JP2008238069A - Purification device for exhaust gas, purification method for exhaust gas, and purification catalyst - Google Patents

Purification device for exhaust gas, purification method for exhaust gas, and purification catalyst Download PDF

Info

Publication number
JP2008238069A
JP2008238069A JP2007083243A JP2007083243A JP2008238069A JP 2008238069 A JP2008238069 A JP 2008238069A JP 2007083243 A JP2007083243 A JP 2007083243A JP 2007083243 A JP2007083243 A JP 2007083243A JP 2008238069 A JP2008238069 A JP 2008238069A
Authority
JP
Japan
Prior art keywords
exhaust gas
heat engine
catalyst
nox
purification catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007083243A
Other languages
Japanese (ja)
Inventor
Masahito Kanae
雅人 金枝
Hidehiro Iizuka
秀宏 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2007083243A priority Critical patent/JP2008238069A/en
Publication of JP2008238069A publication Critical patent/JP2008238069A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new purification device of exhaust gas suitable when the purification of NOx is carried out by using carbon monoxide or hydrocarbon in a heat engine operated in an atmosphere where the amount of oxygen is larger than a stoichiometric amount, and also to provide a purification method of exhaust gas, and further to provide a purification catalyst of the NOx. <P>SOLUTION: In the purification device of the exhaust gas where the purification catalyst of the NOx for reducing and purifying nitrogen oxide in the exhaust gas by using the carbon monoxide or the hydrocarbon is provided in the exhaust gas flow path of the heat engine into which the exhaust gas having an atmosphere containing the amount of oxygen larger than the stoichiometric amount flows, the purification catalyst of the exhaust gas has a porous support and a catalytically active component supported on the porous support. An average pore diameter has the distribution of pores of ≥20 Å and ≤100 Å, and at least one kind selected from vanadium, niobium, tantalum, and tin is contained as the catalytically active component. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、化学量論量よりも過剰な酸素雰囲気下で運転される熱機関の排ガス浄化装置と排ガス浄化方法及びNOx浄化触媒に関する。   The present invention relates to an exhaust gas purification apparatus, an exhaust gas purification method, and a NOx purification catalyst for a heat engine operated in an oxygen atmosphere that is in excess of the stoichiometric amount.

近年、空燃比(ガス中の空気と燃料の比)を燃料希薄な状態(リーン)とするリーンバーンエンジンやディーゼルエンジン,ガスタービン及び化学プラント等の化学量論量よりも過剰な酸素雰囲気下で運転される熱機関が増加しており、過剰酸素下でも窒素酸化物を浄化できる方法が望まれている。   In recent years, in an oxygen atmosphere that is in excess of the stoichiometric amount of lean burn engines, diesel engines, gas turbines, chemical plants, etc. that make the air-fuel ratio (ratio of air to fuel in the gas) lean (lean). The number of operating heat engines is increasing, and a method capable of purifying nitrogen oxides even under excess oxygen is desired.

特公昭52−22839号公報(特許文献1)には、ボイラやガスタービンの排ガス浄化の場合に、アンモニアを還元剤として、酸化チタン系触媒上で過剰酸素下でも窒素酸化物を選択的に接触還元する方法が開示されている。   In Japanese Patent Publication No. 52-22839 (patent document 1), in the case of exhaust gas purification of a boiler or a gas turbine, ammonia is used as a reducing agent and nitrogen oxide is selectively contacted even under excess oxygen on a titanium oxide catalyst. A method of reducing is disclosed.

特開平8−998号公報(特許文献2)には、排ガス中に元々含有されている水素,一酸化炭素,炭化水素等を還元剤とし、多孔質金属酸化物担体に担持されたロジウム及び銀を有してなるNOx浄化触媒を用いて窒素酸化物を還元浄化する方法が記載されている。該公報によれば該公報に示された触媒を用いることにより過剰の酸素を含有する排気ガス中の炭化水素,一酸化炭素及び窒素酸化物を同時に除去できるとしている。   In JP-A-8-998 (Patent Document 2), rhodium and silver supported on a porous metal oxide carrier using hydrogen, carbon monoxide, hydrocarbons, etc. originally contained in exhaust gas as a reducing agent. A method of reducing and purifying nitrogen oxides using a NOx purifying catalyst having the above is described. According to the publication, hydrocarbons, carbon monoxide and nitrogen oxides in exhaust gas containing excess oxygen can be simultaneously removed by using the catalyst shown in the publication.

特開平6−319953号公報(特許文献3)には排ガス中の炭化水素を不完全燃焼させることで、酸素を含有する排ガス中の窒素酸化物の還元効率が高まるとしている。   Japanese Patent Application Laid-Open No. 6-319953 (Patent Document 3) states that the reduction efficiency of nitrogen oxides in exhaust gas containing oxygen is increased by incomplete combustion of hydrocarbons in exhaust gas.

特開平11−319564号公報(特許文献4)には、NOx吸蔵触媒を用いることにより、空燃比がリーンの時は排ガス中の窒素酸化物を一旦酸化して触媒に捕捉し、一定量の窒素酸化物が捕捉されると、空燃比をストイキもしくはリッチに切り替えることで捕捉された窒素酸化物を浄化する技術が開示されている。   In Japanese Patent Laid-Open No. 11-319564 (Patent Document 4), when a NOx storage catalyst is used, when the air-fuel ratio is lean, nitrogen oxides in exhaust gas are once oxidized and trapped in the catalyst, and a certain amount of nitrogen When the oxide is captured, a technique for purifying the captured nitrogen oxide by switching the air-fuel ratio to stoichiometric or rich is disclosed.

特開2003−10646号公報(特許文献5)には、NOx吸蔵触媒の前段に水素生成触媒を設置する浄化装置が開示されている。該公報によれば貴金属を含有する水素生成触媒を用いることで、水蒸気改質反応が進行し、活性が向上したとの記載がある。   Japanese Patent Laying-Open No. 2003-10646 (Patent Document 5) discloses a purifying apparatus in which a hydrogen generation catalyst is installed in the preceding stage of a NOx storage catalyst. According to the publication, there is a description that the steam reforming reaction proceeds and the activity is improved by using a hydrogen generation catalyst containing a noble metal.

特公昭52−22839号公報(特許文献1)Japanese Patent Publication No. 52-22839 (Patent Document 1) 特開平8−998号公報(特許文献2)JP-A-8-998 (Patent Document 2) 特開平6−319953号公報(特許文献3)JP-A-6-319953 (Patent Document 3) 特開平11−319564号公報(特許文献4)JP-A-11-319564 (Patent Document 4) 特開2003−10646号公報(特許文献5)JP 2003-10646 A (Patent Document 5)

しかしながら、特許文献1に記載された発明では、アンモニアが刺激臭を有する毒ガスであるため使用上の問題があり、更にアンモニア自体のコストもかかる。   However, in the invention described in Patent Document 1, there is a problem in use because ammonia is a poisonous gas having an irritating odor, and the cost of ammonia itself is also increased.

上記特許文献2,3に開示された発明では、炭化水素,一酸化炭素、或いは不完全燃焼時の生成物を用いて窒素酸化物を還元浄化するものであるが、特に窒素酸化物に対する浄化効率が十分ではない。また特許文献4に開示された技術は、窒素酸化物の還元効率は高まるが、空燃比をリッチにする必要があり、エンジンの制御が不可欠であることからボイラ等のプラントには適用しにくい。更にリッチ時に燃料が多く消費されるため燃費の悪化につながる。特許文献5に開示された技術においても水蒸気改質反応を生じさせるためには空燃比をリッチにすることが必要であり、特許文献4と同様の不具合が生じる。   In the inventions disclosed in Patent Documents 2 and 3, nitrogen oxides are reduced and purified using hydrocarbons, carbon monoxide, or products during incomplete combustion. Is not enough. The technique disclosed in Patent Document 4 increases the reduction efficiency of nitrogen oxides, but it is necessary to make the air-fuel ratio rich, and engine control is indispensable, so it is difficult to apply to plants such as boilers. Further, since a lot of fuel is consumed when rich, the fuel efficiency is deteriorated. Even in the technique disclosed in Patent Document 5, in order to cause the steam reforming reaction, it is necessary to make the air-fuel ratio rich, and the same problems as in Patent Document 4 occur.

本発明の目的は、上記不具合を解消し、燃費の悪化を避けて高いNOx浄化性能を示す排ガス浄化装置と排ガス浄化方法及びNOx浄化触媒を提供することにある。   An object of the present invention is to provide an exhaust gas purification device, an exhaust gas purification method, and a NOx purification catalyst that eliminate the above-mentioned problems and show high NOx purification performance while avoiding deterioration of fuel consumption.

上記課題を解決する本願発明の特徴は、化学量論量よりも過剰な酸素雰囲気を有する排ガスの窒素酸化物を還元浄化するNOx浄化触媒を備えた熱機関の排ガス浄化装置であり、前記NOx触媒は平均細孔直径が20Å以上100Å以下の細孔分布を有し、かつ、前記NOx触媒は多孔質の担体と触媒活性成分よりなり、触媒活性成分としてバナジウム,ニオブ,タンタル,スズより選ばれる少なくとも一種を含むことにある。上記のNOx浄化触媒は、リーン排ガス中の一酸化炭素または炭化水素を用い、排ガス中の窒素酸化物を還元浄化する。   A feature of the present invention that solves the above problem is an exhaust gas purification apparatus for a heat engine that includes a NOx purification catalyst that reduces and purifies nitrogen oxides of exhaust gas having an oxygen atmosphere that is in excess of the stoichiometric amount, and the NOx catalyst Has a pore distribution with an average pore diameter of 20 to 100 mm, and the NOx catalyst comprises a porous carrier and a catalytically active component, and at least selected from vanadium, niobium, tantalum and tin as the catalytically active component. To include one kind. The NOx purification catalyst uses carbon monoxide or hydrocarbons in lean exhaust gas to reduce and purify nitrogen oxides in the exhaust gas.

