JP2009208039A - Catalyst for removing particulate matter and method for removing particulate matter by using the same - Google Patents

Catalyst for removing particulate matter and method for removing particulate matter by using the same Download PDF

Info

Publication number
JP2009208039A
JP2009208039A JP2008056037A JP2008056037A JP2009208039A JP 2009208039 A JP2009208039 A JP 2009208039A JP 2008056037 A JP2008056037 A JP 2008056037A JP 2008056037 A JP2008056037 A JP 2008056037A JP 2009208039 A JP2009208039 A JP 2009208039A
Authority
JP
Japan
Prior art keywords
particulate matter
catalyst
exhaust gas
matter purification
composite oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008056037A
Other languages
Japanese (ja)
Inventor
Kazuhiro Nomura
和弘 野村
Kiyoshi Yamazaki
清 山崎
Satoru Kato
悟 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2008056037A priority Critical patent/JP2009208039A/en
Publication of JP2009208039A publication Critical patent/JP2009208039A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalyst for removing particulate matter, which has excellent performance of oxidizing particulate matter and satisfactorily high-level performance of removing particulate matter and can be used for satisfactorily removing the particulate matter contained in exhaust gas. <P>SOLUTION: The catalyst for removing particulate matter, which is used for oxidizing/removing the particulate matter contained in the exhaust gas from an internal-combustion engine, is provided with: a carrier consisting of a compound oxide of iron and molybdenum; and at least one noble metal which is deposited on the carrier and selected from the group consisting of silver, gold, palladium, platinum, rhodium, iridium and ruthenium. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、粒子状物質浄化用触媒並びにそれを用いた粒子状物質浄化方法に関する。   The present invention relates to a particulate matter purification catalyst and a particulate matter purification method using the same.

内燃機関から排出される排ガスには、燃焼により生じた煤及びその他の炭素粒子状物質等を含む粒子状物質(PM)が含まれている。このような粒子状物質は動植物に悪影響を及ぼす大気汚染物質として知られている。そのため、排ガス中から粒子状物質を低減させるために様々な粒子状物質浄化用触媒が用いられてきた。   The exhaust gas discharged from the internal combustion engine contains particulate matter (PM) including soot and other carbon particulate matter generated by combustion. Such particulate matter is known as an air pollutant that adversely affects animals and plants. Therefore, various particulate matter purification catalysts have been used to reduce particulate matter from exhaust gas.

このような粒子状物質浄化用触媒として用いることが可能な触媒としては、例えば、特開2004−42021号公報(特許文献1)において、銀(Ag)及び/又はコバルト(Co)で安定化されたセリア(CeO)からなる触媒が開示されている。また、特開平10−151348号公報(特許文献2)においては、セリウム酸化物及びジルコニウム酸化物の少なくとも一方からなる担体と、該担体に担持された銅、鉄及びマンガンから選ばれる少なくとも一種の金属の酸化物からなる触媒成分と、を含んでなる触媒が開示されている。更に、特開2007−216099号公報(特許文献3)においては、Sc、Y、Ho、Er、Tm、Yb、Luからなる群から選択される1種の金属元素Aと、Mnからなる金属元素Bとを含有する複合酸化物からなる触媒や、前記複合酸化物の構成元素としてVIII族元素を結晶中にドープした触媒等が開示されている。しかしながら、上記特許文献1〜3に記載のような従来の触媒においては、粒子状物質浄化性能が必ずしも十分なものではなかった。
特開2004−42021号公報 特開平10−151348号公報 特開2007−216099号公報
As a catalyst that can be used as such a particulate matter purification catalyst, for example, in JP-A-2004-42021 (Patent Document 1), it is stabilized with silver (Ag) and / or cobalt (Co). In addition, a catalyst composed of ceria (CeO 2 ) is disclosed. In JP-A-10-151348 (Patent Document 2), at least one metal selected from a support made of at least one of cerium oxide and zirconium oxide and copper, iron and manganese supported on the support. And a catalyst component comprising an oxide of the above. Furthermore, in Japanese Patent Application Laid-Open No. 2007-216099 (Patent Document 3), one metal element A selected from the group consisting of Sc, Y, Ho, Er, Tm, Yb, and Lu, and a metal element consisting of Mn. A catalyst made of a composite oxide containing B, a catalyst in which a group VIII element is doped in the crystal as a constituent element of the composite oxide, and the like are disclosed. However, the conventional catalysts as described in Patent Documents 1 to 3 above are not always sufficient in the particulate matter purification performance.
JP 2004-42021 A JP-A-10-151348 JP 2007-216099 A

本発明は、上記従来技術の有する課題に鑑みてなされたものであり、粒子状物質の酸化性能に優れ、十分に高度な粒子状物質浄化性能を有し、排ガスに含まれる粒子状物質を十分に浄化することが可能な粒子状物質浄化用触媒、並びに、その粒子状物質浄化用触媒を用いた粒子状物質浄化方法を提供することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and has excellent particulate matter oxidation performance, sufficiently high particulate matter purification performance, and sufficient particulate matter contained in exhaust gas. It is an object of the present invention to provide a particulate matter purification catalyst that can be purified and a particulate matter purification method using the particulate matter purification catalyst.

本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、鉄とモリブデンとの複合酸化物からなる担体と、該担体に担持された銀、金、パラジウム、白金、ロジウム、イリジウム及びルテニウムからなる群より選択される少なくとも一種の貴金属とを備えることにより、粒子状物質の酸化性能に優れ、十分に高度な粒子状物質浄化性能を有し、排ガスに含まれる粒子状物質を十分に浄化することが可能な粒子状物質浄化用触媒が得られることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventors have found that a support made of a composite oxide of iron and molybdenum, silver, gold, palladium, platinum, rhodium, iridium and By providing at least one kind of noble metal selected from the group consisting of ruthenium, it has excellent oxidation performance of particulate matter, has sufficiently high particulate matter purification performance, and is sufficient for particulate matter contained in exhaust gas. The inventors have found that a particulate matter purifying catalyst that can be purified is obtained, and have completed the present invention.

