranged. 前記触媒活性成分のCoは、有機金属化合物を出発原料として調製されることを特徴とする請求項1乃至3のいずれか1項に記載の熱機関の排ガス浄化装置。   The exhaust gas purification apparatus for a heat engine according to any one of claims 1 to 3, wherein the catalytically active component Co is prepared using an organometallic compound as a starting material. 前記NOx浄化触媒に接触する排ガスの流量をF、該触媒の体積をVとした場合に、体積空間速度(F/V)が30000/h以下であることを特徴とする請求項1乃至4のいずれか1項に記載の熱機関の排ガス浄化装置。   5. The volume space velocity (F / V) is 30000 / h or less, where F is the flow rate of exhaust gas contacting the NOx purification catalyst and V is the volume of the catalyst. The exhaust gas purification apparatus for a heat engine according to any one of the preceding claims. 前記NOx浄化触媒を排ガス流路に複数個配置し、該触媒と該触媒との間の排ガス流路に排ガス中のCO量を調整するCO量調整手段を配置することを特徴とする請求項1乃至5のいずれか1項に記載の熱機関の排ガス浄化装置。   2. A plurality of NOx purification catalysts are disposed in an exhaust gas flow path, and a CO amount adjusting means for adjusting the CO amount in the exhaust gas is disposed in an exhaust gas flow path between the catalyst and the catalyst. The exhaust gas purifying device for a heat engine according to any one of claims 1 to 5. 前記NOx浄化触媒に接触するCO量が、該触媒に接触するNOx量に対してモル比で3倍以上になるようにCO量を調整するCO量調整手段を配置することを特徴とする請求項1乃至6のいずれか1項に記載の熱機関の排ガス浄化装置。   The CO amount adjusting means for adjusting the CO amount so that the CO amount in contact with the NOx purification catalyst is 3 times or more in molar ratio with respect to the NOx amount in contact with the catalyst is provided. The exhaust gas purification apparatus for a heat engine according to any one of 1 to 6. 前記NOx浄化触媒の前段または後段に、NH3を還元剤としてNOxを還元して浄化するNH3脱硝触媒を配置することを特徴とする請求項1乃至7のいずれか1項に記載の熱機関の排ガス浄化装置。 The heat engine according to any one of claims 1 to 7, wherein an NH 3 denitration catalyst that reduces and purifies NOx using NH 3 as a reducing agent is disposed upstream or downstream of the NOx purification catalyst. Exhaust gas purification equipment. 前記NOx浄化触媒の後段に、排ガス中のNOx量を計測するNOxセンサーを配置することを特徴とする請求項1乃至8のいずれか1項に記載の熱機関の排ガス浄化装置。   The exhaust gas purification apparatus for a heat engine according to any one of claims 1 to 8, wherein a NOx sensor that measures the amount of NOx in the exhaust gas is disposed downstream of the NOx purification catalyst. COを還元剤として、化学量論量よりも過剰な酸素雰囲気の排ガス中のNOxを還元して浄化するNOx浄化触媒であって、Ceを含む多孔質担体と、前記多孔質担体上に担持され、Ag,Ir,Rh,Pt及びPdから選ばれる少なくとも1種と、Coとを含む触媒活性成分とを備えることを特徴とするNOx浄化触媒。   A NOx purification catalyst that reduces and purifies NOx in exhaust gas in an oxygen atmosphere in excess of the stoichiometric amount using CO as a reducing agent, comprising a porous carrier containing Ce, and supported on the porous carrier A NOx purification catalyst comprising: a catalytic active component containing at least one selected from Ag, Ir, Rh, Pt and Pd, and Co. 前記多孔質担体が、さらに、Zr,Pr及びYから選ばれる少なくとも1種を含む金属酸化物であることを特徴とする請求項10に記載のNOx浄化触媒。   The NOx purification catalyst according to claim 10, wherein the porous carrier is a metal oxide containing at least one selected from Zr, Pr and Y. Ceを含む多孔質担体と、前記多孔質担体上に担持され、Ag,Ir,Rh,Pt及びPdから選ばれる少なくとも1種と、Coとを含む触媒活性成分とを有するNOx浄化触媒を用いて、COを還元剤として、熱機関から排出される化学量論量よりも過剰な酸素雰囲気の排ガス中のNOxを還元して浄化することを特徴とする熱機関の排ガス浄化方法。   Using a NOx purification catalyst comprising a porous support containing Ce, at least one selected from Ag, Ir, Rh, Pt and Pd supported on the porous support and a catalytically active component containing Co An exhaust gas purification method for a heat engine, characterized by reducing and purifying NOx in the exhaust gas in an oxygen atmosphere in excess of the stoichiometric amount discharged from the heat engine using CO as a reducing agent. 前記多孔質担体が、さらに、Zr,Pr及びYから選ばれる少なくとも1種を含む金属酸化物であることを特徴とする請求項12に記載の熱機関の排ガス浄化方法。   The exhaust gas purification method for a heat engine according to claim 12, wherein the porous carrier is a metal oxide containing at least one selected from Zr, Pr and Y. 前記熱機関の燃焼状態を調整して、前記NOx浄化触媒に流入するHCの量を、炭素原子換算で、COの量と同等、もしくはCOの量よりも少なくすることを特徴とする請求項12または13に記載の熱機関の排ガス浄化方法。   The amount of HC flowing into the NOx purification catalyst is adjusted by adjusting the combustion state of the heat engine so as to be equivalent to or less than the amount of CO in terms of carbon atoms. Or the exhaust gas purification method for a heat engine according to 13, 前記熱機関の燃焼状態を調整して、前記NOx浄化触媒に流入するCO量を、NOx量に対してモル比で3倍以上にすることを特徴とする請求項12乃至14のいずれか1項に記載の熱機関の排ガス浄化方法。   The combustion state of the heat engine is adjusted so that the amount of CO flowing into the NOx purification catalyst is three times or more in molar ratio with respect to the amount of NOx. An exhaust gas purification method for a heat engine as described in 1. 前記熱機関の燃焼状態を調整して、前記NOx浄化触媒に流入する排ガスの空燃比を間欠的にストイキ〜リッチに切り替えずに、常にリーンに保つことを特徴とする請求項12乃至15のいずれか1項に記載の熱機関の排ガス浄化方法。   16. The combustion state of the heat engine is adjusted so that the air-fuel ratio of the exhaust gas flowing into the NOx purification catalyst is always kept lean without being intermittently switched from stoichiometric to rich. The exhaust gas purification method for a heat engine according to claim 1.
JP2008153659A 2008-06-12 2008-06-12 APPARATUS AND METHOD FOR CLEANING EXHAUST GAS OF HEAT ENGINE AND NOx CLEANING CATALYST Pending JP2009297628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008153659A JP2009297628A (en) 2008-06-12 2008-06-12 APPARATUS AND METHOD FOR CLEANING EXHAUST GAS OF HEAT ENGINE AND NOx CLEANING CATALYST