本発明の排ガス浄化装置によれば、化学量論量よりも過剰な酸素雰囲気で運転される熱機関において、一酸化炭素及び炭化水素を用いて窒素酸化物を浄化することができ、熱機関からの窒素酸化物の排出量を効果的に抑制することができる。   According to the exhaust gas purification apparatus of the present invention, in a heat engine that is operated in an oxygen atmosphere that is in excess of the stoichiometric amount, nitrogen oxides can be purified using carbon monoxide and hydrocarbons. The amount of nitrogen oxide discharged can be effectively suppressed.

本発明は、化学量論量よりも過剰な酸素雰囲気を有する排ガス(リーン排ガス)が流入する熱機関排ガス流路に、排ガス中の窒素酸化物を還元浄化するNOx浄化触媒を備えた排ガス浄化装置において、前記排ガス浄化触媒が平均細孔直径が20Å以上100Å以下の細孔分布を有し、多孔質担体と該多孔質担体上に担持された触媒活性成分とを有し、該触媒活性成分としてバナジウム,ニオブ,タンタル,スズから選ばれた少なくとも一種を含むことを特徴とすることにある。上記触媒によれば、排ガス中の一酸化炭素または炭化水素を用いて窒素酸化物を高効率で浄化することが可能となる。   The present invention relates to an exhaust gas purification apparatus provided with a NOx purification catalyst for reducing and purifying nitrogen oxides in exhaust gas in a heat engine exhaust gas flow path into which exhaust gas having an oxygen atmosphere exceeding the stoichiometric amount (lean exhaust gas) flows. The exhaust gas purification catalyst has a pore distribution with an average pore diameter of 20 to 100 mm, and has a porous carrier and a catalytically active component supported on the porous carrier, and the catalyst active component It is characterized by including at least one selected from vanadium, niobium, tantalum and tin. According to the catalyst, nitrogen oxides can be purified with high efficiency by using carbon monoxide or hydrocarbons in exhaust gas.

一般にボイラ,ディーゼルエンジン等から排出される排ガス中には窒素酸化物以外に一酸化炭素と炭化水素が共存している。一酸化炭素もしくは炭化水素(HC)を用いた窒素酸化物の還元反応はそれぞれ下記(1)(2)式で表される。   In general, carbon monoxide and hydrocarbons coexist in addition to nitrogen oxides in exhaust gas discharged from boilers, diesel engines, and the like. The nitrogen oxide reduction reaction using carbon monoxide or hydrocarbon (HC) is represented by the following formulas (1) and (2), respectively.

NOx+CO → N2,CO2 …(1)
NOx+HC → N2,CO2,H2O …(2)
ところがボイラ,ディーゼルエンジン等から排出される排ガスは化学量論量よりも過剰な酸素雰囲気であることが多く、その場合CO,HCの燃焼反応が優先して生じ、(1)(2)の反応は進行しにくい。
NOx + CO → N 2 , CO 2 (1)
NOx + HC → N 2 , CO 2 , H 2 O (2)
However, exhaust gas discharged from boilers, diesel engines, etc. often has an oxygen atmosphere that is in excess of the stoichiometric amount. In this case, the combustion reaction of CO and HC takes precedence, and the reactions (1) and (2) Is difficult to progress.

しかし我々が鋭意検討した結果、以下のことが判明した。触媒が平均細孔直径として20Å以上100Å以下の細孔分布を有し、触媒活性成分がバナジウム,ニオブ,タンタル,スズから選ばれた少なくとも一種を含む場合、(1)または(2)の反応が進み、窒素酸化物が浄化されるというものである。窒素酸化物の浄化反応が進む理由は明らかでないが、恐らく平均細孔直径が20Å以上100Å以下である場合、窒素酸化物と一酸化炭素または炭化水素が接触しやすく、両者の反応が生じやすいためではないかと考えている。細孔直径が20Åよりも小さい場合、NO,一酸化炭素,炭化水素等の細孔内への拡散が遅くなり、反応が進みにくくなると考えている。更に活性成分原料としてアルコキシドを用いた場合、アルコキシドが細孔内に入りづらくなり、活性成分を多孔質担体上に高分散させることができなくなる。以上の理由により活性が低下すると考えられる。細孔直径が100Åよりも大きい場合、触媒の比表面積が小さいと考えられる為、やはり活性成分の分散度が低くなり活性低下につながる。   However, as a result of our extensive studies, the following was found. When the catalyst has a pore distribution with an average pore diameter of 20 to 100 mm and the catalytically active component contains at least one selected from vanadium, niobium, tantalum, and tin, the reaction (1) or (2) It goes on and nitrogen oxides are purified. The reason why the purification reaction of nitrogen oxide proceeds is not clear, but it is likely that when the average pore diameter is 20 to 100 mm, the nitrogen oxide and carbon monoxide or hydrocarbon are likely to come into contact with each other, and the reaction between both tends to occur. I think that. When the pore diameter is smaller than 20 mm, it is considered that the diffusion of NO, carbon monoxide, hydrocarbons, etc. into the pore becomes slow and the reaction is difficult to proceed. Further, when an alkoxide is used as the active ingredient raw material, the alkoxide becomes difficult to enter the pores, and the active ingredient cannot be highly dispersed on the porous carrier. It is thought that activity falls for the above reason. When the pore diameter is larger than 100 mm, it is considered that the specific surface area of the catalyst is small. Therefore, the dispersity of the active ingredient is also lowered and the activity is lowered.

さらに、理由は定かでないが、後述するように該触媒活性成分の分散度が高く、バナジウム,ニオブ,タンタル,スズが有するNOx還元能が高まりNOx浄化反応が進む原因となっているのではないかと考えている。   Furthermore, although the reason is not clear, as described later, the dispersibility of the catalytically active component is high, and the NOx reduction ability of vanadium, niobium, tantalum, and tin is increased, which may cause the NOx purification reaction to proceed. thinking.

多孔質担体は触媒活性成分の分散性を高める役割をするものと考えられる。多孔質担体としては、上記細孔分布を有するものであれば特にこだわらない。アルミナのほかにゼオライト,チタニア,シリカ,シリカ−アルミナ,ジルコニア,セリア−ジルコニア,マグネシア,ニオブ,タンタル等の金属酸化物や複合酸化物等を用いることができる。特にMCM−41(MCM:Mobil Catalytic Material),MCM−48,SBA−15等のメソ細孔を有するシリカは耐熱性が高く、活性成分の分散を高める役割を有しており好ましい。多孔質担体は基材上に担持しても良く、その場合基材1Lに対し多孔質担体の担持量を50g以上400g以下とするとNOx浄化性能の向上に好ましい。多孔質担体の担持量が50gより少ないと多孔質担体の効果は不十分となる。また、400gより多いと多孔質担体自体の比表面積が低下し、更には基材がハニカム形状の場合目詰まりが生じやすくなり好ましくない。   The porous carrier is considered to play a role of enhancing the dispersibility of the catalytically active component. The porous carrier is not particularly limited as long as it has the above pore distribution. In addition to alumina, metal oxides such as zeolite, titania, silica, silica-alumina, zirconia, ceria-zirconia, magnesia, niobium, and tantalum, composite oxides, and the like can be used. In particular, silica having mesopores such as MCM-41 (MCM: Mobil Catalytic Material), MCM-48, and SBA-15 has high heat resistance and is preferable because it has a role of increasing dispersion of active ingredients. The porous carrier may be supported on a substrate. In that case, it is preferable to improve the NOx purification performance when the amount of the porous carrier supported is 50 g or more and 400 g or less with respect to 1 L of the substrate. When the amount of the porous carrier supported is less than 50 g, the effect of the porous carrier is insufficient. On the other hand, when the amount is more than 400 g, the specific surface area of the porous carrier itself is lowered, and further, when the substrate is in a honeycomb shape, clogging tends to occur, which is not preferable.

本発明における触媒活性成分は、酸素原子を介して多孔質担体と結合していると考えられる。この場合、活性成分が高分散し活性成分の表面積が向上する。また多孔質担体との結合が強く、熱によるシンタリングが生じにくい。従って高い性能を長期間維持することが可能になる。単に基体等に触媒活性成分をコーティングした場合、活性成分の分散度が低く、更に基体と活性成分の結合が弱いと考えられる為、熱によるシンタリングが生じやすくなると推測される。従って、担体上に分散させることが、活性を高く、かつ長期間活性の低下を防止できる。   It is considered that the catalytically active component in the present invention is bonded to the porous carrier via an oxygen atom. In this case, the active ingredient is highly dispersed and the surface area of the active ingredient is improved. In addition, the bond with the porous carrier is strong, and sintering due to heat hardly occurs. Accordingly, high performance can be maintained for a long time. If the catalytically active component is simply coated on the substrate or the like, the degree of dispersion of the active component is low, and the bonding between the substrate and the active component is considered to be weak. Therefore, the dispersion on the carrier has a high activity and can prevent a decrease in the activity for a long time.

