JP3850843B2 - Carbon dioxide absorbing material, carbon dioxide absorbing method, carbon dioxide absorbing device, carbon dioxide separating device, and method for producing lithium composite oxide - Google Patents

Carbon dioxide absorbing material, carbon dioxide absorbing method, carbon dioxide absorbing device, carbon dioxide separating device, and method for producing lithium composite oxide Download PDF

Info

Publication number
JP3850843B2
JP3850843B2 JP2004089298A JP2004089298A JP3850843B2 JP 3850843 B2 JP3850843 B2 JP 3850843B2 JP 2004089298 A JP2004089298 A JP 2004089298A JP 2004089298 A JP2004089298 A JP 2004089298A JP 3850843 B2 JP3850843 B2 JP 3850843B2
Authority
JP
Japan
Prior art keywords
carbon dioxide
lithium
composite oxide
cobalt
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004089298A
Other languages
Japanese (ja)
Other versions
JP2005270842A (en
Inventor
敏弘 今田
雅礼 加藤
佐和子 吉川
健司 越崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004089298A priority Critical patent/JP3850843B2/en
Publication of JP2005270842A publication Critical patent/JP2005270842A/en
Application granted granted Critical
Publication of JP3850843B2 publication Critical patent/JP3850843B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Description

本発明は、リチウム複合酸化物を用いた炭酸ガス吸収材、炭酸ガスの吸収方法、炭酸ガ
ス分離方法、炭酸ガス吸収装置、炭酸ガス分離装置、及び、リチウム複合酸化物の製造方
法に関する。
The present invention relates to a carbon dioxide absorbent using a lithium composite oxide, a carbon dioxide absorption method, a carbon dioxide separation method, a carbon dioxide absorber, a carbon dioxide separator, and a method for producing a lithium composite oxide.

発動機等の炭化水素を主成分とする燃料を燃焼させる装置においては、炭酸ガスの回収
に適した場所である排気ガス放出部分の温度が300℃以上の高温になることが多い。
In an apparatus such as an engine that burns fuel mainly composed of hydrocarbons, the temperature of an exhaust gas discharge portion, which is a place suitable for the recovery of carbon dioxide gas, often reaches a high temperature of 300 ° C. or higher.

ところで、炭酸ガスの回収方法としては従来の酢酸セルロースを用いる方法、アルカノ
ールアミン系溶媒による化学吸収等が知られている。しかしながら、前述した回収方法は
いずれも炭酸ガスの導入温度を200℃以下に抑える必要がある。したがって、高い温度
でのリサイクルを要する排気ガスに対しては、一旦、熱交換器等により200℃以下に排
気ガスを冷却する必要があり、結果的に炭酸ガス回収のためのエネルギー消費量が多くな
るという問題があった。
By the way, as a method for recovering carbon dioxide, a conventional method using cellulose acetate, chemical absorption by an alkanolamine solvent, and the like are known. However, any of the above-described recovery methods needs to suppress the introduction temperature of carbon dioxide gas to 200 ° C. or lower. Therefore, for exhaust gas that requires recycling at a high temperature, it is necessary to cool the exhaust gas to 200 ° C. or less once by a heat exchanger or the like, resulting in a large amount of energy consumption for carbon dioxide recovery. There was a problem of becoming.

このような問題に対し、500℃を超える高温域での炭酸ガス吸収特性を発揮する炭酸
ガス吸収材として、リチウムジルコネートが知られている。このリチウムジルコネートは
500℃以上の温度で炭酸ガスと反応し、ジルコニアと炭酸リチウムとに分離する現象を
利用したものである。
Lithium zirconate is known as a carbon dioxide absorbing material that exhibits carbon dioxide absorbing characteristics in a high temperature range exceeding 500 ° C. for such problems. This lithium zirconate utilizes a phenomenon in which it reacts with carbon dioxide at a temperature of 500 ° C. or higher and separates into zirconia and lithium carbonate.

また、リチウムジルコネート以外のリチウム複合酸化物、例えばアルミニウム、チタン
、鉄、ニッケル、あるいはシリコンを含有するリチウムアルミネート、リチウムチタネー
ト、リチウムフェライト、リチウムニッケレート、リチウムシリケートなどのリチウム複
合酸化物も200℃を超える高温で炭酸ガスと反応し、酸化物(アルミナ、酸化チタン、
酸化鉄、酸化ニッケルあるいはシリカ)と炭酸リチウムとに分解することで、炭酸ガスの
吸収を行えること(吸収反応)が例えば特許文献1などに記載されている。
Further, lithium composite oxides other than lithium zirconate, such as lithium composite oxides such as lithium aluminate, lithium titanate, lithium ferrite, lithium nickelate, and lithium silicate containing aluminum, titanium, iron, nickel, or silicon, are also included. Reacts with carbon dioxide at high temperature exceeding ℃, oxide (alumina, titanium oxide,
For example, Patent Document 1 discloses that carbon dioxide gas can be absorbed (absorption reaction) by decomposition into iron oxide, nickel oxide, or silica) and lithium carbonate.

更に、これらのリチウム複合酸化物の炭酸ガス吸収反応は可逆で、リチウム複合酸化物
と炭酸ガスとの反応生成物から、吸収反応時の温度より高温条件において、炭酸ガスを放
出する(放出反応)。従ってこれらの炭酸ガス吸収材は、吸収した炭酸ガスを再度放出し
てリチウム複合酸化物を再生し、繰り返し利用することが可能である。
Furthermore, the carbon dioxide absorption reaction of these lithium composite oxides is reversible, and carbon dioxide gas is released from the reaction product of the lithium composite oxide and carbon dioxide at a temperature higher than the temperature during the absorption reaction (release reaction). . Therefore, these carbon dioxide absorbing materials can recycle lithium composite oxide by releasing the absorbed carbon dioxide again, and can be used repeatedly.

しかし、例えばリチウムフェライトの場合においての炭酸ガス吸収反応は300〜50
0℃で生じ、炭酸ガスを吸収した炭酸リチウムからの炭酸ガス放出反応は500℃以上で
生じるように、炭酸ガスの吸収反応より炭酸ガスの放出反応が高温条件下での反応となる
。このため炭酸ガスを吸収した炭酸ガス吸収材から、再生のために炭酸ガスを放出させる
際、炭酸ガス吸収材を吸収反応時の温度よりも高い温度に保持する必要がある。従ってこ
れまで、装置自体の耐熱温度が高くなければならず、炭酸ガスの吸収及び放出反応におい
て使用する装置用の材料が限定されるという問題点があり、更に使用用途も限定されてし
まうという問題点があった。
However, for example, in the case of lithium ferrite, the carbon dioxide absorption reaction is 300-50.
As the carbon dioxide releasing reaction from lithium carbonate which has occurred at 0 ° C. and absorbed carbon dioxide occurs at 500 ° C. or higher, the carbon dioxide releasing reaction is a reaction under a higher temperature condition than the carbon dioxide absorbing reaction. For this reason, when carbon dioxide gas is released from the carbon dioxide absorbent that has absorbed carbon dioxide for regeneration, it is necessary to keep the carbon dioxide absorbent at a temperature higher than the temperature during the absorption reaction. Therefore, until now, the heat-resistant temperature of the device itself has to be high, there is a problem that the material for the device used in the carbon dioxide absorption and release reaction is limited, and the use application is also limited. There was a point.

