JP2010203328A - Exhaust emission control device for thermal engine, exhaust emission control method and nox elimination catalyst - Google Patents

Exhaust emission control device for thermal engine, exhaust emission control method and nox elimination catalyst Download PDF

Info

Publication number
JP2010203328A
JP2010203328A JP2009050072A JP2009050072A JP2010203328A JP 2010203328 A JP2010203328 A JP 2010203328A JP 2009050072 A JP2009050072 A JP 2009050072A JP 2009050072 A JP2009050072 A JP 2009050072A JP 2010203328 A JP2010203328 A JP 2010203328A
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst
nox
amount
heat engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009050072A
Other languages
Japanese (ja)
Inventor
Masahito Kanae
雅人 金枝
Hidehiro Iizuka
秀宏 飯塚
Toshiaki Nagayama
敏明 長山
Daiki Sato
大樹 佐藤
Yasuyoshi Kato
泰良 加藤
Naomi Imada
尚美 今田
Masatoshi Fujisawa
雅敏 藤澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2009050072A priority Critical patent/JP2010203328A/en
Publication of JP2010203328A publication Critical patent/JP2010203328A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device and an exhaust emission control method for a thermal engine eliminating NOx in exhaust gas in an oxygen excess atmosphere with high elimination performance using CO, and to provide an NOx elimination catalyst used for the same. <P>SOLUTION: The exhaust emission control device for the thermal engine equipped with the NOx elimination catalyst reducing and eliminating nitrogen oxides (NOx) in exhaust gas using CO as reducer is disposed in an exhaust gas channel of the thermal engine discharging exhaust gas in an atmosphere containing CO and NOx and oxygen excessive from stoichiometric quantity. The NOx elimination catalyst includes a porous carrier and catalyst activating component carried on the porous carrier, and includes NOx elimination function by containing Ir and at least one kind selected from Au, Rh and Pd as the catalyst activating component. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、熱機関から排出される酸素過剰雰囲気の排ガス中の窒素酸化物(NOx)を浄化する熱機関の排ガス浄化装置,排ガス浄化方法及びそれに用いるNOx浄化触媒に関する。   The present invention relates to an exhaust gas purifying apparatus, an exhaust gas purifying method, and an NOx purifying catalyst used therefor for purifying nitrogen oxides (NOx) in exhaust gas in an oxygen-excess atmosphere exhausted from a heat engine.

近年、空燃比(ガス中の空気と燃料との比)を燃料希薄とするリーンバーンエンジンやディーゼルエンジン、あるいはガスタービンや化学プラント等のように酸素過剰の雰囲気下で運転する熱機関の増加に伴い、過剰酸素下で一酸化炭素(CO)を用いて窒素酸化物(NOx)を浄化する方法が要求されている。   In recent years, there has been an increase in the number of heat engines that operate under an oxygen-rich atmosphere, such as lean burn engines, diesel engines, gas turbines, chemical plants, etc., where the air-fuel ratio (ratio of air to fuel in the gas) is lean. Accordingly, a method for purifying nitrogen oxide (NOx) using carbon monoxide (CO) under excess oxygen is required.

過剰酸素下でもNOxを浄化する方法としては、アンモニアを還元剤として酸化チタン系触媒上でNOxを選択的に接触還元する方法が提案されており、ボイラーやガスタービンの排ガス浄化に適用されている(例えば、特許文献1参照)。   As a method of purifying NOx even under excess oxygen, a method of selectively catalytically reducing NOx on a titanium oxide catalyst using ammonia as a reducing agent has been proposed and applied to exhaust gas purification of boilers and gas turbines. (For example, refer to Patent Document 1).

しかし、アンモニアは刺激臭を有するため安全性に問題があり、更にアンモニア自体のコストもかかる。   However, since ammonia has an irritating odor, there is a problem in safety, and further, the cost of ammonia itself is high.

そこで、排ガス中に元々含有している水素,一酸化炭素(CO),炭化水素(HC)等の還元剤を用いてNOxを還元して浄化する方法が提案されている。   Therefore, a method for reducing and purifying NOx using a reducing agent such as hydrogen, carbon monoxide (CO), and hydrocarbon (HC) originally contained in the exhaust gas has been proposed.

例えば特許文献2には、金属酸化物からなる多孔質の担体に、ロジウム(Rh)及び銀を担持したNOx浄化触媒を用いてNOxを還元して浄化する方法が記載されており、過剰の酸素を含有する排ガス中の炭化水素,CO及びNOxを同時に除去することが記載されている。   For example, Patent Document 2 describes a method of reducing and purifying NOx using a NOx purifying catalyst supporting rhodium (Rh) and silver on a porous carrier made of a metal oxide, and an excess of oxygen. The simultaneous removal of hydrocarbons, CO and NOx in exhaust gas containing benzene is described.

また、特許文献3には、排ガス中の炭化水素を不完全燃焼させることで、酸素を含有する排ガス中のNOxの還元効率が高まることが記載されている。   Patent Document 3 describes that the reduction efficiency of NOx in exhaust gas containing oxygen is increased by incomplete combustion of hydrocarbons in exhaust gas.

特許文献4には、NOx吸蔵触媒を用いて、空燃比がリーンの時には排ガス中のNOxを一旦酸化して触媒に捕捉させて、一定量のNOxが捕捉された場合に、空燃比をストイキもしくはリッチに切り替えて、捕捉されたNOxを浄化する技術が記載されている。   In Patent Document 4, when a NOx storage catalyst is used, when the air-fuel ratio is lean, NOx in the exhaust gas is once oxidized and trapped by the catalyst, and when a certain amount of NOx is trapped, the air-fuel ratio is stoichiometric or A technique for purifying trapped NOx by switching to rich is described.

さらに、特許文献5には、NOx吸蔵触媒の前段に水素生成触媒を設置する浄化装置が記載されている。特許文献5には、貴金属を含有する水素生成触媒を用いることで、水蒸気改質反応が進行し、活性が向上することが記載されている。   Furthermore, Patent Document 5 describes a purification device in which a hydrogen generation catalyst is installed in front of a NOx storage catalyst. Patent Document 5 describes that by using a hydrogen generation catalyst containing a noble metal, the steam reforming reaction proceeds and the activity is improved.

しかしながら、特許文献2および3には、炭化水素,CO、あるいは不完全燃焼時の生成物を用いてNOxを還元して浄化することが記載されているが、NOxに対する浄化効率が十分ではない。さらに、炭化水素が排ガス中に存在しなければNOxを効率よく浄化できない。また、特許文献4に開示された技術によれば、NOxの還元効率は高まるが、空燃比をリッチにする必要があり、エンジンの制御が不可欠であることからボイラー等のプラントには適用しにくい。さらに、リッチ時に燃料が多く消費されるため燃費の悪化につながる。特許文献5に開示された技術においても、水蒸気改質反応を生じさせるためには空燃比をリッチにすることが必要であり、特許文献4と同様の不具合が生じる。特許文献2乃至5には、上記の不具合に対処する方法は記載されていない。   However, Patent Documents 2 and 3 describe that NOx is reduced and purified using hydrocarbons, CO, or products during incomplete combustion, but the purification efficiency for NOx is not sufficient. Furthermore, NOx cannot be efficiently purified unless hydrocarbons are present in the exhaust gas. Further, according to the technique disclosed in Patent Document 4, although the NOx reduction efficiency is increased, it is necessary to make the air-fuel ratio rich, and engine control is indispensable, so that it is difficult to apply to plants such as boilers. . Furthermore, fuel consumption is reduced because a large amount of fuel is consumed when rich. Even in the technique disclosed in Patent Document 5, it is necessary to make the air-fuel ratio rich in order to cause the steam reforming reaction, and the same problems as in Patent Document 4 occur. Patent Documents 2 to 5 do not describe a method for dealing with the above problem.

特公昭52−22839号公報Japanese Examined Patent Publication No. 52-22839 特開平8−998号公報JP-A-8-998 特開平6−319953号公報JP-A-6-319953 特開平11−319564号公報JP 11-319564 A 特開2003−10646号公報JP 2003-10646 A

本発明の目的は、酸素過剰雰囲気の排ガス中のNOxを、COを用いて高い浄化性能で浄化する熱機関の排ガス浄化装置,排ガス浄化方法及びそれに用いるNOx浄化触媒を提供することにある。   An object of the present invention is to provide an exhaust gas purification device for a heat engine, an exhaust gas purification method, and a NOx purification catalyst used therefor, which purify NOx in exhaust gas in an oxygen-excess atmosphere with high purification performance using CO.

すなわち、本発明の熱機関の排ガス浄化装置は、CO及びNOxを含有し、化学量論量よりも過剰な酸素雰囲気の排ガスを排出する熱機関の排ガス流路に配置され、COを還元剤として前記排ガス中の窒素酸化物(NOx)を還元して浄化するNOx浄化触媒を備えた熱機関の排ガス浄化装置であって、前記NOx浄化触媒が、多孔質担体と、前記多孔質担体上に担持された触媒活性成分とを有し、前記触媒活性成分がIrと、さらに、Au,Rh,Pdから選ばれた少なくとも一種とを含むことを特徴としている。   That is, the exhaust gas purification apparatus for a heat engine of the present invention is disposed in an exhaust gas flow path of a heat engine that contains CO and NOx and exhausts exhaust gas in an oxygen atmosphere that is in excess of the stoichiometric amount, and uses CO as a reducing agent. An exhaust gas purification apparatus for a heat engine comprising a NOx purification catalyst that reduces and purifies nitrogen oxides (NOx) in the exhaust gas, wherein the NOx purification catalyst is supported on a porous carrier and the porous carrier The catalytically active component includes Ir and at least one selected from Au, Rh, and Pd.