バナジウム,ニオブ,タンタル,スズ担持量は多孔質担体1.9mol部に対し元素換算で0.005mol部以上2.5mol部以下(担体1モル部に対し、0.0026〜1.32モル部)とすることが好ましい。バナジウム,ニオブ,タンタル,スズ担持量が多孔質担体1.9mol部に対し0.005mol部より少ないと担持効果は不十分となり、2.5mol部より多いと触媒自体の比表面積が低下し活性低下につながるため好ましくない。ここでmol部とは、各成分のmol数換算での含有比率を表したものであり、例えばA成分2mol部に対してB成分の担持量が1mol部ということは、A成分の絶対量の多少に関わらず、mol数換算でAが2に対しBが1の割合で担持されていることを意味する。特に、多孔質担体1.9mol部に対し0.01mol部以上2mol部以下(担体1モル部に対し、0.0053〜1.053モル部)にするとなお好適である。   The supported amount of vanadium, niobium, tantalum, and tin is 0.005 mol part or more and 2.5 mol part or less in terms of element with respect to 1.9 mol part of the porous carrier (0.0026 to 1.32 mol part relative to 1 mol part of the carrier). It is preferable that If the supported amount of vanadium, niobium, tantalum and tin is less than 0.005 mol part with respect to 1.9 mol part of the porous support, the effect of supporting is insufficient, and if it exceeds 2.5 mol part, the specific surface area of the catalyst itself decreases and the activity decreases. It is not preferable because it leads to. Here, the mol part represents the content ratio of each component in terms of mol number. For example, the loading amount of B component is 1 mol part with respect to 2 mol part of A component. It means that B is supported at a ratio of 1 to 2 for A in terms of mol number. In particular, it is more preferable to use 0.01 mol part or more and 2 mol part or less with respect to 1.9 mol part of the porous carrier (0.0053 to 1.053 mol part with respect to 1 mol part of the carrier).

多孔質担体が有する細孔の直径は揃っていることが望ましい。具体的には20Å以上1000Å以下の細孔直径を有する細孔の微分細孔容積の総計に対し、20Å以上100Å以下の細孔直径を有する細孔の微分細孔容積の総計が80%以上にすることで一酸化炭素または炭化水素によるNOx浄化反応が促進される。細孔の直径を揃える事で一酸化炭素または炭化水素と窒素酸化物との接触が高まるものと考えている。   It is desirable that the pores of the porous carrier have the same diameter. Specifically, the total differential pore volume of pores having a pore diameter of 20 to 100 mm is 80% or more of the total differential pore volume of pores having a diameter of 20 to 1000 mm. By doing so, the NOx purification reaction by carbon monoxide or hydrocarbon is promoted. It is considered that contact between carbon monoxide or hydrocarbon and nitrogen oxide is increased by making the diameters of the pores uniform.

触媒活性成分の一部あるいは全部が多孔質担体上にアモルファス(非晶質)の状態として存在させることでNOx浄化反応は促進される。アモルファスの状態になることで活性成分が高分散し活性成分の表面積が向上すること、及びアモルファスの状態特有の触媒性能が現れる為と考えている。アモルファスの状態とするためには活性成分の原料,触媒調製温度,触媒調製時の多孔質担体と活性成分原料との接触時間で決めることができる。アモルファスの状態となっているかどうかはラマン分光,UV−Vis等の分析機器を使用することで判断する事ができる。   The NOx purification reaction is promoted by allowing some or all of the catalytically active components to be present in an amorphous state on the porous carrier. It is thought that the active component is highly dispersed by being in an amorphous state, the surface area of the active component is improved, and the catalyst performance peculiar to the amorphous state appears. In order to obtain an amorphous state, it can be determined by the raw material of the active ingredient, the catalyst preparation temperature, and the contact time between the porous carrier and the active ingredient raw material at the time of catalyst preparation. Whether it is in an amorphous state can be determined by using an analytical instrument such as Raman spectroscopy or UV-Vis.

NOx浄化触媒の調製方法は、含浸法,混練法,共沈法,ゾルゲル法,イオン交換法,蒸着法等の物理的調製方法や化学反応を利用した調製方法等いずれも適用可能である。特に化学反応を利用すれば活性成分原料と多孔質担体との接触が強固になり、活性成分のシンタリング等を防ぐ事ができる。NOx浄化触媒の出発原料としては、硝酸化合物,酢酸化合物,錯体化合物,水酸化物,炭酸化合物,有機化合物などの種々の化合物や金属及び金属酸化物を用いることができる。特に活性成分原料としてアルコキシドを用いれば多孔質担体上に活性成分を均一に高分散化して担持する事ができるので好適である。アルコキシドであれば特にこだわらないが、具体的には、VO(O−n−C49)3,VO(O−t−C49)3,Nb(OC25)5,Nb(O−n−C49)5,Ta(OC25)5,Ta(O−n−C49)5,Sn(O−t−C49)4 、等を用いることができる。これらアルコキシドを担体上のOH基と反応させることで活性成分を担体上に活性成分を均一に高分散化して担持させることができる。 As a method for preparing the NOx purification catalyst, any of a physical preparation method such as an impregnation method, a kneading method, a coprecipitation method, a sol-gel method, an ion exchange method, and a vapor deposition method and a preparation method using a chemical reaction can be applied. In particular, if a chemical reaction is used, the contact between the active ingredient raw material and the porous carrier becomes strong, and sintering of the active ingredient can be prevented. As a starting material for the NOx purification catalyst, various compounds such as nitric acid compounds, acetic acid compounds, complex compounds, hydroxides, carbonate compounds, organic compounds, metals, and metal oxides can be used. In particular, the use of alkoxide as the active ingredient raw material is preferable because the active ingredient can be uniformly dispersed and supported on the porous carrier. Although not particularly particular about if alkoxide, specifically, VO (O-n-C 4 H 9) 3, VO (O-t-C 4 H 9) 3, Nb (OC 2 H 5) 5, Nb (O-n-C 4 H 9) 5, Ta (OC 2 H 5) 5, Ta (O-n-C 4 H 9) 5, Sn (O-t-C 4 H 9) 4, and the like used be able to. By reacting these alkoxides with OH groups on the carrier, the active ingredient can be uniformly dispersed and supported on the carrier.

NOx浄化触媒に流入する一酸化炭素または炭化水素の量が、排ガス中の窒素酸化物を全て浄化しうる量に満たないことがある。その場合排ガス流路に一酸化炭素または炭化水素を注入することでNOx浄化触媒に接触する炭化水素の量を増加させれば窒素酸化物の浄化効率は高まる。注入する炭化水素はCH4 ,C26,C38等、窒素酸化物を還元できるものであれば特に限定は無いが、C24,C36等のオレフィンを用いるとNOx還元効率が高まる。オレフィンは反応性が高く、窒素酸化物と反応しやすいためであると考えている。従って、これらを注入する還元剤供給装置を設けることが好ましい。 The amount of carbon monoxide or hydrocarbon that flows into the NOx purification catalyst may not be enough to remove all the nitrogen oxides in the exhaust gas. In that case, if the amount of hydrocarbon in contact with the NOx purification catalyst is increased by injecting carbon monoxide or hydrocarbons into the exhaust gas passage, the purification efficiency of nitrogen oxides increases. The hydrocarbon to be injected is not particularly limited as long as it can reduce nitrogen oxides, such as CH 4 , C 2 H 6 , and C 3 H 8 , but when olefins such as C 2 H 4 and C 3 H 6 are used. The NOx reduction efficiency increases. It is considered that olefin is highly reactive and easily reacts with nitrogen oxides. Therefore, it is preferable to provide a reducing agent supply device for injecting them.

これら一酸化炭素または炭化水素はガスボンベを用いて注入することができる。更にC38等のパラフィンを脱水素化させて生成したオレフィンを注入しても良い。また軽油等の常温では液状の還元剤を排ガス流路に注入してもNOx浄化触媒に接触する炭化水素の量は増加し、窒素酸化物の還元効率は高まる。 These carbon monoxide or hydrocarbon can be injected using a gas cylinder. Further, an olefin produced by dehydrogenating paraffin such as C 3 H 8 may be injected. In addition, even when a liquid reducing agent such as light oil is injected into the exhaust gas passage, the amount of hydrocarbon that comes into contact with the NOx purification catalyst increases, and the reduction efficiency of nitrogen oxides increases.

NOx浄化触媒に流入する一酸化炭素または炭化水素の量が、排ガス中の窒素酸化物を全て浄化しうる量に満たない場合、NOx浄化触媒の前段または後段に、アンモニア(NH3 )を還元剤とすることで窒素酸化物を還元する能力を有する触媒(アンモニア脱硝触媒)を設置することで窒素酸化物を高度に浄化できる。アンモニア脱硝触媒の前段にNH3を吹き込めば窒素酸化物がアンモニア脱硝触媒上で還元浄化されるからである。アンモニア脱硝触媒は、特にNOx浄化触媒の後段に配置することにより、使用するアンモニア量を抑制しつつ高効率に窒素酸化物を還元でき好ましい。 When the amount of carbon monoxide or hydrocarbons flowing into the NOx purification catalyst is less than the amount capable of purifying all the nitrogen oxides in the exhaust gas, ammonia (NH 3 ) is added as a reducing agent before or after the NOx purification catalyst. By installing a catalyst (ammonia denitration catalyst) having the ability to reduce nitrogen oxides, nitrogen oxides can be highly purified. This is because if NH 3 is blown before the ammonia denitration catalyst, nitrogen oxides are reduced and purified on the ammonia denitration catalyst. The ammonia denitration catalyst is particularly preferable because it is disposed downstream of the NOx purification catalyst, so that nitrogen oxide can be reduced with high efficiency while suppressing the amount of ammonia to be used.

