JPH10272336A - Carbon dioxide-absorbing material, and method for separating and recovering carbon dioxide in exhaust gas - Google Patents

Carbon dioxide-absorbing material, and method for separating and recovering carbon dioxide in exhaust gas

Info

Publication number
JPH10272336A
JPH10272336A JP9078730A JP7873097A JPH10272336A JP H10272336 A JPH10272336 A JP H10272336A JP 9078730 A JP9078730 A JP 9078730A JP 7873097 A JP7873097 A JP 7873097A JP H10272336 A JPH10272336 A JP H10272336A
Authority
JP
Japan
Prior art keywords
carbon dioxide
exhaust gas
composite oxide
element selected
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9078730A
Other languages
Japanese (ja)
Inventor
Motohisa Kamijo
元久 上條
Katsuo Suga
克雄 菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP9078730A priority Critical patent/JPH10272336A/en
Publication of JPH10272336A publication Critical patent/JPH10272336A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To efficiently remove CO2 generated from an equipment of such as a thermal power station, by preparing a CO2 absorption material from elements selected from the group of Ba, Sr, Ca, elements from the group of La, Pr, Ce, and elements from Ti, Mn, Fe. SOLUTION: As a material to absorb and remove CO2 selectively and directly from a high temperature exhaust gas, the CO2 absorbing material is prepared by using at least one kind of element selected from the group of Ba, Sr, Ca, Cs, K, one element selected from the group of La, Pr, Ce, Nd, Gd, Y, Pb, Bi, and at least one kind of element selected from the group of Ti, Mn, Fe, Co, Ni, Cu, Al, Sn, Zr. The CO2 absorbing material is prepared so as to have a perovskite complex oxide structure represented by a formula ABO3 (where A is a kind of element selected from Ba, Sr, Ca; B is a kind of element selected from Ti, Mn, Fe).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】 本発明は、燃焼排ガス中に
含まれる二酸化炭素(CO2 )を高温で吸収、除去する
材料、および、そのCO2 吸収材料を用いて、CO2
効率よく排気ガスから除去する方法に関するものであ
り、特に、火力発電所等の設備から発生するCO2 の除
去に有用である。
The present invention relates to a material for absorbing and removing carbon dioxide (CO 2 ) contained in flue gas at a high temperature, and to use the CO 2 absorbing material to efficiently remove CO 2 from exhaust gas. The present invention relates to a method for removing CO 2 from CO 2 and is particularly useful for removing CO 2 generated from equipment such as a thermal power plant.

【0002】[0002]

【従来の技術】 近年、CO2 の温室効果による地球温
暖化現象が大きな問題となっており、燃焼機関からの排
ガス中に含まれる、CO2 除去方法の確立が急務となっ
ている。排気ガス中からCO2 を除去する方法は種々提
案されており、代表的な方法として、アミン化合物水溶
液による接触除去法、圧力スイング吸着法、アルカリ、
アルカリ土類金属水酸化物による固定化除去法、吸着−
脱離時間差を利用した高温炭酸ガス分離法などがある。
アミン化合物水溶液による接触除去法としては、例えば
特開平8−257353号公報に、ジアミン化合物を含
有する水溶液と燃焼排ガスとを接触させて、排気ガス中
のCO2 を除去する方法が開示されている。圧力スイン
グ吸着法としては、例えば特開平1−180218号公
報に、CO2 の分圧が高められたガスを低温常圧で供給
し、CO2 をクリノブチロライト系吸着材に吸着させた
ものを減圧下に脱離させ、回収すると共に、各工程をサ
イクリックに行う方法が開示されている。アルカリ、ア
ルカリ土類金属水酸化物による固定化除去法としては、
例えば特開平3−245811号公報に、アルカリ金属
水酸化物および/またはアルカリ土類金属水酸化物と燃
焼排ガスとを接触、炭酸塩化させて、排気ガス中のCO
2を除去し、該炭酸塩を電気透析装置に移送して、CO2
ガスとアルカリに分離し、分離したアルカリを再使用
する方法が開示されている。吸着−脱離時間差を利用し
た高温炭酸ガス分離法としては、例えば特開平7−27
7718号公報に、セラミクス分離材を用いて排気ガス
中のCO2 を高温のまま分離回収する方法が開示されて
いる。
2. Description of the Related Art In recent years, a global warming phenomenon due to a greenhouse effect of CO 2 has become a major problem, and there is an urgent need to establish a method for removing CO 2 contained in exhaust gas from a combustion engine. Various methods for removing CO 2 from exhaust gas have been proposed. Typical methods include contact removal with an aqueous solution of an amine compound, pressure swing adsorption, alkali,
Immobilization removal method with alkaline earth metal hydroxide, adsorption
There is a high-temperature carbon dioxide gas separation method using a desorption time difference.
As a contact removal method using an amine compound aqueous solution, for example, JP-A-8-257353 discloses a method in which an aqueous solution containing a diamine compound is brought into contact with combustion exhaust gas to remove CO 2 in exhaust gas. . The pressure swing adsorption, for example, in JP-A-1-180218, that the partial pressure is increased gas CO 2 was supplied at a low temperature under normal pressure, allowed to adsorb CO 2 in chestnut knob tyrosine-write adsorbent Is removed under reduced pressure and recovered, and a method of performing each step cyclically is disclosed. As an immobilization removal method using an alkali or alkaline earth metal hydroxide,
For example, Japanese Unexamined Patent Publication (Kokai) No. 3-245811 discloses that an alkali metal hydroxide and / or an alkaline earth metal hydroxide is brought into contact with a combustion exhaust gas to cause carbonation thereof, thereby reducing CO 2 in the exhaust gas.
2 and the carbonate is transferred to an electrodialysis machine to remove CO 2
A method for separating gas and alkali and reusing the separated alkali is disclosed. As a high-temperature carbon dioxide separation method utilizing the time difference between adsorption and desorption, for example, Japanese Patent Application Laid-Open No. 7-27
No. 7718 discloses a method of separating and recovering CO 2 in exhaust gas at a high temperature using a ceramics separation material.