炭酸ガス放出反応、すなわち、炭酸ガスを吸収した状態の炭酸ガス吸収材の再生反応を
より低い温度で行うことができる炭酸ガス吸収材があれば、プラントにおける装置用材料
の選択の幅や使用用途を広げることができる。この観点から、再生反応の温度がより低く
、かつ炭酸ガス吸収速度が高い材料が求められていた。
特開平11−90219号公報
If there is a carbon dioxide absorbing material that can perform carbon dioxide releasing reaction, that is, regeneration reaction of carbon dioxide absorbing material in a state where carbon dioxide is absorbed, at a lower temperature, the range of equipment materials used in the plant and the intended use Can be spread. From this point of view, a material having a lower regeneration reaction temperature and a high carbon dioxide absorption rate has been demanded.
Japanese Patent Application Laid-Open No. 11-90219

本発明は、上記問題を解決するためになされたもので、炭酸ガスを吸収した状態から炭
酸ガスを放出する際に、低温での放出反応ができることを目的としている。
The present invention has been made to solve the above-described problems, and an object of the present invention is to allow a release reaction at a low temperature when carbon dioxide gas is released from a state where carbon dioxide gas is absorbed.

上記目的を達成するために、本発明の炭酸ガス吸収材はリチウムと一部をコバルトあるいはマンガンに置換された鉄とを含有する複合酸化物である炭酸ガス吸収材であって、
前記複合酸化物に、ナトリウムおよびカリウムから選ばれるアルカリの炭酸塩、あるいはカルシウム、ストロンチウム及びバリウムから選ばれるアルカリ土類金属を添加したことを特徴とする
In order to achieve the above object, the carbon dioxide absorbent of the present invention is a carbon dioxide absorbent that is a composite oxide containing lithium and iron partially substituted with cobalt or manganese,
An alkali carbonate selected from sodium and potassium or an alkaline earth metal selected from calcium, strontium and barium is added to the composite oxide .

また、前記鉄に対するコバルトあるいはマンガンの比率は、5〜40%の範囲内にあることが好ましい。
The ratio of cobalt or manganese to iron is preferably in the range of 5 to 40%.

また、前記炭酸塩あるいはアルカリ土類金属の添加量は、リチウムと一部をコバルトあるいはマンガンに置換された鉄とを含有する前記複合酸化物に対して0.01〜40mol%であることが好ましい。
The amount of the carbonate or alkaline earth metal added is preferably 0.01 to 40 mol% with respect to the composite oxide containing lithium and iron partially substituted with cobalt or manganese. .

また、本発明の炭酸ガス吸収方法は、炭酸ガスを含む気体に炭酸ガス吸収材を接触させて、前記炭酸ガスを含む気体中の前記炭酸ガスと選択的に反応させる炭酸ガス吸収方法において、前記炭酸ガス吸収材は、リチウムと一部をコバルト及びマンガンから選ばれる少なくとも1種の元素に置換された鉄とを含有する複合酸化物と、ナトリウムの炭酸塩、カリウムの炭酸塩、カルシウム、ストロンチウム及びバリウムから選ばれる少なくとも1種の添加剤とを含むことを特徴とする。
Further, the carbon dioxide absorption method of the present invention is the carbon dioxide absorption method in which a carbon dioxide absorbent is brought into contact with a gas containing carbon dioxide and selectively reacted with the carbon dioxide in the gas containing carbon dioxide. The carbon dioxide absorber includes a composite oxide containing lithium and iron partially substituted with at least one element selected from cobalt and manganese , sodium carbonate, potassium carbonate, calcium, strontium, and And at least one additive selected from barium .

また、本発明の炭酸ガス吸収装置は、リチウムと一部をコバルト及びマンガンから選ばれる少なくとも1種の元素に置換された鉄とを含有する複合酸化物、及びナトリウムの炭酸塩、カリウムの炭酸塩、カルシウム、ストロンチウム及びバリウムから選ばれる少なくとも1種の添加剤を含有する炭酸ガス吸収材と、前記炭酸ガス吸収材を収納し、炭酸ガスを導入するための炭酸ガス導入口とを具備することを特徴とする。
Further, the carbon dioxide absorption device of the present invention includes a composite oxide containing lithium and iron partially substituted with at least one element selected from cobalt and manganese , and sodium carbonate and potassium carbonate. A carbon dioxide absorbent containing at least one additive selected from calcium, strontium, and barium, and a carbon dioxide inlet for containing the carbon dioxide absorbent and introducing carbon dioxide. Features.

また、本発明の炭酸ガス分離装置は、リチウムと一部をコバルトあるいはマンガンで置換された鉄とを含有する複合酸化物に炭酸ガスを反応させて生成した生成物と、前記生成物を加熱し炭酸ガスを放出させるための加熱装置と、前記生成物を収納し、前記炭酸ガスを排出する生成ガス排出口とを具備することを特徴とする。
Further, the carbon dioxide separation device of the present invention comprises a product produced by reacting carbon dioxide with a composite oxide containing lithium and iron partially substituted with cobalt or manganese , and heating the product. It comprises a heating device for releasing carbon dioxide, and a product gas outlet for containing the product and discharging the carbon dioxide.

本発明によれば、炭酸ガスを吸収した状態から炭酸ガスを放出する際に、低温での放出
反応が可能である。
According to the present invention, when carbon dioxide is released from a state in which carbon dioxide has been absorbed, a release reaction at a low temperature is possible.

以下、本発明を詳細に説明する。   The present invention will be described in detail below.

リチウム複合酸化物からなる炭酸ガス吸収材は所定の温度以下において炭酸ガスを吸収
する。この反応は可逆であり、前述の所定の温度よりも高温においてリチウム複合酸化物
と炭酸ガスとの反応生成物から炭酸ガスを放出し、リチウム複合酸化物を再生させる。こ
の逆反応を、以下、放出反応、あるいは再生反応と呼ぶ。
The carbon dioxide absorbing material made of lithium composite oxide absorbs carbon dioxide at a predetermined temperature or lower. This reaction is reversible, and carbon dioxide gas is released from the reaction product of the lithium composite oxide and carbon dioxide at a temperature higher than the predetermined temperature described above to regenerate the lithium composite oxide. This reverse reaction is hereinafter referred to as a release reaction or a regeneration reaction.