アンモニア脱硝触媒の代表例としては、TiO2 及びゼオライト担体にバナジウム,鉄等を活性成分としたものが考えられる。また、本発明のNOx浄化触媒とアンモニア脱硝触媒とを混ぜ合わせて一体化したものを触媒として、一酸化炭素,炭化水素,アンモニアをこの触媒に流入させることで窒素酸化物を浄化することもできる。この場合、触媒設置に要するスペースが少なくてすむというメリットがある。 As a typical example of an ammonia denitration catalyst, TiO 2 and a zeolite carrier containing vanadium, iron, or the like as active components can be considered. Further, the NOx purification catalyst of the present invention and the ammonia denitration catalyst can be mixed and integrated, and carbon monoxide, hydrocarbon, and ammonia can be purified by flowing carbon monoxide, hydrocarbons, and ammonia into the catalyst. . In this case, there is an advantage that a space required for installing the catalyst can be reduced.

本発明は化学量論量よりも過剰な酸素雰囲気を有する雰囲気で燃料等を燃焼させた熱機関の排ガスに対して有効である。化学量論量と同等もしくはそれ以下の酸素雰囲気(リッチガス)に対しても使用できるが、その場合、熱機関もしくは排ガス流路に添加される燃料が多くなり、コストの増加につながる。従って特に必要が無ければガス雰囲気をリッチとする必要は無く、過剰な酸素雰囲気を有する排ガス(リーンガス)に対して用いることができる。   The present invention is effective for exhaust gas from a heat engine in which fuel or the like is burned in an atmosphere having an oxygen atmosphere that is excessive than the stoichiometric amount. Although it can be used for an oxygen atmosphere (rich gas) equivalent to or less than the stoichiometric amount, in that case, the amount of fuel added to the heat engine or the exhaust gas passage increases, leading to an increase in cost. Therefore, it is not necessary to make the gas atmosphere rich unless particularly required, and can be used for exhaust gas (lean gas) having an excessive oxygen atmosphere.

NOx浄化触媒に流入する一酸化炭素または炭化水素の量が、排ガス中の窒素酸化物を全て浄化しうる量に満たない場合、熱機関の燃焼状態を変える事で、該NOx浄化触媒に流入する一酸化炭素または炭化水素及び窒素酸化物量を変化させても良い。この場合、一酸化炭素または炭化水素の注入機器が不要であるといったメリットがある。上記の燃焼状態を変えるためには、燃焼状態制御装置により、燃料・空気等の流入量を調整することができる。   When the amount of carbon monoxide or hydrocarbons flowing into the NOx purification catalyst is less than the amount capable of purifying all the nitrogen oxides in the exhaust gas, it flows into the NOx purification catalyst by changing the combustion state of the heat engine. The amount of carbon monoxide or hydrocarbon and nitrogen oxide may be changed. In this case, there is an advantage that a carbon monoxide or hydrocarbon injection device is unnecessary. In order to change the above combustion state, the amount of inflow of fuel, air, etc. can be adjusted by the combustion state control device.

NOx浄化触媒の後段にNOxセンサを設けて該NOx浄化触媒の後段に流出する窒素酸化物量を計測しても良い。NOxセンサを設けて、NOx浄化触媒後流の排ガス中に含まれる窒素酸化物量(浄化されなかったNOx量)を計測することで、窒素酸化物量が最も少なくなるようNOx浄化触媒に流入させる一酸化炭素,炭化水素の量を最適化できる。NOx浄化触媒に流入する一酸化炭素,炭化水素の量は、NOx浄化触媒前段に一酸化炭素,炭化水素を注入したり、熱機関の燃焼状態を変化させることなどにより調整できる。   A NOx sensor may be provided downstream of the NOx purification catalyst, and the amount of nitrogen oxide flowing out downstream of the NOx purification catalyst may be measured. By providing a NOx sensor and measuring the amount of nitrogen oxides contained in the exhaust gas downstream of the NOx purification catalyst (the amount of NOx that has not been purified), the monoxide that flows into the NOx purification catalyst so as to minimize the amount of nitrogen oxides The amount of carbon and hydrocarbon can be optimized. The amounts of carbon monoxide and hydrocarbons flowing into the NOx purification catalyst can be adjusted by injecting carbon monoxide and hydrocarbons in the previous stage of the NOx purification catalyst, changing the combustion state of the heat engine, or the like.

NOx浄化触媒により浄化されなかったNOx量を計測し、窒素酸化物量が所定値より多く含まれる場合にはNOx浄化触媒に流入させる一酸化炭素,炭化水素の量を増やし、窒素酸化物量が観測されない場合は一酸化炭素,炭化水素の量を減らす。その結果、高いNOx浄化活性を維持することができ、大気への一酸化炭素や炭化水素の流出を低減できる。また、浄化に使用する一酸化炭素または炭化水素の量を減らし、燃費の向上につながる。   The amount of NOx that has not been purified by the NOx purification catalyst is measured, and when the amount of nitrogen oxide is greater than the predetermined value, the amount of carbon monoxide and hydrocarbons that flow into the NOx purification catalyst is increased, and the amount of nitrogen oxide is not observed If so, reduce the amount of carbon monoxide and hydrocarbons. As a result, high NOx purification activity can be maintained, and the outflow of carbon monoxide and hydrocarbons to the atmosphere can be reduced. In addition, the amount of carbon monoxide or hydrocarbons used for purification is reduced, leading to improved fuel economy.

NOx浄化触媒を使用する温度は300℃程度よりも高温とすることが好ましい。充分に触媒の温度が高くならない場合や、熱機関の作動開始時等には、触媒を暖めるヒーターを用いてもよい。   The temperature at which the NOx purification catalyst is used is preferably higher than about 300 ° C. A heater that warms the catalyst may be used when the temperature of the catalyst is not sufficiently high or when the operation of the heat engine starts.

本発明によるNOx浄化触媒の形状は、用途に応じ各種の形状で適用できる。コージェライト,SiC,ステンレス等の各種材料からなるハニカム構造体に各種成分を担持したNOx浄化触媒をコーティングして得られるハニカム形状を始めとし、ペレット状,板状,粒状,粉末状等として適用できる。ハニカム形状の場合、その基材はコ−ジェライトが最適であるが、触媒温度が高まるおそれがある場合、触媒成分と反応しにくい基材、例えば金属製のものを用いても良好な結果を得ることができる。またNOx浄化触媒のみからなるハニカムを形成しても良好な結果が得られる。   The shape of the NOx purification catalyst according to the present invention can be applied in various shapes depending on the application. Can be applied to honeycomb structures made of various materials such as cordierite, SiC, stainless steel, and other honeycomb shapes obtained by coating NOx purification catalysts carrying various components, as well as pellets, plates, granules, powders, etc. . In the case of the honeycomb shape, cordierite is optimal as the base material. However, when the catalyst temperature may be increased, good results can be obtained even when a base material that does not easily react with the catalyst component, for example, a metal base is used. be able to. Further, good results can be obtained even when a honeycomb composed of only a NOx purification catalyst is formed.

以下、具体的な例で本発明の実施例を説明する。尚、本発明はこれらの実施例により制限されるものではない。   Examples of the present invention will be described below with specific examples. In addition, this invention is not restrict | limited by these Examples.

(NOx浄化触媒調製法)
市販のMCM−41(日本化学工業製、SILFAM−A)をシュレンクフラスコに入れて200℃の温度で9時間、真空脱気を行った後、脱水したTHF(テトラヒドロフラン)を添加してシュレンクフラスコの中でMCM−41をTHF中にけん濁させた。また、バナジウムのアルコキシドVO(O−n−C49)3をシュレンクフラスコの中に入れ、THFに溶解させた。次にこのバナジウム溶液をTHF中にけん濁しているMCM−41へ添加し、15hの撹拌を行った。その後、撹拌を止め、THFを真空排気で除去する事でバナジウムが担持されたMCM−41の触媒粉である、V/MCM−41を得た。バナジウムの添加量はMCM−41が1gに対し、金属元素換算で0.6mmolとした。この触媒を実施例触媒1とする。同様に、ニオブについてはNb(OC25)5 を、タンタルについてはTa(OC25)5 を、スズについてはSn(O−t−C49)4 を用いて実施例触媒を調製した。更に比較例触媒としてZr(O−n−C49)4 を原料として用いたZr/MCM−41を調製した。表1に調製した触媒一覧を示す。
(NOx purification catalyst preparation method)
Commercially available MCM-41 (manufactured by Nippon Chemical Industry Co., Ltd., SILFAM-A) was placed in a Schlenk flask, vacuum degassed at 200 ° C. for 9 hours, dehydrated THF (tetrahydrofuran) was added, and the Schlenk flask MCM-41 was suspended in THF. Further, vanadium alkoxide VO (On-C 4 H 9 ) 3 was placed in a Schlenk flask and dissolved in THF. The vanadium solution was then added to MCM-41 suspended in THF and stirred for 15 h. Then, stirring was stopped and THF was removed by vacuum evacuation to obtain V / MCM-41 which is a catalyst powder of MCM-41 carrying vanadium. Vanadium was added in an amount of 0.6 mmol in terms of metal element with respect to 1 g of MCM-41. This catalyst is referred to as Example catalyst 1. Similarly, Nb (OC 2 H 5 ) 5 for niobium, Ta (OC 2 H 5 ) 5 for tantalum, and Sn (Ot-C 4 H 9 ) 4 for tin. Was prepared. Further the Zr (O-n-C 4 H 9) 4 As a comparative example catalyst prepared Zr / MCM-41 used as the raw material. Table 1 shows a list of prepared catalysts.