Ir,Au,Rh,Pdは、硫酸塩を形成しづらいため、排ガス中にSOxが含有されていてもS分によるNOx浄化性能の低下が小さい。   Ir, Au, Rh, and Pd are difficult to form sulfates, and therefore the NOx purification performance is hardly reduced by the S component even if SOx is contained in the exhaust gas.

なお、本発明において、化学量論量とは、排ガス中に含まれるO2及びCOが互いに過不足無く反応する場合の、O2及びCOの量を意味する。 In the present invention, the stoichiometric amount means the amount of O 2 and CO when O 2 and CO contained in the exhaust gas react with each other without excess or deficiency.

排ガス中にO2,CO及びNOが含有されている場合に、これら3種のガスにおける反応として下記(1),(2)式が考えられる。 When the exhaust gas contains O 2 , CO, and NO, the following equations (1) and (2) can be considered as reactions in these three gases.

2NO+2CO→2CO2+N2 …(1)
2CO+O2→2CO2 …(2)
2NO + 2CO → 2CO 2 + N 2 (1)
2CO + O 2 → 2CO 2 (2)

例えば、排ガス中にCOが1000ppm存在する場合、O2が500ppm以下であれば、(1)式よりも(2)式が優先して進行してもCOは残留し、(1)式の反応が生じやすくなる可能性がある。 For example, when 1000 ppm of CO is present in the exhaust gas, if O 2 is 500 ppm or less, CO remains even if the formula (2) is advanced over the formula (1), and the reaction of the formula (1) May be more likely to occur.

一方、化学量論量よりも過剰な酸素雰囲気とは、(2)式が優先して進行した場合、COが全て酸化されうる酸素量であることを意味する。すなわち、排ガス中にCOが1000ppm存在する場合では、O2が500ppmよりも多い場合を意味する。この場合、(2)式が優先して進行するとCOが全て酸化されてしまい、(1)式の反応が進まない。 On the other hand, an oxygen atmosphere that is excessive than the stoichiometric amount means that the amount of oxygen that can be completely oxidized by CO when the formula (2) advances preferentially. That is, when 1000 ppm of CO is present in the exhaust gas, this means a case where O 2 is greater than 500 ppm. In this case, if the formula (2) preferentially proceeds, all the CO is oxidized and the reaction of the formula (1) does not proceed.

本発明によれば、過剰な酸素雰囲気で運転される熱機関からの排ガスに含まれるNOxを、COを用いて効率よく浄化することができ、熱機関のNOx,CO排出量を抑制することができる。   According to the present invention, NOx contained in exhaust gas from a heat engine operated in an excessive oxygen atmosphere can be efficiently purified using CO, and NOx and CO emissions of the heat engine can be suppressed. it can.

触媒活性成分が異なる各種NOx浄化触媒について、NOx浄化活性を示す図。The figure which shows NOx purification activity about the various NOx purification catalyst from which a catalyst active component differs. 触媒活性成分が異なる各種NOx浄化触媒について、NOx浄化活性を示す図。The figure which shows NOx purification activity about the various NOx purification catalyst from which a catalyst active component differs. 触媒活性成分が異なる各種NOx浄化触媒について、SOx有無によるNOx浄化活性を示す図。The figure which shows NOx purification activity by SOx presence or absence about various NOx purification catalysts from which a catalyst active component differs. 触媒活性成分が異なる各種NOx浄化触媒について、NOx浄化活性を示す図。The figure which shows NOx purification activity about the various NOx purification catalyst from which a catalyst active component differs. 触媒活性成分が異なる各種NOx浄化触媒について、NOx浄化活性を示す図。The figure which shows NOx purification activity about the various NOx purification catalyst from which a catalyst active component differs. 触媒活性成分が異なる各種NOx浄化触媒について、活性成分添加量に対するNOx浄化活性の変化を示す図。The figure which shows the change of NOx purification activity with respect to the amount of active component addition about the various NOx purification catalyst from which a catalyst active component differs. NOx浄化触媒について、排ガス中のCO濃度に対するNOx浄化活性の変化を示す図。The figure which shows the change of NOx purification activity with respect to the CO density | concentration in exhaust gas about a NOx purification catalyst. NOx浄化触媒について、排ガス中のC36有無によるNOx浄化活性の変化を示す図。For NOx purification catalyst, it shows a change in the NOx purification activity by C 3 H 6 whether in the exhaust gas. (a)は2個のNOx浄化触媒の間にCO注入口を設けた熱機関排ガス浄化装置の構成図、(b)は2個のNOx浄化触媒を排ガス流路に沿って設置した熱機関排ガス浄化装置の構成図。(A) is a block diagram of a heat engine exhaust gas purification apparatus in which a CO inlet is provided between two NOx purification catalysts, and (b) is a heat engine exhaust gas in which two NOx purification catalysts are installed along an exhaust gas flow path. The block diagram of a purification apparatus. NOx浄化触媒の後段にNH3脱硝触媒を設けた熱機関の排ガス浄化装置の構成図。Diagram of the exhaust gas purifying apparatus of the heat engine provided with a NH 3 denitration catalyst downstream of the NOx purifying catalyst. 本発明の排ガス浄化装置の一実施態様を模式的に示す図。The figure which shows typically one embodiment of the exhaust gas purification apparatus of this invention.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

一般に、ボイラー等から排出される排ガスは、化学量論量よりも過剰な酸素雰囲気であることが多い。ボイラーからの排ガスには、NOx以外にCOが含まれている。   In general, exhaust gas discharged from a boiler or the like is often in an oxygen atmosphere that is in excess of the stoichiometric amount. The exhaust gas from the boiler contains CO in addition to NOx.

NOxの浄化に関しては下記の(3)式の還元反応が進めばNOxは還元されて浄化される。しかし、酸素雰囲気であることから、多くの場合、COの燃焼反応が優先して進んでしまい、(3)式の反応は進行しにくい。   Regarding the purification of NOx, if the reduction reaction of the following formula (3) proceeds, NOx is reduced and purified. However, since it is an oxygen atmosphere, in many cases, the combustion reaction of CO proceeds with priority, and the reaction of the formula (3) hardly proceeds.

NOx+CO→N2,CO2 …(3) NOx + CO → N 2 , CO 2 (3)

本発明者らは、鋭意検討した結果、多孔質担体と、上記多孔質担体上に担持された触媒活性成分としてIrと、さらに、Au,Rh,Pdから選ばれた少なくとも一種とを含むNOx浄化触媒を使用するとCOを還元剤としてNOxが効果的に浄化されることを明らかにした。IrとAu,Rh,Pdとを組み合わせることで、特に280℃以上でのNOx浄化性能が向上する。この理由は定かでないが、IrとAu,Rh,Pdとが合金化することで相互作用し、Irの活性化が生じると考えている。IrとPtを組み合わせた場合はNOxが効果的に浄化されない。恐らくPtによるCO酸化が進むためと考えられる。   As a result of intensive studies, the present inventors have determined that NOx purification includes a porous carrier, Ir as a catalytically active component supported on the porous carrier, and at least one selected from Au, Rh, and Pd. It has been clarified that the use of a catalyst effectively purifies NOx using CO as a reducing agent. By combining Ir with Au, Rh, and Pd, the NOx purification performance particularly at 280 ° C. or higher is improved. The reason for this is not clear, but it is believed that Ir and Au, Rh, and Pd interact with each other to activate Ir. When Ir and Pt are combined, NOx is not effectively purified. Probably because CO oxidation by Pt proceeds.

Irと、Au,Rh,Pdから選ばれた少なくとも二種以上とを含むことで、更に顕著にNOxが効果的に浄化される。Au,Rh,Pdが共存することで相互作用し、Irの活性化が飛躍的に高まるためと考えている。   By containing Ir and at least two or more selected from Au, Rh, and Pd, NOx is further effectively purified. It is thought that Au, Rh, and Pd coexist and interact to increase Ir activation dramatically.

Irと、さらに、Au,Rh,Pdから選ばれた少なくとも一種または二種以上を触媒活性成分として用いた触媒の場合、排ガス中にSOxが含有されている方が、NOx浄化性能が高い場合がある。理由は定かでないが、SOxによりIrの活性化が生じるためと考えている。   In the case of a catalyst using Ir and at least one or more selected from Au, Rh, and Pd as catalytic active components, the NOx purification performance may be higher when SOx is contained in the exhaust gas. is there. Although the reason is not clear, it is thought that Ir is activated by SOx.

多孔質担体としては、Siを含む金属酸化物が好ましく、SiO2以外に、SiO2−Al23、シリカライト、ゼオライト等が考えられる。Siを含む金属酸化物を用いることで担体の耐SOx性能が高まる。また、耐SOx性能を有する担体としてTiO2も考えられるが、TiO2を使用するとNOx浄化性能が低下しやすい。Irの状態が変化するためと考えられる。 The porous support is preferably a metal oxide containing Si, in addition to SiO 2, SiO 2 -Al 2 O 3, silicalite, zeolite or the like. By using a metal oxide containing Si, the SOx resistance performance of the carrier is enhanced. TiO 2 can also be considered as a carrier having SOx resistance, but when TiO 2 is used, the NOx purification performance tends to be lowered. This is probably because the state of Ir changes.

多孔質担体は、基材上に担持させてもよい。この場合には、NOx浄化性能を向上させる上で、多孔質担体の担持量は、基材1Lに対して50g以上400g以下であることが好ましい。多孔質担体の担持量が50g未満であると、多孔質担体の効果は不十分となり、一方、400gを超えると、多孔質担体自体の比表面積が低下し、基材がハニカム形状の場合に目詰まりが生じやすい。   The porous carrier may be supported on the substrate. In this case, in order to improve the NOx purification performance, the loading amount of the porous carrier is preferably 50 g or more and 400 g or less with respect to 1 L of the base material. When the loading amount of the porous carrier is less than 50 g, the effect of the porous carrier becomes insufficient. On the other hand, when the loading amount exceeds 400 g, the specific surface area of the porous carrier itself is reduced, and this is the case when the substrate has a honeycomb shape. Clogging is likely to occur.