例えば、リチウム複合酸化物のうち、鉄(Fe)のみを含むリチウムフェライトは約3
00℃〜500℃程度で炭酸ガス吸収反応を行い、放出反応の温度は、吸収反応よりやや
高く、500℃台である。これはリチウムシリケート等他のリチウム複合酸化物よりも、
放出反応速度が低いことが特徴である。更にリチウムと鉄を含有する複合酸化物の炭酸ガ
スに対する吸収・放出特性との関連についてさらに検討した結果、鉄の一部を遷移金属元
素に置換したリチウム複合酸化物が、リチウムフェライトと比較して、炭酸ガスの放出反
応温度を低く抑えられ、かつ炭酸ガス吸収速度が速いということを見出し、本発明の炭酸
ガス吸収材、これを用いた炭酸ガス吸収方法、炭酸ガス分離方法、炭酸ガス吸収装置及び
炭酸ガス分離装置を発明するに至った。
For example, among lithium composite oxides, lithium ferrite containing only iron (Fe) is about 3
The carbon dioxide absorption reaction is performed at about 00 ° C. to 500 ° C., and the temperature of the release reaction is slightly higher than the absorption reaction and is in the range of 500 ° C. This is better than other lithium composite oxides such as lithium silicate.
It is characterized by a low release reaction rate. Furthermore, as a result of further examination on the relationship between the absorption and release characteristics of lithium and iron-containing composite oxides to carbon dioxide, lithium composite oxides in which part of iron was replaced with transition metal elements were compared with lithium ferrite. The carbon dioxide gas release reaction temperature can be kept low, and the carbon dioxide absorption rate is high, and the carbon dioxide absorption material of the present invention, the carbon dioxide absorption method, the carbon dioxide separation method, and the carbon dioxide absorption device using the same. And a carbon dioxide separator.

鉄の一部を、特にコバルト、マンガンで置換したリチウム複合酸化物は、リチウムフェ
ライトと比較して炭酸ガス(CO2)を放出する時の反応温度を低く抑えられ、かつ炭酸
ガス吸収速度が速い。吸収速度が速くなる理由としては、鉄原子と原子径が近い原子を置
換させることで、リチウムフェライトの結晶格子に歪が生じ、リチウムイオンとCO2
子とが接触しやすくなったためと考えられる。
Lithium composite oxide in which a part of iron is substituted with cobalt and manganese, in particular, has a lower reaction temperature when releasing carbon dioxide (CO 2 ) than lithium ferrite, and has a high carbon dioxide absorption rate. . The reason why the absorption rate is increased is considered to be that substitution of an atom having an atomic diameter close to that of an iron atom causes distortion in the crystal lattice of the lithium ferrite and facilitates contact between the lithium ion and the CO 2 molecule.

リチウムと鉄を含有する複合酸化物には、さらにナトリウムおよびカリウムから選ばれるアルカリの炭酸塩やカルシウム、ストロンチウム及びバリウムから選ばれるアルカリ土類金属が添加されることを許容する。このような炭酸塩を添加することによって、得られた炭酸ガス吸収材の炭酸ガスの吸収反応及び放出反応が促進される。この炭酸塩の添加量は、リチウムと一部をコバルトあるいはマンガンに置換された鉄とを含有する複合酸化物に対して0.01〜40mol%にすることが好ましい。炭酸塩の添加量を0.01mol%未満にすると、炭酸ガスの吸収反応の促進効果を十分に発揮することが困難になる。一方、炭酸塩の添加量が40mol%を超えると炭酸ガスの吸収反応の促進効果が得られない場合や、炭酸ガス吸収材の容積当たりの炭酸ガス吸収量が低下する恐れがある。
The composite oxide containing lithium and iron is allowed to be further added with an alkali carbonate selected from sodium and potassium, and an alkaline earth metal selected from calcium, strontium and barium. By adding such a carbonate, the carbon dioxide absorption and release reactions of the obtained carbon dioxide absorbent are promoted. The amount of carbonate added is preferably 0.01 to 40 mol% with respect to the composite oxide containing lithium and iron partially substituted with cobalt or manganese . When the amount of carbonate added is less than 0.01 mol%, it is difficult to sufficiently exhibit the effect of promoting the carbon dioxide gas absorption reaction. On the other hand, if the amount of carbonate added exceeds 40 mol%, the effect of promoting the carbon dioxide absorption reaction cannot be obtained, or the amount of carbon dioxide absorbed per volume of the carbon dioxide absorbent may be reduced.

以上説明した本実施例に関わる炭酸ガス吸収材は、Li(Fex1−x)O2(ただし、Mはコバルトあるいはマンガンで02分子との接触が促進していると考えられる。従って、置換するコバルトあるいはマンガンに対して鉄の分子比が0.95以上であるとCO2分子との接触が促進されるほど結晶格子が変化せずに炭酸ガスの吸収特性が低下し、0.6以下であると置換するコバルトあるいはマンガン量が多すぎるため、リチウムフェライトとしての炭酸ガスの吸収特性が損なわれてしまう恐れがある。
Carbon dioxide absorbent according to the present embodiment described above, Li (Fe x M 1- x) O2 ( although, M is considered to contact with 0 2 molecule with a cobalt or manganese is promoted. Therefore, When the molecular ratio of iron with respect to cobalt or manganese to be substituted is 0.95 or more, the crystal lattice does not change so that the contact with the CO 2 molecule is promoted, and the carbon dioxide absorption characteristic decreases, and 0.6 Since the amount of cobalt or manganese to be substituted is too large, the carbon dioxide absorption characteristics as lithium ferrite may be impaired.

成形には、粒子を結合させるためのバインダ材料(結合材)を用いることができる。バ
インダには、無機質の材料、有機質の材料のどちらも用いることができる。例えば無機質
材料としては粘土、鉱物、石灰乳などが挙げられる。また有機材料としては、澱粉、メチ
ルセルロース、ポリビニルアルコール、パラフィンなどが挙げられる。バインダの添加量
は、炭酸ガス吸収材成分に対して0.1〜20wt%とするのが好ましい。また、バイン
ダは溶媒に溶かした溶液の多孔質体において保持され、添加されるリチウム、ナトリウム
およびカリウムから選ばれるアルカリの炭酸塩はその細孔に保持される。
For molding, a binder material (binding material) for binding particles can be used. For the binder, either an inorganic material or an organic material can be used. For example, examples of the inorganic material include clay, mineral, and lime milk. Examples of the organic material include starch, methylcellulose, polyvinyl alcohol, and paraffin. The added amount of the binder is preferably 0.1 to 20 wt% with respect to the carbon dioxide absorbent component. The binder is held in a porous body of a solution dissolved in a solvent, and the alkali carbonate selected from lithium, sodium and potassium added is held in the pores.