【0003】[0003]

【発明が解決しようとする課題】 しかし、上記特開平
1−180218号公報、特開平8−257353号公
報に開示された方法は、いずれも高温の排出ガスを一旦
冷却してから分離操作を行う方法であるため、冷却工程
にかかる工程コストが多大であり、また、分離したCO
2 をメタノールや酢酸に変換して再利用する場合には、
再度加熱し触媒反応工程へ移送する工程上の非効率性が
問題となる。かかる問題を解決する方法として、例えば
特開平3−245811号公報にアルカリ、アルカリ土
類金属水酸化物に直接高温の排気ガスを接触させCO2
ガスを固定化する方法が開示されている。しかし、この
方法は、固定化したCO2 を回収し、吸収材を再生させ
るために、溶液中で電気透析を行う必要があり、設備、
工程コストが多大となる問題がある。また、高温の排気
ガスから直接CO2 を分離し、処理媒体の再生の必要が
ない方法として特開平7−277718号公報が開示さ
れている。しかし、この方法は、NOx等、他の排出ガ
ス成分とCO2 の排出リテンションタイムが大きく異な
る材料の選定が困難であり、CO2 のみの回収が難しい
という問題がある。
However, the methods disclosed in JP-A-1-180218 and JP-A-8-257353 both perform a separation operation after once cooling a high-temperature exhaust gas. Method, the cost of the cooling step is large, and the separated CO
When converting 2 to methanol or acetic acid for reuse,
The inefficiency in the process of heating and transferring to the catalytic reaction process again becomes a problem. As a method for solving such a problem, for example, Japanese Unexamined Patent Publication (Kokai) No. 3-245811 discloses a method in which a high-temperature exhaust gas is brought into direct contact with an alkali or alkaline earth metal hydroxide to reduce CO 2.
A method for immobilizing a gas is disclosed. However, this method requires electrodialysis in a solution in order to recover the immobilized CO 2 and regenerate the absorbent.
There is a problem that the process cost becomes large. Japanese Patent Application Laid-Open No. Hei 7-277718 discloses a method of directly separating CO 2 from high-temperature exhaust gas and eliminating the need for regeneration of a processing medium. However, this method has a problem that it is difficult to select a material having a significantly different CO 2 emission retention time from other exhaust gas components such as NOx, and it is difficult to recover only CO 2 .

【0004】[0004]

【課題を解決するための手段】 本発明者らは、上記課
題を解決するために研究した結果、高温の排気ガスから
直接、しかも選択性よくCO2 を吸収、除去する材料と
して、アルカリ金属、アルカリ土類金属と、遷移金属と
が複合状態にある酸化物が有効であることを見いだし
た。さらに、該CO2 吸収材が、600℃〜800℃を
境に、これより低温側でCO2 を吸収、高温側でCO2
を放出する性質を有し、しかも、CO2 放出、吸収過程
が可逆的に進行する性質を有することを新たに見いだ
し、この性質を利用することにより、上記温度域より低
温側で排気ガスからCO2 を分離し、高温側で回収気流
中にCO2 を放出させる過程からなる、排気ガスからの
CO2 の分離回収方法を発明するに至った。すなわち、
請求項1記載のCO2 吸収材は、Ba、Sr、Ca、C
s、およびKから選ばれた少なくとも1種の元素と、L
a、Pr、Ce、Nd、Gd、Y、PbおよびBiから
選ばれた1種の元素と、Ti、Mn、Fe、Co、N
i、Cu、Al、Sn、およびZrからなる群から選ば
れた少なくとも1種の元素と、から成ることを特徴とす
る。また、請求項2記載のCO2 吸収材は、一般式AB
3 (式中のAは、Ba、Sr、Ca、Cs、K、L
a、Pr、Ce、Nd、Gd、Er、Y、PbおよびB
iから選ばれた少なくとも1種の元素から構成され、B
は、Ti、Mn、Fe、Co、Ni、Cu、Al、S
n、およびZrからなる群から選ばれた少なくとも1種
から構成される)で表されるペロブスカイト複合酸化物
構造をとることを特徴とする。また、請求項3記載のC
2 の分離回収方法は、燃焼ガスとして排出される高温
の燃焼排ガスからCO2 を分離回収するに当たり、高温
ガスをそのままもしくは所定温度に設定後、請求項1ま
たは2記載のCO2 吸収材に接触させ、CO2を吸収除
去し、次いで、前記CO2 吸収材を回収気流中で加熱す
ることにより、吸収されたCO2 を放出回収することを
特徴とする。
Means for Solving the Problems The present inventors have studied to solve the above problems, and as a result, as a material for directly and selectively absorbing and removing CO 2 from high-temperature exhaust gas, alkali metals, It has been found that an oxide in which an alkaline earth metal and a transition metal are in a composite state is effective. Furthermore, the CO 2 absorbing material, the boundary of 600 ° C. to 800 ° C., the absorption from the CO 2 in the low temperature side which, CO 2 at a high temperature side
Has the property of releasing, moreover, CO 2 emission, newly found that absorption process has a property of proceeds reversibly, by utilizing this property, from the exhaust gas at a low temperature side than the temperature range CO 2 was separated, consisting of the process to release CO 2 into a collection stream at the high temperature side, which resulted in the invention a method of separating and recovering CO 2 from exhaust gas. That is,
The CO 2 absorbent according to claim 1 is Ba, Sr, Ca, C
at least one element selected from s and K;
a, Pr, Ce, Nd, Gd, Y, Pb, and one element selected from Bi, Ti, Mn, Fe, Co, N
and at least one element selected from the group consisting of i, Cu, Al, Sn, and Zr. The CO 2 absorbent according to claim 2 has a general formula AB
O 3 (A in the formula is Ba, Sr, Ca, Cs, K, L
a, Pr, Ce, Nd, Gd, Er, Y, Pb and B
B is composed of at least one element selected from i.
Represents Ti, Mn, Fe, Co, Ni, Cu, Al, S
a perovskite composite oxide structure represented by at least one selected from the group consisting of n and Zr). Further, C according to claim 3
The method of separating and recovering O 2 is, when separating and recovering CO 2 from the high-temperature combustion exhaust gas discharged as a combustion gas, after setting the hot gas as it is or a predetermined temperature, the CO 2 absorbent material according to claim 1 or 2, wherein It is characterized by contacting and absorbing and removing CO 2 , and then releasing and absorbing the absorbed CO 2 by heating the CO 2 absorbent in a recovery gas stream.