Irと、さらに、Au,Rh,Pdから選ばれた少なくとも一種を触媒活性成分として用いた触媒に対し、更にNbを含有させるとNOx浄化性能が向上する。理由は定かでないが、IrとNbが複合酸化物を形成することでIrの活性化が生じるためではないかと予想している。   If Nb is further contained in the catalyst using Ir and at least one selected from Au, Rh, and Pd as the catalytic active component, the NOx purification performance is improved. Although the reason is not clear, it is expected that Ir and Nb form a composite oxide to activate Ir.

Irと、さらに、Au,Rh,Pdから選ばれた少なくとも一種を触媒活性成分として用いた触媒に対し、更にS,P,Clから選ばれた少なくとも1種を含有させるとNOx浄化性能が向上する。Irのイオン化が促進されるためではないかと考えている。S,P,Clから選ばれた少なくとも1種を含有させることで、反応ガス中にSOxが存在しない場合でも高いNOx浄化活性を示す。   If a catalyst using Ir and at least one selected from Au, Rh, and Pd as a catalytic active component is further contained at least one selected from S, P, and Cl, the NOx purification performance is improved. . I think that it is because ionization of Ir is promoted. By containing at least one selected from S, P, and Cl, high NOx purification activity is exhibited even when SOx is not present in the reaction gas.

触媒に含有されるS,P,Clの量は、それぞれ金属換算でIrに対してモル比で0.05以上500以下であることが望ましい。含有されるS,P,Clの量が、それぞれ金属換算でIrに対してモル比で0.05未満であると、含有効果は不十分となり、一方、Irに対してモル比で500を越えると、Irへの被毒が生じる。   The amount of S, P, and Cl contained in the catalyst is desirably 0.05 or more and 500 or less in terms of metal in terms of a molar ratio to Ir. If the amount of S, P, and Cl contained is less than 0.05 in terms of metal relative to Ir in terms of metal, the effect of inclusion is insufficient, while the molar ratio exceeds 500 relative to Ir. And poisoning to Ir occurs.

触媒活性成分のIrの担持量は、好ましくは、多孔質担体2mol部に対して元素換算で0.00005mol部以上1.0mol部以下であり、より好ましくは、0.0003mol部以上0.3mol部以下である。Irの担持量が0.00005mol部未満であると、担持効果は不十分となり、一方、1.0mol部を越えると、活性成分自体の比表面積が低下し、さらに触媒コストが高くなる。ここで、mol部とは、各成分のmol数換算での含有比率を意味する。例えば、A成分2mol部に対してB成分の担持量が1mol部とは、A成分の絶対量の多少に関わらず、mol数換算でA成分が2に対し、B成分が1の割合で担持されていることを意味する。   The supported amount of Ir as the catalytically active component is preferably 0.000005 mol part or more and 1.0 mol part or less, more preferably 0.0003 mol part or more and 0.3 mol part in terms of element with respect to 2 mol part of the porous support. It is as follows. When the amount of Ir supported is less than 0.00005 mol part, the effect of supporting is insufficient. On the other hand, when the amount exceeds 1.0 mol part, the specific surface area of the active ingredient itself decreases and the catalyst cost increases. Here, the mol part means the content ratio of each component in terms of mol number. For example, when the loading amount of B component is 1 mol part with respect to 2 mol part of A component, the loading of B component is 1 with respect to A component 2 in terms of mol, regardless of the absolute amount of A component. Means that

触媒成分として含有されるAu,Rh,Pdの量は、それぞれ金属換算でIrに対してモル比で0.15以上3以下であることが望ましい。含有されるAu,Rh,Pdの量が、それぞれ金属換算でIrに対してモル比で0.15未満であると、含有効果は不十分である。含有されるAu,Rh,Pdの量が、それぞれ金属換算でIrに対してモル比で0.10から0.15とすることで飛躍的な活性向上が見られる。一方、Irに対してモル比で3を越えると、Irの不活性が生じ、さらに触媒コストが高くなる。   The amounts of Au, Rh, and Pd contained as the catalyst component are each preferably 0.15 or more and 3 or less in terms of metal in terms of molar ratio with respect to Ir. If the amounts of Au, Rh, and Pd contained are less than 0.15 in terms of metal, respectively, in terms of metal, the content effect is insufficient. When the amounts of contained Au, Rh, and Pd are 0.10 to 0.15 in terms of metal, respectively, in terms of metal, a dramatic improvement in activity is observed. On the other hand, if the molar ratio with respect to Ir exceeds 3, Ir is deactivated, and the catalyst cost is further increased.

NOx浄化触媒の調製方法としては、例えば、含浸法,混練法,共沈法,ゾルゲル法,イオン交換法,蒸着法等の物理的調製方法や化学反応を利用した調製方法等を用いることができる。なかでも、化学反応を利用した調製方法を用いることで、触媒活性成分の原料と多孔質担体との接触が強固になり、触媒活性成分のシンタリング等を防止できる。   As a preparation method of the NOx purification catalyst, for example, a physical preparation method such as an impregnation method, a kneading method, a coprecipitation method, a sol-gel method, an ion exchange method, a vapor deposition method, a preparation method using a chemical reaction, or the like can be used. . In particular, by using a preparation method utilizing a chemical reaction, the contact between the raw material of the catalytically active component and the porous carrier is strengthened, and sintering of the catalytically active component can be prevented.

NOx浄化触媒の出発原料としては、硝酸化合物,塩化物,酢酸化合物,錯体化合物,水酸化物,炭酸化合物,有機化合物等の種々の化合物,金属,金属酸化物を用いることができる。IrとAu,Rh,Pdが同一の溶液中に存在するような含浸液を用いて共含浸法にて調製することで触媒成分を均一に担持することができる。   As starting materials for the NOx purification catalyst, various compounds such as nitric acid compounds, chlorides, acetic acid compounds, complex compounds, hydroxides, carbonate compounds, organic compounds, metals, and metal oxides can be used. A catalyst component can be uniformly supported by preparing it by a co-impregnation method using an impregnation liquid in which Ir, Au, Rh, and Pd are present in the same solution.

NOx浄化触媒の形状としては、用途に応じて適宜調整でき、例えば、コージェライト,SiC,ステンレス等の各種材料からなるハニカム構造体に、本発明のNOx浄化触媒をコーティングして得られるハニカム形状をはじめ、ペレット状,板状,粒状,粉末状等が挙げられる。ハニカム形状の場合、その基材はコ−ジェライトが最適であるが、触媒温度が高まる恐れがある場合には、触媒活性成分と反応しにくい基材、例えばFeを主成分とするメタルハニカム等の基材を用いることが好ましい。また、多孔質担体と触媒活性成分のみでハニカムを形成してもよい。   The shape of the NOx purification catalyst can be appropriately adjusted depending on the application. For example, the honeycomb shape obtained by coating the NOx purification catalyst of the present invention on a honeycomb structure made of various materials such as cordierite, SiC, stainless steel, etc. First, pellets, plates, granules, powders, and the like can be mentioned. In the case of a honeycomb shape, cordierite is optimal as the base material. However, when there is a risk that the catalyst temperature may increase, a base material that does not easily react with the catalytically active component, such as a metal honeycomb mainly composed of Fe, etc. It is preferable to use a substrate. Alternatively, the honeycomb may be formed with only the porous carrier and the catalytically active component.

NOx浄化触媒に流入するCOの量が、排ガス中のNOxを全て浄化しうる量に満たない場合がある。その場合には、NOx浄化触媒に接触する排ガス中に含まれるCO量を調整するCO量調整手段を、NOx浄化触媒の前段に配置することが好ましい。CO量調整手段として、熱機関の燃焼状態を変化させてCO量を調整する手段も含まれる、更には例えば排ガス流路にCOを注入してCO量を調整することも考えられる。このCO量調整手段で、NOx浄化触媒に接触するCOの量を増加させる。   There are cases where the amount of CO flowing into the NOx purification catalyst is less than the amount capable of purifying all of the NOx in the exhaust gas. In that case, it is preferable that a CO amount adjusting means for adjusting the CO amount contained in the exhaust gas contacting the NOx purification catalyst is disposed in the front stage of the NOx purification catalyst. The CO amount adjusting means includes means for adjusting the CO amount by changing the combustion state of the heat engine. Further, for example, it is conceivable to inject CO into the exhaust gas passage to adjust the CO amount. This CO amount adjusting means increases the amount of CO that contacts the NOx purification catalyst.

NOx浄化触媒のCO酸化率が高い場合には、NOx浄化触媒層の入口付近でCOが消費されてしまい、NOx浄化触媒の全体にCOが行き渡らず、NOx浄化反応が効率よく生じない恐れがある。この場合には、排ガス流路に沿って、複数個のNOx浄化触媒を設置し、さらに、NOx浄化触媒とNOx浄化触媒との間の排ガス流路にCO注入口を配置することが好ましい。このCO量調整手段でNOx浄化触媒に接触するCO量を調整することで、NOx浄化反応を促進することができる。   When the CO oxidation rate of the NOx purification catalyst is high, CO is consumed in the vicinity of the inlet of the NOx purification catalyst layer, so that the CO does not spread over the entire NOx purification catalyst, and the NOx purification reaction may not occur efficiently. . In this case, it is preferable to install a plurality of NOx purification catalysts along the exhaust gas flow path, and further to arrange a CO inlet in the exhaust gas flow path between the NOx purification catalyst and the NOx purification catalyst. By adjusting the amount of CO in contact with the NOx purification catalyst by this CO amount adjusting means, the NOx purification reaction can be promoted.