以上説明した本実施例に関わる炭酸ガス吸収材は、Li(FexM1−x)O2(ただし、
MはFe以外の遷移金属から選ばれる少なくとも1種で0<x<1)の分子式で表される
、リチウムと一部を遷移金属元素で置換された鉄を含む複合酸化物である。また、このリ
チウムと一部を遷移金属で置換された鉄を含む複合酸化物の温度特性を発揮させるための
、他の遷移金属元素との交換割合を示すxの範囲は、0.6≦x≦0.95であることが
望ましい。鉄を含んだリチウム複合酸化物の鉄の一部を他の遷移金属に置換させる場合、
前述したように、結晶格子の変化が、CO2分子との接触が促進していると考えられる。
従って、置換する遷移金属に対して鉄の分子比が0.95以上であるとCO2分子との接
触が促進されるほど結晶格子が変化せずに炭酸ガスの吸収特性が低下し、0.6以下であ
ると置換する遷移金属量が多すぎるため、リチウムフェライトとしての炭酸ガスの吸収特
性が損なわれてしまう恐れがある。
The carbon dioxide absorbing material related to the present embodiment described above is Li (FexM1-x) O2 (however,
M is a composite oxide containing at least one selected from transition metals other than Fe and represented by a molecular formula of 0 <x <1) and lithium partially substituted with a transition metal element. The range of x indicating the exchange rate with other transition metal elements for exhibiting the temperature characteristics of the composite oxide containing iron partially substituted with lithium and transition metal is 0.6 ≦ x It is desirable that ≦ 0.95. When replacing a part of iron of the lithium composite oxide containing iron with another transition metal,
As described above, it is considered that the change of the crystal lattice promotes the contact with the CO 2 molecule.
Therefore, when the molecular ratio of iron to the transition metal to be substituted is 0.95 or more, the crystal lattice does not change so that the contact with the CO 2 molecule is promoted, so that the carbon dioxide absorption characteristic is reduced. If the amount is 6 or less, the amount of transition metal to be substituted is too large, and the carbon dioxide absorption characteristics as lithium ferrite may be impaired.

この炭酸ガス吸収材は、次の式(1)に示すように、炭酸ガスと吸収反応し、リチウム
炭酸塩を生成する。
吸収:2LiFexy2+CO2 →(Fexy)2O3+Li2CO3・・・(1)
また、特定温度以上に加熱することにより式(1)の逆反応(再生反応)の式(2)が起
こり、炭酸ガスを放出する。
再生:(Fexy)2O3+Li2CO3 → 2LiFexy2+CO2・・・(2)
This carbon dioxide absorbent absorbs and reacts with carbon dioxide as shown in the following formula (1) to generate lithium carbonate.
Absorption: 2LiFe x M y O 2 + CO 2 → (Fe x M y) 2O 3 + Li 2 CO 3 ··· (1)
Further, when heated to a specific temperature or higher, formula (2) of the reverse reaction (regeneration reaction) of formula (1) occurs, and carbon dioxide gas is released.
Play: (Fe x M y) 2O 3 + Li 2 CO 3 → 2LiFe x M y O 2 + CO 2 ··· (2)

これらの反応温度は、炭酸ガス濃度によって多少異なるが、式(1)に示す反応は、約
500℃(例えば炭酸ガス濃度が100%である場合は300℃以上510℃以下)の吸
収温度域でおこり、リチウムと鉄を含む複合酸化物を主成分とする炭酸ガス吸収材は炭酸
ガスを吸収する。
Although these reaction temperatures differ somewhat depending on the carbon dioxide concentration, the reaction shown in the formula (1) is performed at an absorption temperature range of about 500 ° C. (for example, 300 ° C. or more and 510 ° C. or less when the carbon dioxide concentration is 100%). As a result, the carbon dioxide absorbent comprising a composite oxide containing lithium and iron as a main component absorbs carbon dioxide.

式(2)に示す反応は、吸収温度域を超える500℃以上(炭酸ガス濃度によって異な
り、例えば炭酸ガス濃度100%のガスを流した場合、510℃以上)でおこり、炭酸ガ
スを放出してもとのリチウムと鉄を含む複合酸化物に再生される。このような炭酸ガス吸
収材の炭酸ガス吸収と、炭酸ガスを放出し、もとの炭酸ガス吸収材へ戻す(再生する)反
応は、繰り返し行うことができる。
The reaction shown in the formula (2) occurs at 500 ° C. or more exceeding the absorption temperature range (depending on the carbon dioxide concentration, for example, 510 ° C. or more when a gas with a carbon dioxide concentration of 100% is flowed), and releases carbon dioxide. Regenerated to the original composite oxide containing lithium and iron. Such carbon dioxide absorption by the carbon dioxide absorbent and the reaction of releasing the carbon dioxide and returning (regenerating) it to the original carbon dioxide absorbent can be repeated.

なお炭酸ガスの吸収反応及び放出反応が生じる温度域は、反応雰囲気下における炭酸ガ
ス濃度によって変化し、炭酸ガス濃度が高くなるにしたがって吸収反応及び放出反応に関
わる温度の上限温度は高くなる。例えばリチウムフェライトの場合、CO2濃度が20%
の時には476℃付近で放出反応が生じ始めるが、CO2濃度が100%になると、51
0℃付近で放出反応が生じるようになる。
Note that the temperature range where carbon dioxide absorption and release reactions occur varies depending on the carbon dioxide concentration in the reaction atmosphere, and the upper limit temperature related to the absorption and release reactions increases as the carbon dioxide concentration increases. For example, in the case of lithium ferrite, the CO 2 concentration is 20%
In this case, the release reaction starts to occur at around 476 ° C., but when the CO 2 concentration reaches 100%, 51
A release reaction occurs around 0 ° C.

リチウムと鉄の一部をコバルトあるいはマンガンで置換したリチウム複合化酸化物は金属有機酸塩を使用した沈殿法(クエン酸法)により作製できる。以下に具体的な製造方法を示す。
A lithium composite oxide in which a part of lithium and iron is substituted with cobalt or manganese can be prepared by a precipitation method (citric acid method) using a metal organic acid salt. A specific manufacturing method is shown below.

炭酸リチウムと炭酸鉄と塩基性の炭酸コバルトを所定量のモル比にて乳鉢で混合しそれ
を純水に分散させ、60℃に加温する。その後クエン酸を加えて攪拌し、得られたクエン
酸塩スラリーを濾別した後120℃にて乾燥させる。得られた粉体を350℃で仮焼成し
、更に、仮焼成した粉末を400℃〜1000℃で6時間焼成して炭酸ガス吸収材の粉末
を得た。
Lithium carbonate, iron carbonate, and basic cobalt carbonate are mixed in a mortar at a predetermined molar ratio, dispersed in pure water, and heated to 60 ° C. Thereafter, citric acid is added and stirred, and the resulting citrate slurry is filtered off and dried at 120 ° C. The obtained powder was calcined at 350 ° C., and the calcined powder was calcined at 400 ° C. to 1000 ° C. for 6 hours to obtain a carbon dioxide absorbent powder.

続いてこの炭酸ガス吸収材粉末を直径12mmの金型内に充填し、加圧成形することに
より気孔率40%の成形体を作製した。
Subsequently, the carbon dioxide gas absorbent powder was filled in a metal mold having a diameter of 12 mm and pressure-molded to produce a molded body having a porosity of 40%.