【0005】[0005]

【作用】 請求項1〜2記載のCO2 吸収材が優れたC
2 吸収効果を発揮するメカニズムについては、未だ必
ずしも明らかでないが、次のように考えられる。 請求項1記載の複合酸化物の作用 本発明の複合酸化物中に含まれる、Ba、Sr、Ca、
La、CsおよびKから成る群から選ばれた少なくとも
1種の元素は、600℃以下のCO2 ガス存在下では、
複合酸化物中で炭酸塩として存在するが、800℃以上
ではCO2 存在下でもCO2 を放出する特性を有する。
この現象は、上記アルカリ、アルカリ土類金属炭酸塩が
800℃以上において、一部近接する遷移金属と反応
し、ペロブスカイト前駆体となるためCO2 を放出し、
このペロブスカイト前駆体がCO2雰囲気下600℃以
下では、炭酸塩構造に比べ不安定であり、上記元素が炭
酸塩化するためCO2 を吸収することにより生じると考
えている。以上、結晶相変化を伴うCO2 の吸収放出
は、実質100℃程度の温度差で起きるが、その絶対温
度は、アルカリ、アルカリ土類金属炭酸塩とペロブスカ
イト前駆体の結晶生成エネルギーに依存するため、複合
体組成により異なる。しかしながら、請求項1〜3記載
の全ての複合酸化物は、600℃〜800℃の温度域を
境にCO2 吸収放出を行うため、請求項1の実施にあた
り、吸収制御温度を600℃以下、放出制御温度を80
0℃以上にすることで、目的が達せられる。以上の特性
を利用し、請求項3記載の方法により排気ガス処理を行
うことで、高温域材料構造変化に関係するCO2 のみを
排気ガス中より効率よく吸収除去する事ができる。 請求項2記載の複合酸化物の作用 本発明のペロブスカイト複合酸化物中に含まれる、B
a、Sr、Ca、La、CsおよびKから成る群から選
ばれた少なくとも1種の元素は、600℃以下のCO2
ガス存在下では、複合酸化物中で炭酸塩として存在する
が、800℃以上ではCO2 存在下でもCO2 を放出す
る特性を有する。これの現象は、ペロブスカイト中のア
ルカリ、アルカリ土類金属が600℃以下のCO2 存在
下では、炭酸塩を一部形成し、800℃以上ではCO2
存在下でもCO2 を放出し、ペロブスカイト構造をとる
ためと考えている。従って、この特性を利用し、請求項
3記載の方法により排気ガス処理を行うことで、高温域
材料構造変化に関係するCO2 のみを排気ガス中より効
率よく吸収除去する事ができる。請求項3に記載され
る、CO2 吸収、放出過程は、それぞれ600℃以下、
800℃以上で完全に行われるものであるが、その相変
化が起きる温度域は組成により異なるため、個々の組成
物では、この温度範囲以内でも、CO2 の吸収、放出を
起こすことは可能である。請求項3においてCO2 吸収
過程の温度は、450℃以下であると、共存するNOx
ガスを吸収するため、CO2 のみを除去する目的におい
ては、450℃以上で行うことが望ましい。請求項3に
おいてCO2 放出過程の温度は、1000℃以下である
と、ペロブスカイト前駆体の構造が破壊され、再びCO
2 を吸収する機能が失われることから、1000℃以下
で行うことが望ましい。
The CO 2 absorbent according to claim 1 is excellent in C.
The mechanism of exhibiting the O 2 absorption effect is not necessarily clear yet, but is considered as follows. Action of the composite oxide according to claim 1 Ba, Sr, Ca, contained in the composite oxide of the present invention.
At least one element selected from the group consisting of La, Cs and K is, in the presence of CO 2 gas at 600 ° C. or lower,
Although present as a carbonate in the composite oxide, it has a characteristic of releasing CO 2 even in the presence of CO 2 at 800 ° C. or higher.
This phenomenon is that the alkali, alkaline earth metal carbonate reacts at 800 ° C. or higher with a partially adjacent transition metal and releases CO 2 because it becomes a perovskite precursor,
It is considered that this perovskite precursor is unstable at a temperature of 600 ° C. or lower in a CO 2 atmosphere as compared with a carbonate structure, and is generated by absorbing CO 2 because the above-mentioned element is carbonated. As described above, the absorption and release of CO 2 accompanied by a crystal phase change occur at a temperature difference of about 100 ° C., but the absolute temperature depends on the crystal formation energy of the alkali, alkaline earth metal carbonate and perovskite precursor. , Depending on the composite composition. However, all composite oxides of claims 1 to 3, wherein, in order to perform the CO 2 absorption release the boundary of the temperature range of 600 ° C. to 800 ° C., the practice of claim 1, the absorption control temperature 600 ° C. or less, Release control temperature 80
The purpose can be achieved by setting the temperature to 0 ° C. or higher. By performing the exhaust gas treatment by the method described in claim 3 utilizing the above characteristics, it is possible to efficiently absorb and remove only CO 2 related to the change in the material structure in the high-temperature region from the exhaust gas. Action of the composite oxide according to claim 2 B contained in the perovskite composite oxide of the present invention
a, Sr, Ca, La, at least one element selected from the group consisting of Cs and K, of 600 ° C. or less CO 2
The presence gases is present as carbonate in the composite oxide, having the property of releasing CO 2 in the presence of CO 2 at 800 ° C. or higher. The phenomenon is that the alkali and alkaline earth metals in the perovskite partially form a carbonate in the presence of CO 2 at 600 ° C. or lower, and the CO 2 at 800 ° C. or higher.
It is considered that CO 2 is released even in the presence, and a perovskite structure is formed. Therefore, by utilizing this characteristic and performing the exhaust gas treatment by the method of claim 3, it is possible to more efficiently absorb and remove only CO 2 related to the change in the material structure in the high-temperature region than in the exhaust gas. The CO 2 absorption and release processes according to claim 3 are performed at 600 ° C. or less, respectively.
Although it is completely carried out at 800 ° C. or higher, the temperature range in which the phase change occurs varies depending on the composition. Therefore, individual compositions can absorb and release CO 2 even within this temperature range. is there. In claim 3, when the temperature in the CO 2 absorption process is 450 ° C. or less, the coexisting NOx
In order to absorb gas, it is desirable to perform the treatment at 450 ° C. or higher for the purpose of removing only CO 2 . In the case where the temperature of the CO 2 releasing step is 1000 ° C. or less, the structure of the perovskite precursor is destroyed, and CO 2 is released again.
Since the function of absorbing 2 is lost, it is desirable to carry out at 1000 ° C. or lower.