Figure 2008238069
Figure 2008238069

(実施例1:C36によるNOx還元1)
実施例触媒1〜4及び比較例触媒1のC36によるNOx浄化率を評価した。図1は、各触媒のC36によるNOx浄化活性の温度変化を示した図である。図1より、比較例1では測定した全温度域でNOx浄化率がほとんど0%であるのに対し、実施例触媒1〜4は300℃及び400℃で比較例触媒1よりも高いNOx浄化率を示している。従ってバナジウム,ニオブ,タンタル,スズを活性成分として用いた場合、高いNOx浄化率が得られるのは明らかである。
Example 1: NOx reduction 1 with C 3 H 6
The NOx purification rates of Example Catalysts 1 to 4 and Comparative Example Catalyst 1 with C 3 H 6 were evaluated. FIG. 1 is a graph showing the temperature change of NOx purification activity by C 3 H 6 of each catalyst. From FIG. 1, the NOx purification rate is almost 0% in the entire temperature range measured in Comparative Example 1, whereas the Example Catalysts 1 to 4 have higher NOx purification rates than the Comparative Example Catalyst 1 at 300 ° C. and 400 ° C. Is shown. Therefore, when vanadium, niobium, tantalum, and tin are used as active ingredients, it is clear that a high NOx purification rate can be obtained.

(触媒性能評価方法)
触媒の性能を評価する為行ったNOx浄化性能試験は、次の条件で行った。容量1.5c.c.の粒状触媒(直径0.75mm〜1.5mm)を石英ガラス製反応管中に固定した。この反応管を電気炉中に導入し、反応管に導入されるガス温度が200℃〜400℃となるように加熱制御した。反応管に導入されるガスは、化学量論量よりも過剰な酸素雰囲気を有する排ガスを模擬するモデルガスとした。モデルガスの組成は、一酸化炭素によるNOxの還元反応を行う際には、NOx:100ppm,CO:1000ppm,O2:3%,H2O:3%,He:残差とし、SVは15,000/hとした。炭化水素によるNOxの還元反応を行う際には、上記モデルガスに対し更にC36を500ppm添加した。
(Catalyst performance evaluation method)
The NOx purification performance test conducted to evaluate the performance of the catalyst was conducted under the following conditions. A granular catalyst (diameter 0.75 mm to 1.5 mm) having a capacity of 1.5 c.c. was fixed in a reaction tube made of quartz glass. This reaction tube was introduced into an electric furnace, and the heating was controlled so that the gas temperature introduced into the reaction tube was 200 ° C to 400 ° C. The gas introduced into the reaction tube was a model gas that simulates an exhaust gas having an oxygen atmosphere in excess of the stoichiometric amount. The composition of the model gas is NOx: 100 ppm, CO: 1000 ppm, O 2 : 3%, H 2 O: 3%, He: residual, and SV of 15 when performing a NOx reduction reaction with carbon monoxide. 000 / h. When performing the NOx reduction reaction with hydrocarbons, 500 ppm of C 3 H 6 was further added to the model gas.

このとき触媒のNOx浄化性能を次式に示すNOx浄化率により見積もった。   At this time, the NOx purification performance of the catalyst was estimated by the NOx purification rate shown in the following equation.

NOx浄化率(%)=((触媒に流入したNOx量)−(触媒から流出したNOx量))
÷(触媒に流入したNOx量)×100
NOx purification rate (%) = ((NOx amount flowing into the catalyst) − (NOx amount flowing out from the catalyst))
÷ (NOx amount flowing into the catalyst) x 100

(細孔分布評価法)
サンプルの細孔分布測定はmicromeritics社製ASAP2010を用いて、N2吸着法にて実施した。サンプルを真空中で200℃の熱を加える事でサンプルに付着している水分,ガス等を除去した。測定は20Å〜1000Åの範囲で行った。実施例触媒1〜4及び比較例触媒1は、20Å以上1000Å以下の細孔直径を有する細孔の微分細孔容積の総計に対し、20Å以上100Å以下の細孔直径を有する細孔の微分細孔容積の総計が80%以上であった。
(Porosity distribution evaluation method)
The pore distribution of the sample was measured by N 2 adsorption method using ASAP2010 manufactured by micromeritics. Moisture, gas, etc. adhering to the sample were removed by applying heat at 200 ° C. in a vacuum. The measurement was performed in the range of 20 to 1000 cm. Example Catalysts 1 to 4 and Comparative Example Catalyst 1 are different from the total differential pore volume of pores having a pore diameter of 20 to 1000 mm with respect to pores having a pore diameter of 20 to 100 mm. The total pore volume was 80% or more.

(実施例2:平均細孔径)
実施例1において、MCM−41(SILFAM−A)の代わりに、平均細孔径がやや小さいSILFAM−A−2.8粉 ,SiO2ゾル(日産化学製)乾燥粉,SiO2粉(富士シリシア製),Al−P複合酸化物AlPOを担体として用いた事以外は実施例触媒1と同様の調製法を用いて各粉体にバナジウムを添加した実施例触媒5〜8を調製した。一方、Y型ゼオライト(東ソー製),Al23(サソール製),MgO(和光純薬製)に対し、NH4VO3をH22に溶解させて得た溶液を含浸法にて添加した後、150℃で乾燥し、500℃×2hの焼成を施すことで比較例触媒2〜4を得た。表2に調製した触媒一覧を示す。
(Example 2: Average pore diameter)
In Example 1, instead of MCM-41 (SILFAM-A), SILFAM-A-2.8 powder having a slightly smaller average pore diameter, SiO 2 sol (Nissan Chemical) dry powder, SiO 2 powder (Fuji Silysia) Example Catalysts 5 to 8 were prepared by adding vanadium to each powder using the same preparation method as Example Catalyst 1 except that AlPO composite oxide AlPO was used as a carrier. On the other hand, a solution obtained by dissolving NH 4 VO 3 in H 2 O 2 against Y-type zeolite (made by Tosoh), Al 2 O 3 (made by Sasol), and MgO (made by Wako Pure Chemical Industries) was impregnated. After the addition, the catalyst was dried at 150 ° C. and calcined at 500 ° C. for 2 hours to obtain Comparative Catalysts 2 to 4. Table 2 shows a list of prepared catalysts.

Figure 2008238069
Figure 2008238069

実施例触媒1及び実施例触媒5〜8,比較例触媒2〜4のC36によるNOx浄化率を評価した。 Example Catalyst 1 and Example catalysts 5-8 were evaluated NOx purification rate by the C 3 H 6 of Comparative Example Catalyst 2-4.

各成分の細孔直径を確認したところ、実施例触媒5〜8は、20Å以上1000Å以下の細孔直径を有する細孔の微分細孔容積の総計に対し、20Å以上100Å以下の細孔直径を有する細孔の微分細孔容積の総計が80%以上であった。   When the pore diameters of the respective components were confirmed, Example Catalysts 5 to 8 had a pore diameter of 20 to 100 mm with respect to the total differential pore volume of pores having a pore diameter of 20 to 1,000 mm. The total differential pore volume of the pores possessed was 80% or more.

図2に400℃でのNOx浄化率と、平均細孔径の関係を示す。図2中、例えば実1は実施例触媒1の、比2は比較例触媒2のデータであることを示す。図2より、平均細孔径が20Å〜100Åの場合、NOx浄化率が50%を超え、高い浄化率を示す。従って平均細孔径が20Å〜100Åである場合、高いNOx浄化率が得られ、上記範囲を外れると浄化率が低下していた。   FIG. 2 shows the relationship between the NOx purification rate at 400 ° C. and the average pore diameter. In FIG. 2, for example, actual 1 indicates data of the example catalyst 1 and ratio 2 indicates data of the comparative example catalyst 2. From FIG. 2, when the average pore diameter is 20 to 100%, the NOx purification rate exceeds 50%, indicating a high purification rate. Therefore, when the average pore diameter is 20 to 100%, a high NOx purification rate is obtained, and when the average pore diameter is out of the above range, the purification rate is lowered.

(実施例3:COによるNOx還元)
実施例触媒1〜4及び比較例触媒1,2の一酸化炭素によるNOx浄化率を評価した。図3に200℃でのNOx浄化率を示す。比較例触媒1〜2はNOx浄化率が殆ど無いのに対し、実施例触媒1〜4はNOx浄化率が20%を超え、高いNOx浄化率を示す。従ってバナジウム,ニオブ,タンタル,スズを活性成分として用いた触媒が一酸化炭素によるNOx還元反応に対し、高いNOx浄化率が得られるのは明らかである。
(Example 3: NOx reduction by CO)
The NOx purification rate by carbon monoxide of the example catalysts 1 to 4 and the comparative example catalysts 1 and 2 was evaluated. FIG. 3 shows the NOx purification rate at 200 ° C. While the comparative example catalysts 1 and 2 have almost no NOx purification rate, the example catalysts 1 to 4 have a NOx purification rate of over 20% and show a high NOx purification rate. Therefore, it is clear that a catalyst using vanadium, niobium, tantalum, and tin as an active component can obtain a high NOx purification rate for the NOx reduction reaction by carbon monoxide.

(実施例4:アモルファス確認)
実施例触媒1に対し、ラマン分光測定を行った。図4に結果を示す。500(/cm)付近にMCM−41由来のブロードなピークが見られる他に、1038(/cm)付近にシャープなピークが得られた。このピークはアモルファス状バナジウム酸化物の振動に帰属されるピークである。結晶化したバナジウム酸化物の場合、振動ピークは998(/cm)に見られるはずであるが、図4では見られていない。従って実施例触媒1のバナジウムがアモルファス状態で存在していることは明らかである。
(Example 4: Amorphous confirmation)
The Example catalyst 1 was subjected to Raman spectroscopic measurement. The results are shown in FIG. In addition to the broad peak derived from MCM-41 near 500 (/ cm), a sharp peak was obtained near 1038 (/ cm). This peak is a peak attributed to the vibration of the amorphous vanadium oxide. In the case of crystallized vanadium oxide, a vibration peak should be seen at 998 (/ cm) but not in FIG. Therefore, it is clear that vanadium of Example catalyst 1 exists in an amorphous state.