NOx浄化触媒に流入するCOの量は、該触媒に接触するNOxの量に対してモル比で2倍以上になるように、上述したCO量調整手段をNOx浄化触媒の前段に配置することが好ましい。   The above-mentioned CO amount adjusting means may be arranged in front of the NOx purification catalyst so that the amount of CO flowing into the NOx purification catalyst is at least twice as much as the molar ratio with respect to the amount of NOx in contact with the catalyst. preferable.

なお、NOx量に対するCO量の調整は、熱機関の燃焼状態を調整して行ってもよい。   The adjustment of the CO amount relative to the NOx amount may be performed by adjusting the combustion state of the heat engine.

Irと、さらにAu,Rh,Pdから選ばれた少なくとも1種を触媒活性成分として用いた触媒の場合、排ガス中にSOxが含有されている方が、NOx浄化性能が高い場合がある。そこで、排ガス中にSOxが存在しない場合、NOx浄化触媒に接触する排ガス中に含まれるSOx量を調整するSOx量調整手段を、NOx浄化触媒の前段に配置することが好ましい。SOx量調整手段は、排ガス流路にSOxを注入してSOx量を調整するものであり、例えばSOxガスや硫酸を添加することで可能となる。NOx浄化触媒に接触するSOx量としては1ppm以上500ppm以下であることが好ましい。1ppm以下だとSOxの効果が現れず、500ppm以上だとSOxが触媒を被毒するようになりNOx浄化率が低下する。このように排ガス中に存在するSOx量を制御することで、COを還元剤としたNOxの還元反応が進行しやくなる。   In the case of a catalyst using Ir and at least one selected from Au, Rh, and Pd as a catalytic active component, the NOx purification performance may be higher when SOx is contained in the exhaust gas. Therefore, when SOx is not present in the exhaust gas, it is preferable to arrange an SOx amount adjusting means for adjusting the SOx amount contained in the exhaust gas that contacts the NOx purification catalyst, in front of the NOx purification catalyst. The SOx amount adjusting means adjusts the SOx amount by injecting SOx into the exhaust gas flow path, and is made possible by adding, for example, SOx gas or sulfuric acid. The amount of SOx in contact with the NOx purification catalyst is preferably 1 ppm or more and 500 ppm or less. If it is 1 ppm or less, the effect of SOx does not appear, and if it is 500 ppm or more, SOx poisons the catalyst and the NOx purification rate decreases. By controlling the amount of SOx present in the exhaust gas in this way, the NOx reduction reaction using CO as a reducing agent easily proceeds.

Irと、さらにAu,Rh,Pdから選ばれた少なくとも1種を触媒活性成分として用いた触媒の場合、排ガス中に炭化水素が含有されている方が、NOx浄化性能が高い場合がある。その場合には、NOx浄化触媒に接触する炭化水素量を調整する炭化水素量調整手段を、NOx浄化触媒の前段に配置することが好ましい。炭化水素量調整手段として、熱機関の燃焼状態を変化させて炭化水素量を調整する手段も含まれる、更には例えば排ガス流路に炭化水素を注入して炭化水素量を調整することも考えられる。この炭化水素量調整手段で、NOx浄化触媒に接触する炭化水素の量を増加させる。炭化水素としては、水素と炭素からなるものであれば特に拘らないが、CH4,C36,C24,C22,C38等が好ましい。 In the case of a catalyst using Ir and at least one selected from Au, Rh, and Pd as the catalytic active component, the NOx purification performance may be higher when the exhaust gas contains hydrocarbons. In that case, it is preferable to arrange the hydrocarbon amount adjusting means for adjusting the amount of hydrocarbon in contact with the NOx purification catalyst before the NOx purification catalyst. The means for adjusting the amount of hydrocarbon includes means for adjusting the amount of hydrocarbons by changing the combustion state of the heat engine. Further, for example, it is conceivable to adjust the amount of hydrocarbons by injecting hydrocarbons into the exhaust gas passage. . With this hydrocarbon amount adjusting means, the amount of hydrocarbon in contact with the NOx purification catalyst is increased. The hydrocarbon is not particularly limited as long as it is composed of hydrogen and carbon, but CH 4 , C 3 H 6 , C 2 H 4 , C 2 H 2 , C 3 H 8 and the like are preferable.

NOx浄化触媒に流入するCOまたは炭化水素の量が、排ガス中のNOxを全て浄化しうる量に満たない場合には、NOx浄化触媒の前段または後段に、NH3を還元剤としてNOxを還元する触媒、すなわちNH3脱硝触媒を配置してもよい。この場合、NH3脱硝触媒の前段に、NH3タンクやNH3注入口を備えたNH3供給手段を配置して、該触媒に還元剤としてNH3を供給する。これにより、NOxがNH3脱硝触媒で還元されて浄化される。NH3脱硝触媒としては、例えば、酸化チタン(TiO2)あるいはゼオライトを担体とし、活性成分としてバナジウム(V),鉄(Fe),モリブデン(Mo)等を含むものを用いることができる。 When the amount of CO or hydrocarbon flowing into the NOx purification catalyst is less than the amount capable of purifying NOx in the exhaust gas, NOx is reduced using NH 3 as a reducing agent before or after the NOx purification catalyst. A catalyst, that is, an NH 3 denitration catalyst may be disposed. In this case, in front of the NH 3 denitration catalyst, by placing the NH 3 supply means having a NH 3 tank and NH 3 inlet, supplying the NH 3 as a reducing agent to the catalyst. Thereby, NOx is reduced and purified by the NH 3 denitration catalyst. As the NH 3 denitration catalyst, for example, a catalyst using titanium oxide (TiO 2 ) or zeolite as a carrier and containing vanadium (V), iron (Fe), molybdenum (Mo) or the like as active components can be used.

このNH3脱硝触媒を本発明のNOx浄化触媒と混合して一体化し、還元剤としてCO,炭化水素,NH3を流入させてNOxを浄化することもできる。この場合、触媒の設置に要するスペースを少なくできる。 This NH 3 denitration catalyst can be mixed and integrated with the NOx purification catalyst of the present invention, and NOx can be purified by introducing CO, hydrocarbon, NH 3 as a reducing agent. In this case, the space required for installing the catalyst can be reduced.

本発明は、化学量論量よりも過剰な酸素雰囲気の排ガスを排出する熱機関に好適に用いることができる。本発明は、化学量論量と同等もしくはそれ以下の酸素雰囲気(リッチガス)の排ガスを排出する熱機関にも使用可能であるが、その場合には、熱機関もしくは排ガス流路に添加される燃料が多くなり、コストの増加を招きやすい。このため、特に、空燃比をリッチにする必要がなければ、熱機関の燃焼状態を調整して、CO,NOx浄化触媒に流入する排ガスの空燃比を間欠的にストイキ〜リッチ状態に切り替えずに、常にリーン状態に保つことことが好ましい。   The present invention can be suitably used for a heat engine that exhausts exhaust gas in an oxygen atmosphere that is in excess of the stoichiometric amount. The present invention can also be used in a heat engine that discharges exhaust gas in an oxygen atmosphere (rich gas) that is equal to or less than the stoichiometric amount. In this case, the fuel added to the heat engine or the exhaust gas passage is used. This is likely to increase costs. Therefore, in particular, if it is not necessary to make the air-fuel ratio rich, the combustion state of the heat engine is adjusted, and the air-fuel ratio of the exhaust gas flowing into the CO, NOx purification catalyst is not intermittently switched from the stoichiometric to rich state. It is preferable to always maintain a lean state.

NOx浄化触媒に流入するCOの量が、排ガス中のNOxを全て浄化しうる量に満たない場合には、熱機関の燃焼状態を調整することで、NOx浄化触媒に流入するCO量,NOx量を調整してもよい。この場合には、排ガス流路にCOを注入してCO量を調整する手段が不要になる。   When the amount of CO flowing into the NOx purification catalyst is less than the amount that can completely purify NOx in the exhaust gas, the amount of CO and NOx flowing into the NOx purification catalyst is adjusted by adjusting the combustion state of the heat engine. May be adjusted. In this case, means for adjusting the amount of CO by injecting CO into the exhaust gas passage becomes unnecessary.

NOx浄化触媒の後段にCO,NOxセンサーを設けてもよい。CO,NOxセンサーは、NOx浄化触媒の後段に含まれるCO,NOx量、すなわちNOx浄化触媒で浄化されずに残存するCO,NOx量を計測するものである。CO,NOxセンサーによるCO,NOx量の計測結果に応じて、CO,NOx浄化触媒に流入するCO量を調整する。CO,NOxセンサーで計測した結果、NOx浄化触媒の後段にNOxが多く残存し、COが殆ど残存していない場合には、NOx浄化触媒の前段に、上述したCO量調整手段を配置して、NOx浄化触媒に流入するCO量が増えるように調整する。一方、CO,NOxセンサーで計測した結果、CO,NOx浄化触媒の後段にNOxが計測できないほど微量であった場合には、NOx浄化触媒に流入するCO量を低減すればよい。なお、CO量調整手段以外に、熱機関の燃焼状態を調整して、NOx浄化触媒に流入するCO量を調整することもできる。このようにCO,NOxセンサーでNOx浄化触媒の後段のCO,NOx量を計測することで、高いNOx浄化活性を維持することができ、大気へのCOの流出を低減でき、浄化されずに残存するCO,NOx量を低減するための最適なCOの添加量を決めることができる。   A CO and NOx sensor may be provided after the NOx purification catalyst. The CO, NOx sensor measures the amount of CO, NOx contained in the subsequent stage of the NOx purification catalyst, that is, the amount of CO, NOx remaining without being purified by the NOx purification catalyst. The amount of CO flowing into the CO, NOx purification catalyst is adjusted according to the measurement result of the CO, NOx amount by the CO, NOx sensor. As a result of measuring with the CO and NOx sensors, when a large amount of NOx remains behind the NOx purification catalyst and almost no CO remains, the above-mentioned CO amount adjusting means is arranged in the front stage of the NOx purification catalyst, Adjustment is made so that the amount of CO flowing into the NOx purification catalyst increases. On the other hand, as a result of measurement by the CO, NOx sensor, if the amount of NOx is so small that it cannot be measured after the CO, NOx purification catalyst, the amount of CO flowing into the NOx purification catalyst may be reduced. In addition to the CO amount adjusting means, the amount of CO flowing into the NOx purification catalyst can be adjusted by adjusting the combustion state of the heat engine. Thus, by measuring the CO and NOx amount in the latter stage of the NOx purification catalyst with the CO and NOx sensor, it is possible to maintain high NOx purification activity, reduce the outflow of CO to the atmosphere, and remain without being purified. It is possible to determine the optimum amount of CO to be added to reduce the amount of CO and NOx.