図1〜3に本発明に関わる炭酸ガス吸収装置の示す断面概略図を示す。なお、図1〜3
に示す炭酸ガス吸収装置は一例であって、本発明に関わる炭酸ガス吸収装置はこれに限定
されるものではない。
1-3 shows a schematic cross-sectional view of a carbon dioxide absorbing device according to the present invention. 1 to 3
The carbon dioxide absorbing device shown in FIG. 1 is an example, and the carbon dioxide absorbing device according to the present invention is not limited to this.

図1において、反応容器1は、炭酸ガス含有気体を反応容器内へ導入するための導入管
2と、この導入管2の一端に連結されており、反応容器内にある内管3とからなる。内管
3の壁面には通気孔が備えられており、導入管2から内管3へ導入された気体を反応容器
1内部へ通気できるようになっている。例えば多孔質アルミナのような多孔質セラミック
から作られ、気体の透過性を有するものを使用しても良い。炭酸ガス(CO2)と反応し
、炭酸塩を生成する炭酸ガス吸収材4は、反応容器1内に充填されている。
In FIG. 1, a reaction vessel 1 includes an introduction tube 2 for introducing a carbon dioxide-containing gas into the reaction vessel, and an inner tube 3 connected to one end of the introduction tube 2 and located in the reaction vessel. . The wall surface of the inner tube 3 is provided with a ventilation hole so that the gas introduced from the introduction tube 2 into the inner tube 3 can be vented into the reaction vessel 1. For example, a material made of a porous ceramic such as porous alumina and having gas permeability may be used. A carbon dioxide absorbent 4 that reacts with carbon dioxide (CO 2 ) to produce carbonate is filled in the reaction vessel 1.

まず、吸収反応では導入管2から式(1)に示される炭酸ガス吸収反応が生じる温度領
域のCO2含有気体を供給する。炭酸ガス吸収材4は内管3から供給されるCO2含有気体
を吸収する反応が生じ、反応生成物を生成する。
First, in the absorption reaction, a CO 2 -containing gas in a temperature region where the carbon dioxide absorption reaction represented by the formula (1) occurs is supplied from the introduction pipe 2. The carbon dioxide absorbing material 4 undergoes a reaction that absorbs the CO 2 -containing gas supplied from the inner tube 3 to generate a reaction product.

一方再生反応では、炭酸ガスの吸収反応によって生成した反応生成物(炭酸塩)が、式
(2)で示される炭酸ガスの放出が生じる温度領域になるようにヒータなどの加熱手段6
によって反応容器1を加熱する。所定の温度に達すると反応生成物(炭酸塩)からCO2
の放出が生じ内管3を通じてCO2を導入管4より放出させる。加熱手段6は任意の加熱
されたガスを反応容器1の外周に接触させて、反応容器1ごと所定の温度まで加温する方
法でも良い。
On the other hand, in the regeneration reaction, the heating means 6 such as a heater is used so that the reaction product (carbonate) generated by the absorption reaction of carbon dioxide is in a temperature region where the release of carbon dioxide represented by the formula (2) occurs.
To heat reaction vessel 1. When the predetermined temperature is reached, CO 2 from the reaction product (carbonate)
Is released, and CO 2 is released from the introduction pipe 4 through the inner pipe 3. The heating means 6 may be a method in which any heated gas is brought into contact with the outer periphery of the reaction vessel 1 and the reaction vessel 1 is heated to a predetermined temperature.

また図2のように、CO2含有気体を導入する導入管2と排出管25を備えた反応容器
21であれば、CO2含有気体を導入管2より供給してCO2吸収反応を行いながら連続的
に吸収反応後のCO2が取り除かれた気体を排出管25より取り出すことが可能になる。
この場合、再生反応は式(2)で示される炭酸ガス放出反応が生じる温度領域である任意
のガスを導入管2よりキャリアガスとして供給してもよい。CO2を吸収した状態の炭酸
ガス吸収材から放出されたCO2をCO2含有気体として連続的に排出管25より排出する
ことも可能である。
In addition, as shown in FIG. 2, if the reaction vessel 21 equipped with inlet pipe 2 and the discharge pipe 25 for introducing a CO 2 containing gas, while the CO 2 absorbing reaction is supplied from inlet pipe 2 a CO 2 containing gas The gas from which CO 2 has been continuously removed after the absorption reaction can be taken out from the discharge pipe 25.
In this case, the regeneration reaction may be performed by supplying any gas as a carrier gas from the introduction pipe 2 in a temperature region where the carbon dioxide gas releasing reaction represented by the formula (2) occurs. It is also possible to discharge from the continuous discharge pipe 25 of CO 2 emitted as CO 2 containing gas CO 2 from the carbon dioxide gas absorbent of the absorbed state.

更に、吸収反応及び放出反応のどちらの場合においても、容器31を流動床式反応容器
をすることもできる。この場合、図3のように、導入管32から導入されるCO2含有気
体あるいはキャリアガスにより、炭酸ガス吸収材4あるいはCO2と反応して生成する反
応生成物(炭酸塩)が流動するため接触効率がよくなる。図2の場合と同様に、CO2
有気体を導入する導入管32と排出管35を備えた反応容器31であれば、CO2含有気
体を導入管32より供給してCO2吸収反応を行いながら連続的に吸収反応後のCO2が取
り除かれた気体を排出管35より取り出すことが可能である。
Furthermore, in both cases of the absorption reaction and the release reaction, the container 31 can be a fluidized bed type reaction container. In this case, as shown in FIG. 3, the reaction product (carbonate) generated by reacting with the carbon dioxide absorbent 4 or CO 2 flows by the CO 2 -containing gas or carrier gas introduced from the introduction pipe 32. Contact efficiency is improved. As in the case of FIG. 2, if the reaction vessel 31 includes the introduction pipe 32 for introducing the CO 2 -containing gas and the discharge pipe 35, the CO 2 absorption reaction is performed by supplying the CO 2 -containing gas from the introduction pipe 32. However, the gas from which the CO 2 has been continuously removed after the absorption reaction can be taken out from the discharge pipe 35.

(実験1)
実験に使用した炭酸ガス吸収材はリチウムと鉄の一部をコバルトで置換したリチウム複合化酸化物である。このリチウム複合酸化物は次のように合成した。
(Experiment 1)
The carbon dioxide absorbent used in the experiment is a lithium composite oxide in which a part of lithium and iron is replaced with cobalt . This lithium composite oxide was synthesized as follows.

炭酸リチウム73.9g(酸化リチウムとして39.85wt%)と水酸化鉄419.
4g(Fe23として68.25wt%)と塩基性コバルト24.8g(61.04wt
%)を純水1000g中に分散させ、50〜60℃に加温した後、クエン酸433gを加
えて攪拌した。
73.9 g of lithium carbonate (39.85 wt% as lithium oxide) and iron hydroxide 419.
4 g (68.25 wt% as Fe 2 O 3 ) and basic cobalt 24.8 g (61.04 wt)
%) Was dispersed in 1000 g of pure water and heated to 50 to 60 ° C., and then 433 g of citric acid was added and stirred.