すなわち、本発明の粒子状物質浄化用触媒は、内燃機関からの排ガスに含まれる粒子状物質を酸化して浄化する粒子状物質浄化用触媒であって、
鉄とモリブデンとの複合酸化物からなる担体と、該担体に担持された銀、金、パラジウム、白金、ロジウム、イリジウム及びルテニウムからなる群より選択される少なくとも一種の貴金属とを備えることを特徴とするものである。
That is, the particulate matter purification catalyst of the present invention is a particulate matter purification catalyst for oxidizing and purifying particulate matter contained in exhaust gas from an internal combustion engine,
A support comprising a composite oxide of iron and molybdenum, and at least one noble metal selected from the group consisting of silver, gold, palladium, platinum, rhodium, iridium and ruthenium supported on the support. To do.

上記本発明にかかる複合酸化物としては、組成式:FeMo(式中、xは0.5〜1.0の範囲の数値を示し、yは2.5〜4.0の範囲の数値を示す。)で表される複合酸化物がより好ましく、組成式:FeMoOで表される複合酸化物が特に好ましい。 The composite oxide according to the present invention has a composition formula: FeMo x O y (wherein x represents a numerical value in the range of 0.5 to 1.0, and y represents a range of 2.5 to 4.0. A composite oxide represented by the following formula is more preferable, and a composite oxide represented by the composition formula: FeMoO 4 is particularly preferable.

また、上記本発明の粒子状物質浄化用触媒においては、前記貴金属の担持量が前記触媒の全量に対して1〜20質量%の範囲にあることが好ましい。   In the particulate matter purification catalyst of the present invention, it is preferable that the amount of the noble metal supported is in the range of 1 to 20% by mass with respect to the total amount of the catalyst.

また、本発明の粒子状物質浄化方法は、上記本発明の粒子状物質浄化用触媒に排ガスを接触させて、前記排ガスに含まれる粒子状物質を酸化して浄化することを特徴とする方法である。   Further, the particulate matter purification method of the present invention is a method characterized by contacting exhaust gas with the particulate matter purification catalyst of the present invention and oxidizing and purifying the particulate matter contained in the exhaust gas. is there.

なお、本発明の粒子状物質浄化用触媒及び粒子状物質浄化方法によって、上記目的が達成される理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、モリブデンの酸化物(例えばMoO)は、熱力学的平衡濃度計算からリーン雰囲気下の昇温過程で比較的価数変化を起こし易いものである。そのため、このようなモリブデンの酸化物は、リーン雰囲気下の昇温過程で比較的高い酸素放出性能を有するものと推察される。これに対して、従来の銀とセリアとを含む触媒等において担体として用いられるセリアは、リーン雰囲気下において価数変化を起こし難く十分な酸素放出性が得られない。そのため、セリアを担体として用いた場合には、リーン雰囲気下の昇温過程で必ずしも十分な粒子状物質浄化性能が得られないものと推察される。一方で、モリブデンの酸化物は、排ガスの浄化に用いると通常の使用条件下において昇華し易いため、触媒材料に利用することが困難なものである。そこで、本発明においては、モリブデンの酸化物を、鉄(Fe)とモリブデン(Mo)との複合酸化物として触媒の担体に用いている。このような複合酸化物とすることにより、モリブデンの酸化物の熱安定性を向上させることができるため、モリブデンの酸化物を粒子状物質浄化用触媒の担体に好適に用いることが可能となる。そして、このような複合酸化物からなる担体を触媒に用いた場合には、リーン雰囲気下の昇温過程において担体からモリブデンの酸化物に由来した十分な量の酸素を放出させることが可能となる。また、このようにして放出された酸素は前記担体に担持された前記貴金属により十分に活性化される。そのため、本発明の粒子状物質浄化用触媒においては、担体の表面上やその近傍に存在する粒子状物質を効率よく酸化することができ、排ガスに含まれる粒子状物質を十分に浄化することが可能となるものと推察される。なお、このような担体は鉄とモリブデンとの複合酸化物からなるものであることから、本発明の粒子状物質浄化用触媒によれば車載にあたり環境負荷の低減も図られるものと推察される。 The reason why the above object is achieved by the particulate matter purification catalyst and the particulate matter purification method of the present invention is not necessarily clear, but the present inventors speculate as follows. That is, an oxide of molybdenum (for example, MoO 3 ) is relatively easy to cause a valence change in a temperature rising process under a lean atmosphere from a thermodynamic equilibrium concentration calculation. For this reason, it is presumed that such molybdenum oxide has a relatively high oxygen release performance in the temperature rising process under a lean atmosphere. On the other hand, ceria used as a carrier in a catalyst or the like containing conventional silver and ceria hardly undergoes a change in valence under a lean atmosphere and does not provide sufficient oxygen releasing properties. Therefore, when ceria is used as a carrier, it is presumed that sufficient particulate matter purification performance is not necessarily obtained in the temperature rising process under a lean atmosphere. On the other hand, molybdenum oxide is difficult to use as a catalyst material because it easily sublimes under normal use conditions when used for purification of exhaust gas. Therefore, in the present invention, molybdenum oxide is used as a composite oxide of iron (Fe) and molybdenum (Mo) for the catalyst carrier. By using such a composite oxide, the thermal stability of the molybdenum oxide can be improved, so that the molybdenum oxide can be suitably used as the carrier for the particulate matter purification catalyst. When such a composite oxide support is used as a catalyst, a sufficient amount of oxygen derived from the molybdenum oxide can be released from the support in the temperature rising process under a lean atmosphere. . Further, the oxygen released in this way is sufficiently activated by the noble metal supported on the carrier. Therefore, in the particulate matter purification catalyst of the present invention, the particulate matter existing on or near the surface of the carrier can be efficiently oxidized, and the particulate matter contained in the exhaust gas can be sufficiently purified. It is assumed that it will be possible. In addition, since such a support | carrier consists of complex oxide of iron and molybdenum, according to the catalyst for particulate matter purification of this invention, it is guessed that reduction of an environmental load will also be aimed at in-vehicle.

本発明によれば、粒子状物質の酸化性能に優れ、十分に高度な粒子状物質浄化性能を有し、排ガスに含まれる粒子状物質を十分に浄化することが可能な粒子状物質浄化用触媒、並びに、その粒子状物質浄化用触媒を用いた粒子状物質浄化方法を提供することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, the particulate matter purification catalyst which is excellent in the oxidation performance of particulate matter, has sufficiently high particulate matter purification performance, and can sufficiently purify particulate matter contained in exhaust gas In addition, it is possible to provide a particulate matter purification method using the particulate matter purification catalyst.