〔実施例〕
以下、本発明の実施例を説明する。
〔Example〕
Examples of the present invention will be described below.

(NOx浄化触媒の調製法)
市販のSiO2(シリカ)粉末(富士シリシア、CARiActG−3)に対し、硝酸Ir溶液(フルヤ金属製)と塩化Au酸(田中貴金属製)の混合溶液を含浸した後、120℃で乾燥、続いて600℃で1h焼成した。IrとAuの添加量はシリカ2molに対しそれぞれ、0.3mmol,0.08mmolとした。この触媒を実施例触媒1とする。さらに塩化Au酸の代わりに硝酸Rh,硝酸Pd(ともに田中貴金属製)を用いたこと以外は実施例触媒1と同じ方法で調製し、同じ活性成分担持量とした実施例触媒2,3を得た。また、硝酸Ir溶液と塩化Au酸と硝酸Pdの混合溶液、及び硝酸Ir溶液と塩化Au酸と硝酸Rhの混合溶液を用いたこと以外は実施例触媒1と同じ方法で調製し、同じIr,Au添加量とし、Pd,Rh添加量は金属元素換算でAuと同じ添加量とした実施例触媒4,5を得た。
(Preparation method of NOx purification catalyst)
A commercially available SiO 2 (silica) powder (Fuji Silysia, CARiActG-3) was impregnated with a mixed solution of an Ir nitrate solution (Fluya Metal) and chlorinated Au acid (Tanaka Kikinzoku), and then dried at 120 ° C. And calcined at 600 ° C. for 1 h. Ir and Au were added in amounts of 0.3 mmol and 0.08 mmol with respect to 2 mol of silica, respectively. This catalyst is referred to as Example catalyst 1. Further, Example Catalysts 2 and 3 were prepared in the same manner as Example Catalyst 1 except that Rh nitrate and Pd nitrate (both made by Tanaka Kikinzoku) were used instead of chlorinated Au acid, and the same active component loading was obtained. It was. The same Ir, except that a mixed solution of an Ir nitrate solution, a mixed solution of Au chloride and Pd nitrate, and a mixed solution of Ir solution of nitrate, Au chloride and Rh nitrate are used, Example catalysts 4 and 5 were obtained in which the addition amount of Au was the same and the addition amount of Pd and Rh was the same as that of Au in terms of metal elements.

また比較例触媒として、実施例触媒1と同様の調製法であるがAuを含まない比較例触媒1を調製した。表1に調製した触媒一覧を示す。   Further, as a comparative example catalyst, a comparative example catalyst 1 which was prepared in the same manner as in Example catalyst 1 but did not contain Au was prepared. Table 1 shows a list of prepared catalysts.

Figure 2010203328
Figure 2010203328

(触媒性能評価方法)
触媒の性能を評価するため、次の条件でNOx浄化性能試験を行った。
(Catalyst performance evaluation method)
In order to evaluate the performance of the catalyst, a NOx purification performance test was conducted under the following conditions.

容量0.9c.c.の粒状触媒(直径0.75mm〜1.5mm)を石英ガラス製反応管中に固定した。この反応管を電気炉中に導入し、反応管に導入されるガス温度が240℃〜350℃となるように加熱制御した。反応管に導入されるガスは、化学量論量よりも過剰な酸素雰囲気を有する排ガスを模擬するモデルガスとした。モデルガスの組成は、NOx:150ppm、CO:1500ppm、O2:3%、SO2:4ppm、H2O:3%、N2:残部とした。体積空間速度(F/V)は30,000/hとした。 A granular catalyst (diameter 0.75 mm to 1.5 mm) having a capacity of 0.9 c.c. was fixed in a quartz glass reaction tube. This reaction tube was introduced into an electric furnace, and the heating was controlled so that the gas temperature introduced into the reaction tube was 240 ° C to 350 ° C. The gas introduced into the reaction tube was a model gas that simulates an exhaust gas having an oxygen atmosphere in excess of the stoichiometric amount. The composition of the model gas was NOx: 150 ppm, CO: 1500 ppm, O 2 : 3%, SO 2 : 4 ppm, H 2 O: 3%, N 2 : balance. The volume space velocity (F / V) was 30, 000 / h.

触媒のNOx浄化性能は、次式に示す計算式によりNOx浄化率を求めることで判定した。   The NOx purification performance of the catalyst was determined by obtaining the NOx purification rate using the calculation formula shown below.

NOx浄化率(%)=((触媒に流入したNOx量)−(触媒から流出したNOx量))
÷(触媒に流入したNOx量)×100
NOx purification rate (%) = ((NOx amount flowing into the catalyst) − (NOx amount flowing out from the catalyst))
÷ (NOx amount flowing into the catalyst) x 100

(検討結果)
実施例触媒1〜5及び比較例触媒1のNOx浄化率を評価した。図1にNOx浄化率を示す。実施例触媒1〜3は比較例触媒1と比較して高いNOx浄化率を示すことが確認された。特に280℃以上での差が顕著である。Ir,AuとPd、及びIr,AuとRhを組み合わせた実施例触媒4,5はNOx浄化率が更に高まる。よって、触媒活性成分として、Irに加えてAu,Pd,Rhのいずれか1種、更には二種以上を用いることで、高いNOx浄化率が得られることは明らかである。
(Study results)
The NOx purification rates of Example Catalysts 1 to 5 and Comparative Example Catalyst 1 were evaluated. FIG. 1 shows the NOx purification rate. It was confirmed that the example catalysts 1 to 3 showed a higher NOx purification rate than the comparative example catalyst 1. In particular, the difference at 280 ° C. or higher is remarkable. The catalyst examples 4 and 5 combining Ir, Au and Pd, and Ir, Au and Rh further increase the NOx purification rate. Therefore, it is clear that a high NOx purification rate can be obtained by using any one of Au, Pd, and Rh, or two or more, in addition to Ir, as the catalytic active component.

比較例触媒として、実施例触媒1と同様の調製法であるがIrを含まず、活性成分としてAuのみを含有する比較例触媒2を調製した。同様に、Irを含まず、活性成分としてPdのみ、Rhのみを含有する比較例触媒3,4を調製した。表2に調製した触媒一覧を示す。   As a comparative example catalyst, a comparative example catalyst 2 was prepared in the same manner as in Example catalyst 1, but without containing Ir and containing only Au as the active component. Similarly, Comparative Catalysts 3 and 4 containing no Ir, only Pd and only Rh as active components were prepared. Table 2 shows a list of prepared catalysts.

Figure 2010203328
Figure 2010203328

(検討結果)
実施例1に示した触媒性能評価方法において、比較例触媒2〜4のNOx浄化率を評価した。図2にNOx浄化率を示す。比較例触媒2〜4はNOx浄化活性が殆ど無いことを確認した。従ってAu,Pd,RhはIrと共存することでNOx浄化活性を示すことは明らかである。
(Study results)
In the catalyst performance evaluation method shown in Example 1, the NOx purification rates of Comparative Examples Catalysts 2 to 4 were evaluated. FIG. 2 shows the NOx purification rate. It was confirmed that Comparative Catalysts 2 to 4 had almost no NOx purification activity. Therefore, it is clear that Au, Pd, and Rh exhibit NOx purification activity by coexisting with Ir.

(SOx共存効果)
実施例1で用いた評価法において、反応ガス中にSOxを含有させなかったこと以外は同じ評価方法を用いて実施例触媒1,2,5,比較例触媒1のNOx浄化活性を評価した。図3に310℃でのNOx浄化活性を示す。SOxが反応ガス中に無い場合でも、実施例触媒1,2,5のNOx浄化活性は比較例触媒1よりも高いが、SOxが共存することで実施例触媒1,2,5のNOx浄化活性は飛躍的に高まる。従って、反応ガス中にSOxが共存する方が高いNOx浄化活性を示すことは明らかである。
(SOx coexistence effect)
In the evaluation method used in Example 1, the NOx purification activity of Example Catalysts 1, 2, 5, and Comparative Example Catalyst 1 was evaluated using the same evaluation method except that SOx was not included in the reaction gas. FIG. 3 shows the NOx purification activity at 310 ° C. Even when SOx is not present in the reaction gas, the NOx purification activity of the example catalysts 1, 2, and 5 is higher than that of the comparative example catalyst 1, but the NOx purification activity of the example catalysts 1, 2, and 5 when SOx coexists. Increases dramatically. Therefore, it is clear that the SOx coexistence in the reaction gas exhibits higher NOx purification activity.