【0006】[0006]

【実施例】 以下、実施例及び比較例により具体的に説
明する。 (実施例1)Ba0.5 La0.5 Co0.5 Fe0.53
示される複合酸化物粉末は、以下に示す方法で調製し
た。バリウム、ランタン、コバルト、鉄の炭酸塩または
水酸化物を出発原料として、それぞれモル比で、5:
5:5:5と成るよう加え、ボールミルで粉砕し、得ら
れた混合物100gに対し、硝酸水溶液500gを加
え、反応させた。その後、得られたスラリーを120℃
で脱水し、700℃で1時間大気中で焼成を行い、Ba
0.5 La0.5 Co0.5 Fe0.53 複合酸化物粉末を得
た。得られた粉末500gと水900gを磁性ボールミ
ルに投入し、混合粉砕してスラリー液を得た。このスラ
リー液をコーディエライト質モノリス担体(1.0L、
400セル)に付着させ、空気流にてセル内の余剰スラ
リーを取り除いて130℃で乾燥したのち、400℃で
1時間焼成した。この、作業を2回行い、コート層重量
200g/LのCO2 吸収材を得た。得られたCO2
収材を、φ25mm×L50mmの円柱状に切り出し、
触媒反応装置に装着し、模擬排気ガスを、入口温度55
0℃、流量20L/分、3分間流通した後、回収ガス
を、入口温度850℃、流量20L/分、3分間流通す
る過程を2サイクル行い、模擬排ガスからのCO2 の分
離回収を実施した。模擬排ガスの成分は、CO2 :10
%、NO:2000ppm、O2 :10%、N2 バラン
スであり、回収ガスには、Airを用いた。以下の式に
示す、排気ガス中のCO2 の回収ガス中への回収率を図
1に示す。
EXAMPLES Hereinafter, specific examples will be described with reference to examples and comparative examples. Composite oxide powder represented by (Example 1) Ba 0.5 La 0.5 Co 0.5 Fe 0.5 O 3 was prepared by the following methods. Starting from barium, lanthanum, cobalt and iron carbonates or hydroxides, the respective molar ratios are 5:
The mixture was added in a ratio of 5: 5: 5, pulverized with a ball mill, and 500 g of an aqueous nitric acid solution was added to 100 g of the obtained mixture to cause a reaction. Then, the obtained slurry is heated to 120 ° C.
And calcined at 700 ° C. for 1 hour in the air.
A 0.5 La 0.5 Co 0.5 Fe 0.5 O 3 composite oxide powder was obtained. 500 g of the obtained powder and 900 g of water were put into a magnetic ball mill and mixed and pulverized to obtain a slurry liquid. This slurry liquid was added to a cordierite monolithic carrier (1.0 L,
(400 cells), and the excess slurry in the cells was removed by an air flow, dried at 130 ° C., and fired at 400 ° C. for 1 hour. This operation was performed twice to obtain a CO 2 absorbent having a coat layer weight of 200 g / L. The obtained CO 2 absorbent is cut into a cylindrical shape of φ25 mm × L50 mm,
The simulated exhaust gas was attached to the catalytic reactor and the inlet temperature was 55
After flowing at 0 ° C. and a flow rate of 20 L / min for 3 minutes, a process of flowing the recovered gas at an inlet temperature of 850 ° C. and a flow rate of 20 L / min for 3 minutes was performed for two cycles to separate and recover CO 2 from the simulated exhaust gas. . The component of the simulated exhaust gas is CO 2 : 10
%, NO: 2000 ppm, O 2 : 10%, N 2 balance, and Air was used as the recovered gas. FIG. 1 shows the recovery rate of CO 2 in the exhaust gas into the recovered gas, as shown in the following equation.