以下、本発明をその好適な実施形態に即して詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to preferred embodiments thereof.

先ず、本発明の粒子状物質浄化用触媒について説明する。すなわち、本発明の粒子状物質浄化用触媒は、内燃機関からの排ガスに含まれる粒子状物質を酸化して浄化する粒子状物質浄化用触媒であって、
鉄とモリブデンとの複合酸化物からなる担体と、該担体に担持された銀、金、パラジウム、白金、ロジウム、イリジウム及びルテニウムからなる群より選択される少なくとも一種の貴金属とを備えることを特徴とするものである。
First, the particulate matter purification catalyst of the present invention will be described. That is, the particulate matter purification catalyst of the present invention is a particulate matter purification catalyst for oxidizing and purifying particulate matter contained in exhaust gas from an internal combustion engine,
A support comprising a composite oxide of iron and molybdenum, and at least one noble metal selected from the group consisting of silver, gold, palladium, platinum, rhodium, iridium and ruthenium supported on the support. To do.

このような担体は、鉄とモリブデンとの複合酸化物からなるものである。このような担体を用いることによって、リーン雰囲気下の昇温過程において十分な粒子状物質浄化性能が得られるとともに、環境負荷の低減も併せて図ることが可能となる。このような複合酸化物としては特に制限されず、アモルファス構造のものや物理混合体のもの等、種々の態様のものが含まれる。   Such a carrier is made of a complex oxide of iron and molybdenum. By using such a carrier, it is possible to obtain a sufficient particulate matter purification performance in a temperature rising process under a lean atmosphere and to reduce the environmental load. Such a complex oxide is not particularly limited, and includes various forms such as an amorphous structure and a physical mixture.

このような鉄とモリブデンとの複合酸化物としては、組成式:FeMo(式中、xは0.5〜1.0の範囲の数値を示し、yは2.5〜4.0の範囲の数値を示す。)で表される複合酸化物がより好ましい。また、このような組成式中のモリブデンの組成比、すなわちxの値は0.75〜1.0であることがより好ましい。このようなxの値が前記下限未満では、モリブデンの効果が発現し難くなる傾向にあり、他方、前記上限を超えると、モリブデンが昇華し易くなる傾向にある。また、このような組成式中の酸素の組成比、すなわちyの値は3.25〜4.0であることがより好ましい。このようなyの値が前記下限未満では、複合酸化物としての安定性が良好でなくなる傾向にあり、他方、前記上限を超えても複合酸化物としての安定性が良好でなくなる傾向にある。また、このような複合酸化物の中でも、高温条件下においてより高度な安定性が得られるという観点から、組成式:FeMoOで表される複合酸化物が特に好ましい。 As such a complex oxide of iron and molybdenum, composition formula: FeMo x O y (wherein x represents a numerical value in the range of 0.5 to 1.0, and y is 2.5 to 4.0). Is more preferable. The composition ratio of molybdenum in such a composition formula, that is, the value of x is more preferably 0.75 to 1.0. If the value of x is less than the lower limit, the effect of molybdenum tends to be difficult to develop. On the other hand, if it exceeds the upper limit, molybdenum tends to sublime. In addition, the composition ratio of oxygen in such a composition formula, that is, the value of y is more preferably 3.25 to 4.0. When the value of y is less than the lower limit, the stability as a composite oxide tends to be poor, and on the other hand, the stability as a composite oxide tends to be poor even when the upper limit is exceeded. Among these composite oxides, a composite oxide represented by the composition formula: FeMoO 4 is particularly preferable from the viewpoint that higher stability can be obtained under high temperature conditions.

また、このような複合酸化物は、単位質量当たりの表面積が大きいという理由から粒子状粉末であることが好ましい。このような粒子状の複合酸化物の平均粒子径としては、特に制限されないが、0.1〜100μmであることが好ましく、1〜10μmであることがより好ましい。このような平均粒子径が前記下限未満では、高温条件下において担体が焼結し易くなる傾向にあり、他方、前記上限を超えると、比表面積が小さくなって触媒活性が低下する傾向にある。   Moreover, such a complex oxide is preferably a particulate powder because it has a large surface area per unit mass. Although it does not restrict | limit especially as an average particle diameter of such a particulate complex oxide, It is preferable that it is 0.1-100 micrometers, and it is more preferable that it is 1-10 micrometers. When the average particle size is less than the lower limit, the support tends to be easily sintered under high temperature conditions. On the other hand, when the upper limit is exceeded, the specific surface area tends to be small and the catalytic activity tends to decrease.

さらに、前記担体の比表面積としては特に制限されないが、1〜200m/gであることが好ましく、10〜100m/gであることがより好ましい。前記比表面積が前記上限を超えると、担体が焼結し易くなり、得られる触媒の耐熱性が低下する傾向にあり、他方、前記下限未満では、貴金属の分散性が低下する傾向にある。このような比表面積は、吸着等温線からBET等温吸着式を用いてBET比表面積として算出することができる。 Further, although not particularly limited as specific surface area of the carrier is preferably 1~200m 2 / g, and more preferably 10 to 100 m 2 / g. When the specific surface area exceeds the upper limit, the support tends to sinter and the heat resistance of the resulting catalyst tends to be reduced. On the other hand, when the specific surface area is less than the lower limit, the dispersibility of the noble metal tends to decrease. Such a specific surface area can be calculated as a BET specific surface area from the adsorption isotherm using the BET isotherm adsorption equation.

また、このような複合酸化物の製造方法は特に制限されず、前記複合酸化物を製造することが可能な公知の方法を適宜採用することができる。また、このような複合酸化物としては、市販のものを用いてもよい。   Moreover, the manufacturing method in particular of such complex oxide is not restrict | limited, The well-known method which can manufacture the said complex oxide can be employ | adopted suitably. Moreover, as such a complex oxide, a commercially available one may be used.