(Nb添加効果)
シリカ担体への活性成分担持に際して、硝酸Irと塩化Au酸の混合溶液に、更にNbゾルを添加して含浸溶液としたこと以外は実施例触媒1と同様の調製法にて実施例触媒6を得た。実施例触媒6に含有されるNbは、Irと等モルとした。
(Nb addition effect)
Example catalyst 6 was prepared by the same preparation method as Example catalyst 1 except that Nb sol was added to the mixed solution of Ir nitrate and Au chloride to form an impregnation solution when the active ingredient was supported on the silica support. Obtained. Nb contained in Example Catalyst 6 was equimolar with Ir.

Figure 2010203328
Figure 2010203328

(検討結果)
実施例触媒1,6に関し、実施例1で用いた評価方法でNOx浄化活性を評価した。図4にNOx浄化活性を示す。図4から、Nbを含有させることで更にNOx浄化率が高まることは明らかである。
(Study results)
Regarding the Example catalysts 1 and 6, the NOx purification activity was evaluated by the evaluation method used in Example 1. FIG. 4 shows the NOx purification activity. From FIG. 4, it is clear that the NOx purification rate is further increased by containing Nb.

(S,P,Cl添加効果)
シリカ担体への活性成分担持に際して、硝酸Irと塩化Au酸の混合溶液に、更に硫酸を添加して含浸溶液としたこと以外は実施例触媒1と同様の調製法にて実施例触媒7を得た。実施例触媒4に含有されるSは、Irに対してモル比で25とした。さらに硫酸の代わりに燐酸,塩酸を用いたこと以外は実施例触媒4と同じ方法で調製し、それぞれ同じP,Cl担持量とした実施例触媒8,9を得た。また、硝酸Irと塩化Au酸と燐酸の混合溶液に更に硫酸を添加したもの、及び硝酸Irと塩化Au酸と燐酸の混合溶液に更に塩酸を添加したもの、を実施例触媒7と同様の調製法で実施例触媒10,11を得た。実施例触媒10,11に含有されるP,Cl,S量は全てIrに対してモル比で25とした。
(S, P, Cl addition effect)
Example catalyst 7 was obtained by the same preparation method as Example catalyst 1 except that sulfuric acid was further added to the mixed solution of Ir nitrate and Au chloride to form an impregnation solution when the active ingredient was supported on the silica carrier. It was. S contained in Example catalyst 4 was set to 25 in a molar ratio with respect to Ir. Further, Example Catalysts 8 and 9 were prepared in the same manner as Example Catalyst 4 except that phosphoric acid and hydrochloric acid were used in place of sulfuric acid, and the same P and Cl loadings were obtained. The same preparation as in Example Catalyst 7, except that sulfuric acid was added to a mixed solution of Ir nitrate, Au chloride and phosphoric acid, and hydrochloric acid was added to a mixed solution of Ir nitrate, Au chloride and phosphoric acid. Example catalysts 10 and 11 were obtained by the above method. The amounts of P, Cl and S contained in the catalyst examples 10 and 11 were all set to 25 in molar ratio to Ir.

表4に調製した触媒一覧を示す。   Table 4 shows a list of prepared catalysts.

Figure 2010203328
Figure 2010203328

(検討結果)
実施例触媒1,7〜11に関し、実施例3で用いた、SOxを含有しない反応ガスによるNOx浄化活性を評価した。図5にNOx浄化活性を示す。図5から、S,P,Clを一種以上含有させることで反応ガス中にSOxが共存しなくても高いNOx浄化活性を示すことは明らかである。
(Study results)
With respect to Example Catalysts 1 and 11 to 11, the NOx purification activity by the reaction gas containing no SOx used in Example 3 was evaluated. FIG. 5 shows the NOx purification activity. From FIG. 5, it is clear that the inclusion of one or more of S, P, and Cl shows a high NOx purification activity even if SOx does not coexist in the reaction gas.

(Au,Pd,Rh添加量)
実施例触媒1〜3に関して、それぞれAu,Pd,Rhの添加量を変化させた場合のNOx浄化活性を評価した。図6に、Irに対してそれぞれAu,Pd,Rhの添加量をモル比で変化させた場合のNOx浄化率を示す。図6から、Au,Pd,Rhの添加量がそれぞれIrに対してモル比で0.15以上3以下の場合にIrのみの場合よりも高いNOx浄化活性を示す。特にAu,Pd,Rhの添加量がそれぞれIrに対してモル比で0.10の場合と比較して0.15とすることでNOx浄化活性が飛躍的に高まることが分かる。
(Au, Pd, Rh addition amount)
With respect to Example Catalysts 1 to 3, the NOx purification activity when the addition amount of Au, Pd, and Rh was changed was evaluated. FIG. 6 shows the NOx purification rate when the addition amount of Au, Pd, and Rh is changed with respect to Ir at a molar ratio. From FIG. 6, when the addition amount of Au, Pd, and Rh is 0.15 or more and 3 or less, respectively, the NOx purification activity is higher than that of Ir alone. In particular, it can be seen that when the added amounts of Au, Pd, and Rh are each 0.15 in terms of molar ratio to Ir, the NOx purification activity is dramatically increased.

CO濃度の影響を評価するために、モデルガスの組成をNOx:150ppm、CO:200ppm〜1500ppm、O2:3%、SO2:4ppm、H2O:3%、N2:残部とし、体積空間速度(F/V)を30,000/hとして、CO濃度を変化させた場合の実施例触媒1のNOx浄化率を評価した。図7に、310℃におけるCO濃度に対するNOx浄化率の変化を示す。 In order to evaluate the influence of the CO concentration, the composition of the model gas is NOx: 150 ppm, CO: 200 ppm to 1500 ppm, O 2 : 3%, SO 2 : 4 ppm, H 2 O: 3%, N 2 : balance, volume The NOx purification rate of Example catalyst 1 when the CO concentration was changed at a space velocity (F / V) of 30,000 / h was evaluated. FIG. 7 shows the change in the NOx purification rate with respect to the CO concentration at 310 ° C.

CO濃度が200ppmの場合でも、NOx浄化率は40%あり、十分高いが、CO濃度を高めて300ppm以上、すなわちモル比でNOxに対して2倍以上の濃度とすることでNOx浄化率は45%以上となり、更に高いNOx浄化率を示すようになる。   Even when the CO concentration is 200 ppm, the NOx purification rate is 40% and is sufficiently high, but the NOx purification rate is 45 by increasing the CO concentration to 300 ppm or more, that is, a concentration that is twice or more that of NOx in terms of molar ratio. % Or more, and a higher NOx purification rate is exhibited.

よって、本発明のNOx浄化触媒は、CO濃度がNOx濃度に対してモル比で2倍以上の雰囲気で使用することが好ましい。   Therefore, the NOx purification catalyst of the present invention is preferably used in an atmosphere in which the CO concentration is at least twice the molar ratio with respect to the NOx concentration.

(炭化水素の共存効果)
実施例触媒1に関して、実施例1で用いた評価法において、反応ガス中に100ppmのC36を含有させたこと以外は同じ評価方法を用いてNOx浄化活性を評価した。図8に330℃でのNOx浄化活性を示す。C36が反応ガス中に無い場合でも、実施例触媒1のNOx浄化活性は十分高いが、C36が共存することで実施例触媒1のNOx浄化活性は飛躍的に高まる。従って、反応ガス中に炭化水素が共存する方が高いNOx浄化活性を示すことは明らかである。
(Coexistence effect of hydrocarbons)
Regarding Example catalyst 1, in the evaluation method used in Example 1, the NOx purification activity was evaluated using the same evaluation method except that the reaction gas contained 100 ppm of C 3 H 6 . FIG. 8 shows the NOx purification activity at 330 ° C. Even when C 3 H 6 is not present in the reaction gas, the NOx purification activity of the example catalyst 1 is sufficiently high, but the NOx purification activity of the example catalyst 1 is dramatically increased by the coexistence of C 3 H 6 . Therefore, it is clear that higher NOx purification activity is exhibited when hydrocarbons coexist in the reaction gas.

図9(a)は、本発明の排ガス浄化装置の一実施形態の構成を模式的に示す図である。この排ガス浄化装置は、ボイラーの排ガス流路に実施例触媒1を2個設置し、触媒間に、CO量調整手段としてCOガス注入口を配置している。実施例触媒1はCO酸化能が高く、実施例1で用いた評価方法では触媒入口温度が310℃の場合、NOx浄化触媒の後段から排出されるCO量は150ppmであった。この場合、図9(b)のように、実施例触媒2を2個並べるだけでは、後段のNOx浄化触媒に流入するCOが少ないため、高いNOx浄化率は得られない。   Fig.9 (a) is a figure which shows typically the structure of one Embodiment of the exhaust gas purification apparatus of this invention. In this exhaust gas purifying apparatus, two example catalysts 1 are installed in an exhaust gas flow path of a boiler, and a CO gas inlet is disposed between the catalysts as a CO amount adjusting means. The catalyst of Example 1 has high CO oxidation ability. In the evaluation method used in Example 1, when the catalyst inlet temperature was 310 ° C., the amount of CO discharged from the subsequent stage of the NOx purification catalyst was 150 ppm. In this case, as shown in FIG. 9B, simply arranging two example catalysts 2 does not provide a high NOx purification rate because less CO flows into the downstream NOx purification catalyst.

よって、図9(a)のように、触媒間にCOガス注入口を設けることで、後段のNOx浄化触媒にもCOが流入させるようにすれば、NOx浄化率が向上する。   Therefore, as shown in FIG. 9A, if a CO gas injection port is provided between the catalysts so that CO can also flow into the subsequent NOx purification catalyst, the NOx purification rate is improved.