得られたクエン酸スラリーを濾別し、120℃で乾燥、350℃で仮焼成した後、40
0℃〜1000℃で12時間焼成して、炭酸ガス吸収材LiFe0.9Co0.12を得た。
The obtained citric acid slurry was filtered off, dried at 120 ° C. and calcined at 350 ° C.
Firing was performed at 0 ° C. to 1000 ° C. for 12 hours to obtain a carbon dioxide absorbent LiFe 0.9 Co 0.1 O 2 .

得られた炭酸ガス吸収材の炭酸ガス吸収特性及び放出特性は以下のようにして評価した
The carbon dioxide absorption and release characteristics of the obtained carbon dioxide absorbent were evaluated as follows.

まず、炭酸ガス吸収材の炭酸ガス吸収特性は、炭酸ガス吸収材を電気炉に設置し、この
電気炉内に炭酸ガスを流通させながら500℃の温度で3時間保持して炭酸ガスを吸収さ
せた。炭酸ガス吸収前と吸収後の炭酸ガス吸収材の重量変化を測定し、この重量変化分を
炭酸ガスの吸収量として評価した。
First, the carbon dioxide absorption characteristic of the carbon dioxide absorbent is such that the carbon dioxide absorbent is installed in an electric furnace and is held at a temperature of 500 ° C. for 3 hours while carbon dioxide is circulated in the electric furnace to absorb the carbon dioxide. It was. The change in weight of the carbon dioxide absorbent before and after absorption of carbon dioxide was measured, and this change in weight was evaluated as the amount of carbon dioxide absorbed.

また炭酸ガスを吸収した状態の炭酸ガス吸収剤の炭酸ガス放出特性は、まず、炭酸ガス
吸収材に炭酸ガスを流通させながら500℃に3時間保持し、一旦室温に戻して重量を測
定し(これを炭酸ガス放出前の炭酸ガス吸収材の重量とする)、その後炭酸ガスの吸収反
応と同様なガス条件にし、700℃で1時間保持して炭酸ガスを放出した。炭酸ガス放出
前と放出後の重量変化を測定し、この重量変化分を炭酸ガス放出量として評価した。
この時の結果を表1に示す。
The carbon dioxide gas-absorbing property of the carbon dioxide absorbent that has absorbed carbon dioxide gas is first maintained at 500 ° C. for 3 hours while circulating the carbon dioxide gas through the carbon dioxide absorbent, and once returned to room temperature, the weight is measured ( This is defined as the weight of the carbon dioxide absorbent before releasing carbon dioxide), and then the gas conditions were the same as those for the carbon dioxide absorption reaction, and the carbon dioxide was released by holding at 700 ° C. for 1 hour. The change in weight before and after the release of carbon dioxide was measured, and this change in weight was evaluated as the amount of released carbon dioxide.
The results at this time are shown in Table 1.

(実験2)
鉄に対するコバルトの置換量を表1に示される量に変えるため、炭酸リチウム73.9
g(酸化リチウムとして39.85wt%)と水酸化鉄372.8g(Fe23として6
8.25wt%)と塩基性コバルト49.6g(61.04wt%)を純水1000g中
に分散させ、50〜60℃に加温した後、クエン酸433gを加えて攪拌した。
(Experiment 2)
To change the amount of cobalt substitution for iron to the amount shown in Table 1, 73.9 lithium carbonate
g (39.85 wt% as lithium oxide) and iron hydroxide 372.8 g (Fe 2 O 3 as 6
8.25 wt%) and 49.6 g (61.04 wt%) of basic cobalt were dispersed in 1000 g of pure water and heated to 50-60 ° C., after which 433 g of citric acid was added and stirred.

実験1と同様にして焼成、炭酸ガス吸収材を作製し、更に、実験1と同様に炭酸ガス吸
収特性及び放出特性を評価した。その結果を表1に併記する。
Firing and carbon dioxide absorbing materials were prepared in the same manner as in Experiment 1, and further, carbon dioxide absorbing characteristics and releasing characteristics were evaluated in the same manner as in Experiment 1. The results are also shown in Table 1.

(実験3)
鉄に対するコバルトの置換量を表1に示される量に変えるため、炭酸リチウム73.9
g(酸化リチウムとして39.85wt%)と水酸化鉄326.2g(Fe23として6
8.25wt%)と塩基性コバルト99.2g(61.04wt%)を純水1000g中
に分散させ、50〜60℃に加温した後、クエン酸433gを加えて攪拌した。
(Experiment 3)
To change the amount of cobalt substitution for iron to the amount shown in Table 1, 73.9 lithium carbonate
g (39.85 wt% as lithium oxide) and 326.2 g of iron hydroxide (6 as Fe 2 O 3
8.25 wt%) and 99.2 g (61.04 wt%) of basic cobalt were dispersed in 1000 g of pure water and heated to 50 to 60 ° C., after which 433 g of citric acid was added and stirred.

実験1と同様にして焼成、炭酸ガス吸収材を作製し、更に、実験1と同様に炭酸ガス吸
収特性及び放出特性を評価した。その結果を表1に併記する。
Firing and carbon dioxide absorbing materials were prepared in the same manner as in Experiment 1, and further, carbon dioxide absorbing characteristics and releasing characteristics were evaluated in the same manner as in Experiment 1. The results are also shown in Table 1.

(実験4)
コバルトに代えて、マンガンで鉄を置換した炭酸ガス吸収材を使用した。
(Experiment 4)
Instead of cobalt, a carbon dioxide absorbent in which iron was replaced with manganese was used.

炭酸リチウム73.9g(酸化リチウムとして39.85wt%)と水酸化鉄419.
4g(Fe23として68.25wt%)と炭酸マンガン21.9g(61.04wt%
)を純水1000g中に分散させ、50〜60℃に加温した後、クエン酸433gを加え
て攪拌した。
73.9 g of lithium carbonate (39.85 wt% as lithium oxide) and iron hydroxide 419.
4 g (68.25 wt% as Fe 2 O 3 ) and manganese carbonate 21.9 g (61.04 wt%)
) Was dispersed in 1000 g of pure water and heated to 50-60 ° C., and then 433 g of citric acid was added and stirred.

得られたクエン酸スラリーを濾別し、120℃で乾燥、350℃で仮焼成した後、40
0℃〜1000℃で12時間焼成して、炭酸ガス吸収材LiFe0.9Mn0.12を得た。
The obtained citric acid slurry was filtered off, dried at 120 ° C. and calcined at 350 ° C.
The carbon dioxide absorbent LiFe 0.9 Mn 0.1 O 2 was obtained by firing at 0 ° C. to 1000 ° C. for 12 hours.

更に、実験1と同様に炭酸ガス吸収特性及び放出特性を評価した。その結果を表1に併
記する。
Further, the carbon dioxide absorption and release characteristics were evaluated in the same manner as in Experiment 1. The results are also shown in Table 1.