また、本発明においては、前記担体に銀(Ag)、金(Au)、パラジウム(Pd)、白金(Pt)、ロジウム(Rh)、イリジウム(Ir)及びルテニウム(Ru)からなる群より選択される少なくとも一種の貴金属が担持されている。このような貴金属によって十分に高度な粒子状物質浄化性能を得ることが可能となる。また、このような貴金属としては、粒子状物質に対するより高度な酸化性能が得られるという観点から、銀、白金、ロジウム、パラジウムを用いることが好ましく、銀、白金を用いることが特に好ましい。また、これらの貴金属は1種を単独で、あるいは2種以上を組み合わせて使用してもよい。   In the present invention, the carrier is selected from the group consisting of silver (Ag), gold (Au), palladium (Pd), platinum (Pt), rhodium (Rh), iridium (Ir) and ruthenium (Ru). At least one kind of noble metal is supported. Such a noble metal makes it possible to obtain sufficiently high particulate matter purification performance. Moreover, as such a noble metal, it is preferable to use silver, platinum, rhodium, and palladium, and it is especially preferable to use silver and platinum from a viewpoint that the higher oxidation performance with respect to a particulate matter is obtained. These noble metals may be used alone or in combination of two or more.

また、このような貴金属の担持量としては特に制限されないが、前記粒子状物質浄化用触媒の全量を基準として1〜20質量%の範囲にあることが好ましく、2〜10質量%の範囲にあることがより好ましい。このような貴金属の担持量が前記下限未満では、貴金属による効果が十分に得られなくなる傾向にあり、他方、前記上限を超えると、コストの増加といった問題が生じる傾向にある。また、このような貴金属を前記担体に担持する方法としては特に制限されず、担体に貴金属を担持することが可能な公知の方法を適宜採用でき、例えば、貴金属の塩(例えば、硝酸塩等)や錯体を含有する水溶液を前記担体に含浸させた後に乾燥し、焼成する方法を採用してもよい。   The amount of the noble metal supported is not particularly limited, but is preferably in the range of 1 to 20% by mass, based on the total amount of the particulate matter purification catalyst, and in the range of 2 to 10% by mass. It is more preferable. If the amount of the noble metal supported is less than the lower limit, the effect of the noble metal tends to be insufficient. On the other hand, if the amount exceeds the upper limit, a problem such as an increase in cost tends to occur. In addition, the method for supporting such a noble metal on the carrier is not particularly limited, and a known method capable of supporting the noble metal on the carrier can be appropriately employed. For example, a salt of a noble metal (for example, nitrate) A method may be employed in which an aqueous solution containing a complex is impregnated into the carrier, followed by drying and baking.

また、このような粒子状物質浄化用触媒においては、本発明の効果を損なわない範囲で粒子状物質浄化用触媒に用いることが可能な他の成分を前記担体に担持してもよい。このような他の成分としては、例えば、アルカリ金属、アルカリ土類金属等が挙げられ、アルカリ金属を用いることが好ましい。前記担体にアルカリ金属を担持させることで、粒子状物質浄化性能が向上する傾向にある。なお、このような他の成分を担持させる方法としては特に制限されず、公知の方法を適宜採用することができる。   Moreover, in such a particulate matter purification catalyst, other components that can be used for the particulate matter purification catalyst may be supported on the carrier within a range not impairing the effects of the present invention. Examples of such other components include alkali metals and alkaline earth metals, and alkali metals are preferably used. By supporting an alkali metal on the carrier, the particulate matter purification performance tends to be improved. In addition, it does not restrict | limit especially as a method to carry | support such other components, A well-known method can be employ | adopted suitably.

また、本発明の粒子状物質浄化用触媒の形態は特に制限されず、例えば、ハニカム形状のモノリス触媒、ペレット形状のペレット触媒等の形態とすることができる。このような形態とする際に用いられる基材も特に制限されず、パティキュレートフィルタ基材(DPF基材)、モノリス状基材、ペレット状基材、プレート状基材等を好適に用いることができる。また、このような基材の材質も特に制限されないが、コーディエライト、炭化ケイ素、ムライト等のセラミックスからなる基材や、クロム及びアルミニウムを含むステンレススチール等の金属からなる基材を好適に用いることができる。また、このような基材に前記触媒を担持する方法も特に制限されず、公知の方法を適宜採用することができる。   The form of the particulate matter purification catalyst of the present invention is not particularly limited, and may be, for example, a honeycomb-shaped monolith catalyst, a pellet-shaped pellet catalyst, or the like. The base material used in such a form is not particularly limited, and a particulate filter base material (DPF base material), a monolithic base material, a pellet base material, a plate-like base material, and the like are preferably used. it can. Further, the material of such a base material is not particularly limited, but a base material made of a ceramic such as cordierite, silicon carbide, mullite, or a base material made of a metal such as stainless steel including chromium and aluminum is preferably used. be able to. Further, the method for supporting the catalyst on such a substrate is not particularly limited, and a known method can be appropriately employed.

以上、本発明の粒子状物質浄化用触媒について説明したが、以下、本発明の粒子状物質浄化方法について説明する。すなわち、本発明の粒子状物質浄化方法は、上記本発明の粒子状物質浄化用触媒を排ガスと接触させて、排ガスに含まれる粒子状物質を酸化して浄化することを特徴とする方法である。このような本発明の粒子状物質浄化方法においては、上記本発明の粒子状物質浄化用触媒を排ガスと接触させる方法は特に制限されず、例えば、排ガス管内のガス流路中に上記本発明の粒子状物質浄化用触媒を配置し、内燃機関から排出される排ガスを前記排ガス管内に供給することにより粒子状物質浄化用触媒を排ガスと接触させてもよい。このような本発明の粒子状物質浄化方法は、上記本発明の粒子状物質浄化用触媒を用いているため、粒子状物質を十分に浄化することが可能な方法である。   The particulate matter purification catalyst of the present invention has been described above. Hereinafter, the particulate matter purification method of the present invention will be described. That is, the particulate matter purification method of the present invention is a method characterized by contacting the particulate matter purification catalyst of the present invention with exhaust gas to oxidize and purify the particulate matter contained in the exhaust gas. . In such a particulate matter purification method of the present invention, the method for bringing the particulate matter purification catalyst of the present invention into contact with exhaust gas is not particularly limited. For example, the particulate matter purification method of the present invention is disposed in a gas flow path in an exhaust gas pipe. A particulate matter purification catalyst may be disposed, and the particulate matter purification catalyst may be brought into contact with the exhaust gas by supplying exhaust gas discharged from the internal combustion engine into the exhaust gas pipe. Such a particulate matter purification method of the present invention is a method capable of sufficiently purifying the particulate matter because the particulate matter purification catalyst of the present invention is used.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.