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008153659A JP2009297628A (en) 2008-06-12 2008-06-12 APPARATUS AND METHOD FOR CLEANING EXHAUST GAS OF HEAT ENGINE AND NOx CLEANING CATALYST

Publications (1)

Publication Number Publication Date
JP2009297628A true JP2009297628A (en) 2009-12-24

Family

ID=41545090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008153659A Pending JP2009297628A (en) 2008-06-12 2008-06-12 APPARATUS AND METHOD FOR CLEANING EXHAUST GAS OF HEAT ENGINE AND NOx CLEANING CATALYST

Country Status (1)

Country Link
JP (1) JP2009297628A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016208717A1 (en) * 2015-06-24 2016-12-29 三菱日立パワーシステムズ株式会社 Denitration device and denitration method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS525671A (en) * 1975-07-03 1977-01-17 Hitachi Zosen Corp Process for removing nitrogen oxides contained in exhaust gases
JPS63248441A (en) * 1987-04-06 1988-10-14 Agency Of Ind Science & Technol Production of catalyst
JPH07289852A (en) * 1994-04-26 1995-11-07 Sekiyu Sangyo Kasseika Center Method for catalytically reducing nox
JPH10263368A (en) * 1997-03-26 1998-10-06 Jisedai Haikazu Shokubai Kenkyusho:Kk Purifying device of exhaust gas
JP2000515058A (en) * 1996-05-28 2000-11-14 アングロ・アメリカン・リサーチ・ラボラトリーズ・(プロプライエタリー)・リミテッド Oxidation catalyst
JP2003220336A (en) * 2002-01-29 2003-08-05 Toyota Motor Corp Catalyst for cleaning exhaust gas
JP2005169357A (en) * 2003-12-15 2005-06-30 Nissan Motor Co Ltd Exhaust gas cleaning system
JP2006142137A (en) * 2004-11-16 2006-06-08 Nissan Motor Co Ltd Catalyst for cleaning exhaust gas and its production method
JP2009112967A (en) * 2007-11-08 2009-05-28 Honda Motor Co Ltd Apparatus and method for cleaning exhaust gas of internal combustion engine

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS525671A (en) * 1975-07-03 1977-01-17 Hitachi Zosen Corp Process for removing nitrogen oxides contained in exhaust gases
JPS63248441A (en) * 1987-04-06 1988-10-14 Agency Of Ind Science & Technol Production of catalyst
JPH07289852A (en) * 1994-04-26 1995-11-07 Sekiyu Sangyo Kasseika Center Method for catalytically reducing nox
JP2000515058A (en) * 1996-05-28 2000-11-14 アングロ・アメリカン・リサーチ・ラボラトリーズ・(プロプライエタリー)・リミテッド Oxidation catalyst
JPH10263368A (en) * 1997-03-26 1998-10-06 Jisedai Haikazu Shokubai Kenkyusho:Kk Purifying device of exhaust gas
JP2003220336A (en) * 2002-01-29 2003-08-05 Toyota Motor Corp Catalyst for cleaning exhaust gas
JP2005169357A (en) * 2003-12-15 2005-06-30 Nissan Motor Co Ltd Exhaust gas cleaning system
JP2006142137A (en) * 2004-11-16 2006-06-08 Nissan Motor Co Ltd Catalyst for cleaning exhaust gas and its production method
JP2009112967A (en) * 2007-11-08 2009-05-28 Honda Motor Co Ltd Apparatus and method for cleaning exhaust gas of internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016208717A1 (en) * 2015-06-24 2016-12-29 三菱日立パワーシステムズ株式会社 Denitration device and denitration method
CN107708842A (en) * 2015-06-24 2018-02-16 三菱日立电力系统株式会社 Denitrification apparatus and method of denitration
JPWO2016208717A1 (en) * 2015-06-24 2018-05-24 三菱日立パワーシステムズ株式会社 Denitration apparatus and denitration method

Similar Documents

Publication Publication Date Title
JP4806613B2 (en) Gas purification method, gas purification device, and gas purification catalyst
JP2010184238A (en) Method of removing nitrogen oxides in exhaust gas
JP2007167780A (en) Catalyst for exhaust gas purification
JP2008012480A (en) Catalyst for cleaning exhaust gas
WO2006049042A1 (en) Exhaust gas purification catalyst
JP4203926B2 (en) Method and apparatus for removing nitrous oxide, etc. from exhaust gas
JP2001170454A (en) Exhaust gas cleaning system and exhaust gas cleaning catalyst
JP6107487B2 (en) N2O decomposition catalyst and N2O-containing gas decomposition method using the same
JP4985351B2 (en) Exhaust gas treatment catalyst and exhaust gas purification device
JP2008238069A (en) Purification device for exhaust gas, purification method for exhaust gas, and purification catalyst
JP2009208039A (en) Catalyst for removing particulate matter and method for removing particulate matter by using the same
JP5388052B2 (en) Exhaust gas treatment catalyst
JP2007239616A (en) Exhaust emission control device, exhaust emission control method, and purification catalyst
JP5196656B2 (en) Exhaust gas purification catalyst and method for producing the same
JP2009138591A (en) Exhaust emission control device, exhaust emission control method, and nox emission control catalyst of thermal engine
JP2006150223A (en) Exhaust-gas cleaning filter, production method of the filter and exhaust-gas cleaning apparatus
JP2006026635A (en) Method of removing nitrogen oxides contained in exhaust gas
JP2009297628A (en) APPARATUS AND METHOD FOR CLEANING EXHAUST GAS OF HEAT ENGINE AND NOx CLEANING CATALYST
JP6126858B2 (en) Exhaust gas purification device for internal combustion engine
JP2011050855A (en) Exhaust gas purifying apparatus
JP2007260641A (en) Catalyst for purifying exhaust gas and its manufacturing method
JP2010203328A (en) Exhaust emission control device for thermal engine, exhaust emission control method and nox elimination catalyst
JP2005279332A (en) Exhaust gas cleaning catalyst and oxygen occlusion material for waste gas cleaning catalyst
JP2023132508A (en) Nitrous oxide purification system and nitrous oxide purification method using the same
JP5281944B2 (en) Nitrogen dioxide purification method and nitrogen dioxide purification device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121016