【0007】[0007]

【数式1】 [Formula 1]

【0008】尚、以下の実施例および比較例について
も、特に断らない限り、出発塩である炭酸塩や水酸化物
の種類や混合比を変更した以外は、実施例1と同様な方
法により複合酸化物粉末もしくはペロブスカイト粉末の
製造を行った。 (実施例2)Ba0.18La0.7 2 Co0.5 Fe0.53
で示される複合酸化物粉末を用いること以外は、実施例
1と同様に実施した。 (実施例3)Y0.47Ca0.47Mn0.9 Ti0.13 で示
される複合酸化物粉末を用いること以外は、実施例1と
同様に実施した。 (実施例4)Y0.3 Ca0.7 Mn0.6 Ti0.43 で示
される複合酸化物粉末を用いること以外は、実施例1と
同様に実施した。 (実施例5)Nd0.31La0.09Sr0.5 Cu0.2 Mn
0.83 で示される複合酸化物粉末を用いること以外
は、実施例1と同様に実施した。 (実施例6)Gd0.31La0.09Sr0.5 Co0.5 Mn
0.53 で示される複合酸化物粉末を用いること以外
は、実施例1と同様に実施した。 (実施例7)La0.50.5 Co0.9 Al0.13 で示
される複合酸化物粉末を用いること以外は、実施例1と
同様に実施した。 (実施例8)Ba0.81Pr0.09Co0.5 Fe0.53
示される複合酸化物粉末を用いること以外は、実施例1
と同様に実施した。 (実施例9)Ba0.81Pb0.09Co0.5 Fe0.53
示される複合酸化物粉末を用いること以外は、実施例1
と同様に実施した。 (実施例10)Ba1.0 CoO3 で示される複合酸化物
粉末を用いること以外は、実施例1と同様に実施した。 (実施例11)K0.8 MnO3 で示される複合酸化物粉
末を用いること以外は、実施例1と同様に実施した。 (実施例12)Ba0.6 La0.2 Mn0.5 Co0.53
で示される複合酸化物粉末を用いること以外は、実施例
1と同様に実施した。 (実施例13)Ca0.5 La0.5 MnO3 で示される複
合酸化物粉末を用いること以外は、実施例1と同様に実
施した。 (実施例14)Sr0.81Bi0.09Ni0.9 Mn0.13
で示される複合酸化物粉末を用いること以外は、実施例
1と同様に実施した。 (実施例15)Ce0.47Ba0.47Zr0.3 Cu0.73
で示される複合酸化物粉末を用いること以外は、実施例
1と同様に実施した。 (実施例16)Ce0.47Ba0.47Sn0.3 Cu0.73
で示される複合酸化物粉末を用いること以外は、実施例
1と同様に実施した。
In the following Examples and Comparative Examples, composites were prepared in the same manner as in Example 1 except that the types and mixing ratios of carbonates and hydroxides as starting salts were changed unless otherwise specified. An oxide powder or a perovskite powder was produced. (Example 2) Ba 0.18 La 0.7 2 Co 0.5 Fe 0.5 O 3
The procedure was performed in the same manner as in Example 1 except for using the composite oxide powder represented by. But using composite oxide powder represented by (Example 3) Y 0.47 Ca 0.47 Mn 0.9 Ti 0.1 O 3, was prepared as in Example 1. But using composite oxide powder represented by (Example 4) Y 0.3 Ca 0.7 Mn 0.6 Ti 0.4 O 3, was prepared as in Example 1. (Example 5) Nd 0.31 La 0.09 Sr 0.5 Cu 0.2 Mn
The same operation as in Example 1 was carried out except that a composite oxide powder represented by 0.8 O 3 was used. (Example 6) Gd 0.31 La 0.09 Sr 0.5 Co 0.5 Mn
But using composite oxide powder represented by 0.5 O 3, was prepared as in Example 1. But using composite oxide powder represented by (Example 7) La 0.5 K 0.5 Co 0.9 Al 0.1 O 3, was prepared as in Example 1. (Example 8) Example 1 was repeated except that a composite oxide powder represented by Ba 0.81 Pr 0.09 Co 0.5 Fe 0.5 O 3 was used.
Was performed in the same manner as described above. Example 9 Example 1 was repeated except that a composite oxide powder represented by Ba 0.81 Pb 0.09 Co 0.5 Fe 0.5 O 3 was used.
Was performed in the same manner as described above. But using composite oxide powder represented by (Example 10) Ba 1.0 CoO 3, was prepared as in Example 1. (Example 11) The same operation as in Example 1 was carried out except that a composite oxide powder represented by K 0.8 MnO 3 was used. (Example 12) Ba 0.6 La 0.2 Mn 0.5 Co 0.5 O 3
The procedure was performed in the same manner as in Example 1 except for using the composite oxide powder represented by. (Example 13) The same operation as in Example 1 was carried out except that a composite oxide powder represented by Ca 0.5 La 0.5 MnO 3 was used. (Example 14) Sr 0.81 Bi 0.09 Ni 0.9 Mn 0.1 O 3
The procedure was performed in the same manner as in Example 1 except for using the composite oxide powder represented by. (Example 15) Ce 0.47 Ba 0.47 Zr 0.3 Cu 0.7 O 3
The procedure was performed in the same manner as in Example 1 except for using the composite oxide powder represented by. (Example 16) Ce 0.47 Ba 0.47 Sn 0.3 Cu 0.7 O 3
The procedure was performed in the same manner as in Example 1 except for using the composite oxide powder represented by.