(実施例1)
組成式:FeMoOで表される複合酸化物からなる担体に、銀(Ag)が担持された粒子状物質浄化用触媒(Ag/FeMoO触媒)を製造した。すなわち、先ず、触媒の全量に対する貴金属(Ag)の担持率が5質量%になるように、FeMoOの粉末(高純度化学研究所製)28.5gと、AgNO(和光純薬工業製)2.36gと、イオン交換水200gとを混合して混合液を得た。次に、前記混合液を80℃の温度条件で3時間加熱して蒸発乾固させて触媒前駆体を得た。次いで、前記触媒前駆体を、空気中110℃の温度条件で12時間乾燥した後、空気中750℃の温度条件で5時間焼成して、Ag/FeMoO触媒(粒子状物質浄化用触媒)を得た。なお、このようにして得られたAg/FeMoO触媒は、圧粉成型により粉砕して、ペレット状触媒(粒径150〜250μm)とした。
Example 1
A particulate matter purifying catalyst (Ag / FeMoO 4 catalyst) in which silver (Ag) was supported on a carrier composed of a composite oxide represented by composition formula: FeMoO 4 was produced. That is, first, 28.5 g of FeMoO 4 powder (manufactured by High-Purity Chemical Laboratory) and AgNO 3 (manufactured by Wako Pure Chemical Industries, Ltd.) so that the loading ratio of the noble metal (Ag) with respect to the total amount of the catalyst is 5% by mass. 2.36 g and 200 g of ion-exchanged water were mixed to obtain a mixed solution. Next, the mixture was heated at 80 ° C. for 3 hours to evaporate to dryness to obtain a catalyst precursor. Next, the catalyst precursor is dried in air at 110 ° C. for 12 hours and then calcined in air at 750 ° C. for 5 hours to obtain an Ag / FeMoO 4 catalyst (particulate matter purification catalyst). Obtained. The Ag / FeMoO 4 catalyst thus obtained was pulverized by compacting to obtain a pellet-shaped catalyst (particle size: 150 to 250 μm).

(比較例1)
FeMoO粉末の代わりにFe粉末(戸田工業製)を担体として用いた以外は、実施例1で採用した方法と同様の方法を採用して、FeにAgが担持されたAg/Fe触媒(粒子状物質浄化用触媒)からなるペレット状触媒を得た。
(Comparative Example 1)
Except that Fe 2 O 3 powder (manufactured by Toda Kogyo) was used as a carrier instead of FeMoO 4 powder, Ag was supported on Fe 2 O 3 by using the same method as used in Example 1. A pellet-shaped catalyst composed of an Ag / Fe 2 O 3 catalyst (catalyst for particulate matter purification) was obtained.

(比較例2)
FeMoO粉末の代わりにCeO粉末(第一稀元素化学工業製)を担体として用いた以外は、実施例1で採用した方法と同様の方法を採用して、CeOにAgが担持されたAg/CeO触媒(粒子状物質浄化用触媒)からなるペレット状触媒を得た。
(Comparative Example 2)
Except for using CeO 2 powder (manufactured by Daiichi Rare Element Chemical Co., Ltd.) as a carrier instead of FeMoO 4 powder, Ag was supported on CeO 2 by using the same method as used in Example 1. A pellet-shaped catalyst made of Ag / CeO 2 catalyst (particulate matter purification catalyst) was obtained.

(比較例3)
特開2007−216099号公報の記載を参照して以下のようにして、組成式:YMnOで表される酸化物からなるYMnO触媒を調製した。すなわち、先ず、Mn(NO(和光純薬工業製)18.74gと、Y(NO・6HO(和光純薬工業製)25.00gと、NHCONH(和光純薬工業製)23.52gとを粉砕して混合し、反応混合物を得た。次いで、前記反応混合物を空気中300℃で3時間加熱することにより反応させて触媒前駆体を得た。次に、前記触媒前駆体を、空気中800℃の温度条件で1時間焼成して、YMnO触媒(粒子状物質浄化用触媒)を得た。なお、このようにして得られたYMnO触媒は、圧粉成型により粉砕してペレット状触媒(粒径150−250μm)とした。
(Comparative Example 3)
A YMnO 3 catalyst composed of an oxide represented by the composition formula: YMnO 3 was prepared as described below with reference to the description of JP-A-2007-216092. That is, first, Mn (NO 3) 2 (Wako Pure Chemical Industries, Ltd.) and 18.74g, Y (NO 3) 3 · 6H 2 O ( manufactured by Wako Pure Chemical Industries, Ltd.) and 25.00g, NH 2 CONH 2 (OR 23.52 g (manufactured by Kojun Pharmaceutical Co., Ltd.) was pulverized and mixed to obtain a reaction mixture. Next, the reaction mixture was reacted by heating in air at 300 ° C. for 3 hours to obtain a catalyst precursor. Next, the catalyst precursor was calcined in air at 800 ° C. for 1 hour to obtain a YMnO 3 catalyst (particulate matter purification catalyst). The YMnO 3 catalyst thus obtained was pulverized by compacting to give a pellet catalyst (particle size 150-250 μm).