(比較実験1)
リチウムフェライトを使用したことを除き、実験1と同様にして炭酸ガス吸収特性及び
放出特性を評価した。その結果を表1に併記する。
(Comparative Experiment 1)
Except for using lithium ferrite, the carbon dioxide absorption and release characteristics were evaluated in the same manner as in Experiment 1. The results are also shown in Table 1.

(比較実験2)
鉄に対するコバルトの置換量を表1に示される量に変えるため、炭酸リチウム73.9
g(酸化リチウムとして39.85wt%)と水酸化鉄186.4g(Fe23として6
8.25wt%)と塩基性コバルト148.8g(61.04wt%)を純水1000g
中に分散させ、50〜60℃に加温した後、クエン酸433gを加えて攪拌した。実験1
と同様にして焼成、炭酸ガス吸収材を作製し、更に、実験1と同様に炭酸ガス吸収特性及
び放出特性を評価した。その結果を表1に併記する。
(Comparative experiment 2)
To change the amount of cobalt substitution for iron to the amount shown in Table 1, 73.9 lithium carbonate
g (39.85 wt% as lithium oxide) and 186.4 g of iron hydroxide (6 as Fe 2 O 3
8.25 wt%) and 148.8 g (61.04 wt%) of basic cobalt in 1000 g of pure water
The mixture was dispersed therein and heated to 50-60 ° C., and then 433 g of citric acid was added and stirred. Experiment 1
In the same manner as above, firing and carbon dioxide absorbing materials were prepared, and the carbon dioxide absorbing characteristics and releasing characteristics were evaluated in the same manner as in Experiment 1. The results are also shown in Table 1.

(比較実験3)
リチウムフェライトとコバルトを含有するリチウム複合酸化物とを9:1の割合で混合
し、実験1と同様にして炭酸ガス吸収特性及び放出特性を評価した。その結果を表1に併
記する。
(Comparative Experiment 3)
Lithium ferrite and a lithium composite oxide containing cobalt were mixed at a ratio of 9: 1, and the carbon dioxide absorption and release characteristics were evaluated in the same manner as in Experiment 1. The results are also shown in Table 1.

Figure 0003850843
Figure 0003850843

この表1より、実験1乃至4の炭酸ガス吸収材は、リチウムフェライト(比較実験1)
の炭酸ガス吸収材にくらべて炭酸ガスの吸収量が大きく、優れた炭酸ガス吸収特性を有す
ることが明らかになった。また、炭酸ガスの放出量においても、実施1乃至4の炭酸ガス
吸収材は、比較実験1とくらべて優れており、吸収・放出が可能な材料であることが確認
された。
From Table 1, the carbon dioxide absorbents in Experiments 1 to 4 are lithium ferrite (Comparative Experiment 1).
Compared with the carbon dioxide gas absorbent material, the carbon dioxide gas absorption amount was large, and it was revealed that it has excellent carbon dioxide gas absorption characteristics. Further, in terms of the amount of carbon dioxide released, the carbon dioxide absorbents of Examples 1 to 4 were superior to Comparative Experiment 1 and were confirmed to be materials that can be absorbed and released.

また、実験1乃至4の炭酸ガス吸収材は比較実験2の炭酸ガス吸収材に比べて炭酸ガス
の吸収量が大きく、炭酸ガス放出量においても比較実験2に比べ実施1乃至4の場合に放
出量が大きい。特に鉄に対するコバルトの置換量がモル比で9:1の場合が最も優れた炭
酸ガス吸収特性あるいは放出特性を示すことが確認された。
Further, the carbon dioxide absorbing material of Experiments 1 to 4 has a larger carbon dioxide absorption than the carbon dioxide absorbing material of Comparative Experiment 2, and the amount of carbon dioxide released is also released in the case of Examples 1 to 4 compared to Comparative Experiment 2. The amount is large. In particular, it was confirmed that the most excellent carbon dioxide absorption characteristic or emission characteristic was exhibited when the substitution amount of cobalt with respect to iron was 9: 1 by molar ratio.

更に、実験1の炭酸ガス吸収材は比較実験3の吸収材に比べても炭酸ガス吸収量及び放出量が大きく、鉄の一部をコバルトあるいはマンガンで置換したリチウム複合酸化物が優れた吸収特性及び放出特性を示すことが明らかになった。 Further, the carbon dioxide absorption material of Experiment 1 has a larger carbon dioxide absorption and release amount than the absorption material of Comparative Experiment 3, and the lithium composite oxide in which a part of iron is substituted with cobalt or manganese has excellent absorption characteristics. And the release characteristics were revealed.

本発明に関わる炭酸ガス吸収装置の断面概略図。1 is a schematic cross-sectional view of a carbon dioxide absorbing device according to the present invention. 本発明に関わる炭酸ガス吸収装置の断面概略図。1 is a schematic cross-sectional view of a carbon dioxide absorbing device according to the present invention. 本発明に関わる炭酸ガス吸収装置の断面概略図。1 is a schematic cross-sectional view of a carbon dioxide absorbing device according to the present invention.

符号の説明Explanation of symbols

1、21、31…反応容器、
2、32…導入管、
3…内管、
4…炭酸ガス吸収材、
25、35…排気管、
6…加熱装置
1, 21, 31 ... reaction vessel,
2, 32 ... introduction pipe,
3 ... Inner pipe,
4 ... Carbon dioxide absorber,
25, 35 ... exhaust pipe,
6 ... Heating device

Claims (6)