(実施例5:アンモニア脱硝触媒との組みあわせ)
図5は、ボイラの後段に、実施例触媒1及びアンモニア脱硝触媒を設置した例を示す。ボイラ排ガス中には窒素酸化物以外に一酸化炭素が含まれている為、実施例触媒1により窒素酸化物が一酸化炭素により還元浄化される。しかしボイラからの窒素酸化物の排出量が多い場合、もしくは一酸化炭素の排出量が少ない場合には、実施例触媒1のみでは窒素酸化物を十分に浄化できない場合がある。その場合、後段にTi−V系触媒に代表されるアンモニア脱硝触媒を設置し、その前段にアンモニアを吹き込むことで窒素酸化物を十分浄化することができる。
(Example 5: Combination with ammonia denitration catalyst)
FIG. 5 shows an example in which the example catalyst 1 and the ammonia denitration catalyst are installed at the rear stage of the boiler. Since the boiler exhaust gas contains carbon monoxide in addition to the nitrogen oxide, the nitrogen oxide is reduced and purified by the carbon monoxide by the example catalyst 1. However, when the emission amount of nitrogen oxides from the boiler is large, or when the emission amount of carbon monoxide is small, the nitrogen oxides may not be sufficiently purified by the catalyst of Example 1 alone. In that case, an ammonia denitration catalyst typified by a Ti-V-based catalyst is installed in the subsequent stage, and nitrogen oxide can be sufficiently purified by blowing ammonia into the previous stage.

(実施例6:炭化水素の注入)
図6は、実施例触媒1の前段に、炭化水素注入口を設けた場合の装置例を示す。排ガス流路に注入する炭化水素源としては、ガス状のCH4,C24,C36、または液状の軽油等が考えられる。実施例触媒1により、排ガス中の窒素酸化物が炭化水素により還元浄化されるため、図6で示した装置構成とすることで窒素酸化物の量が多い場合であっても高効率でNOxを浄化することが可能である。図6のボイラを特にディーゼルエンジンとしてもよい。その場合には炭化水素源として燃料である軽油を適宜注入できる。
(Example 6: Injection of hydrocarbon)
FIG. 6 shows an example of an apparatus in the case where a hydrocarbon injection port is provided in the preceding stage of the example catalyst 1. As the hydrocarbon source injected into the exhaust gas flow path, gaseous CH 4 , C 2 H 4 , C 3 H 6 , liquid light oil, or the like can be considered. Since the nitrogen oxides in the exhaust gas are reduced and purified by the hydrocarbons by the catalyst of Example 1, the apparatus configuration shown in FIG. 6 enables high efficiency NOx even when the amount of nitrogen oxides is large. It is possible to purify. The boiler in FIG. 6 may be a diesel engine. In that case, light oil as a fuel can be appropriately injected as a hydrocarbon source.

(実施例7:熱機関の構成図)
図7は本発明の排ガス浄化装置を備えた熱機関の一実施態様を示す全体構成図である。本発明の熱機関は、ボイラ1と排ガス浄化装置よりなり、排ガス浄化装置は実施例触媒6,軽油注入系(軽油タンク3,軽油注入口4),センサ系(COセンサ2,実施例触媒の入口ガス温度センサ5,NOxセンサ7)及び制御ユニット8から構成される。
(Example 7: Configuration diagram of heat engine)
FIG. 7 is an overall configuration diagram showing an embodiment of a heat engine provided with the exhaust gas purifying apparatus of the present invention. The heat engine of the present invention comprises a boiler 1 and an exhaust gas purifying device. The exhaust gas purifying device comprises an embodiment catalyst 6, a light oil injection system (light oil tank 3, a light oil injection port 4), a sensor system (CO sensor 2, an embodiment catalyst). An inlet gas temperature sensor 5, a NOx sensor 7) and a control unit 8 are included.

図7のボイラ1からの排ガスは化学量論量よりも過剰な酸素雰囲気を有し、酸素以外に一酸化炭素,窒素酸化物を含有する。排ガス浄化装置では、排ガスが実施例触媒6と接触すると、排ガス中の一酸化炭素と窒素酸化物とが反応し、排ガス中の窒素酸化物が還元除去される。実施例触媒6に流入する排ガス温度は、温度センサ5によりモニターされている。更にCOセンサ2により排ガス中のCO濃度を測定している。実施例触媒6の後流に設置されたNOxセンサ7では、大気中に排出される窒素酸化物量を測定する。これらセンサの信号は制御ユニット8へ入力される。制御ユニット8ではボイラ及び排ガス浄化装置の状態を評価して、適切な燃焼条件,浄化条件に制御する。特に窒素酸化物量が多いと制御ユニット8が判定した場合、ボイラの燃焼状態を変更し、流入する空気量または燃料を調整してボイラ排ガス中のCO濃度を高くする。または、軽油タンク3から軽油を排ガス流路に注入する。その結果、排出される窒素酸化物の排出量を適宜効果的に低減することができる。   The exhaust gas from the boiler 1 in FIG. 7 has an oxygen atmosphere that is excessive than the stoichiometric amount, and contains carbon monoxide and nitrogen oxides in addition to oxygen. In the exhaust gas purifying apparatus, when the exhaust gas comes into contact with the example catalyst 6, carbon monoxide and nitrogen oxides in the exhaust gas react to reduce and remove nitrogen oxides in the exhaust gas. The temperature of the exhaust gas flowing into the example catalyst 6 is monitored by the temperature sensor 5. Further, the CO concentration in the exhaust gas is measured by the CO sensor 2. The NOx sensor 7 installed in the downstream of the catalyst of Example 6 measures the amount of nitrogen oxides discharged into the atmosphere. Signals from these sensors are input to the control unit 8. The control unit 8 evaluates the state of the boiler and the exhaust gas purification device, and controls them to appropriate combustion conditions and purification conditions. In particular, when the control unit 8 determines that the amount of nitrogen oxide is large, the combustion state of the boiler is changed and the amount of air or fuel that flows in is adjusted to increase the CO concentration in the boiler exhaust gas. Alternatively, light oil is injected from the light oil tank 3 into the exhaust gas passage. As a result, the amount of nitrogen oxide discharged can be effectively reduced as appropriate.

各触媒のC36によるNOx浄化活性の温度変化を示した図である。It is a diagram showing the temperature change of the NOx purification activity by C 3 H 6 of each catalyst. 平均細孔径に対する、C36によるNOx浄化活性の変化を示した図である。To the average pore diameter is a view showing a change in NOx purification activity by C 3 H 6. 各触媒の一酸化炭素によるNOx浄化活性を示した図である。It is the figure which showed NOx purification activity by the carbon monoxide of each catalyst. 触媒のラマンスペクトルを示した図である。It is the figure which showed the Raman spectrum of the catalyst. 実施例触媒の後段にアンモニア脱硝触媒を設けた熱機関構成図である。It is a heat engine block diagram which provided the ammonia denitration catalyst in the back | latter stage of the Example catalyst. 実施例触媒の前段に炭化水素注入口を設けた熱機関構成図である。It is a heat engine block diagram which provided the hydrocarbon inlet in the front | former stage of the Example catalyst. 本発明の排ガス浄化装置の一実施態様を示す構成図である。It is a block diagram which shows one embodiment of the exhaust gas purification apparatus of this invention.

符号の説明Explanation of symbols

1 ボイラ
2 COセンサ
3 軽油タンク
4 軽油注入口
5 NOx浄化触媒入口ガス温度センサ
6 NOx浄化触媒
7 NOxセンサ
8 制御ユニット
DESCRIPTION OF SYMBOLS 1 Boiler 2 CO sensor 3 Light oil tank 4 Light oil inlet 5 NOx purification catalyst inlet gas temperature sensor 6 NOx purification catalyst 7 NOx sensor 8 Control unit

Claims (17)

化学量論量よりも過剰な酸素雰囲気で燃焼させた熱機関の排ガス中の窒素酸化物を除去するNOx浄化触媒を備えた排ガス浄化装置であって、
前記NOx浄化触媒の表面の細孔の平均細孔直径が20Å以上100Å以下の細孔分布であり、前記NOx浄化触媒は多孔質担体と該多孔質担体上に担持された触媒活性成分とを有し、該触媒活性成分としてバナジウム,ニオブ,タンタル,スズから選ばれた少なくとも一種を含むことを特徴とする熱機関の排ガス浄化装置。
An exhaust gas purification apparatus comprising a NOx purification catalyst that removes nitrogen oxides in exhaust gas of a heat engine burned in an oxygen atmosphere that is in excess of the stoichiometric amount,
The average pore diameter of the pores on the surface of the NOx purification catalyst has a pore distribution of 20 to 100 mm, and the NOx purification catalyst has a porous carrier and a catalytically active component supported on the porous carrier. An exhaust gas purifying apparatus for a heat engine comprising at least one selected from vanadium, niobium, tantalum and tin as the catalytically active component.
請求項1に記載された排ガス浄化装置であって、
前記NOx浄化触媒の表面の細孔のうち、20Å以上100Å以下の細孔直径を有する細孔の微分細孔容積の総計は、20Å以上1000Å以下の細孔直径を有する細孔の微分細孔容積の総計の80%以上であることを特徴とする熱機関の排ガス浄化装置。
An exhaust gas purification device according to claim 1,
Of the pores on the surface of the NOx purification catalyst, the total differential pore volume of pores having a pore diameter of 20 to 100 mm is the differential pore volume of pores having a pore diameter of 20 to 1000 mm. Exhaust gas purification device for heat engine, characterized in that it is 80% or more of the total of
請求項1に記載された排ガス浄化装置であって、
前記多孔質担体はケイ素またはアルミニウムを含有することを特徴とする熱機関の排ガス浄化装置。
An exhaust gas purification device according to claim 1,
The exhaust gas purifying apparatus for a heat engine, wherein the porous carrier contains silicon or aluminum.
請求項1に記載された排ガス浄化装置であって、
前記触媒活性成分は非晶質であることを特徴とする熱機関の排ガス浄化装置。
An exhaust gas purification device according to claim 1,
An exhaust gas purifying apparatus for a heat engine, wherein the catalytically active component is amorphous.
請求項1に記載された排ガス浄化装置であって、
前記触媒活性成分は、バナジウム,ニオブ,タンタル,スズのアルコキシド化合物由来であることを特徴とする熱機関の排ガス浄化装置。
An exhaust gas purification device according to claim 1,
An exhaust gas purifying apparatus for a heat engine, wherein the catalytically active component is derived from an alkoxide compound of vanadium, niobium, tantalum, and tin.
請求項1に記載された排ガス浄化装置であって、
前記排ガス浄化装置は熱機関の排ガスが流入する排ガス流路に設置されていることを特徴とする排ガス浄化装置。
An exhaust gas purification device according to claim 1,
The exhaust gas purifying device is installed in an exhaust gas passage into which exhaust gas from a heat engine flows.
請求項1に記載された排ガス浄化装置であって、
前記排ガス浄化装置は前記NOx浄化触媒の前段に一酸化炭素または炭化水素を供給する還元剤供給装置を備えたことを特徴とする熱機関の排ガス浄化装置。
An exhaust gas purification device according to claim 1,
The exhaust gas purifier includes a reducing agent supply device that supplies carbon monoxide or hydrocarbons to the front stage of the NOx purification catalyst.
請求項1に記載された排ガス浄化装置であって、
前記排ガス浄化装置は前記NOx浄化触媒の前段または後段にアンモニアを還元剤として窒素酸化物を還元するアンモニア脱硝触媒を備えたことを特徴とする熱機関の排ガス浄化装置。
An exhaust gas purification device according to claim 1,
The exhaust gas purification apparatus according to claim 1, further comprising an ammonia denitration catalyst that reduces nitrogen oxides using ammonia as a reducing agent before or after the NOx purification catalyst.
請求項1に記載された排ガス浄化装置であって、
前記熱機関は、流入する燃焼ガスが常に燃料の化学量論量よりも過剰な酸素を有することを特徴とする熱機関であることを特徴とする熱機関の排ガス浄化装置。
An exhaust gas purification device according to claim 1,
An exhaust gas purification apparatus for a heat engine, characterized in that the heat engine is a heat engine in which the inflowing combustion gas always has oxygen in excess of the stoichiometric amount of the fuel.
請求項1に記載された排ガス浄化装置であって、
前記NOx浄化触媒に流入する一酸化炭素,炭化水素または窒素酸化物量を変える燃焼状態制御装置を有することを特徴とする熱機関の排ガス浄化装置。
An exhaust gas purification device according to claim 1,
An exhaust gas purification device for a heat engine, comprising a combustion state control device that changes the amount of carbon monoxide, hydrocarbons or nitrogen oxides flowing into the NOx purification catalyst.
請求項1に記載された排ガス浄化装置であって、
前記NOx浄化触媒の後段にガス中に含まれる窒素酸化物量を測定するNOxセンサを備え、該NOxセンサより得られる情報に基づきNOx浄化触媒の前段側に一酸化炭素または炭化水素を供給する還元剤供給装置を有することを特徴とする熱機関の排ガス浄化装置。
An exhaust gas purification device according to claim 1,
A reducing agent that includes a NOx sensor that measures the amount of nitrogen oxides contained in the gas at the subsequent stage of the NOx purification catalyst, and that supplies carbon monoxide or hydrocarbons to the front stage side of the NOx purification catalyst based on information obtained from the NOx sensor An exhaust gas purification apparatus for a heat engine, comprising a supply device.
請求項1に記載された排ガス浄化装置であって、
前記NOx浄化触媒の後段にガス中に含まれる窒素酸化物量を測定するNOxセンサを備え、該NOxセンサより得られる情報に基づき前記熱機関の燃焼状態を変化させ、前記
NOx浄化触媒に流入する一酸化炭素,炭化水素または窒素酸化物量を変える燃焼状態制御装置を有することを特徴とする熱機関の排ガス浄化装置。
An exhaust gas purification device according to claim 1,
A NOx sensor that measures the amount of nitrogen oxides contained in the gas is provided at the subsequent stage of the NOx purification catalyst, changes the combustion state of the heat engine based on information obtained from the NOx sensor, and flows into the NOx purification catalyst. An exhaust gas purification apparatus for a heat engine comprising a combustion state control device for changing the amount of carbon oxide, hydrocarbon or nitrogen oxide.
化学量論量よりも過剰な酸素雰囲気で燃焼させた熱機関の排ガス中の窒素酸化物を除去するNOx浄化触媒を備えた排ガス浄化装置であって、
前記NOx浄化触媒は、多孔質担体と該多孔質担体上に担持された触媒活性成分とを有し、該触媒活性成分としてバナジウムを含み、前記バナジウムの含有量が担体1.9mol部に対して0.05〜2.5mol部であることを特徴とする熱機関の排ガス浄化装置。
An exhaust gas purification apparatus comprising a NOx purification catalyst that removes nitrogen oxides in exhaust gas of a heat engine burned in an oxygen atmosphere that is in excess of the stoichiometric amount,
The NOx purification catalyst has a porous carrier and a catalytically active component supported on the porous carrier, contains vanadium as the catalytically active component, and the vanadium content is 1.9 mol part of the carrier. An exhaust gas purifying apparatus for a heat engine, characterized by being 0.05 to 2.5 mol parts.
化学量論量よりも過剰な酸素雰囲気の排ガス中の窒素酸化物を一酸化炭素または炭化水素を用いてNOx浄化触媒により還元する排ガスの浄化方法であって、
前記NOx浄化触媒の表面の細孔の平均細孔直径が20Å以上100Å以下の細孔分布であり、前記NOx浄化触媒は多孔質担体と該多孔質担体上に担持された触媒活性成分とを有し、該触媒活性成分としてバナジウム、ニオブ、タンタル、スズから選ばれた少なくとも一種を含むことを特徴とする熱機関の排ガス浄化方法。
An exhaust gas purification method for reducing nitrogen oxides in an exhaust gas in an oxygen atmosphere in excess of the stoichiometric amount by using a carbon monoxide or a hydrocarbon with a NOx purification catalyst,
The average pore diameter of the pores on the surface of the NOx purification catalyst has a pore distribution of 20 to 100 cm, and the NOx purification catalyst has a porous carrier and a catalytically active component supported on the porous carrier. And an exhaust gas purification method for a heat engine, comprising at least one selected from vanadium, niobium, tantalum, and tin as the catalytically active component.
請求項14に記載された熱機関の排ガス浄化方法であって、
前記熱機関の燃焼状態を変化させ、前記NOx浄化触媒に流入する一酸化炭素,炭化水素または窒素酸化物量を変化させることを特徴とする熱機関の排ガス浄化方法。
The exhaust gas purification method for a heat engine according to claim 14,
An exhaust gas purification method for a heat engine, wherein the combustion state of the heat engine is changed to change the amount of carbon monoxide, hydrocarbon or nitrogen oxide flowing into the NOx purification catalyst.
請求項14に記載された熱機関の排ガス浄化方法であって、
前記NOx浄化触媒に前記排ガスを300℃以上で流入させることを特徴とする熱機関の排ガス浄化方法。
The exhaust gas purification method for a heat engine according to claim 14,
An exhaust gas purification method for a heat engine, characterized by causing the exhaust gas to flow into the NOx purification catalyst at 300 ° C or higher.
排ガス中の窒素酸化物を一酸化炭素または炭化水素により還元浄化するNOx浄化触媒であって、前記NOx浄化触媒の表面の細孔の平均細孔直径が20Å以上100Å以下の細孔分布であり、前記NOx浄化触媒は多孔質担体と該多孔質担体上に担持された触媒活性成分とを有し、該触媒活性成分としてバナジウム,ニオブ,タンタル,スズから選ばれた少なくとも一種を含むことを特徴とするNOx浄化触媒。   NOx purification catalyst for reducing and purifying nitrogen oxides in exhaust gas with carbon monoxide or hydrocarbons, wherein the average pore diameter of the pores on the surface of the NOx purification catalyst has a pore distribution of 20 to 100 mm, The NOx purification catalyst has a porous carrier and a catalytically active component supported on the porous carrier, and includes at least one selected from vanadium, niobium, tantalum and tin as the catalytically active component. NOx purification catalyst.
JP2007083243A 2007-03-28 2007-03-28 Purification device for exhaust gas, purification method for exhaust gas, and purification catalyst Pending JP2008238069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007083243A JP2008238069A (en) 2007-03-28 2007-03-28 Purification device for exhaust gas, purification method for exhaust gas, and purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007083243A JP2008238069A (en) 2007-03-28 2007-03-28 Purification device for exhaust gas, purification method for exhaust gas, and purification catalyst

Publications (1)