[実施例1及び比較例1〜3で得られた粒子状物質浄化用触媒の性能評価]
実施例1及び比較例1〜3で得られた粒子状物質浄化用触媒(ペレット状触媒)に対して、それぞれ粒子状物質酸化活性に関する試験を実施した。すなわち、先ず、円筒状サンプル管瓶内に、ペレット状触媒0.475gと模擬粒子状物質としてのカーボンブラック(東海カーボン製)0.025gとを添加した。次に、円筒状サンプル管瓶を6時間回転させて、前記ペレット状触媒と前記カーボンブラックとを撹拌し、前記ペレット状触媒の外表面にカーボンブラックを付着させて試料を得た。次に、得られた試料0.5gを直径30mm、長さ300mmの石英管内に充填した後、前記石英管の入口からO(10容量%)/HO(10容量%)/N(80容量%)からなる混合ガスを供給した。なお、前記石英管内に供給する前記混合ガス(入りガス)の流量は前記試料に対して30L/分となるようにした。また、前記石英管の入口から供給する前記混合ガス(入りガス)の温度は、初期温度を200℃とし、200℃から20℃/分の昇温速度で昇温した。そして、前記混合ガスを200℃から720℃まで昇温する間、前記石英管の出口から排出される出ガス中のCO及びCOの濃度の変化を測定した。このようにして実施例1及び比較例1〜3で得られたペレット触媒を用いて測定された出ガス中のCO及びCOの濃度と入りガスの温度との関係を示すグラフを、それぞれ図1(実施例1)、図2(比較例1)、図3(比較例2)、図4(比較例3)に示す。
[Performance evaluation of particulate matter purification catalysts obtained in Example 1 and Comparative Examples 1 to 3]
The particulate matter purification catalyst (pellet catalyst) obtained in Example 1 and Comparative Examples 1 to 3 was tested for particulate matter oxidation activity. That is, first, 0.475 g of a pellet-shaped catalyst and 0.025 g of carbon black (manufactured by Tokai Carbon) as a simulated particulate material were added to a cylindrical sample tube bottle. Next, the cylindrical sample tube bottle was rotated for 6 hours, the pellet catalyst and the carbon black were stirred, and carbon black was adhered to the outer surface of the pellet catalyst to obtain a sample. Next, after filling 0.5 g of the obtained sample into a quartz tube having a diameter of 30 mm and a length of 300 mm, O 2 (10% by volume) / H 2 O (10% by volume) / N 2 from the inlet of the quartz tube. A mixed gas consisting of (80% by volume) was supplied. The flow rate of the mixed gas (entry gas) supplied into the quartz tube was 30 L / min with respect to the sample. The temperature of the mixed gas (entry gas) supplied from the inlet of the quartz tube was raised from 200 ° C. to 20 ° C./min at an initial temperature of 200 ° C. Then, while raising the temperature of the mixed gas to 720 ° C. from 200 ° C., it was measured the change in CO 2 and CO concentrations in outlet gas discharged from the outlet of the quartz tube. A graph showing the thus relation between the temperature of the gas entering the CO 2 concentration and CO exiting gas was measured using a pellet catalyst obtained in Example 1 and Comparative Examples 1 to 3, respectively Figure 1 (Example 1), FIG. 2 (Comparative Example 1), FIG. 3 (Comparative Example 2), and FIG. 4 (Comparative Example 3).

また、前記出ガス中のCO及びCOの濃度を測定した結果から、粒子状物質の酸化率(以下、「PM酸化率」と示す。)を算出した。結果を表1に示す。なお、このようなPM酸化率は、下記式:
[PM酸化率]=([PM酸化量]/[PM添加量])×100
を計算することにより求めた。上記式中の[PM添加量]は、前記試料を製造する際に添加したカーボンブラックの量を示す。また、上記式中の[PM酸化量]は、前記混合ガスを200℃から650℃まで昇温する間に酸化された粒子状物質(カーボンブラック)の量を示す。このようなPM酸化量は、前記出ガス中のCO及びCOの濃度を測定した結果から、前記混合ガスを200℃から650℃まで昇温する間に酸化された炭素の量を算出することにより求めた。なお、PM酸化量を算出する際の混合ガスの温度の上限値を650℃に設定した理由は以下の通りである。すなわち、ディーゼルエンジンから排出される排ガスを浄化する際には、通常、粒子状物質浄化用触媒とNOx吸蔵還元型触媒とを併用する場合が多い。このようなNOx吸蔵還元型触媒は、使用時に硫黄被毒により次第に性能が低下する傾向にある。そして、このような硫黄被毒からNOx吸蔵還元型触媒を再生させるためには、触媒を650℃程度まで昇温させるのが一般的である。一方、粒子状物質浄化用触媒は、一般にDPF等の基材に触媒を担持させて用いられるため、使用により粒子状物質(PM)が堆積して圧損が上昇する傾向にある。そして、このような圧損が上昇した状態から粒子状物質浄化用触媒を再生するためには、触媒を600℃以上に昇温してPMを燃焼させる再生処理(PM再生処理)を施すのが一般的である。このようなPM再生処理の際に粒子状物質浄化用触媒を650℃以上の温度に昇温すると、併用したNOx吸蔵還元型触媒が熱劣化する傾向にある。従って、実際にPM再生処理を施す場合には、NOx吸蔵還元型触媒の熱劣化を防止するために650℃程度の温度を上限として触媒を昇温させる必要がある。そのため、上記PM酸化量を算出する際の混合ガスの温度の上限値は、粒子状物質浄化用触媒が一般的に使用される温度条件に合わせて650℃に設定した。
Further, the oxidation rate of particulate matter (hereinafter referred to as “PM oxidation rate”) was calculated from the results of measuring the concentration of CO 2 and CO in the outgas. The results are shown in Table 1. Such PM oxidation rate is expressed by the following formula:
[PM oxidation rate] = ([PM oxidation amount] / [PM addition amount]) × 100
It was obtained by calculating. [PM addition amount] in the above formula indicates the amount of carbon black added when the sample is produced. [PM oxidation amount] in the above formula indicates the amount of particulate matter (carbon black) oxidized while the mixed gas is heated from 200 ° C. to 650 ° C. Such PM oxidation amount is calculated from the result of measuring the concentration of CO 2 and CO in the output gas, and calculating the amount of carbon oxidized while the mixed gas is heated from 200 ° C. to 650 ° C. Determined by The reason why the upper limit value of the mixed gas temperature when calculating the PM oxidation amount is set to 650 ° C. is as follows. That is, when purifying exhaust gas discharged from a diesel engine, a particulate matter purification catalyst and a NOx occlusion reduction type catalyst are often used in combination. Such NOx occlusion reduction type catalysts tend to gradually deteriorate in performance due to sulfur poisoning during use. In order to regenerate the NOx storage reduction catalyst from such sulfur poisoning, it is common to raise the temperature of the catalyst to about 650 ° C. On the other hand, since the particulate matter purification catalyst is generally used by supporting the catalyst on a substrate such as DPF, the particulate matter (PM) tends to be deposited by use and the pressure loss tends to increase. In order to regenerate the particulate matter purification catalyst from such a state in which the pressure loss has increased, it is common to perform a regeneration process (PM regeneration process) in which the catalyst is heated to 600 ° C. or more to burn PM. Is. When the particulate matter purification catalyst is heated to a temperature of 650 ° C. or higher during such a PM regeneration process, the combined NOx storage reduction catalyst tends to be thermally deteriorated. Accordingly, when the PM regeneration process is actually performed, it is necessary to raise the temperature of the catalyst with the upper limit of about 650 ° C. in order to prevent thermal deterioration of the NOx storage reduction catalyst. Therefore, the upper limit value of the temperature of the mixed gas when calculating the PM oxidation amount is set to 650 ° C. in accordance with the temperature condition in which the particulate matter purification catalyst is generally used.

Figure 2009208039
Figure 2009208039

表1に示す結果からも明らかなように、本発明の粒子状物質浄化用触媒(実施例1)は、比較例1〜3で得られた粒子状物質浄化用触媒と比較して、PM酸化率が高く、十分に高い粒子状物質の酸化活性を有することが確認された。このような結果から、本発明の粒子状物質浄化用触媒(実施例1)は、十分に高い粒子状物質浄化性能を有することが分かった。また、表1に示す結果からも明らかなように、PM酸化率に対する寄与という観点から、触媒の序列は:
Ag/FeMoO(実施例1)>Ag/CeO(比較例2)>Ag/Fe(比較例1)>YMnO(比較例3)
である。このような結果から、本発明の粒子状物質浄化用触媒(実施例1)においては、用いた担体(FeとMoとの複合酸化物)により、従来の触媒に用いられる担体(CeO、Fe及びYMnO等)と比較して十分に高い酸素放出性能が得られるとともに、その担体に担持された貴金属により、前記担体から放出された酸素が十分に活性化されるため、十分に高い粒子状物質浄化性能が得られるものと本発明者らは推察する。
As is clear from the results shown in Table 1, the particulate matter purification catalyst of the present invention (Example 1) was compared with the particulate matter purification catalyst obtained in Comparative Examples 1 to 3, compared with PM oxidation. The rate was high and it was confirmed to have a sufficiently high particulate matter oxidation activity. From these results, it was found that the particulate matter purification catalyst (Example 1) of the present invention has sufficiently high particulate matter purification performance. Also, as is clear from the results shown in Table 1, from the viewpoint of contribution to the PM oxidation rate, the order of the catalyst is:
Ag / FeMoO 4 (Example 1)> Ag / CeO 2 (Comparative Example 2)> Ag / Fe 2 O 3 (Comparative Example 1)> YMnO 3 (Comparative Example 3)
It is. From these results, in the particulate matter purification catalyst of the present invention (Example 1), the carrier (CeO 2 , Fe) used in the conventional catalyst is used depending on the carrier used (complex oxide of Fe and Mo). 2 O 3 and YMnO 3 etc.) sufficiently high oxygen release performance is obtained, and the oxygen released from the carrier is sufficiently activated by the noble metal supported on the carrier. The present inventors infer that high particulate matter purification performance can be obtained.

以上説明したように、本発明によれば、粒子状物質の酸化性能に優れ、十分に高度な粒子状物質浄化性能を有し、排ガスに含まれる粒子状物質を十分に浄化することが可能な粒子状物質浄化用触媒、並びに、その粒子状物質浄化用触媒を用いた粒子状物質浄化方法を提供することが可能となる。   As described above, according to the present invention, the particulate matter is excellent in oxidation performance, has sufficiently high particulate matter purification performance, and can sufficiently purify particulate matter contained in exhaust gas. It is possible to provide a particulate matter purification catalyst and a particulate matter purification method using the particulate matter purification catalyst.

したがって、本発明の粒子状物質浄化用触媒は、粒子状物質の浄化性能に優れるため、ディーゼルエンジン等の内燃機関からの排ガスに含まれる粒子状物質を浄化するための触媒として特に有用である。   Therefore, the particulate matter purification catalyst of the present invention is particularly useful as a catalyst for purifying particulate matter contained in exhaust gas from an internal combustion engine such as a diesel engine because of its excellent particulate matter purification performance.

実施例1で得られたペレット触媒(粒子状物質浄化用触媒)を用いて測定された、出ガス中のCO濃度及びCO濃度と入りガスの温度との関係を示すグラフである。Were measured using the obtained pellets catalyst (catalyst for removing particulate matter) in Example 1 is a graph showing the relationship between the temperature of the gas entering the CO 2 concentration and CO concentration of the outgoing gas. 比較例1で得られたペレット触媒(粒子状物質浄化用触媒)を用いて測定された、出ガス中のCO濃度及びCO濃度と入りガスの温度との関係を示すグラフである。The resulting catalyst pellets in Comparative Example 1 was measured using the (catalyst for removing particulate matter) is a graph showing the relationship between the temperature of the gas entering the CO 2 concentration and CO concentration of the outgoing gas. 比較例2で得られたペレット触媒(粒子状物質浄化用触媒)を用いて測定された、出ガス中のCO濃度及びCO濃度と入りガスの温度との関係を示すグラフである。Pellet catalyst obtained in Comparative Example 2 was measured using the (catalyst for removing particulate matter) is a graph showing the relationship between the temperature of the gas entering the CO 2 concentration and CO concentration of the outgoing gas. 比較例3で得られたペレット触媒(粒子状物質浄化用触媒)を用いて測定された、出ガス中のCO濃度及びCO濃度と入りガスの温度との関係を示すグラフである。Pellet catalyst obtained in Comparative Example 3 were measured using a (catalytic for removing particulate matter) is a graph showing the relationship between the temperature of the gas entering the CO 2 concentration and CO concentration of the outgoing gas.

Claims (5)