【0009】(比較例1)複合酸化物粉末の代わりに炭
酸カルシウム粉末を用いること以外は、実施例1と同様
に実施した。 (比較例2)複合酸化物粉末の代わりに炭酸バリウム粉
末を用いること以外は、実施例1と同様に実施した。 (比較例3)複合酸化物粉末の代わりにNiO粉末を用
いること以外は、実施例1と同様に実施した。 (比較例4)複合酸化物粉末の代わりにAl23 粉末
を用いること以外は、実施例1と同様に実施した。 (比較例5)複合酸化物粉末の代わりにMn23 粉末
を用いること以外は、実施例1と同様に実施した。 (比較例6)複合酸化物粉末の代わりにCeO2 を用い
ること以外は、実施例1と同様に実施した。 (比較例7)La1.0 Co0.5 Fe0.53 で示される
複合酸化物粉末を用いること以外は、実施例1と同様に
実施した。 (比較例8)Ce0.7 Zr0.33 で示される複合酸化
物粉末を用いること以外は、実施例1と同様に実施し
た。 (比較例9)Nd0.470.47Zr0.3 Cu0.73 で示
される複合酸化物粉末を用いること以外は、実施例1と
同様に実施した。
Comparative Example 1 The same operation as in Example 1 was performed except that calcium carbonate powder was used instead of the composite oxide powder. (Comparative Example 2) The same operation as in Example 1 was performed except that barium carbonate powder was used instead of the composite oxide powder. (Comparative Example 3) The same operation as in Example 1 was performed except that NiO powder was used instead of the composite oxide powder. (Comparative Example 4) The same operation as in Example 1 was performed except that Al 2 O 3 powder was used instead of the composite oxide powder. (Comparative Example 5) The same operation as in Example 1 was performed except that Mn 2 O 3 powder was used instead of the composite oxide powder. (Comparative Example 6) The same operation as in Example 1 was performed except that CeO 2 was used instead of the composite oxide powder. But using a composite oxide powder represented by (Comparative Example 7) La 1.0 Co 0.5 Fe 0.5 O 3 was prepared in the same manner as in Example 1. (Comparative Example 8) The same operation as in Example 1 was performed, except that a composite oxide powder represented by Ce 0.7 Zr 0.3 O 3 was used. But using a composite oxide powder represented by (Comparative Example 9) Nd 0.47 Y 0.47 Zr 0.3 Cu 0.7 O 3 was prepared in the same manner as in Example 1.

【0010】[0010]

【発明の効果】 以上説明してきたように、本発明のC
2 吸収材および排ガス中のCO2 の分離回収方法にお
いては、高温域材料構造変化に関するCO2のみを排気
ガス中より効率よく吸収除去することができる。
As described above, according to the present invention,
In the method of separating and recovering CO 2 in the O 2 absorber and the exhaust gas, only the CO 2 relating to the change in the material structure in the high-temperature region can be absorbed and removed more efficiently than in the exhaust gas.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の実施例と比較例にかかる排気ガス中
のCO2 の回収ガス中への回収率を示す図である。
FIG. 1 is a view showing a recovery rate of CO 2 in an exhaust gas into a recovery gas according to an example of the present invention and a comparative example.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Ba、Sr、Ca、Cs、およびKから
選ばれた少なくとも1種の元素と、La、Pr、Ce、
Nd、Gd、Y、PbおよびBiから選ばれた1種の元
素と、Ti、Mn、Fe、Co、Ni、Cu、Al、S
n、およびZrからなる群から選ばれた少なくとも1種
の元素と、から成ることを特徴とする二酸化炭素吸収
材。
1. At least one element selected from Ba, Sr, Ca, Cs, and K, and La, Pr, Ce,
One element selected from Nd, Gd, Y, Pb and Bi, and Ti, Mn, Fe, Co, Ni, Cu, Al, S
A carbon dioxide absorbent comprising: at least one element selected from the group consisting of n and Zr.
【請求項2】 一般式ABO3 (式中のAは、Ba、S
r、Ca、Cs、K、La、Pr、Ce、Nd、Gd、
Er、Y、PbおよびBiから選ばれた少なくとも1種
の元素から構成され、Bは、Ti、Mn、Fe、Co、
Ni、Cu、Al、Sn、およびZrからなる群から選
ばれた少なくとも1種から構成される)で表されるペロ
ブスカイト複合酸化物構造をとることを特徴とする二酸
化炭素吸収材。
2. The general formula ABO 3 (where A is Ba, S
r, Ca, Cs, K, La, Pr, Ce, Nd, Gd,
It is composed of at least one element selected from Er, Y, Pb and Bi, and B is Ti, Mn, Fe, Co,
A carbon dioxide absorbent having a perovskite composite oxide structure represented by at least one selected from the group consisting of Ni, Cu, Al, Sn, and Zr).
【請求項3】 燃焼ガスとして排出される高温の燃焼排
ガスから二酸化炭素を分離回収するに当たり、高温ガス
をそのままもしくは所定温度に設定後、請求項1または
2記載の二酸化炭素吸収材に接触させ、二酸化炭素を吸
収除去し、次いで、前記二酸化炭素吸収材を回収気流中
で加熱することにより、吸収された二酸化炭素を放出回
収することを特徴とする二酸化炭素の分離回収方法。
3. A method for separating and recovering carbon dioxide from a high-temperature combustion exhaust gas discharged as a combustion gas, wherein the high-temperature gas is brought into contact with the carbon dioxide absorbent according to claim 1 or after being set at a predetermined temperature, A method for separating and recovering carbon dioxide, wherein carbon dioxide is absorbed and removed, and then the carbon dioxide absorbent is heated in a recovery airflow to release and recover the absorbed carbon dioxide.
JP9078730A 1997-03-31 1997-03-31 Carbon dioxide-absorbing material, and method for separating and recovering carbon dioxide in exhaust gas Pending JPH10272336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9078730A JPH10272336A (en) 1997-03-31 1997-03-31 Carbon dioxide-absorbing material, and method for separating and recovering carbon dioxide in exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9078730A JPH10272336A (en) 1997-03-31 1997-03-31 Carbon dioxide-absorbing material, and method for separating and recovering carbon dioxide in exhaust gas

Publications (1)

Publication Number Publication Date
JPH10272336A true JPH10272336A (en) 1998-10-13

Family

ID=13670011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9078730A Pending JPH10272336A (en) 1997-03-31 1997-03-31 Carbon dioxide-absorbing material, and method for separating and recovering carbon dioxide in exhaust gas

Country Status (1)

Country Link
JP (1) JPH10272336A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006013695A1 (en) * 2004-08-03 2006-02-09 Murata Manufacturing Co., Ltd. Carbon dioxide absorbing material, and method and apparatus for separating carbon dioxide using the same
JP2007296422A (en) * 2006-04-27 2007-11-15 Murata Mfg Co Ltd Carbon dioxide-absorbing material, its manufacturing method, and carbon dioxide-absorbing method
WO2008149591A1 (en) 2007-06-07 2008-12-11 Meidensha Corporation Method of regenerating lower hydrocarbon aromatizing catalyst
DE102007030069A1 (en) * 2007-06-29 2009-01-02 Siemens Ag Process for the separation of carbon dioxide from flue gases and associated apparatus
JP2009172479A (en) * 2008-01-22 2009-08-06 Fujitsu Ltd Carbon dioxide remover and removing method of carbon dioxide
JP2009297601A (en) * 2008-06-10 2009-12-24 Nippon Steel Corp Carbon dioxide absorbent, carbon dioxide separating/recovering apparatus, and method for separating/recovering carbon dioxide
CN102036735A (en) * 2008-05-28 2011-04-27 罗地亚管理公司 Method for processing a gas for reducing the carbon dioxide content thereof
EP2567751A1 (en) 2011-09-12 2013-03-13 Hitachi, Ltd. CO2 Sorbent
WO2015122053A1 (en) * 2014-02-14 2015-08-20 日立化成株式会社 Carbon-dioxide capturing material, and carbon-dioxide recovery apparatus using same
US9248395B2 (en) 2012-03-26 2016-02-02 Samsung Electronics Co., Ltd. Adsorbent for carbon dioxide, method of preparing the same, and capture module for carbon dioxide including the same
WO2021136813A1 (en) * 2019-12-30 2021-07-08 Fundació Institut Català De Nanociència I Nanotecnologia (Icn2) Method to photo-capture co2 with perovskite oxide compounds or oxide compounds
US11398125B2 (en) 2020-07-22 2022-07-26 Frito-Lay North America, Inc. Vending machine for foodstuffs
CN116440896A (en) * 2023-01-03 2023-07-18 南京航空航天大学 SrMnO-based material 3 CO of perovskite 2 Thermochemical conversion materials and methods of making same