Publication Number Publication Date
JP2008238069A true JP2008238069A (en) 2008-10-09

Family

ID=39910041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007083243A Pending JP2008238069A (en) 2007-03-28 2007-03-28 Purification device for exhaust gas, purification method for exhaust gas, and purification catalyst

Country Status (1)

Country Link
JP (1) JP2008238069A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010158618A (en) * 2009-01-08 2010-07-22 Hitachi Ltd Catalyst for cleaning exhaust gas and apparatus for cleaning exhaust gas by using the same
JP2010242614A (en) * 2009-04-06 2010-10-28 Toyota Central R&D Labs Inc Nitrogen dioxide eliminating method and nitrogen dioxide eliminating device
WO2015005423A1 (en) 2013-07-10 2015-01-15 株式会社キャタラー Catalyst for exhaust gas purification
WO2020054853A1 (en) * 2018-09-14 2020-03-19 三菱日立パワーシステムズ株式会社 Denitrification apparatus
KR20220011493A (en) 2020-07-21 2022-01-28 에스케이가스 주식회사 A method for reducing nitrogen dioxide in the exhaust gas from a fixed source without injection of reducing agent

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49133269A (en) * 1973-04-26 1974-12-20
JPS5995922A (en) * 1982-11-25 1984-06-02 Babcock Hitachi Kk Denitration method of gas containing nox
JPS6150638A (en) * 1984-06-29 1986-03-12 エクソン リサ−チ アンド エンヂニアリング コムパニ− Catalyst consisting of niobia and tatala supported by titania
JPH04271836A (en) * 1991-02-27 1992-09-28 Mitsubishi Heavy Ind Ltd Denitration catalyst, its production and denitration method
JPH054046A (en) * 1990-08-06 1993-01-14 Sumitomo Metal Ind Ltd Low-temp. working ternary catalyst for purification of exhaust gas
JPH06198132A (en) * 1992-12-28 1994-07-19 Sekiyu Sangyo Kasseika Center Purifying method of exhaust gas containing nitrogen oxide
JPH06205940A (en) * 1992-12-24 1994-07-26 Wisconsin Alumni Res Found Method of reducing nox to n2 and h2o by using porous metal oxide ceramic body
JPH06277512A (en) * 1993-03-25 1994-10-04 Mitsui Mining Co Ltd Nox cracking catalyst and denitrification method using the same
JPH07289894A (en) * 1994-04-25 1995-11-07 Sumitomo Metal Mining Co Ltd Denitrification catalyst and denitrifying method using the same
JPH1071325A (en) * 1996-06-21 1998-03-17 Ngk Insulators Ltd Method for controlling engine exhaust gas system and method for detecting deterioration in catalyst/ adsorption means
JPH11104493A (en) * 1997-10-02 1999-04-20 Nissan Motor Co Ltd Catalyst for purifying exhaust gas and its use
JP2000282942A (en) * 1999-03-29 2000-10-10 Toyota Motor Corp Exhaust emission control device of internal-combustion engine
JP2001347164A (en) * 2000-04-11 2001-12-18 Dmc 2 Degussa Metals Catalysts Cerdec Ag Method for producing vanadia scr catalyst supported on titania
JP2005527350A (en) * 2002-04-09 2005-09-15 ウーデ・ゲーエムベーハー Method for removing nitrogen oxides
JP2006240920A (en) * 2005-03-03 2006-09-14 Japan Science & Technology Agency Method for producing catalyst having nanoporous zeolite catalyst surface
JP2006348885A (en) * 2005-06-17 2006-12-28 Denso Corp Nox removing device

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49133269A (en) * 1973-04-26 1974-12-20
JPS5995922A (en) * 1982-11-25 1984-06-02 Babcock Hitachi Kk Denitration method of gas containing nox
JPS6150638A (en) * 1984-06-29 1986-03-12 エクソン リサ−チ アンド エンヂニアリング コムパニ− Catalyst consisting of niobia and tatala supported by titania
JPH054046A (en) * 1990-08-06 1993-01-14 Sumitomo Metal Ind Ltd Low-temp. working ternary catalyst for purification of exhaust gas
JPH04271836A (en) * 1991-02-27 1992-09-28 Mitsubishi Heavy Ind Ltd Denitration catalyst, its production and denitration method
JPH06205940A (en) * 1992-12-24 1994-07-26 Wisconsin Alumni Res Found Method of reducing nox to n2 and h2o by using porous metal oxide ceramic body
JPH06198132A (en) * 1992-12-28 1994-07-19 Sekiyu Sangyo Kasseika Center Purifying method of exhaust gas containing nitrogen oxide
JPH06277512A (en) * 1993-03-25 1994-10-04 Mitsui Mining Co Ltd Nox cracking catalyst and denitrification method using the same
JPH07289894A (en) * 1994-04-25 1995-11-07 Sumitomo Metal Mining Co Ltd Denitrification catalyst and denitrifying method using the same
JPH1071325A (en) * 1996-06-21 1998-03-17 Ngk Insulators Ltd Method for controlling engine exhaust gas system and method for detecting deterioration in catalyst/ adsorption means
JPH11104493A (en) * 1997-10-02 1999-04-20 Nissan Motor Co Ltd Catalyst for purifying exhaust gas and its use
JP2000282942A (en) * 1999-03-29 2000-10-10 Toyota Motor Corp Exhaust emission control device of internal-combustion engine
JP2001347164A (en) * 2000-04-11 2001-12-18 Dmc 2 Degussa Metals Catalysts Cerdec Ag Method for producing vanadia scr catalyst supported on titania
JP2005527350A (en) * 2002-04-09 2005-09-15 ウーデ・ゲーエムベーハー Method for removing nitrogen oxides
JP2006240920A (en) * 2005-03-03 2006-09-14 Japan Science & Technology Agency Method for producing catalyst having nanoporous zeolite catalyst surface
JP2006348885A (en) * 2005-06-17 2006-12-28 Denso Corp Nox removing device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010158618A (en) * 2009-01-08 2010-07-22 Hitachi Ltd Catalyst for cleaning exhaust gas and apparatus for cleaning exhaust gas by using the same
JP2010242614A (en) * 2009-04-06 2010-10-28 Toyota Central R&D Labs Inc Nitrogen dioxide eliminating method and nitrogen dioxide eliminating device
WO2015005423A1 (en) 2013-07-10 2015-01-15 株式会社キャタラー Catalyst for exhaust gas purification
KR20160025005A (en) 2013-07-10 2016-03-07 가부시키가이샤 캬타라 Catalyst for exhaust gas purification
US9616410B2 (en) 2013-07-10 2017-04-11 Cataler Corporation Exhaust gas purifying catalyst
WO2020054853A1 (en) * 2018-09-14 2020-03-19 三菱日立パワーシステムズ株式会社 Denitrification apparatus
CN112638506A (en) * 2018-09-14 2021-04-09 三菱动力株式会社 Denitration device
KR20220011493A (en) 2020-07-21 2022-01-28 에스케이가스 주식회사 A method for reducing nitrogen dioxide in the exhaust gas from a fixed source without injection of reducing agent

Similar Documents

Publication Publication Date Title
JP6125552B2 (en) Bifunctional catalyst for selective ammonia oxidation
JP5996538B2 (en) Catalyst for lean-burn gasoline engines with improved NO oxidation activity
JP5921387B2 (en) Exhaust gas purification catalyst
BR112017028424B1 (en) NITROUS OXIDE REMOVAL CATALYST COMPOSITE, EMISSION TREATMENT SYSTEM, AND, METHOD TO TREAT EXHAUST GASES
WO2009087852A1 (en) Exhaust gas cleaner
JP3952617B2 (en) Exhaust gas purification device, exhaust gas purification method and exhaust gas purification catalyst for internal combustion engine
US20160003118A1 (en) Oxidation catalyst and exhaust gas purification device using same
JPWO2019088302A1 (en) Oxygen storage/release material, catalyst, exhaust gas purification system, and exhaust gas treatment method
JP2008238069A (en) Purification device for exhaust gas, purification method for exhaust gas, and purification catalyst
JP4435750B2 (en) Exhaust gas purification catalyst and method for producing the same
JP2009208039A (en) Catalyst for removing particulate matter and method for removing particulate matter by using the same
JP4852595B2 (en) Exhaust gas purification catalyst
EP2094384A1 (en) Potassium oxide-incorporated alumina catalysts with enganced storage capacities of nitrogen oxide and a producing method therefor
JP4704964B2 (en) NOx purification system and NOx purification method
JP2007239616A (en) Exhaust emission control device, exhaust emission control method, and purification catalyst
JP2009138591A (en) Exhaust emission control device, exhaust emission control method, and nox emission control catalyst of thermal engine
JP6126858B2 (en) Exhaust gas purification device for internal combustion engine
JP2011136278A (en) Exhaust gas treatment catalyst, exhaust gas cleaning method using the same, and exhaust gas cleaning apparatus
JP2011050855A (en) Exhaust gas purifying apparatus
JP2015183587A (en) Emission control device, emission control method and emission control catalyst for heat engine
JP5215880B2 (en) Exhaust gas purification catalyst and exhaust gas purification apparatus using the same
JP5007691B2 (en) Particulate matter purification catalyst and particulate matter purification method using the same
JP2010203328A (en) Exhaust emission control device for thermal engine, exhaust emission control method and nox elimination catalyst
JP5709184B2 (en) Exhaust gas purification method and exhaust gas purification device
JP2009297628A (en) APPARATUS AND METHOD FOR CLEANING EXHAUST GAS OF HEAT ENGINE AND NOx CLEANING CATALYST

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111206