内燃機関からの排ガスに含まれる粒子状物質を酸化して浄化する粒子状物質浄化用触媒であって、
鉄とモリブデンとの複合酸化物からなる担体と、該担体に担持された銀、金、パラジウム、白金、ロジウム、イリジウム及びルテニウムからなる群より選択される少なくとも一種の貴金属とを備えることを特徴とする粒子状物質浄化用触媒。
A particulate matter purification catalyst for oxidizing and purifying particulate matter contained in exhaust gas from an internal combustion engine,
A support comprising a composite oxide of iron and molybdenum, and at least one noble metal selected from the group consisting of silver, gold, palladium, platinum, rhodium, iridium and ruthenium supported on the support. To purify particulate matter.
前記複合酸化物が、組成式:FeMo(式中、xは0.5〜1.0の範囲の数値を示し、yは2.5〜4.0の範囲の数値を示す。)で表される複合酸化物であることを特徴とする請求項1に記載の粒子状物質浄化用触媒。 The composite oxide has a composition formula: FeMo x O y (wherein x represents a numerical value in the range of 0.5 to 1.0, and y represents a numerical value in the range of 2.5 to 4.0). The catalyst for purifying particulate matter according to claim 1, wherein the catalyst is a composite oxide represented by the formula: 前記複合酸化物が、組成式:FeMoOで表される複合酸化物であることを特徴とする請求項1又は2に記載の粒子状物質浄化用触媒。 3. The particulate matter purification catalyst according to claim 1, wherein the composite oxide is a composite oxide represented by a composition formula: FeMoO 4 . 前記貴金属の担持量が前記触媒の全量に対して1〜20質量%の範囲にあることを特徴とする請求項1〜3のうちのいずれか一項に記載の粒子状物質浄化用触媒。   4. The particulate matter purifying catalyst according to claim 1, wherein the amount of the noble metal supported is in the range of 1 to 20 mass% with respect to the total amount of the catalyst. 請求項1〜4のうちのいずれか一項に記載の粒子状物質浄化用触媒に排ガスを接触させて、前記排ガスに含まれる粒子状物質を酸化して浄化することを特徴とする粒子状物質浄化方法。   A particulate matter characterized in that exhaust gas is brought into contact with the particulate matter purification catalyst according to any one of claims 1 to 4 to oxidize and purify the particulate matter contained in the exhaust gas. Purification method.
JP2008056037A 2008-03-06 2008-03-06 Catalyst for removing particulate matter and method for removing particulate matter by using the same Pending JP2009208039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008056037A JP2009208039A (en) 2008-03-06 2008-03-06 Catalyst for removing particulate matter and method for removing particulate matter by using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008056037A JP2009208039A (en) 2008-03-06 2008-03-06 Catalyst for removing particulate matter and method for removing particulate matter by using the same

Publications (1)

Publication Number Publication Date
JP2009208039A true JP2009208039A (en) 2009-09-17

Family

ID=41181712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008056037A Pending JP2009208039A (en) 2008-03-06 2008-03-06 Catalyst for removing particulate matter and method for removing particulate matter by using the same

Country Status (1)

Country Link
JP (1) JP2009208039A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009208040A (en) * 2008-03-06 2009-09-17 Toyota Central R&D Labs Inc Catalyst for removing particulate matter and method for removing particulate matter by using the same
CN102502859A (en) * 2011-11-07 2012-06-20 河北联合大学 Preparation method for iron molybdate nanocone material with sheet-layer structure
CN102502860A (en) * 2011-11-07 2012-06-20 河北联合大学 Preparation method for iron molybdate nanosheets
JPWO2012093600A1 (en) * 2011-01-05 2014-06-09 本田技研工業株式会社 Exhaust gas purification catalyst and exhaust gas purification catalyst structure
CN105056965A (en) * 2015-07-20 2015-11-18 长安大学 Biological carbon sphere supported FeMoO4 Fenton catalyst, preparation method and application

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009208040A (en) * 2008-03-06 2009-09-17 Toyota Central R&D Labs Inc Catalyst for removing particulate matter and method for removing particulate matter by using the same
JPWO2012093600A1 (en) * 2011-01-05 2014-06-09 本田技研工業株式会社 Exhaust gas purification catalyst and exhaust gas purification catalyst structure
JP5864444B2 (en) * 2011-01-05 2016-02-17 本田技研工業株式会社 Exhaust gas purification catalyst and exhaust gas purification catalyst structure
CN102502859A (en) * 2011-11-07 2012-06-20 河北联合大学 Preparation method for iron molybdate nanocone material with sheet-layer structure
CN102502860A (en) * 2011-11-07 2012-06-20 河北联合大学 Preparation method for iron molybdate nanosheets
CN102502859B (en) * 2011-11-07 2013-11-06 河北联合大学 Preparation method for iron molybdate nanocone material with sheet-layer structure
CN105056965A (en) * 2015-07-20 2015-11-18 长安大学 Biological carbon sphere supported FeMoO4 Fenton catalyst, preparation method and application

Similar Documents

Publication Publication Date Title
JP4144898B2 (en) Particulate combustion catalyst, particulate filter and exhaust gas purification device
US20130310248A1 (en) Double layered exhaust gas purification catalyst
JP5864444B2 (en) Exhaust gas purification catalyst and exhaust gas purification catalyst structure
WO2012147411A1 (en) Lean nox trap type exhaust gas purification catalyst and exhaust gas purification system
JP6906624B2 (en) Oxygen absorption and release materials, catalysts, exhaust gas purification systems, and exhaust gas treatment methods
JP2008073654A (en) Gas purification process, gas purification apparatus, and gas purification catalyst
JP4197029B2 (en) Exhaust gas purification catalyst, exhaust gas purification system, and exhaust gas purification method
JP4372764B2 (en) Exhaust gas purification device
JP2009208039A (en) Catalyst for removing particulate matter and method for removing particulate matter by using the same
JP2007313456A (en) Catalyst for cleaning exhaust gas and its manufacturing method
JP6107487B2 (en) N2O decomposition catalyst and N2O-containing gas decomposition method using the same
JP2008238069A (en) Purification device for exhaust gas, purification method for exhaust gas, and purification catalyst
JP2007239616A (en) Exhaust emission control device, exhaust emission control method, and purification catalyst
JP2006150223A (en) Exhaust-gas cleaning filter, production method of the filter and exhaust-gas cleaning apparatus
JP2011136257A (en) Catalyst carrier for purifying exhaust gas and catalyst for purifying exhaust gas using the catalyst carrier
JP5396118B2 (en) Internal combustion engine exhaust gas purification catalyst material and internal combustion engine exhaust gas purification catalyst
JP5007691B2 (en) Particulate matter purification catalyst and particulate matter purification method using the same
JP5010139B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification apparatus
JP5348930B2 (en) Particulate combustion catalyst, particulate filter and exhaust gas purification device
WO2014125934A1 (en) Exhaust gas purifying apparatus, exhaust gas purifying method and exhaust gas purifying catalyst for internal combustion engines
JP2009138591A (en) Exhaust emission control device, exhaust emission control method, and nox emission control catalyst of thermal engine
JP4697796B2 (en) Exhaust gas purification catalyst and regeneration method thereof
JP5215880B2 (en) Exhaust gas purification catalyst and exhaust gas purification apparatus using the same
JP6264639B2 (en) N2O decomposition catalyst and N2O-containing gas decomposition method using the same
JP2009233602A (en) Catalyst for particulate material purification, and purification method of particulate material using the same