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7670410B2 (en) 2004-08-03 2010-03-02 Murata Manufacturing Co., Ltd. Carbon-dioxide-gas absorber, method for separating carbon-dioxide-gas using carbon-dioxide-gas absorber, and apparatus for separating carbon-dioxide-gas including carbon-dioxide-gas absorber
WO2006013695A1 (en) * 2004-08-03 2006-02-09 Murata Manufacturing Co., Ltd. Carbon dioxide absorbing material, and method and apparatus for separating carbon dioxide using the same
JP2007296422A (en) * 2006-04-27 2007-11-15 Murata Mfg Co Ltd Carbon dioxide-absorbing material, its manufacturing method, and carbon dioxide-absorbing method
WO2008149591A1 (en) 2007-06-07 2008-12-11 Meidensha Corporation Method of regenerating lower hydrocarbon aromatizing catalyst
DE102007030069A1 (en) * 2007-06-29 2009-01-02 Siemens Ag Process for the separation of carbon dioxide from flue gases and associated apparatus
JP2009172479A (en) * 2008-01-22 2009-08-06 Fujitsu Ltd Carbon dioxide remover and removing method of carbon dioxide
JP2011522692A (en) * 2008-05-28 2011-08-04 ロデイア・オペラシヨン Gas treatment method for reducing carbon dioxide content
CN102036735A (en) * 2008-05-28 2011-04-27 罗地亚管理公司 Method for processing a gas for reducing the carbon dioxide content thereof
EP2296782B1 (en) * 2008-05-28 2017-06-21 Rhodia Opérations Method for processing a gas for reducing the carbon dioxide content thereof
JP2009297601A (en) * 2008-06-10 2009-12-24 Nippon Steel Corp Carbon dioxide absorbent, carbon dioxide separating/recovering apparatus, and method for separating/recovering carbon dioxide
EP2567751A1 (en) 2011-09-12 2013-03-13 Hitachi, Ltd. CO2 Sorbent
US9248395B2 (en) 2012-03-26 2016-02-02 Samsung Electronics Co., Ltd. Adsorbent for carbon dioxide, method of preparing the same, and capture module for carbon dioxide including the same
WO2015122053A1 (en) * 2014-02-14 2015-08-20 日立化成株式会社 Carbon-dioxide capturing material, and carbon-dioxide recovery apparatus using same
JP2015150500A (en) * 2014-02-14 2015-08-24 日立化成株式会社 Carbon-dioxide capturing material, and carbon-dioxide recovery apparatus using the same
CN105473220A (en) * 2014-02-14 2016-04-06 日立化成株式会社 Carbon-dioxide capturing material, and carbon-dioxide recovery apparatus using same
WO2021136813A1 (en) * 2019-12-30 2021-07-08 Fundació Institut Català De Nanociència I Nanotecnologia (Icn2) Method to photo-capture co2 with perovskite oxide compounds or oxide compounds
US11398125B2 (en) 2020-07-22 2022-07-26 Frito-Lay North America, Inc. Vending machine for foodstuffs
CN116440896A (en) * 2023-01-03 2023-07-18 南京航空航天大学 SrMnO-based material 3 CO of perovskite 2 Thermochemical conversion materials and methods of making same
CN116440896B (en) * 2023-01-03 2023-12-29 南京航空航天大学 SrMnO-based material 3 CO of perovskite 2 Thermochemical conversion materials and methods of making same

Similar Documents

Publication Publication Date Title
US10265677B2 (en) Regenerable sorbent for carbon dioxide removal
US5853684A (en) Catalytic removal of sulfur dioxide from flue gas
US7314847B1 (en) Regenerable sorbents for CO2 capture from moderate and high temperature gas streams
JPH10272336A (en) Carbon dioxide-absorbing material, and method for separating and recovering carbon dioxide in exhaust gas
JP5589996B2 (en) Carbon dioxide capture material
CN109745987A (en) The preparation method and application of strontium cobalt-based properties of perovskite mixed-oxide oxygen carrier
JP4819099B2 (en) Carbon dioxide absorbent, carbon dioxide separation and recovery device, and carbon dioxide separation and recovery method
JP2004358390A (en) Carbon dioxide absorbing material
CN110586178B (en) SAPO-34 molecular sieve and Cu/SAPO-34 denitration catalyst, preparation method and application thereof, and denitration method
KR101984561B1 (en) Adsorbent for Capturing Carbon Dioxide Comprising Eutectic Mixture Promoter and Magnesium Oxide/Aluminium Oxide Composite and Method for Manufacturing Same
JP5044973B2 (en) Carbon dioxide absorbing material, method for producing the same, and carbon dioxide absorbing method
CN108435237B (en) Middle and low temperature NH3-SCR catalyst, preparation method and application thereof
JP2005021781A (en) Carbon dioxide absorption material, production method for carbon dioxide absorption material, absorption method for carbon dioxide, carbon dioxide separation method, and carbon dioxide separation apparatus
JP5022970B2 (en) Exhaust gas purification material and exhaust gas purification filter
JP2006205021A (en) Composite oxide catalyst
JP2003320222A (en) Method for catalytically removing nitrogen oxide and apparatus therefor
JP2008080211A (en) Carbon dioxide absorber, carbon dioxide separating method using the same, and carbon dioxide separation apparatus
JPH0623235A (en) Absorbent for nitrogen oxide, its production and regeneration method, and recovering method of nitrogen oxide
JP3607694B2 (en) Nitrogen oxide absorbent, its regeneration method and nitrogen oxide recovery method
JP3850843B2 (en) Carbon dioxide absorbing material, carbon dioxide absorbing method, carbon dioxide absorbing device, carbon dioxide separating device, and method for producing lithium composite oxide
JP2009148724A (en) Carbon dioxide absorbent and carbon dioxide separation method using it
JP5541843B2 (en) Composite oxide for exhaust gas purification catalyst and exhaust gas purification filter using the same
CN117339601A (en) Fly ash-based supported denitration catalyst and preparation method thereof
JP4796200B2 (en) Exhaust gas purification catalyst and method for regenerating the same
JP2004068717A (en) Method for removing nitrogen oxide in contacting manner and its device