図10に、本発明の排ガス浄化装置の一実施例を示す。この排ガス浄化装置は、ボイラーの排ガス流路の流れに沿って、実施例触媒1,NH3供給手段としてNH3注入口,NH3脱硝触媒(Ti−V系触媒)を配置している。ボイラーからのNOx排出量が極めて多い場合、もしくは熱機関からのCO排出量が少ない場合には、実施例触媒1のみではNOxを十分に浄化できないため、図10に示すような排ガス浄化装置を使用する。図10に示す浄化装置によれば、NOxの高い浄化性能が得られる。 FIG. 10 shows an embodiment of the exhaust gas purifying apparatus of the present invention. The exhaust gas purifying apparatus, along the flow of exhaust gas flow path of a boiler, NH 3 inlet as for example catalyst 1, NH 3 supply means, are arranged NH 3 denitration catalyst (Ti-V-based catalyst). When the amount of NOx emitted from the boiler is extremely large or the amount of CO emitted from the heat engine is small, NOx can not be sufficiently purified by the catalyst of Example 1 alone, so an exhaust gas purification device as shown in FIG. 10 is used. To do. According to the purification apparatus shown in FIG. 10, high NOx purification performance can be obtained.

図11に、本発明の排ガス浄化装置の一実施例を示す。排ガス浄化装置は、ボイラー1の排ガス流路に配置されており、NOx浄化触媒6,CO量調整手段(COタンク3,CO注入口4),COセンサー2,9,排ガス温度センサー5,NOxセンサー7及び制御ユニット8を備えている。   FIG. 11 shows an embodiment of the exhaust gas purifying apparatus of the present invention. The exhaust gas purification device is disposed in the exhaust gas flow path of the boiler 1, and includes a NOx purification catalyst 6, CO amount adjusting means (CO tank 3, CO inlet 4), CO sensor 2, 9, exhaust gas temperature sensor 5, NOx sensor. 7 and a control unit 8.

以下に、この排ガス浄化装置を用いた排ガス浄化方法を説明する。   Below, the exhaust gas purification method using this exhaust gas purification apparatus is demonstrated.

ボイラー1から排出された排ガスは、化学量論量よりも過剰な酸素雰囲気であり、酸素以外にCO,NOxを含んでいる。排ガスがNOx浄化触媒6に接触すると、排ガス中のCOとNOxとが反応しNOxが除去される。   The exhaust gas discharged from the boiler 1 has an oxygen atmosphere that is more than the stoichiometric amount, and contains CO and NOx in addition to oxygen. When the exhaust gas contacts the NOx purification catalyst 6, CO and NOx in the exhaust gas react to remove NOx.

NOx浄化触媒6に流入する排ガスの温度は、NOx浄化触媒6の入口付近に配置された排ガス温度センサー5により常にモニターされている。また、排ガスのCO濃度は、COセンサー2により測定されている。これらセンサーの信号は、全て制御ユニット8へ入力される。制御ユニット8では、ボイラー1及び排ガス浄化装置の状態を評価して、適切な燃焼条件,浄化条件に制御する。   The temperature of the exhaust gas flowing into the NOx purification catalyst 6 is constantly monitored by the exhaust gas temperature sensor 5 disposed near the inlet of the NOx purification catalyst 6. The CO concentration of the exhaust gas is measured by the CO sensor 2. All signals from these sensors are input to the control unit 8. The control unit 8 evaluates the states of the boiler 1 and the exhaust gas purification device, and controls them to appropriate combustion conditions and purification conditions.

大気中に排出されるNOx,CO量は、NOx浄化触媒6の後流に設置されたNOxセンサー7,COセンサー9で常に測定される。NOxセンサー7がNOx量を多いと判定した場合には、制御ユニット8がボイラー1の燃焼状態を変更する制御を行い、ボイラー1の排ガス中のCO濃度(CO量)を増加させるか、または、COタンク3からCOを排ガス流路に注入する制御を行う。このようにすることで、NOx浄化触媒6に流入するCO量を増やして、排ガス中のNOx量を低減することができる。一方、COセンサー9がCO量を多いと判定した場合には、制御ユニット8がボイラー1の燃焼状態を変更する制御を行い、ボイラー1の排ガス中のCO濃度を減少させる制御を行う。   The amounts of NOx and CO discharged into the atmosphere are always measured by the NOx sensor 7 and the CO sensor 9 installed downstream of the NOx purification catalyst 6. When the NOx sensor 7 determines that the amount of NOx is large, the control unit 8 performs control to change the combustion state of the boiler 1 to increase the CO concentration (CO amount) in the exhaust gas of the boiler 1, or Control is performed to inject CO from the CO tank 3 into the exhaust gas passage. By doing in this way, the amount of CO flowing into the NOx purification catalyst 6 can be increased, and the amount of NOx in the exhaust gas can be reduced. On the other hand, when the CO sensor 9 determines that the amount of CO is large, the control unit 8 performs control to change the combustion state of the boiler 1 and performs control to reduce the CO concentration in the exhaust gas of the boiler 1.

よって、この排ガス浄化装置及び浄化方法によれば、化学量論量よりも過剰な酸素雰囲気の排ガスを排出する熱機関に対して、CO,NOxの排出量を効果的に低減することができる。   Therefore, according to this exhaust gas purification apparatus and purification method, CO and NOx emissions can be effectively reduced with respect to a heat engine that exhausts exhaust gas in an oxygen atmosphere that is in excess of the stoichiometric amount.

1 ボイラー
2,9 COセンサー
3 COタンク
4 CO注入口
5 排ガス温度センサー
6 NOx浄化触媒
7 NOxセンサー
8 制御ユニット
1 Boiler 2, 9 CO sensor 3 CO tank 4 CO inlet 5 Exhaust gas temperature sensor 6 NOx purification catalyst 7 NOx sensor 8 Control unit

Claims (20)

CO及びNOxを含有し、化学量論量よりも過剰な酸素雰囲気の排ガスを排出する熱機関の排ガス流路に配置され、COを還元剤として前記排ガス中の窒素酸化物(NOx)を還元して浄化するNOx浄化触媒を備えた熱機関の排ガス浄化装置であって、
前記NOx浄化触媒が、多孔質担体と、前記多孔質担体上に担持された触媒活性成分とを有し、前記触媒活性成分がIrと、さらに、Au,Rh,Pdから選ばれた少なくとも一種とを含むことを特徴とする熱機関の排ガス浄化装置。
It contains CO and NOx, and is placed in the exhaust gas flow path of a heat engine that exhausts exhaust gas in an oxygen atmosphere that is in excess of the stoichiometric amount, and reduces nitrogen oxides (NOx) in the exhaust gas using CO as a reducing agent. An exhaust gas purification apparatus for a heat engine equipped with a NOx purification catalyst for purification,
The NOx purification catalyst has a porous carrier and a catalytically active component supported on the porous carrier, and the catalytically active component is Ir, and at least one selected from Au, Rh, and Pd An exhaust gas purification apparatus for a heat engine characterized by comprising:
請求項1において、前記触媒活性成分がIrと、さらに、Au,Rh,Pdから選ばれた少なくとも二種以上とを含むことを特徴とする熱機関の排ガス浄化装置。   2. The exhaust gas purification apparatus for a heat engine according to claim 1, wherein the catalytically active component includes Ir and at least two or more selected from Au, Rh, and Pd. 請求項1または2において、前記化学量論量よりも過剰な酸素雰囲気の排ガスが、SOxを含むことを特徴とする熱機関の排ガス浄化装置。   The exhaust gas purifying apparatus for a heat engine according to claim 1 or 2, wherein the exhaust gas in an oxygen atmosphere that is in excess of the stoichiometric amount contains SOx. 請求項1乃至3のいずれか1項において、前記多孔質担体が、Siを含む金属酸化物であることを特徴とする熱機関の排ガス浄化装置。   The exhaust gas purification apparatus for a heat engine according to any one of claims 1 to 3, wherein the porous carrier is a metal oxide containing Si. 請求項1乃至4のいずれか1項において、前記触媒に含有されるAu,Rh,Pdが、それぞれIrに対してモル比で0.15以上3以下であることを特徴とする熱機関の排ガス浄化装置。   The exhaust gas of a heat engine according to any one of claims 1 to 4, wherein Au, Rh, and Pd contained in the catalyst are each in a molar ratio of 0.15 to 3 with respect to Ir. Purification equipment. 請求項1乃至5のいずれか1項において、前記触媒活性成分として更に、Nbを含有することを特徴とする熱機関の排ガス浄化装置。   6. The exhaust gas purification apparatus for a heat engine according to claim 1, further comprising Nb as the catalytic active component. 請求項1乃至6のいずれか1項において、前記触媒が、S,P,Clから選ばれた少なくとも1種を含むことを特徴とする熱機関の排ガス浄化装置。   The exhaust gas purification apparatus for a heat engine according to any one of claims 1 to 6, wherein the catalyst contains at least one selected from S, P, and Cl. 請求項1乃至7のいずれか1項において、前記浄化触媒を排ガス流路に複数個配置し、該触媒と該触媒との間の排ガス流路に排ガス中のCO量を調整するCO量調整手段を配置することを特徴とする熱機関の排ガス浄化装置。   The CO amount adjusting means according to any one of claims 1 to 7, wherein a plurality of the purification catalysts are arranged in an exhaust gas flow path, and a CO amount in the exhaust gas is adjusted in an exhaust gas flow path between the catalyst and the catalyst. An exhaust gas purifying device for a heat engine, characterized by comprising: 請求項1乃至8のいずれか1項において、前記浄化触媒に接触するCO量が、該触媒に接触するNOx量に対してモル比で2倍以上になるようにCO量を調整するCO量調整手段を配置することを特徴とする熱機関の排ガス浄化装置。   9. The CO amount adjustment according to claim 1, wherein the CO amount is adjusted such that the CO amount in contact with the purification catalyst is at least twice the molar ratio with respect to the NOx amount in contact with the catalyst. An exhaust gas purifying apparatus for a heat engine, characterized in that means is arranged. 請求項1乃至9のいずれか1項において、前記浄化触媒の前段に排ガス中の炭化水素量を調整する炭化水素量調整手段を配置することを特徴とする熱機関の排ガス浄化装置。   10. The exhaust gas purifying apparatus for a heat engine according to claim 1, wherein a hydrocarbon amount adjusting means for adjusting a hydrocarbon amount in the exhaust gas is disposed upstream of the purification catalyst. 請求項1乃至10のいずれか1項において、前記浄化触媒の前段または後段に、NHを還元剤としてNOxを還元して浄化するNH脱硝触媒を配置することを特徴とする熱機関の排ガス浄化装置。 The exhaust gas of a heat engine according to any one of claims 1 to 10, wherein an NH 3 denitration catalyst that reduces and purifies NOx using NH 3 as a reducing agent is disposed upstream or downstream of the purification catalyst. Purification equipment. COを還元剤とし、化学量論量よりも過剰な酸素雰囲気の排ガス中のNOxを還元して浄化するNOx浄化触媒であって、多孔質担体と、前記多孔質担体上に担持された触媒活性成分とを有し、前記触媒活性成分がIrと、さらに、Au,Rh,Pdから選ばれた少なくとも一種とを含むことを特徴とするNOx浄化触媒。   A NOx purification catalyst that reduces and purifies NOx in exhaust gas in an oxygen atmosphere in excess of the stoichiometric amount using CO as a reducing agent, comprising a porous carrier and catalytic activity carried on the porous carrier And a catalytically active component containing Ir and at least one selected from Au, Rh, and Pd. 請求項12において、前記触媒に含有されるAu,Rh,Pdが、それぞれIrに対してモル比で0.15以上3以下であることを特徴とするNOx浄化触媒。   13. The NOx purification catalyst according to claim 12, wherein Au, Rh, and Pd contained in the catalyst are 0.15 or more and 3 or less in molar ratio to Ir. 触媒活性成分として更に、Nbを含有することを特徴とする請求項12または13に記載のNOx浄化触媒。   The NOx purification catalyst according to claim 12 or 13, further comprising Nb as a catalytic active component. 前記触媒が、S,P,Clから選ばれた少なくとも一種を含むことを特徴とする請求項12乃至14に記載のNOx浄化触媒。   15. The NOx purification catalyst according to claim 12, wherein the catalyst contains at least one selected from S, P, and Cl. 多孔質担体と、前記多孔質担体上に担持されたIrと、さらに、Au,Rh,Pdから選ばれた少なくとも一種とを触媒活性成分として含むNOx浄化触媒を用いて、COを還元剤として、熱機関から排出される化学量論量よりも過剰な酸素雰囲気の排ガス中のNOxを還元して浄化することを特徴とする熱機関の排ガス浄化方法。   Using a NOx purification catalyst containing as a catalytically active component a porous carrier, Ir supported on the porous carrier, and at least one selected from Au, Rh, and Pd, CO as a reducing agent, An exhaust gas purification method for a heat engine, characterized by reducing and purifying NOx in the exhaust gas in an oxygen atmosphere that is in excess of the stoichiometric amount discharged from the heat engine. 請求項16において、前記触媒に含有されるAu,Rh,Pdが、それぞれIrに対してモル比で0.15以上3以下であることを特徴とする熱機関の排ガス浄化方法。   The exhaust gas purification method for a heat engine according to claim 16, wherein Au, Rh, and Pd contained in the catalyst are each in a molar ratio of 0.15 to 3 with respect to Ir. 請求項16または17において、触媒活性成分として更に、Nbを含有することを特徴とする熱機関の排ガス浄化方法。   18. The exhaust gas purification method for a heat engine according to claim 16, further comprising Nb as a catalytic active component. 請求項16乃至18のいずれか1項において、前記触媒が、S,P,Clから選ばれた少なくとも一種を含むことを特徴とする熱機関の排ガス浄化方法。   The exhaust gas purification method for a heat engine according to any one of claims 16 to 18, wherein the catalyst includes at least one selected from S, P, and Cl. 請求項16乃至19のいずれか1項において、前記熱機関の燃焼状態を調整して、前記浄化触媒に流入するCOの量が、該触媒に接触するNOx量に対してモル比で3倍以上になるようにCO量を調整するCO量調整手段を配置することを特徴とする熱機関の排ガス浄化方法。   20. The combustion state of the heat engine according to any one of claims 16 to 19, wherein the amount of CO flowing into the purification catalyst is 3 times or more in molar ratio with respect to the amount of NOx in contact with the catalyst. An exhaust gas purification method for a heat engine, characterized by disposing CO amount adjusting means for adjusting the CO amount so that
JP2009050072A 2009-03-04 2009-03-04 Exhaust emission control device for thermal engine, exhaust emission control method and nox elimination catalyst Pending JP2010203328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009050072A JP2010203328A (en) 2009-03-04 2009-03-04 Exhaust emission control device for thermal engine, exhaust emission control method and nox elimination catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009050072A JP2010203328A (en) 2009-03-04 2009-03-04 Exhaust emission control device for thermal engine, exhaust emission control method and nox elimination catalyst

Publications (1)

Publication Number Publication Date
JP2010203328A true JP2010203328A (en) 2010-09-16

Family

ID=42965060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009050072A Pending JP2010203328A (en) 2009-03-04 2009-03-04 Exhaust emission control device for thermal engine, exhaust emission control method and nox elimination catalyst

Country Status (1)

Country Link
JP (1) JP2010203328A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013039543A (en) * 2011-08-19 2013-02-28 Asahi Kasei Corp Supported catalyst containing rhodium and gold

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03229620A (en) * 1990-02-05 1991-10-11 Mitsubishi Heavy Ind Ltd Cleaning method of exhaust gas containing nitrogen oxide
JPH0810575A (en) * 1994-06-30 1996-01-16 Toyota Central Res & Dev Lab Inc Nitrogen oxides reducing method
JPH08238430A (en) * 1995-02-03 1996-09-17 Inst Fr Petrole Catalyst for reducing nitrogen oxide to molecular nitrogen in stoichiometrically excess medium of oxidative compound, its preparation and its use
JPH11200844A (en) * 1997-11-11 1999-07-27 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2007175654A (en) * 2005-12-28 2007-07-12 National Institute Of Advanced Industrial & Technology Catalyst for deoxidizing nitrogen oxide selectively
JP2009041454A (en) * 2007-08-09 2009-02-26 Isuzu Motors Ltd Nox emission control method and nox emission control system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03229620A (en) * 1990-02-05 1991-10-11 Mitsubishi Heavy Ind Ltd Cleaning method of exhaust gas containing nitrogen oxide
JPH0810575A (en) * 1994-06-30 1996-01-16 Toyota Central Res & Dev Lab Inc Nitrogen oxides reducing method
JPH08238430A (en) * 1995-02-03 1996-09-17 Inst Fr Petrole Catalyst for reducing nitrogen oxide to molecular nitrogen in stoichiometrically excess medium of oxidative compound, its preparation and its use
JPH11200844A (en) * 1997-11-11 1999-07-27 Toyota Motor Corp Exhaust emission control device for internal combustion engine
JP2007175654A (en) * 2005-12-28 2007-07-12 National Institute Of Advanced Industrial & Technology Catalyst for deoxidizing nitrogen oxide selectively
JP2009041454A (en) * 2007-08-09 2009-02-26 Isuzu Motors Ltd Nox emission control method and nox emission control system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013039543A (en) * 2011-08-19 2013-02-28 Asahi Kasei Corp Supported catalyst containing rhodium and gold

Similar Documents

Publication Publication Date Title
WO2006013998A1 (en) Process for catalytic reduction of nitrogen oxides
CN109475843B (en) Three-zone diesel oxidation catalyst
JP2009165904A (en) Exhaust gas purifier
JP4203926B2 (en) Method and apparatus for removing nitrous oxide, etc. from exhaust gas
JP6107487B2 (en) N2O decomposition catalyst and N2O-containing gas decomposition method using the same
JP2008238069A (en) Purification device for exhaust gas, purification method for exhaust gas, and purification catalyst
JP2003269142A (en) Exhaust emission control method and device
JP2007239616A (en) Exhaust emission control device, exhaust emission control method, and purification catalyst
JP2009208039A (en) Catalyst for removing particulate matter and method for removing particulate matter by using the same
JP4704964B2 (en) NOx purification system and NOx purification method
JP2006150223A (en) Exhaust-gas cleaning filter, production method of the filter and exhaust-gas cleaning apparatus
JP5939971B2 (en) Exhaust gas purification apparatus and exhaust gas purification method
JP2009138591A (en) Exhaust emission control device, exhaust emission control method, and nox emission control catalyst of thermal engine
JP6126858B2 (en) Exhaust gas purification device for internal combustion engine
JP2010203328A (en) Exhaust emission control device for thermal engine, exhaust emission control method and nox elimination catalyst
JP4054933B2 (en) Methane-containing exhaust gas purification method and methane-containing exhaust gas purification device
JP2009241057A (en) Exhaust gas cleaning catalyst
JP2008019820A (en) Exhaust emission control system and exhaust emission control method
JP2011050855A (en) Exhaust gas purifying apparatus
JP5285459B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP2010125398A (en) Exhaust gas cleaning device of heat engine, exhaust gas cleaning method, and co, nox removal catalyst
JP2009297628A (en) APPARATUS AND METHOD FOR CLEANING EXHAUST GAS OF HEAT ENGINE AND NOx CLEANING CATALYST
JP2012035156A (en) NOx PURIFICATION CATALYST, AND APPARATUS AND METHOD FOR CLEANING EXHAUST GAS BY USING THE SAME
JP2015183587A (en) Emission control device, emission control method and emission control catalyst for heat engine
JP5007691B2 (en) Particulate matter purification catalyst and particulate matter purification method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120710