リチウムと一部をコバルト及びマンガンから選ばれる少なくとも1種の元素に置換された鉄とを含有する複合酸化物と、A composite oxide containing lithium and iron partially substituted with at least one element selected from cobalt and manganese;
ナトリウムの炭酸塩、カリウムの炭酸塩、カルシウム、ストロンチウム及びバリウムから選ばれる少なくとも1種の添加剤と  At least one additive selected from sodium carbonate, potassium carbonate, calcium, strontium and barium;
を含むことを特徴とする炭酸ガス吸収材。  A carbon dioxide absorbent comprising:
前記鉄に対するコバルト及びマンガンから選ばれる少なくとも1種の元素の比率は、5〜40%の範囲内にあることを特徴とする請求項1記載の炭酸ガス吸収材。 The carbon dioxide gas absorbent according to claim 1, wherein the ratio of at least one element selected from cobalt and manganese to iron is in the range of 5 to 40%. 前記添加剤は、リチウムと一部をコバルト及びマンガンから選ばれる少なくとも1種の元素に置換された鉄とを含有する前記複合酸化物に対して0.01〜40mol%であることを特徴とする請求項1乃至3記載の炭酸ガス吸収材。The additive is 0.01 to 40 mol% with respect to the composite oxide containing lithium and iron partially substituted with at least one element selected from cobalt and manganese. The carbon dioxide absorbing material according to claim 1. 炭酸ガスを含む気体に炭酸ガス吸収材を接触させて、前記炭酸ガスを含む気体中の前記炭酸ガスと選択的に反応させる炭酸ガス吸収方法において、
前記炭酸ガス吸収材は、リチウムと一部をコバルト及びマンガンから選ばれる少なくとも1種の元素に置換された鉄とを含有する複合酸化物と、
ナトリウムの炭酸塩、カリウムの炭酸塩、カルシウム、ストロンチウム及びバリウムから選ばれる少なくとも1種の添加剤と
を含むことを特徴とする炭酸ガス吸収方法。
In the carbon dioxide absorption method of bringing a carbon dioxide absorbent into contact with a gas containing carbon dioxide and selectively reacting with the carbon dioxide in the gas containing carbon dioxide,
The carbon dioxide absorbent is a composite oxide containing lithium and iron partially substituted with at least one element selected from cobalt and manganese ,
At least one additive selected from sodium carbonate, potassium carbonate, calcium, strontium and barium;
Carbon dioxide absorption method characterized by including .
リチウムと一部をコバルト及びマンガンから選ばれる少なくとも1種の元素に置換された鉄とを含有する複合酸化物、及びナトリウムの炭酸塩、カリウムの炭酸塩、カルシウム、ストロンチウム及びバリウムから選ばれる少なくとも1種の添加剤を含有する炭酸ガス吸収材と、
前記炭酸ガス吸収材を収納し、炭酸ガスを導入するための炭酸ガス導入口とを具備することを特徴とする炭酸ガス吸収装置。
A composite oxide containing lithium and iron partially substituted with at least one element selected from cobalt and manganese, and at least one selected from sodium carbonate, potassium carbonate, calcium, strontium and barium A carbon dioxide absorber containing seed additives ,
A carbon dioxide absorbing device comprising: the carbon dioxide absorbing material; and a carbon dioxide inlet for introducing carbon dioxide.
リチウムと一部をコバルト及びマンガンから選ばれる少なくとも1種の元素で置換された鉄とを含有する複合酸化物と
ナトリウムの炭酸塩、カリウムの炭酸塩、カルシウム、ストロンチウム及びバリウムから選ばれる少なくとも1種の添加剤とを含む炭酸ガス吸収材に炭酸ガスを反応させて生成した生成物と、
前記生成物を加熱し炭酸ガスを放出させるための加熱装置と、
前記生成物を収納し、前記炭酸ガスを排出する生成ガス排出口とを具備することを特徴とする炭酸ガス分離装置。
A composite oxide containing lithium and iron partially substituted with at least one element selected from cobalt and manganese ;
A product produced by reacting carbon dioxide with a carbon dioxide absorbent containing at least one additive selected from sodium carbonate, potassium carbonate, calcium, strontium and barium ;
A heating device for heating the product and releasing carbon dioxide;
A carbon dioxide separator, comprising a product gas outlet for storing the product and discharging the carbon dioxide.
JP2004089298A 2004-03-25 2004-03-25 Carbon dioxide absorbing material, carbon dioxide absorbing method, carbon dioxide absorbing device, carbon dioxide separating device, and method for producing lithium composite oxide Expired - Fee Related JP3850843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004089298A JP3850843B2 (en) 2004-03-25 2004-03-25 Carbon dioxide absorbing material, carbon dioxide absorbing method, carbon dioxide absorbing device, carbon dioxide separating device, and method for producing lithium composite oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004089298A JP3850843B2 (en) 2004-03-25 2004-03-25 Carbon dioxide absorbing material, carbon dioxide absorbing method, carbon dioxide absorbing device, carbon dioxide separating device, and method for producing lithium composite oxide

Publications (2)

Publication Number Publication Date
JP2005270842A JP2005270842A (en) 2005-10-06
JP3850843B2 true JP3850843B2 (en) 2006-11-29

Family

ID=35171057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004089298A Expired - Fee Related JP3850843B2 (en) 2004-03-25 2004-03-25 Carbon dioxide absorbing material, carbon dioxide absorbing method, carbon dioxide absorbing device, carbon dioxide separating device, and method for producing lithium composite oxide

Country Status (1)

Country Link
JP (1) JP3850843B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5279310B2 (en) * 2008-03-26 2013-09-04 国立大学法人埼玉大学 Rock salt type lithium ferrite and method for producing the same, carbon dioxide absorption method, absorption device and separation device
EP4074657A4 (en) 2019-12-10 2024-01-31 Toda Kogyo Corp Sodium ferrite particle powder and production method thereof

Also Published As

Publication number Publication date
JP2005270842A (en) 2005-10-06

Similar Documents

Publication Publication Date Title
JP3591724B2 (en) Carbon dioxide absorber and carbon dioxide separator
JP3938212B2 (en) Carbon dioxide absorbent, carbon dioxide separation method using the same, and carbon dioxide separator
JP4427498B2 (en) Carbon dioxide absorber and carbon dioxide separator
WO2004091774A1 (en) Material and apparatus for adsorbing and desorbing carbon dioxide
WO2021117623A1 (en) Sodium ferrite particle powder and production method thereof
KR20120123372A (en) Complex oxide, method for producing same, and exhaust gas purifying catalyst
US20080072760A1 (en) Carbon dioxide absorbent, carbon dioxide separating apparatus, and reformer
JP2009106812A (en) Carbon dioxide absorber, carbon dioxide separator, reformer and producing method of carbon dioxide absorber
JP4199150B2 (en) Chemical reaction materials
JP3850843B2 (en) Carbon dioxide absorbing material, carbon dioxide absorbing method, carbon dioxide absorbing device, carbon dioxide separating device, and method for producing lithium composite oxide
JPH10272336A (en) Carbon dioxide-absorbing material, and method for separating and recovering carbon dioxide in exhaust gas
JP2007253116A (en) Carbon dioxide absorbing material, apparatus for separating carbon dioxide and reforming apparatus
JP6383188B2 (en) Method for producing α-sodium ferrites
JP3857667B2 (en) Carbon dioxide absorbing material, carbon dioxide absorbing material manufacturing method, carbon dioxide absorbing method, carbon dioxide separating method and carbon dioxide separating device
JP5044973B2 (en) Carbon dioxide absorbing material, method for producing the same, and carbon dioxide absorbing method
JP2004358390A (en) Carbon dioxide absorbing material
JP2009297601A (en) Carbon dioxide absorbent, carbon dioxide separating/recovering apparatus, and method for separating/recovering carbon dioxide
US7799720B2 (en) Method of regenerating carbon dioxide gas absorbent
JP3761371B2 (en) Carbon dioxide absorber and combustion device
JP2022153182A (en) Sodium ferrite particle powder and method for producing the same
JP3648505B2 (en) Regeneration method of carbon dioxide absorbent
JP5279310B2 (en) Rock salt type lithium ferrite and method for producing the same, carbon dioxide absorption method, absorption device and separation device
JP2004216245A (en) Carbon dioxide absorbent, and its production method
JP5020893B2 (en) Carbon dioxide absorbing material, carbon dioxide absorbing / releasing method and absorption / releasing device
JP4421499B2 (en) Carbon dioxide absorber, carbon dioxide separation method, and carbon dioxide separator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060830

R151 Written notification of patent or utility model registration

Ref document number: 3850843

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees