JP5022970B2 - Exhaust gas purification material and exhaust gas purification filter - Google Patents

Exhaust gas purification material and exhaust gas purification filter Download PDF

Info

Publication number
JP5022970B2
JP5022970B2 JP2008088913A JP2008088913A JP5022970B2 JP 5022970 B2 JP5022970 B2 JP 5022970B2 JP 2008088913 A JP2008088913 A JP 2008088913A JP 2008088913 A JP2008088913 A JP 2008088913A JP 5022970 B2 JP5022970 B2 JP 5022970B2
Authority
JP
Japan
Prior art keywords
exhaust gas
catalyst component
purification catalyst
coexisting
sulfur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008088913A
Other languages
Japanese (ja)
Other versions
JP2009195891A (en
Inventor
拓哉 矢野
達郎 宮崎
義史 堀川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2008088913A priority Critical patent/JP5022970B2/en
Publication of JP2009195891A publication Critical patent/JP2009195891A/en
Application granted granted Critical
Publication of JP5022970B2 publication Critical patent/JP5022970B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、排気ガス浄化材および排気ガス浄化用フィルターに係り、さらに詳細には、自動車用途を始めとしたディーゼル機関から排出される粒子状物質(以降、PMと記載する場合がある。)を燃焼除去するための排気ガス浄化材、および当該触媒を用いたディーゼル機関の排気ガス浄化用フィルターに関する。   The present invention relates to an exhaust gas purification material and an exhaust gas purification filter. More specifically, the present invention relates to particulate matter (hereinafter sometimes referred to as PM) discharged from diesel engines including automobile applications. The present invention relates to an exhaust gas purifying material for combustion removal, and an exhaust gas purifying filter for a diesel engine using the catalyst.

ディーゼル機関であるディーゼルエンジンの排気ガスには、各種の有害物質が含まれている。近年は、当該有害物質中でも、窒素酸化物(NO)とPMとが問題になっている。このうちPMはカーボンを主体とする微粒子である。そして、当該PMの除去方法として、排気ガス流路にディーゼル・パーティキュレート・フィルター(以降DPFと称する)を設置して、PMを機械的にトラップする方法が一般化されつつある。そして、当該DPFにトラップされたPMが所定以上の量となった場合は、当該PMを、間欠的または連続的に燃焼してガス化することでDPFから除くことにより当該DPFを再生する。 Various harmful substances are contained in the exhaust gas of the diesel engine which is a diesel engine. In recent years, nitrogen oxides (NO x ) and PM have become a problem among the harmful substances. Among these, PM is a fine particle mainly composed of carbon. As a method for removing PM, a method of mechanically trapping PM by installing a diesel particulate filter (hereinafter referred to as DPF) in an exhaust gas flow path is becoming common. When the amount of PM trapped in the DPF becomes a predetermined amount or more, the PM is regenerated by removing the PM from the DPF by burning or gasifying intermittently or continuously.

このDPF再生処理には、排気ガスの温度以上の温度が必要である。そこで、(1)電気ヒーターやバーナー等を用いて外部加熱によりPMを燃焼させる方法、(2)DPFから向かってエンジン側に酸化触媒を設置し、排気ガス中のNOを、当該酸化触媒によりNOに酸化し、当該NOの酸化力によりPMを燃焼させる方法、(3)DPFにNOx吸蔵触媒を共存させ、排気ガス中の空燃比変動に伴う、当該NOx吸蔵触媒からのNOx吸放出の際生じる活性酸素によりPMを燃焼させる方法、などが提案されている。 This DPF regeneration process requires a temperature equal to or higher than the exhaust gas temperature. Therefore, (1) a method of burning PM by external heating using an electric heater, a burner, etc., (2) an oxidation catalyst is installed on the engine side from the DPF, and NO in the exhaust gas is converted into NO by the oxidation catalyst. oxidized to 2, the method of burning PM by oxidizing power of the NO 2, (3) DPF to coexist NOx storage catalyst, due to the air-fuel ratio fluctuation of the exhaust gas, the NOx absorption and desorption from the NOx storage catalyst A method of burning PM by the active oxygen generated at the time has been proposed.

上記(1)で説明した、電気ヒーターやバーナー等を用いる外部加熱方式は、当該加熱システムと加熱エネルギーとを、別途準備する必要があり、DPF再生システムおよび再生操作が煩雑化するという問題があった。   The external heating method using an electric heater, a burner, etc. described in the above (1) needs to prepare the heating system and heating energy separately, and there is a problem that the DPF regeneration system and the regeneration operation become complicated. It was.

上記(2)で説明した、酸化触媒を用いる方式は、排気ガス温度が低いため酸化触媒の活性を保つのが困難である。その為、ある一定の運転状況下でなければ、NOを酸化してPM燃焼に必要な量のNOを排気ガス中に確保できないという問題があった。また、今後NOxに対する排出ガス規制強化により排気ガス中のNOxは削減され、十分なNOが得られないという問題も予測される。 In the method using an oxidation catalyst described in (2) above, it is difficult to maintain the activity of the oxidation catalyst because the exhaust gas temperature is low. For this reason, there has been a problem that, unless under certain operating conditions, NO is oxidized and NO 2 in an amount necessary for PM combustion cannot be secured in the exhaust gas. Further, there will be a problem that NOx in the exhaust gas will be reduced due to stricter exhaust gas regulations for NOx and sufficient NO 2 cannot be obtained.

上記(3)で説明した、NOx吸蔵触媒を共存させる方法は、排気ガス中に含まれる硫黄により当該NOx吸蔵触媒が被毒し、NOx吸蔵放出能が低下することによりPM燃焼活性の低下などの問題があった。   The method of coexisting the NOx storage catalyst described in the above (3) is such that the NOx storage catalyst is poisoned by sulfur contained in the exhaust gas, and the NOx storage and release ability is reduced, thereby reducing the PM combustion activity. There was a problem.

上述のような問題を踏まえ、DPFに、硫黄などの被毒性物質に対して耐久性のある触媒を担持し、その触媒の作用によりPMの燃焼開始温度を低下させ、現状の排気ガス温度にて連続的にPMを燃焼させる方式が考えられている。   Based on the above problems, DPF supports a catalyst that is durable against toxic substances such as sulfur, and lowers the combustion start temperature of PM by the action of the catalyst, at the current exhaust gas temperature. A method of continuously burning PM is considered.

当該方式の具体例として、非特許文献1には硫黄の吸着材と触媒を組み合わせたシステムが開示されている。当該システムは、アルカリ金属元素を硫黄の吸着材として用い、当該アルカリ金属元素が排気ガス中の硫黄成分を吸着し、触媒へは硫黄を流さないこととしたものである。   As a specific example of this method, Non-Patent Document 1 discloses a system in which a sulfur adsorbent and a catalyst are combined. The system uses an alkali metal element as a sulfur adsorbent, and the alkali metal element adsorbs a sulfur component in the exhaust gas and prevents sulfur from flowing to the catalyst.

SpecPubl Soc Automot Eng(2007)、No.SP−2080、85−91Spec Publ Soc Auto Eng (2007), no. SP-2080, 85-91

当該硫黄の吸着材と触媒を組み合わせたシステムでは、吸着材に硫黄が吸着される間は触媒の硫黄による被毒劣化を抑制できる。しかし、当該吸着材の吸着許容量以上の硫黄が流れると、これらの硫黄は触媒とも吸着する。その結果、当該触媒が硫黄被毒して触媒活性能が低化し、PM燃焼温度が上昇することがあった。   In the system combining the sulfur adsorbent and the catalyst, poisoning deterioration due to sulfur of the catalyst can be suppressed while sulfur is adsorbed on the adsorbent. However, when sulfur exceeding the adsorbable amount of the adsorbent flows, the sulfur is also adsorbed by the catalyst. As a result, the catalyst is poisoned with sulfur, the catalytic activity is reduced, and the PM combustion temperature may increase.

本発明は、このような従来技術の有する課題に鑑みてなされたものであり、その目的とするところは、ディーゼルエンジン排気ガス中に含まれる硫黄による被毒を浄化触媒成分が受け難く、低温でPMを燃焼させることのできる排気ガス浄化材および排気ガス浄化用フィルターを提供することにある。   The present invention has been made in view of such problems of the prior art, and the object of the present invention is to prevent the purification catalyst component from being poisoned by sulfur contained in diesel engine exhaust gas at a low temperature. An object is to provide an exhaust gas purifying material and an exhaust gas purifying filter capable of burning PM.

本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、排気ガス浄化材を、浄化触媒成分と共存物質との混合系にする構成、当該共存物質の触媒成分に付着した硫黄分と含硫黄酸性ガスに対する親和性を、浄化触媒成分の該親和性よりも高くする構成により、上記課題が解決できることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have made a configuration in which the exhaust gas purifying material is a mixed system of the purifying catalyst component and the coexisting substance, and the sulfur content adhering to the catalyst component of the coexisting substance. The present inventors have found that the above problems can be solved by a configuration in which the affinity for the sulfur-containing acidic gas is made higher than the affinity of the purification catalyst component, and the present invention has been completed.

即ち、上述の課題を解決するための第1の発明は、
ディーゼルエンジンの排気ガス中に含まれるカーボンを主体とする粒子状物質の燃焼温度を低下させる排気ガス浄化材であって、
前記粒子状物質の燃焼温度を低下させる触媒作用を有する浄化触媒成分と、
含硫黄酸性ガスの被毒で低下した前記触媒作用を回復させるアルカリ金属、アルカリ土類金属の少なくとも一つと、酸性元素、両性元素の少なくとも一つとを含む複合酸化物である共存物質と、
白金族元素から選択される少なくとも1種以上の元素
を含み、
前記共存物質は、
500℃以上に温度が上昇する場合、
一酸化炭素成分の濃度が100ppm以上になる場合または炭化水素成分の濃度が200ppm以上になる場合のいずれか一方または両方の条件の下で前記触媒作用を回復させ、
前記共存物質は前記排気ガス浄化材全体の5〜50質量%含有され、
排気ガス浄化材のBET法による比表面積が10m /g以上100m /g以下である排気ガス浄化材である。
That is, the first invention for solving the above-described problem is
An exhaust gas purifying material for lowering the combustion temperature of particulate matter mainly composed of carbon contained in exhaust gas of a diesel engine,
A purification catalyst component having a catalytic action to lower the combustion temperature of the particulate matter;
A coexisting substance which is a composite oxide containing at least one of an alkali metal and an alkaline earth metal that recovers the catalytic action reduced by poisoning of the sulfur-containing acidic gas, and at least one of an acidic element and an amphoteric element ;
See containing at least one kind of an element <br/> selected from platinum group elements,
The coexisting substance is
If the temperature rises above 500 ° C,
Restoring the catalytic action under one or both of the conditions where the concentration of the carbon monoxide component is 100 ppm or more or the concentration of the hydrocarbon component is 200 ppm or more;
The coexisting substance is contained in an amount of 5 to 50% by mass of the entire exhaust gas purification material,
The exhaust gas purification material has a specific surface area of 10 m 2 / g or more and 100 m 2 / g or less by the BET method .

第2の発明は、
上記排気ガス浄化材を用いたことを特徴とする排気ガス浄化用フィルターである。
The second invention is
An exhaust gas purification filter using the exhaust gas purification material.

第2の発明の第2の局面は、
上記排気ガス浄化材に加え、さらに、白金族元素から選択される少なくとも1種以上の元素からなる排気ガス浄化材を含むことを特徴とする排気ガス浄化用フィルターである。
The second aspect of the second invention is:
In addition to the exhaust gas purification material, an exhaust gas purification filter comprising an exhaust gas purification material comprising at least one element selected from platinum group elements.

本発明によれば、浄化触媒成分と共存物質とを用いることとしたため、当該共存物質に優先的に含硫黄酸性ガスを吸着させることができ、さらに、浄化触媒成分に吸着した含硫黄酸性ガスの脱離を促進させ得る。この結果、浄化触媒成分が、ディーゼルエンジン排気ガス中に含まれる硫黄による被毒を受け難なり、PM燃焼温度の上昇を抑制することができる。   According to the present invention, since the purifying catalyst component and the coexisting substance are used, the sulfur-containing acidic gas can be preferentially adsorbed on the coexisting substance, and the sulfur-containing acidic gas adsorbed on the purifying catalyst component can be further absorbed. Desorption can be promoted. As a result, the purification catalyst component is less susceptible to poisoning by sulfur contained in the exhaust gas of the diesel engine, and the rise in PM combustion temperature can be suppressed.

本発明に係る、排気ガス浄化材は、浄化触媒成分と共存物質とを有する。当該浄化触媒成分は、PMの燃焼温度を低下させる触媒成分である。一方、当該共存物質は、前記排気ガス中に含まれる含硫黄酸性ガスによる被毒によって触媒作用を低下させた浄化触媒成分に対して、その触媒作用を回復させることのできる物質である。より具体的には、前記排気ガス中に含まれる含硫黄酸性ガスを、前記浄化触媒成分よりも吸着する物質である。   The exhaust gas purification material according to the present invention has a purification catalyst component and a coexisting substance. The purification catalyst component is a catalyst component that lowers the combustion temperature of PM. On the other hand, the coexisting substance is a substance that can recover the catalytic action of the purified catalytic component whose catalytic action has been reduced by poisoning with the sulfur-containing acidic gas contained in the exhaust gas. More specifically, it is a substance that adsorbs the sulfur-containing acidic gas contained in the exhaust gas more than the purification catalyst component.

さらに当該共存物質は、排気ガス温度が上昇したとき、排気ガス中の一酸化炭素や炭化水素成分の濃度が高くなったとき、のいずれか一方または両方が発現したタイミングで、前記吸着した含硫黄酸性ガスを脱離する、または、前記触媒へ吸着した含硫黄酸性ガスの脱離を促進する、のいずれか一方または両方を実現しうる物質である。   Further, the coexisting substance is the adsorbed sulfur-containing material at a timing when either or both of the carbon monoxide and hydrocarbon components in the exhaust gas are increased when the exhaust gas temperature is increased. It is a substance that can realize either or both of desorbing acidic gas or promoting desorption of sulfur-containing acidic gas adsorbed on the catalyst.

上述したように、現状の燃料中にはppmオーダーと微量ではあるが硫黄分が含まれているため、ディーゼルエンジンの排気ガス中には、含硫黄酸性ガスが含まれることは避けられない。この為、排気ガス浄化材は絶えず含硫黄酸性ガスに曝され、排気ガス浄化材に含まれる浄化触媒成分も含硫黄酸性ガスに曝されるため、硫黄による被毒が起こり、触媒活性が低下してしまう。この結果、PMの燃焼温度が上昇してしまい、DPFにPMが滞留する。   As described above, since the present fuel contains a small amount of sulfur on the order of ppm, it is inevitable that sulfur-containing acidic gas is contained in the exhaust gas of the diesel engine. For this reason, the exhaust gas purification material is constantly exposed to sulfur-containing acidic gas, and the purification catalyst component contained in the exhaust gas purification material is also exposed to the sulfur-containing acidic gas, resulting in sulfur poisoning and reduced catalyst activity. End up. As a result, the combustion temperature of PM rises and PM stays in the DPF.

ところが、本発明に係る排気ガス浄化材においては、浄化触媒成分と共存している共存物質が、該浄化触媒成分よりも含硫黄酸性ガスに対して高い親和性を有する。この高い親和性により、共存物質は、ディーゼルエンジン排気ガス中の含硫黄酸性ガスを、浄化触媒成分に先駆けて吸着するため、浄化触媒成分の被毒が大幅に抑制され、触媒作用の低下を防ぐことができる。これにより、排気ガス中の粒子状物質の燃焼温度を継続して低下させることができる。   However, in the exhaust gas purification material according to the present invention, the coexisting substance coexisting with the purification catalyst component has a higher affinity for the sulfur-containing acidic gas than the purification catalyst component. Because of this high affinity, coexisting substances adsorb sulfur-containing acidic gas in diesel engine exhaust gas prior to the purification catalyst component, so that poisoning of the purification catalyst component is greatly suppressed, preventing a decrease in catalytic action. be able to. Thereby, the combustion temperature of the particulate matter in the exhaust gas can be continuously reduced.

次に、排気ガス温度の上昇時、排気ガス中の一酸化炭素や炭化水素成分の濃度上昇時、これらの上昇が同時に起こったときに、共存物質は、自身に吸着した含硫黄酸性ガスを脱離させると同時に、浄化触媒成分に吸着した含硫黄酸性ガスをも脱離させる作用を発揮する。そのため、浄化触媒成分の触媒作用を回復させることができる。   Next, when the exhaust gas temperature rises, the concentration of carbon monoxide and hydrocarbon components in the exhaust gas rises, and when these rises occur simultaneously, the coexisting substances desorb the sulfur-containing acidic gas adsorbed on itself. Simultaneously, the sulfur-containing acidic gas adsorbed on the purification catalyst component is also released. Therefore, the catalytic action of the purification catalyst component can be recovered.

尚、「含硫黄酸性ガス」とは、例えば、チオフェン類、ベンゾチオフェン類、ジベンゾチオフェン類、t−ブチルメルカプタン等のチオール類、ジメチルスルフィド等のチオエーテル類、硫化カルボニル(COS)等が挙げられる。また、ディーゼル燃料中に存在する4−メチルディベンゾチオフェン(MDBT)や、4,6−ジメチルディベンゾチオフェン(DMDBT)等の難脱硫化合物に由来するガスも含むものである。   Examples of the “sulfur-containing acid gas” include thiophenes, benzothiophenes, dibenzothiophenes, thiols such as t-butyl mercaptan, thioethers such as dimethyl sulfide, and carbonyl sulfide (COS). Moreover, the gas derived from difficult desulfurization compounds, such as 4-methyl dibenzothiophene (MDBT) and 4, 6- dimethyl dibenzothiophene (DMDBT) which exist in diesel fuel, is also included.

また、本明細書と特許請求の範囲を通じて、浄化触媒成分がPMの燃焼温度を低下させることのできる能力を触媒作用若しくは触媒活性と呼ぶ。   Throughout the present specification and claims, the ability of the purification catalyst component to lower the combustion temperature of PM is referred to as catalytic action or catalytic activity.

以下、発明を実施するための最良の形態について、1.本発明に係る排気ガス浄化材の物質的構造について、2.本発明に係る排気ガス浄化材における浄化触媒成分と共存物質について、3.本発明に係る排気ガス浄化材の作用について、4.本発明に係る浄化触媒成分、共存物質の製造方法、5.本発明に係る浄化触媒成分、共存物質の評価方法、の順で詳細に説明する。   Hereinafter, the best mode for carrying out the invention will be described. 1. Regarding the material structure of the exhaust gas purifying material according to the present invention. 2. About the purification catalyst component and the coexisting substance in the exhaust gas purification material according to the present invention; 3. Regarding the action of the exhaust gas purifying material according to the present invention; 4. a method for producing a purification catalyst component and a coexisting substance according to the present invention; The purification catalyst component and the coexisting substance evaluation method according to the present invention will be described in detail in this order.

1.本発明に係る排気ガス浄化材の物質的構造について
〔共存物質〕
浄化触媒成分と共存させて用いる前記共存物質は、代表的には、アルカリ金属、アルカリ土類金属の少なくとも一つと、酸性元素、両性元素の少なくとも一つとを含む複合酸化物で構成できる。
1. About the material structure of the exhaust gas purifying material according to the present invention [coexisting substances]
The coexisting substance used in combination with the purification catalyst component can be typically composed of a composite oxide containing at least one of an alkali metal and an alkaline earth metal and at least one of an acidic element and an amphoteric element.

ここで、アルカリ金属としては、カリウム、セシウムのいずれか一方または双方を用いることが好ましい。アルカリ土類金属元素としては、バリウム、ストロンチウム、カルシウムまたはマグネシウム、およびこれらの任意の組合せに係るものを用いることが好ましく、さらにはストロンチウム、バリウムのいずれか一方またはこれらの混合物がより好ましい。   Here, it is preferable to use one or both of potassium and cesium as the alkali metal. As the alkaline earth metal element, it is preferable to use barium, strontium, calcium or magnesium, and any combination thereof, and more preferably one of strontium and barium, or a mixture thereof.

一方、酸性元素としては、ビスマスを用いるのが好ましい。また、両性元素としては、チタン、ジルコニウム、アルミニウム、ガリウム、インジウムまたはスズ、およびこれらを任意の組合せに係るものを用いることが好ましく、更にはジルコニウム、アルミニウムのいずれか一方またはこれらの混合物がより好ましい。   On the other hand, bismuth is preferably used as the acidic element. Further, as the amphoteric element, it is preferable to use titanium, zirconium, aluminum, gallium, indium or tin, and those related to any combination thereof, and more preferably one of zirconium and aluminum or a mixture thereof. .

また、共存物質を構成するアルカリ金属、アルカリ土類金属の少なくとも一つ(これをA元素と記載する。)と、酸性元素、両性元素の少なくとも一つ(これをB元素と記載する。)は、一般式:A(1−x)δで表記される複合酸化物を形成していることが好ましい。 In addition, at least one of alkali metal and alkaline earth metal constituting the coexisting substance (this is described as A element) and at least one of an acidic element and amphoteric element (this is described as B element). It is preferable that a composite oxide represented by the general formula: A (1-x) B x O δ is formed.

アルカリ、アルカリ土類金属元素と酸性元素または両性元素のモル比率を示すxは0<x≦0.9が好ましく、0<x≦0.8であることがさらに好ましい。δは種々の複合酸化物に適した任意の数(0<δ<10)である。   As for x which shows the molar ratio of an alkali, alkaline-earth metal element, an acidic element, or an amphoteric element, 0 <x <= 0.9 is preferable and it is more preferable that it is 0 <x <= 0.8. δ is an arbitrary number (0 <δ <10) suitable for various composite oxides.

共存物質が、例えば、アルカリ金属やアルカリ土類金属の酸化物である場合、当該酸化物の含硫黄酸性ガスへの親和性は強い。その結果、含硫黄酸性ガスが、一旦吸着すると、その吸着結合力が強く、当該含硫黄酸性ガスの脱離は困難な状況になる。このような状況下で、吸着許容量を超える含硫黄酸性ガスが流れると、含硫黄酸性ガスの吸着能が大幅に低下することが懸念される。これに対して、B元素を存在させる(0<xである)ことにより、当該酸化物へ一旦、含硫黄酸性ガスが吸着しても、含硫黄酸性ガスを容易に脱離できる。   When the coexisting substance is, for example, an oxide of an alkali metal or alkaline earth metal, the affinity of the oxide for the sulfur-containing acidic gas is strong. As a result, once the sulfur-containing acidic gas is adsorbed, its adsorption binding force is strong, and it becomes difficult to desorb the sulfur-containing acidic gas. Under such circumstances, if a sulfur-containing acidic gas that exceeds the adsorbable capacity flows, there is a concern that the adsorption capacity of the sulfur-containing acidic gas is greatly reduced. On the other hand, when the B element is present (0 <x), even if the sulfur-containing acidic gas is once adsorbed to the oxide, the sulfur-containing acidic gas can be easily desorbed.

一方、B元素の存在により、共存物質の含硫黄酸性ガスとの親和性は弱まり易い。従って、B元素の比率が過剰になると、共存物質は含硫黄酸性ガスを吸着しなくなる。そこで、B元素の存在比率をx≦0.9とすることがよい。B元素の比率がこの条件であれば、共存物質は、含硫黄酸化ガスの吸着能を有し、かつ吸着した含硫黄酸性ガスを脱離させることもできる。即ち、0<x≦0.9のとき、共存物質の含硫黄酸酸性ガスに対する親和性が適度なものとなる。   On the other hand, due to the presence of B element, the affinity of the coexisting substance with the sulfur-containing acidic gas tends to be weakened. Therefore, when the ratio of the B element is excessive, the coexisting substance does not adsorb the sulfur-containing acidic gas. Therefore, the abundance ratio of the B element is preferably x ≦ 0.9. If the ratio of the B element is this condition, the coexisting substance has the ability to adsorb sulfur-containing oxidizing gas, and can also desorb the adsorbed sulfur-containing acidic gas. That is, when 0 <x ≦ 0.9, the affinity of the coexisting substance for the sulfur-containing acid gas becomes appropriate.

さらに、共存物質を構成する各元素の組み合わせの中でも、A元素がBaでB元素がBiのとき、A元素がSrでB元素がBiのとき、A元素がSrでB元素がZrのとき、特に共存物質の含硫黄酸酸性ガスに対する親和性が適度なものとなることが判明した。   Further, among the combinations of elements constituting the coexisting substance, when the A element is Ba and the B element is Bi, when the A element is Sr and the B element is Bi, when the A element is Sr and the B element is Zr, In particular, it has been found that the affinity of the coexisting substance for the sulfur-containing acid gas is moderate.

この結果、前記共存物質は、含硫黄酸性ガスとの適度な親和性により適度な結合力を生じる。この適度な結合力のため、共存物質に吸着した含硫黄酸性ガスは、排気ガス温度の上昇時、排気ガス中の一酸化炭素や炭化水素成分の濃度上昇時、これらの上昇が同時に起こったときには、当該共存物質からの脱離が可能となる。   As a result, the coexisting substance generates an appropriate binding force due to an appropriate affinity with the sulfur-containing acid gas. Due to this moderate binding force, the sulfur-containing acidic gas adsorbed on the coexisting substances can be used when the exhaust gas temperature rises, when the concentrations of carbon monoxide and hydrocarbon components in the exhaust gas rise, and when these increases occur simultaneously. , Desorption from the coexisting substance becomes possible.

〔浄化触媒成分〕
浄化触媒成分は、ペロブスカイト、スピネル、コランダム、ホタル石から選択されるいずれかの結晶構造を有する酸化物が好ましい。
[Purification catalyst component]
The purification catalyst component is preferably an oxide having any crystal structure selected from perovskite, spinel, corundum, and fluorite.

酸化物触媒を用いてディーゼルエンジンから排出されるPMの燃焼温度を低下させるとき、当該酸化物触媒は、自身の結晶中に含まれる酸素を放出し、その放出された酸素がPMを燃焼すると考えられる。このような機構で触媒作用を発揮する酸化物触媒は、その触媒の能力が結晶構造に起因することが多い。   When using an oxide catalyst to lower the combustion temperature of PM emitted from a diesel engine, the oxide catalyst releases oxygen contained in its own crystals, and the released oxygen is considered to burn PM. It is done. In many cases, an oxide catalyst that exhibits a catalytic action by such a mechanism is caused by the crystal structure of the ability of the catalyst.

上述した結晶構造の中でもホタル石型構造をとり、特に、セリウムを主とする酸化物が好ましい。酸化セリウムは、三元触媒に用いられる酸素吸放出能に優れた物質であることが一般的に知られており、排気ガス組成の酸化性成分と還元性成分の化学量論比からはずれた場合、酸素を吸蔵または放出する。セリウムと価数の異なる元素を置換した場合、この酸素吸放出能は増加するため、1種あるいは2種以上の元素で置換した酸化セリウムが浄化触媒成分としてより好ましい。   Among the crystal structures described above, a fluorite structure is used, and an oxide mainly containing cerium is particularly preferable. It is generally known that cerium oxide is a substance with excellent oxygen absorption / release capacity used for three-way catalysts, and it is not in the stoichiometric ratio of the oxidizing and reducing components of the exhaust gas composition. , Occlude or release oxygen. When an element having a valence different from that of cerium is substituted, the oxygen storage / release capacity increases. Therefore, cerium oxide substituted with one or more elements is more preferable as the purification catalyst component.

2.本発明に係る排気ガス浄化材における浄化触媒成分と共存物質について
〔浄化触媒成分と共存物質との存在比率〕
排気ガス浄化材に占める共存物質の比率は、5〜50質量%の範囲において効果があり、さらに好ましくは5〜40質量%である。
2. About the purification catalyst component and the coexisting substance in the exhaust gas purification material according to the present invention [abundance ratio of the purification catalyst component and the coexisting substance]
The ratio of the coexisting substances in the exhaust gas purification material is effective in the range of 5 to 50% by mass, more preferably 5 to 40% by mass.

共存物質の比率が5質量%以上であれば、含硫黄酸性ガスによる浄化触媒成分の被毒を抑制することができる。さらに、排気ガス温度の上昇や、排気ガス中の一酸化炭素や炭化水素成分の濃度上昇のタイミング以前に、共存物質が吸着する含硫黄酸性ガスの許容範囲を超えてしまう事態を、回避することができる。   When the ratio of the coexisting substances is 5% by mass or more, poisoning of the purification catalyst component by the sulfur-containing acidic gas can be suppressed. Furthermore, avoid the situation where the allowable range of sulfur-containing acidic gas adsorbed by coexisting substances is exceeded before the exhaust gas temperature rises and the concentration of carbon monoxide and hydrocarbon components in the exhaust gas rises. Can do.

一方、共存物質の比率が50質量%以下であれば、排気ガス浄化材に占める浄化触媒成分の割合を確保できるので、十分にPMを燃焼する触媒活性が得られる。ただし、排気ガス浄化材に占める共存物質の比率は、使用する排気システムや構成に依存する場合もあり、これに限定されるものではない。   On the other hand, if the ratio of the coexisting substances is 50% by mass or less, the ratio of the purification catalyst component in the exhaust gas purification material can be secured, so that the catalytic activity for sufficiently burning PM can be obtained. However, the ratio of the coexisting substances in the exhaust gas purification material may depend on the exhaust system and configuration used, and is not limited to this.

〔浄化触媒成分と共存物質との共存形態〕
排気ガス浄化材における、浄化触媒成分と共存物質との共存形態としては、以下のような形態が好ましく適用できる。
(1)浄化触媒成分と共存物質とをそれぞれ粉体化し、当該両粉体同士が隣接する状態に混合する。このとき両粉体同士は化合しておらず、また両粉体同士には隙間があってよい。
(2)浄化触媒成分に共存物質を担持させる。
(3)共存物質に浄化触媒成分を担持させる。
(4)DPFに浄化触媒成分と共存物質とをコートする際、浄化触媒成分と共存物質との混合スラリーをコートする。
(5)DPFに浄化触媒成分と共存物質とをコートする際、まず浄化触媒成分をコートし、次に、共存物質をコートする。
(6)DPFに浄化触媒成分と共存物質とをコートする際、まず共存物質をコートし、次に、浄化触媒成分をコートする。
[Coexistence of purification catalyst components and coexisting substances]
As the coexistence form of the purification catalyst component and the coexisting substance in the exhaust gas purification material, the following forms can be preferably applied.
(1) The purification catalyst component and the coexisting substance are pulverized and mixed so that the two powders are adjacent to each other. At this time, the two powders are not combined, and there may be a gap between the two powders.
(2) A coexisting substance is supported on the purification catalyst component.
(3) The purification catalyst component is supported on the coexisting substance.
(4) When the DPF is coated with the purification catalyst component and the coexisting substance, a mixed slurry of the purification catalyst component and the coexisting substance is coated.
(5) When the purification catalyst component and the coexisting substance are coated on the DPF, the purification catalyst component is first coated, and then the coexistence substance is coated.
(6) When the purification catalyst component and the coexisting substance are coated on the DPF, the coexistence substance is first coated, and then the purification catalyst component is coated.

〔浄化成分と共存物質との混合粉体特性〕
排気ガス浄化材における、浄化触媒成分と共存物質との混合粉体特性としては、BET法による比表面積が10〜100m/gであることが好ましい。比表面積が10m/g未満であると触媒活性が低くなりやすく、100m/gを超えると再生時の温度上昇により熱劣化し触媒活性が低下しやすい。また、粒度分布は、レーザー回折法による粒度分布測定によるD50径が0.01〜10μmであることが好ましい。D50径が0.01μm未満であるとDPFの内部まで浸透し、DPF表面上で触媒活性を発現する量を確保するためには大量の混合粉体が必要となりコスト上好ましくない。10μmを超えるとDPFの細孔を塞いでしまい圧損が大きくなるため好ましくない。
[Characteristics of mixed powder of purification components and coexisting substances]
As a mixed powder characteristic of the purification catalyst component and the coexisting substance in the exhaust gas purification material, the specific surface area by the BET method is preferably 10 to 100 m 2 / g. If the specific surface area is less than 10 m 2 / g, the catalyst activity tends to be low, and if it exceeds 100 m 2 / g, the catalyst activity tends to decrease due to thermal degradation due to temperature rise during regeneration. The particle size distribution preferably has a D50 diameter of 0.01 to 10 μm as measured by particle size distribution by a laser diffraction method. If the D50 diameter is less than 0.01 μm, a large amount of mixed powder is required to ensure the amount that penetrates into the DPF and develops the catalytic activity on the surface of the DPF, which is not preferable in terms of cost. If it exceeds 10 μm, the pores of the DPF are blocked and the pressure loss increases, which is not preferable.

〔浄化触媒成分と共存物質との他の共存形態〕
浄化触媒成分と共存物質から構成される排気ガス浄化材が、さらに白金族元素を含むのも好ましい構成である。白金族元素は、白金、ロジウムまたはパラジウム、およびこれらの任意の組合せに係るものを使用できる。
[Other forms of coexistence of purification catalyst components and coexisting substances]
It is also preferable that the exhaust gas purification material composed of the purification catalyst component and the coexisting substance further contains a platinum group element. The platinum group element may be platinum, rhodium or palladium, and any combination thereof.

浄化触媒成分に含有される白金族元素は、含硫黄酸性ガスが浄化触媒成分から脱離する際、当該脱離を助ける働きをするとも考えられる。従って、浄化触媒成分や共存物質と高分散状態で担持されていることが好ましい。また、DPFに浄化触媒成分や共存物質コートされている場合、アルミナなどの高比表面積な担体に担持されていてもよい。白金族元素の担持方法に特に制限はない。具体的には、蒸発乾固、含浸などが好適に適用できる。   It is also considered that the platinum group element contained in the purification catalyst component serves to assist the desorption when the sulfur-containing acidic gas is desorbed from the purification catalyst component. Therefore, it is preferably supported in a highly dispersed state with the purification catalyst component and coexisting substances. When the DPF is coated with a purification catalyst component or a coexisting substance, it may be supported on a carrier having a high specific surface area such as alumina. There is no restriction | limiting in particular in the support method of a platinum group element. Specifically, evaporation to dryness, impregnation and the like can be suitably applied.

3.本発明に係る排気ガス浄化材の作用について
上述した浄化触媒成分と共存物質とで構成される排気ガス浄化材を通過する排気ガス中に含硫黄酸性ガスが含まれるとき、当該含硫黄酸性ガスは、共存物質と当該含硫黄酸性ガスの親和性により選択的に共存物質に吸着される。尤も、当該含硫黄酸性ガスが共存物質のみを通過する場合、当該共存物質は当該含硫黄酸性ガスに対する酸化力が低いため、吸着速度は低い。ところが、当該共存物質と混合されている浄化触媒成分は、含硫黄酸性ガスに対する酸化力が高いため、含硫黄酸性ガスは酸化されて当該共存物質に吸着しやすい状態になる。そして、排気ガス浄化材において、含硫黄酸性ガスは選択的に共存物質へ吸着される。この結果、含硫黄酸性ガスによる浄化触媒成分の被毒が大幅に抑制される。
3. Regarding the action of the exhaust gas purification material according to the present invention When the sulfur-containing acid gas is contained in the exhaust gas passing through the exhaust gas purification material composed of the purification catalyst component and the coexisting material described above, the sulfur-containing acid gas is , It is selectively adsorbed by the coexisting substance due to the affinity between the coexisting substance and the sulfur-containing acid gas. However, when the sulfur-containing acidic gas passes only through the coexisting substance, the coexisting substance has a low oxidizing power with respect to the sulfur-containing acidic gas, and thus the adsorption rate is low. However, since the purification catalyst component mixed with the coexisting substance has a high oxidizing power against the sulfur-containing acidic gas, the sulfur-containing acidic gas is easily oxidized and easily adsorbed on the coexisting substance. In the exhaust gas purification material, the sulfur-containing acidic gas is selectively adsorbed by the coexisting substance. As a result, poisoning of the purification catalyst component by the sulfur-containing acidic gas is greatly suppressed.

通常の運転ではディーゼルエンジンの排気ガス温度は200℃あるいはそれ以下と低いが、種々の目的のシステム的制御により定期的に昇温することがある。その一つが、DPFの再生を目的としたもので、DPFの前段に設置された酸化触媒のエンジン側に燃料を噴射し、酸化触媒で燃料を燃焼させることにより排気ガス温度を上昇し、DPFに導入される排気ガス温度を上昇し、DPFに堆積したPMを燃焼する。   In normal operation, the exhaust gas temperature of a diesel engine is as low as 200 ° C. or lower, but the temperature may be periodically raised by system control for various purposes. One of them is intended to regenerate the DPF. Fuel is injected into the engine side of the oxidation catalyst installed in the front stage of the DPF, and the exhaust gas temperature is increased by burning the fuel with the oxidation catalyst. The temperature of the exhaust gas to be introduced is raised, and the PM deposited on the DPF is burned.

また別の制御として、NOx吸蔵触媒が併用されているシステムでは、NOx吸蔵触媒のNOx放出などNOx吸蔵触媒の再生時に定期的に排気ガス温度が上昇する。これら排気ガスの上昇は、排気ガス中に燃料を噴射し、燃料を燃焼させることにより起こるため、通常の運転と比較して排気ガス中の一酸化炭素、炭化水素の比率が高くなる。   As another control, in a system in which a NOx storage catalyst is used in combination, the exhaust gas temperature periodically rises during regeneration of the NOx storage catalyst such as NOx release from the NOx storage catalyst. These exhaust gas increases occur by injecting fuel into the exhaust gas and combusting the fuel, so that the ratio of carbon monoxide and hydrocarbons in the exhaust gas is higher than in normal operation.

上述したDPF再生を目的とした、ディーゼルエンジンの運転モード、または、システム的制御により、排気ガス温度は上昇及び又は排気ガス中の一酸化炭素や炭化水素成分の濃度が高くなるため、共存物質は吸着した含硫黄酸性ガスを脱離することが可能となる。また、共存物質は含硫黄酸性ガスを脱離する条件下において、浄化触媒成分に吸着した含硫黄酸性ガスの脱離を促進するため、被毒劣化した触媒活性が再生回復し、触媒活性が長期に渡り維持が可能となる。   The exhaust gas temperature rises and / or the concentration of carbon monoxide and hydrocarbon components in the exhaust gas increases due to the operation mode or system control of the diesel engine for the purpose of the DPF regeneration described above. The adsorbed sulfur-containing acidic gas can be desorbed. In addition, the coexisting substance promotes the desorption of the sulfur-containing acidic gas adsorbed on the purification catalyst component under the condition of desorbing the sulfur-containing acidic gas. Can be maintained over a long period of time.

含硫黄酸性ガスが脱離するより好ましい条件として、温度は500℃以上あれば良い。500℃以上の温度があれば、含硫黄酸性ガス、当該ガス中の硫黄も脱離し、それらの吸着または吸着結合がより強固なものになることを回避出来るからである。また、排気ガス組成は一酸化炭素が100ppm、炭化水素成分が200ppm以上のいずれか一方または双方であることが好ましい。   As a more preferable condition that the sulfur-containing acidic gas is desorbed, the temperature may be 500 ° C. or higher. This is because if the temperature is 500 ° C. or higher, the sulfur-containing acidic gas and sulfur in the gas are also desorbed, and it is possible to avoid that their adsorption or adsorption bonding becomes stronger. Further, the exhaust gas composition is preferably one or both of 100 ppm for carbon monoxide and 200 ppm or more for the hydrocarbon component.

排気ガス中の炭化水素成分には、例えばプロピレンなど種々のものがあるが特に制限はない。共存物質または浄化触媒成分に吸着した含硫黄酸性ガスは、酸素を放出し脱離するため、放出した酸素を効率よく回収するために一酸化炭素、炭化水素の還元性ガスが存在することが好ましい。強い還元力を生じる水素が存在する場合、含硫黄酸性ガスはより脱離しやすくなる傾向があるが、ディーゼルエンジンの動作状況により排気ガス中に含まれる水素の割合は大きく変動するため、特に制限はない。   There are various hydrocarbon components in the exhaust gas such as propylene, but there is no particular limitation. Since the sulfur-containing acidic gas adsorbed on the coexisting substance or the purification catalyst component releases and desorbs oxygen, it is preferable that a reducing gas of carbon monoxide and hydrocarbon is present in order to efficiently recover the released oxygen. . In the presence of hydrogen that generates a strong reducing power, sulfur-containing acidic gas tends to be more easily desorbed, but the ratio of hydrogen contained in the exhaust gas varies greatly depending on the operating conditions of the diesel engine. Absent.

本発明に係る排気ガス浄化材を用いたDPFは、さらに白金族元素を含むことも好ましい構成である。白金族元素としては、白金、ロジウムまたはパラジウム、およびこれらの任意の組合せに係るものを含むことが好ましい。   The DPF using the exhaust gas purifying material according to the present invention preferably further includes a platinum group element. The platinum group elements preferably include those related to platinum, rhodium or palladium, and any combination thereof.

上述したようにDPFの再生やNOx吸蔵触媒の再生の際、排気ガス中に燃料を噴射し、燃料を燃焼させるため、通常の運転と比較して排気ガス中の一酸化炭素、炭化水素の比率が高くなる。また、浄化触媒成分によりPMが燃焼するとき、不完全燃焼により一酸化炭素が発生する恐れがある。白金族元素は、これら一酸化炭素や炭化水素を浄化するために有効だからである。   As described above, when regenerating the DPF or the NOx storage catalyst, the fuel is injected into the exhaust gas to burn the fuel, so the ratio of carbon monoxide and hydrocarbons in the exhaust gas compared to normal operation. Becomes higher. Further, when PM is burned by the purification catalyst component, carbon monoxide may be generated due to incomplete combustion. This is because platinum group elements are effective for purifying these carbon monoxide and hydrocarbons.

当該白金族元素は、DPFから向かってエンジン側、DPF上、DPFから向かって大気開放側のどの位置に存在してもよいが、好ましくはDPF上、DPFから向かって大気開放側がよい。また、白金族元素は一酸化炭素や炭化水素の気体への浄化作用が求められるので、高分散状態で担持されていることが好ましい。この高分散状態の担持方法は蒸発乾固、含浸など一般的な方法でよく、担持方法に特に制限はない。   The platinum group element may be present at any position on the engine side from the DPF, on the DPF, and on the air release side from the DPF, but preferably on the DPF and on the air release side from the DPF. Further, since the platinum group element is required to purify carbon monoxide and hydrocarbon gas, it is preferably supported in a highly dispersed state. The supporting method in the highly dispersed state may be a general method such as evaporation to dryness or impregnation, and the supporting method is not particularly limited.

4.本発明に係る浄化触媒成分、共存物質の製造方法
本発明に係る浄化触媒成分と共存物質とは、例えば、通常の共沈法、有機錯体法、非晶質前駆体、固相法を用いた製法などによって製造することができる。
4). Purifying catalyst component and coexisting substance production method according to the present invention The purifying catalyst component and coexisting substance according to the present invention are, for example, a common coprecipitation method, an organic complex method, an amorphous precursor, and a solid phase method. It can be manufactured by a manufacturing method or the like.

尚、当該浄化触媒成分と共存物質とは、原料の配合を変える他は同様の製造方法で製造することができる。そこで、以下、共存物質の製造を例として、本発明に係る浄化触媒成分と共存物質の製造方法について説明する。   The purification catalyst component and the coexisting substance can be produced by the same production method except that the mixing of raw materials is changed. Therefore, the purification catalyst component and the method for producing the coexisting substance according to the present invention will be described below by taking the production of the coexisting substance as an example.

〔共沈法〕
共沈法では、上述のアルカリ、アルカリ土類金属から選択される元素の塩と、酸性元素、両性元素から選択される元素の塩とを準備し、所定の複合酸化物を生成するにふさわしい化学量論比で、これらの元素を含む原料塩水溶液を調製する。
[Co-precipitation method]
The coprecipitation method prepares a salt of an element selected from the above alkali and alkaline earth metals and a salt of an element selected from an acidic element and an amphoteric element, and is suitable for producing a predetermined composite oxide. A raw salt aqueous solution containing these elements is prepared in a stoichiometric ratio.

各元素の塩は、特に限定されないが、例えば、硫酸塩、硝酸塩、リン酸塩、塩化物などの無機塩、酢酸塩、シュウ酸塩などの有機酸塩などが使用できる。中でも酢酸塩、硝酸塩が好適に使用できる。   The salt of each element is not particularly limited. For example, inorganic salts such as sulfate, nitrate, phosphate, and chloride, and organic acid salts such as acetate and oxalate can be used. Of these, acetates and nitrates can be preferably used.

この原料塩水溶液と中和剤とを混合し、上記元素を含む塩を共沈させる。このとき中和剤は、特に限定されないが、例えば、アンモニア、苛性ソーダ、苛性カリなどの無機塩基、トリエチルアミン、ピリジンなどの有機塩基が使用できる。また中和剤の添加量は、その中和剤を加えた後に生成されるスラリーのpHが6〜14となるように添加し混合するのが良い。当該pH域に調製することで、共沈物を得ることができる。   This raw salt aqueous solution and a neutralizing agent are mixed to coprecipitate a salt containing the above elements. At this time, the neutralizing agent is not particularly limited, and for example, inorganic bases such as ammonia, caustic soda and caustic potash, and organic bases such as triethylamine and pyridine can be used. Moreover, the addition amount of a neutralizing agent is good to add and mix so that the pH of the slurry produced | generated after adding the neutralizing agent may be 6-14. A coprecipitate can be obtained by adjusting to the said pH range.

得られた共沈物は、必要に応じて水洗する。次に、得られた共沈物を、例えば、真空乾燥や通風乾燥などにより乾燥させる。そして、当該乾燥した共沈物を、600〜1200℃、好ましくは800〜1000℃で2〜10時間熱処理することにより、目的とする共存物質の複合酸化物を得ることができる。   The obtained coprecipitate is washed with water as necessary. Next, the obtained coprecipitate is dried by, for example, vacuum drying or ventilation drying. Then, the dried coprecipitate is heat-treated at 600 to 1200 ° C., preferably 800 to 1000 ° C. for 2 to 10 hours, whereby a desired composite oxide of coexisting substances can be obtained.

当該熱処理の際、雰囲気は、共存物質の複合酸化物を生成する範囲のものであれば特に制限されない。例えば、空気、窒素、アルゴン、水素、および、これらの各雰囲気に水蒸気を組み合わせた雰囲気が使用できる。生産コストの観点からは、空気、窒素、および、これらの雰囲気に水蒸気を組み合わせた雰囲気が好ましい。   At the time of the heat treatment, the atmosphere is not particularly limited as long as it is in a range in which a complex oxide of coexisting substances is generated. For example, air, nitrogen, argon, hydrogen, and an atmosphere in which water vapor is combined with each of these atmospheres can be used. From the viewpoint of production cost, air, nitrogen, and an atmosphere obtained by combining water vapor with these atmospheres are preferable.

〔有機錯体法〕
有機錯体法では、所定の複合酸化物を生成するにふさわしい化学量論比になるように、上述のアルカリ、アルカリ土類金属から選択される元素の塩と、酸性元素、両性元素から選択される元素の塩と、例えば、クエン酸、リンゴ酸、エチレンジアミン4酢酸ナトリウムなどの有機錯体を形成する塩により原料有機錯体水溶液を調製する。
[Organic complex method]
In the organic complex method, a salt of an element selected from the above-mentioned alkali and alkaline earth metals, an acidic element, and an amphoteric element are selected so that a stoichiometric ratio suitable for forming a predetermined composite oxide is obtained. A raw material organic complex aqueous solution is prepared from an element salt and a salt forming an organic complex such as citric acid, malic acid, or sodium ethylenediaminetetraacetate.

各元素の塩としては、共沈法の場合と同様の塩が使用でき、また原料塩水溶液は各元素の原料塩を目的の化学量論比に混合して水に溶解した後、有機錯体を形成する塩の水溶液と混合することにより、調製することができる。なお、有機錯体を形成する塩の配合比率は得られる共存物質の複合酸化物や浄化触媒成分1モルに対して1.2〜3モル程度であることが好ましい。   As the salt of each element, the same salt as in the coprecipitation method can be used. The raw salt aqueous solution is prepared by mixing the raw salt of each element in the desired stoichiometric ratio and dissolving it in water. It can be prepared by mixing with an aqueous solution of the salt that forms. In addition, it is preferable that the mixture ratio of the salt which forms an organic complex is about 1.2-3 mol with respect to 1 mol of complex oxides and purification catalyst components of the coexisting substance obtained.

この原料水溶液を乾固させる。当該乾固の際の加熱温度は、有機錯体が分解しない温度であれば特に限定されず、例えば、室温〜150℃程度、好ましくは室温〜110℃であって、速やかに水分を除去できるものであれば良い。これにより前述の有機錯体が得られる。   This raw material aqueous solution is dried. The heating temperature at the time of drying is not particularly limited as long as the organic complex does not decompose, and is, for example, about room temperature to 150 ° C., preferably room temperature to 110 ° C., and can quickly remove moisture. I need it. Thereby, the above-mentioned organic complex is obtained.

前述の各元素の有機錯体を形成させた後、仮焼成する。仮焼成は、例えば、真空または不活性ガス雰囲気下において250℃以上で加熱すれば良い。   After forming an organic complex of each of the elements described above, temporary firing is performed. Pre-baking may be performed, for example, by heating at 250 ° C. or higher in a vacuum or an inert gas atmosphere.

得られた仮焼成後の有機錯体を熱処理する。熱処理は、例えば600〜1000℃、好ましくは600〜950℃で、2〜10時間行うことにより、目的とする共存物質の複合酸化物を得ることができる。当該熱処理時の雰囲気は、共存物質の複合酸化物や浄化触媒成分を生成する範囲であれば特に制限されない。例えば、空気、窒素、アルゴン、水素、および、これらの各雰囲気に水蒸気を組み合わせた雰囲気が使用できる。生産コストの観点からは、空気、窒素、および、これらの雰囲気に水蒸気を組み合わせた雰囲気が好ましい。   The obtained organic complex after calcination is heat-treated. By performing the heat treatment at, for example, 600 to 1000 ° C., preferably 600 to 950 ° C. for 2 to 10 hours, a target composite oxide of coexisting substances can be obtained. The atmosphere at the time of the heat treatment is not particularly limited as long as it is in a range in which a composite oxide of coexisting substances and a purification catalyst component are generated. For example, air, nitrogen, argon, hydrogen, and an atmosphere in which water vapor is combined with each of these atmospheres can be used. From the viewpoint of production cost, air, nitrogen, and an atmosphere obtained by combining water vapor with these atmospheres are preferable.

〔非晶質前駆体を用いた製法〕
非晶質前駆体を用いた製法では、共存物質の複合酸化物を生成するにふさわしい化学量論比で、上述のアルカリ、アルカリ土類金属から選択される元素を含む粉状の非晶質からなる前駆体物質と、酸性元素、両性元素から選択される元素を含む粉状の非晶質からなる前駆体物質を準備する。
[Production method using amorphous precursor]
In the production method using an amorphous precursor, a powdery amorphous material containing an element selected from the above-mentioned alkali and alkaline earth metals at a stoichiometric ratio suitable for forming a composite oxide of coexisting substances is used. And a precursor material made of a powdery amorphous material containing an element selected from an acidic element and an amphoteric element.

当該非晶質の前駆体の製造方法について説明する。
まず、上述の両元素の塩を、共存物質の複合酸化物を生成するにふさわしい化学量論比で含む原料塩水溶液を調製する。そして、当該原料塩水溶液と、炭酸アルカリまたはアンモニウムイオンを含む炭酸塩等の沈殿剤とを、温度60℃以下、pH6以上で反応させて沈殿を生成させる。当該生成した沈殿を濾過し、乾燥させることで得ることができる。
A method for producing the amorphous precursor will be described.
First, a raw salt aqueous solution containing the above-described salts of both elements in a stoichiometric ratio suitable for forming a composite oxide of coexisting substances is prepared. Then, the raw salt aqueous solution and a precipitating agent such as carbonate containing alkali carbonate or ammonium ion are reacted at a temperature of 60 ° C. or lower and pH 6 or higher to generate a precipitate. The produced precipitate can be filtered and dried.

より具体的には、まず、上述の両元素の硝酸塩、硫酸塩、塩化物等の水溶性鉱酸塩を準備する。そして、共存物質の複合酸化物を生成するにふさわしい化学量論比で含む原料塩水溶液となるモル比に調整して溶解させた水溶液を用意する。当該水溶液中の構成元素のイオン濃度は用いる塩類の溶解度によって上限が決まる。即ち、構成元素の結晶性化合物が析出しない状態とすることが好ましい。通常は、前述の各元素の合計イオン濃度が0.01〜0.60mol/L程度の範囲であれば良いが、0.60mol/Lを超えてもよい場合がある。   More specifically, first, water-soluble mineral salts such as nitrates, sulfates, and chlorides of both elements described above are prepared. Then, an aqueous solution prepared by adjusting the molar ratio to be a raw salt aqueous solution containing a stoichiometric ratio suitable for generating a complex oxide of coexisting substances is prepared. The upper limit of the ion concentration of the constituent elements in the aqueous solution is determined by the solubility of the salts used. That is, it is preferable that the constituent element crystalline compound is not deposited. Usually, the total ion concentration of each of the above elements may be in the range of about 0.01 to 0.60 mol / L, but may exceed 0.60 mol / L.

当該水溶液から非晶質の沈殿を得るには、炭酸アルカリまたはアンモニウムイオンを含む炭酸塩からなる沈殿剤を用いるのが良い。当該沈殿剤の具体例としては、炭酸ナトリウム、炭酸水素ナトリウム、炭酸アンモニウム、炭酸水素アンモニウム等がある。また、必要に応じて、水酸化ナトリウム、アンモニア等の塩基を添加することも可能である。さらに、当該水酸化ナトリウム、アンモニア等の添加により沈殿を形成した場合、当該水溶液へ炭酸ガスを吹き込むことによっても本発明に使用する共存物質の複合酸化物の前駆体物質に適した非晶質を得ることができる。   In order to obtain an amorphous precipitate from the aqueous solution, it is preferable to use a precipitating agent made of carbonate containing alkali carbonate or ammonium ion. Specific examples of the precipitant include sodium carbonate, sodium hydrogen carbonate, ammonium carbonate, ammonium hydrogen carbonate and the like. Moreover, it is also possible to add bases, such as sodium hydroxide and ammonia, as needed. Further, when a precipitate is formed by adding sodium hydroxide, ammonia, etc., an amorphous material suitable for the precursor material of the complex oxide used in the present invention can be obtained by blowing carbon dioxide into the aqueous solution. Can be obtained.

非晶質の沈殿を得る際、水溶液のpHを6〜11の範囲に制御するのがよい。pHが6以上の領域では、希土類元素類が沈殿を形成するので好ましいからである。一方、pHが11以下であれば、結晶性の沈殿形成を回避することができる。また、反応温度を60℃以下にすることで、構成元素の結晶性化合物粒子の生成を回避することができる。   When obtaining an amorphous precipitate, the pH of the aqueous solution is preferably controlled in the range of 6-11. This is because, in the region where the pH is 6 or more, rare earth elements form a precipitate, which is preferable. On the other hand, if the pH is 11 or less, crystalline precipitate formation can be avoided. Moreover, the production | generation of the crystalline compound particle | grains of a structural element can be avoided by making reaction temperature 60 degrees C or less.

得られた非晶質前駆体は、必要に応じて水洗する。そして、得られた非晶質前駆体を、例えば、真空乾燥や通風乾燥などにより乾燥させる。   The obtained amorphous precursor is washed with water as necessary. Then, the obtained amorphous precursor is dried by, for example, vacuum drying or ventilation drying.

当該乾燥した非晶質前駆体を、例えば500〜1000℃、好ましくは600〜900℃で2〜10時間の熱処理することにより、目的とする共存物質の複合酸化物や浄化触媒成分を得ることができる。当該熱処理時の雰囲気は、共存物質の複合酸化物や浄化触媒成分を生成する範囲であれば特に制限されない。例えば、空気、窒素、アルゴン、水素、および、これらの各雰囲気に水蒸気を組み合わせた雰囲気が使用できる。生産コストの観点からは、空気、窒素、および、これらの雰囲気に水蒸気を組み合わせた雰囲気が好ましい。   By subjecting the dried amorphous precursor to a heat treatment of, for example, 500 to 1000 ° C., preferably 600 to 900 ° C. for 2 to 10 hours, a composite oxide or purification catalyst component of the desired coexisting substance can be obtained. it can. The atmosphere at the time of the heat treatment is not particularly limited as long as it is in a range in which a composite oxide of coexisting substances and a purification catalyst component are generated. For example, air, nitrogen, argon, hydrogen, and an atmosphere in which water vapor is combined with each of these atmospheres can be used. From the viewpoint of production cost, air, nitrogen, and an atmosphere obtained by combining water vapor with these atmospheres are preferable.

〔固相法〕
固相法では、上述のアルカリ、アルカリ土類金属から選択される元素の塩と、酸性元素、両性元素から選択される元素の塩とを準備し、所定の複合酸化物を生成するにふさわしい化学量論比で、これらの原料塩を、乳鉢などの混合機を用い混合する。
[Solid phase method]
In the solid-phase method, a salt of an element selected from the above-mentioned alkali and alkaline earth metal and a salt of an element selected from an acidic element and an amphoteric element are prepared, and a chemistry suitable for producing a predetermined composite oxide. These raw material salts are mixed in a stoichiometric ratio using a mixer such as a mortar.

原料塩には、硝酸塩、炭酸塩、酸化物、酢酸塩等、種々のものがあるが、後述する熱処理により、目的とする共存物質の複合酸化物の結晶を生じるものであれば特に制限はない。   There are various kinds of raw material salts such as nitrates, carbonates, oxides, acetates, etc., but there is no particular limitation as long as the target coexisting substance complex oxide crystals are produced by the heat treatment described later. .

当該混合物を、例えば500℃〜1000℃、好ましくは700℃〜1000℃で2〜30時間の熱処理を行うことにより、目的とする共存物質の複合酸化物を得ることができる。   By subjecting the mixture to a heat treatment of, for example, 500 ° C. to 1000 ° C., preferably 700 ° C. to 1000 ° C. for 2 to 30 hours, a desired composite oxide of coexisting substances can be obtained.

当該熱処理時の雰囲気は、共存物質の複合酸化物や浄化触媒成分を生成する範囲であれば特に制限されない。例えば、空気、窒素、アルゴン、水素、および、これらの各雰囲気に水蒸気を組み合わせた雰囲気が使用できる。生産コストの観点からは、空気、窒素、および、これらの雰囲気に水蒸気を組み合わせた雰囲気が好ましい。   The atmosphere at the time of the heat treatment is not particularly limited as long as it is in a range in which a composite oxide of coexisting substances and a purification catalyst component are generated. For example, air, nitrogen, argon, hydrogen, and an atmosphere in which water vapor is combined with each of these atmospheres can be used. From the viewpoint of production cost, air, nitrogen, and an atmosphere obtained by combining water vapor with these atmospheres are preferable.

5.本発明に係る浄化触媒成分、共存物質の評価方法
浄化触媒成分および共存物質の、酸性ガスへの親和性、結晶構造、硫黄被毒に対する耐久性、PMの燃焼性能を評価するための代表的な評価方法について説明する。
5. Purification catalyst component and coexisting substance evaluation method according to the present invention Representative purification catalyst component and coexisting substance for evaluating the affinity for acid gas, crystal structure, durability against sulfur poisoning, and PM combustion performance The evaluation method will be described.

尚、当該浄化触媒成分と共存物質とは、同様の評価方法を適用することができる。そこで、以下、共存物質の評価を例として、本発明に係る排気ガス浄化材の評価方法について説明する。   The same evaluation method can be applied to the purification catalyst component and the coexisting substance. Thus, hereinafter, the method for evaluating an exhaust gas purifying material according to the present invention will be described by taking the evaluation of coexisting substances as an example.

[酸性ガスへの親和性]
共存物質と、Ptアルミナ(Pt1質量%)とを、質量比で1:1になるように秤量し、乳鉢で30分間混合する。この混合した試料を金型プレスにより100kg/cmで圧縮成形後、粉砕して、粒子径0.5〜1.0mmの粒状試料を作製する。
[Affinity for acid gas]
The coexisting substance and Pt alumina (Pt 1 mass%) are weighed so as to have a mass ratio of 1: 1, and mixed in a mortar for 30 minutes. The mixed sample is compression-molded at 100 kg / cm 2 by a mold press and then pulverized to produce a granular sample having a particle size of 0.5 to 1.0 mm.

当該粒状試料0.2gを縦型管状炉に設置する。そして、300℃×4時間の処理条件において、NO濃度400ppm、HO10%、残部Nガスを総流量500cc/minで流し、NOxを吸着させる。その後、N雰囲気下で300℃〜700℃まで、10℃/minの昇温速度をもって40分間で昇温する。このとき、脱離してくるNOx濃度を10秒毎に測定し、当該NOx濃度の240点における測定値を積算したNOxの量(脱離面積)を算定する。 0.2 g of the granular sample is placed in a vertical tubular furnace. Then, under the processing conditions of 300 ° C. × 4 hours, NO concentration is 400 ppm, H 2 O is 10%, and the remaining N 2 gas is flowed at a total flow rate of 500 cc / min to adsorb NOx. Thereafter, the temperature is raised from 300 ° C. to 700 ° C. in a N 2 atmosphere at a rate of 10 ° C./min for 40 minutes. At this time, the desorbed NOx concentration is measured every 10 seconds, and the amount of NOx (desorption area) obtained by integrating the measured values at 240 points of the NOx concentration is calculated.

[X線回折測定]
測定は、2θ=20〜70度の範囲で行う。測定条件は、管球としてCo管球を使用し、管電圧40kV・管電流30mAとする。X線回折装置は、株式会社リガク製・X線回折装置RINT−2100若しくはこの装置の同等品を使用できる。
[X-ray diffraction measurement]
The measurement is performed in the range of 2θ = 20 to 70 degrees. As measurement conditions, a Co tube is used as the tube, and the tube voltage is 40 kV and the tube current is 30 mA. As the X-ray diffractometer, X-ray diffractometer RINT-2100 manufactured by Rigaku Corporation or an equivalent of this apparatus can be used.

[硫黄被毒処理]
本発明に係る共存物質と浄化触媒成分とを所定の混合比となるように秤量し、乳鉢にて15分混合して、排気ガス浄化材を作製する。当該排気ガス浄化材を、それぞれ金型プレスにより100kg/cmで圧縮成形後、粉砕して、粒子径1.0〜2.0mmの粒状試料を作製する。
[Sulfur poisoning treatment]
The coexisting substance according to the present invention and the purification catalyst component are weighed so as to have a predetermined mixing ratio, and mixed in a mortar for 15 minutes to produce an exhaust gas purification material. The exhaust gas purification material is compressed and molded at 100 kg / cm 2 by a die press, and then pulverized to produce a granular sample having a particle size of 1.0 to 2.0 mm.

粒状試料3gを縦型管状炉に設置する。そして、300℃×10時間の処理条件において、SO濃度200ppm、O10%、HO10%、残部Nガスを総流量500cc/minで流し、硫黄被毒処理を行う。
当該硫黄被毒処理後の試料を、硫黄処理後試料とする。
A granular sample (3 g) is placed in a vertical tubular furnace. Then, under the processing conditions of 300 ° C. × 10 hours, sulfur poisoning treatment is performed by flowing an SO 2 concentration of 200 ppm, O 2 10%, H 2 O 10%, and the remaining N 2 gas at a total flow rate of 500 cc / min.
Let the sample after the said sulfur poisoning process be a sample after sulfur treatment.

排気ガス浄化材の硫黄を脱離するために、硫黄処理後試料を縦型管状炉に設置する。そして、650℃×10分間の処理条件において、CO0.9%、C375ppm、CO10%、H0.3%、HO10%、残部Nガスを総流量5L/minで流し、還元処理を実施する。還元処理後の試料を還元処理後試料とする。 In order to desorb sulfur from the exhaust gas purifying material, the sulfur-treated sample is placed in a vertical tubular furnace. Then, under the processing conditions of 650 ° C. × 10 minutes, CO 0.9%, C 3 H 6 375 ppm, CO 2 10%, H 2 0.3%, H 2 O 10%, and the balance N 2 gas at a total flow rate of 5 L / min. And carry out a reduction treatment. The sample after the reduction treatment is used as the sample after the reduction treatment.

還元処理後試料をマッフル炉に設置する。そして、650℃×10分間の処理条件において、大気雰囲気で酸化処理を実施する。そして、得られた硫黄被毒処理、還元処理、および酸化処理を施された試料を再生後試料とする。すなわち、本硫黄被毒処理によって、硫黄処理後試料、還元処理後試料、再生後試料の3種類の試料を得る。
尚、各処理後の粒状試料は、乳鉢にて解粒する。
The sample after reduction is placed in a muffle furnace. Then, oxidation treatment is performed in an air atmosphere under the treatment conditions of 650 ° C. × 10 minutes. Then, the obtained sample subjected to sulfur poisoning treatment, reduction treatment, and oxidation treatment is used as a regenerated sample. That is, by this sulfur poisoning treatment, three types of samples are obtained: a sample after sulfur treatment, a sample after reduction treatment, and a sample after regeneration.
In addition, the granular sample after each process is pulverized in a mortar.

[PM燃焼温度評価]
前記硫黄被毒処理評価にて調製した、硫黄処理前試料、硫黄処理後試料および再生後試料を準備する。一方、模擬PMとして市販のカーボンブラック(三菱化学株式会社製)若しくはこの材料の同等品を準備する。
[PM combustion temperature evaluation]
A sample before sulfur treatment, a sample after sulfur treatment, and a sample after regeneration prepared by the sulfur poisoning treatment evaluation are prepared. On the other hand, commercially available carbon black (manufactured by Mitsubishi Chemical Corporation) or an equivalent of this material is prepared as a simulated PM.

そして、硫黄処理前試料とカーボンブラックの質量比が6:1になるように秤量し、自動乳鉢機(石川工場製AGA型)若しくはこの装置の同等品で20分混合し、硫黄処理前試料とカーボンブラックとの混合粉体を得る。同様に、硫黄処理後試料とカーボンブラックとの混合粉体、再生後試料とカーボンブラックとの混合粉体も調製する。   Then, weigh the sample before sulfur treatment and carbon black so that the mass ratio is 6: 1 and mix for 20 minutes with an automatic mortar machine (AGA type manufactured by Ishikawa Factory) or an equivalent of this device. A mixed powder with carbon black is obtained. Similarly, a mixed powder of a sample after sulfur treatment and carbon black, and a mixed powder of a sample after regeneration and carbon black are also prepared.

当該混合粉体20mgを、熱重量、示差熱測定(TG/DTA)装置に設置し、昇温速度10℃/分にて50℃から700℃まで大気中で昇温し、重量測定を行う。尚、熱重量、示差熱測定(TG/DTA)装置は、セイコーインスツルメンツ株式会社製、TG/DTA6300型)若しくはこの装置の同等品を用い、DTAのピーク強度が最大になる点をもって、カーボンブラックの燃焼温度とする。   20 mg of the mixed powder is placed in a thermogravimetric / differential calorimetry (TG / DTA) apparatus, and the temperature is raised from 50 ° C. to 700 ° C. in the air at a heating rate of 10 ° C./min, and weight measurement is performed. Note that the thermogravimetric and differential thermal measurement (TG / DTA) equipment is Seiko Instruments Inc., TG / DTA6300 type) or an equivalent of this equipment. Let it be the combustion temperature.

(実施例1)
[浄化触媒成分合成]
濃度0.2mol/Lの硝酸セリウム溶液を調製した。当該溶液を撹拌しながら、液温を25℃に調整した。当該液温が25℃に達した段階で、当該溶液へ沈殿剤として炭酸アンモニウムを添加しながら、当該水溶液をpH=8に調整し沈殿物を生成した。生成した沈殿物を、濾過して回収した後、水洗し、125℃で乾燥し前駆体粉を得た。次に、当該前駆体粉を、大気雰囲気下において800℃、2時間で熱処理して焼成しCeOを含む浄化触媒成分を得た。得られた浄化触媒成分のX線回折パターンを図1に示す。
Example 1
[Purification catalyst component synthesis]
A cerium nitrate solution having a concentration of 0.2 mol / L was prepared. The liquid temperature was adjusted to 25 ° C. while stirring the solution. When the liquid temperature reached 25 ° C., ammonium carbonate was added as a precipitant to the solution, and the aqueous solution was adjusted to pH = 8 to generate a precipitate. The produced precipitate was collected by filtration, washed with water, and dried at 125 ° C. to obtain a precursor powder. Next, the precursor powder was calcined by heat treatment at 800 ° C. for 2 hours in an air atmosphere to obtain a purification catalyst component containing CeO 2 . The X-ray diffraction pattern of the obtained purification catalyst component is shown in FIG.

[共存物質合成]
硝酸バリウムと硝酸ビスマスとを、バリウム元素とビスマス元素のモル比が0.5:0.5となるように混合し、溶液中のモル濃度の合計が0.2mol/Lとなるように水を添加して原料溶液を得た。この溶液を撹拌しながら溶液の温度を25℃に調整し、温度が25℃に達した段階で、沈殿剤として炭酸アンモニウムを添加しながら、pH=8に調整し沈殿物を生成した。生成した沈殿物を、濾過して回収した後、水洗し、125℃で乾燥し前駆体粉を得た。次に、当該前駆体粉を、大気雰囲気下において800℃、5時間で熱処理して焼成しBaBiOを含む共存物質を得た。得られた共存物質のX線回折パターンを図2に示す。
[Synthesis of coexisting substances]
Barium nitrate and bismuth nitrate are mixed so that the molar ratio of barium element to bismuth element is 0.5: 0.5, and water is added so that the total molar concentration in the solution is 0.2 mol / L. This was added to obtain a raw material solution. While stirring this solution, the temperature of the solution was adjusted to 25 ° C., and when the temperature reached 25 ° C., ammonium carbonate was added as a precipitating agent, and the pH was adjusted to 8 to produce a precipitate. The produced precipitate was collected by filtration, washed with water, and dried at 125 ° C. to obtain a precursor powder. Next, the precursor powder was baked by heat treatment at 800 ° C. for 5 hours in an air atmosphere to obtain a coexisting substance containing BaBiO 3 . The X-ray diffraction pattern of the obtained coexisting substance is shown in FIG.

[排気ガス浄化材合成]
浄化触媒成分と共存物質とを、浄化触媒成分と共存物質の質量比が6:4になるように秤量し、乳鉢で15分間混合し排気ガス浄化材を得た。
[Exhaust gas purification material synthesis]
The purification catalyst component and the coexisting substance were weighed so that the mass ratio of the purification catalyst component and the coexistence substance was 6: 4 and mixed in a mortar for 15 minutes to obtain an exhaust gas purification material.

なお、実施例1〜7,12で得られた排気ガス浄化材について、BET法により比表面積を求めた。測定はユアサイオニクス製の4ソーブUSを用いて行った。また、レーザー回折式粒度分布測定法により体積基準の粒度分布を測定した。測定はヘロス粒度分布測定装置(HELOS&RODOS)を用いた。これらの測定結果を表1に示す。   In addition, about the exhaust-gas purification material obtained in Examples 1-7, 12, the specific surface area was calculated | required by BET method. The measurement was carried out using 4 Saab US made by Your Sonics. Further, the volume-based particle size distribution was measured by a laser diffraction particle size distribution measuring method. The measurement used a Helos particle size distribution measuring device (HELOS & RODOS). These measurement results are shown in Table 1.

(実施例2)
[浄化触媒成分合成]
実施例1と同様の操作を行って実施例2に係るCeOを含む浄化触媒成分を得た。
(Example 2)
[Purification catalyst component synthesis]
The same operation as in Example 1 was performed to obtain a purification catalyst component containing CeO 2 according to Example 2.

[共存物質合成]
共存物質をBaBiOを含むものからSrBiを含むものに代替した以外は、実施例1と同様の操作を行って実施例2に係る共存物質を得た。
[Synthesis of coexisting substances]
A coexisting substance according to Example 2 was obtained by performing the same operation as in Example 1 except that the coexisting substance was replaced with a substance containing SrBi 4 O 7 from that containing BaBiO 3 .

[排気ガス浄化材合成]
浄化触媒成分と共存物質とを、浄化触媒成分と共存物質の質量比が67:33になるように秤量し、乳鉢で15分間混合し実施例2に係る排気ガス浄化材を得た。
[Exhaust gas purification material synthesis]
The purification catalyst component and the coexisting substance were weighed so that the mass ratio of the purification catalyst component and the coexistence substance was 67:33 and mixed in a mortar for 15 minutes to obtain an exhaust gas purification material according to Example 2.

(実施例3)
[浄化触媒成分合成]
実施例1と同様の操作を行って実施例3に係るCeOを含む浄化触媒成分を得た。
(Example 3)
[Purification catalyst component synthesis]
The same operation as in Example 1 was performed to obtain a purification catalyst component containing CeO 2 according to Example 3.

[共存物質合成]
共存物質をBaBiOを含むものからSrZrOを含むものに代替した以外は、実施例1と同様の操作を行って実施例3に係る共存物質を得た。
[Synthesis of coexisting substances]
A coexisting substance according to Example 3 was obtained by performing the same operation as in Example 1 except that the coexisting substance was replaced with a substance containing SrZrO 3 from one containing BaBiO 3 .

[排気ガス浄化材合成]
浄化触媒成分と共存物質とを、浄化触媒成分と共存物質の質量比が70:30になるように秤量し、乳鉢で15分間混合し実施例3に係る排気ガス浄化材を得た。
[Exhaust gas purification material synthesis]
The purification catalyst component and the coexisting substance were weighed so that the mass ratio of the purification catalyst component and the coexistence substance was 70:30, and mixed in a mortar for 15 minutes to obtain an exhaust gas purification material according to Example 3.

(比較例1)
[浄化触媒成分合成]
実施例1と同様の操作を行って比較例1に係るCeOを含む浄化触媒成分を得た。
(Comparative Example 1)
[Purification catalyst component synthesis]
The same operation as in Example 1 was performed to obtain a purified catalyst component containing CeO 2 according to Comparative Example 1.

[共存物質合成]
共存物質は、合成しなかった。
[Synthesis of coexisting substances]
Coexisting materials were not synthesized.

[排気ガス浄化材合成]
浄化触媒成分のみを乳鉢で15分間混合し、比較例1に係る排気ガス浄化材を得た。
[Exhaust gas purification material synthesis]
Only the purification catalyst component was mixed in a mortar for 15 minutes to obtain an exhaust gas purification material according to Comparative Example 1.

(実施例1〜3と比較例1との比較評価)
実施例1〜3と比較例1との関係について説明する。浄化触媒成分のみからなる比較例1に対し、実施例1は、比較例1に係る浄化触媒成分に対し40質量%の共存物質(BaBiO)を共存させたものであり、実施例2は、比較例1に係る浄化触媒成分に対し33質量%の共存物質(SrBi)を共存させたものであり、実施例3は、比較例1に係る浄化触媒成分に対し30質量%の共存物質(SrZrO)を共存させたものである。
(Comparative evaluation between Examples 1 to 3 and Comparative Example 1)
The relationship between Examples 1 to 3 and Comparative Example 1 will be described. In contrast to Comparative Example 1 consisting only of the purification catalyst component, Example 1 is one in which 40% by mass of a coexisting substance (BaBiO 3 ) coexists with the purification catalyst component according to Comparative Example 1, and Example 2 33% by mass of a coexisting substance (SrBi 4 O 7 ) coexists with the purification catalyst component according to Comparative Example 1, and Example 3 has 30% by mass with respect to the purification catalyst component according to Comparative Example 1. A substance (SrZrO 3 ) coexists.

ここで、実施例1〜3と比較例1とに係る評価結果から、得られた実施例1〜3に係る排気ガス浄化材を構成する浄化触媒成分と共存物質の評価を行った。当該評価は、酸性ガスへの親和性評価および硫黄被毒処理で得た試料のPM燃焼温度評価にて行った。   Here, from the evaluation results according to Examples 1 to 3 and Comparative Example 1, the purification catalyst component and the coexisting substances constituting the exhaust gas purification material according to Examples 1 to 3 obtained were evaluated. The said evaluation was performed in the PM combustion temperature evaluation of the sample obtained by affinity evaluation to acid gas, and the sulfur poisoning process.

[酸性ガスへの親和性評価]
〈実施例1の評価〉
実施例1に係る排気ガス浄化材を構成すると共存物質と、比較例1に係る浄化触媒成分とに対し、酸性ガスへの親和性評価を行った。
[Affinity Evaluation for Acid Gas]
<Evaluation of Example 1>
When the exhaust gas purifying material according to Example 1 was configured, the compatibility with acidic gas was evaluated for the coexisting substances and the purifying catalyst component according to Comparative Example 1.

尚、比較例1に係る浄化触媒成分に対する酸性ガスへの親和性評価は、共存物質を浄化触媒成分に代替した以外は、共存物質に対する酸性ガスへの親和性評価と同様の操作を行った。   In addition, the affinity evaluation with respect to the acidic gas with respect to the purification catalyst component which concerns on the comparative example 1 performed operation similar to the affinity evaluation with respect to the acidic gas with respect to a coexisting substance except having replaced the coexisting substance with the purification catalyst component.

当該酸性ガスへの親和性評価結果より、比較例1に係る浄化触媒成分の酸性ガスへの親和性と、実施例1に係る共存物質の酸性ガスへの親和性は、脱離面積の比率を用いて表記したとき、浄化触媒成分:共存物質=1.0:15.0となった。即ち、実施例1に係る共存物質の方が、浄化触媒成分より遙かに多量のNOxを吸着できることが判明した。   From the affinity evaluation result to the acid gas, the affinity of the purification catalyst component according to Comparative Example 1 to the acid gas and the affinity of the coexisting substance according to Example 1 to the acid gas are determined by the ratio of the desorption area. When used, the purification catalyst component: the coexisting substance = 1.0: 15.0. That is, it was found that the coexisting substance according to Example 1 can adsorb much more NOx than the purification catalyst component.

また、実施例1に係る共存物質の脱離曲線における最大点の温度は、浄化触媒成分のそれと比較して13℃高温であった。
以上の結果から、実施例1に係る共存物質は、浄化触媒成分より酸性ガスに対し親和性が高いことが判明した。
なお、脱離曲線とは、横軸に温度(時間)、縦軸にNOx濃度をとって得られた曲線を示す。
Moreover, the maximum point temperature in the desorption curve of the coexisting substance according to Example 1 was 13 ° C. higher than that of the purification catalyst component.
From the above results, it was found that the coexisting substance according to Example 1 has higher affinity for the acidic gas than the purification catalyst component.
The desorption curve is a curve obtained by taking temperature (time) on the horizontal axis and NOx concentration on the vertical axis.

〈実施例2の評価〉
得られた実施例2に係る排気ガス浄化材の酸性ガスへの親和性評価を、実施例1と同様に行った。
<Evaluation of Example 2>
Evaluation of the affinity of the obtained exhaust gas purifying material according to Example 2 for acidic gas was performed in the same manner as in Example 1.

当該酸性ガスへの親和性評価結果より、比較例1に係る浄化触媒成分の酸性ガスへの親和性と、実施例2に係る共存物質の酸性ガスへの親和性は、脱離面積の比率を用いて表記したとき、浄化触媒成分:共存物質=1.0:10.1となった。即ち、実施例2に係る共存物質の方が、浄化触媒成分より遙かに多量のNOxを吸着できることが判明した。   From the results of the affinity evaluation to the acid gas, the affinity of the purification catalyst component according to Comparative Example 1 to the acid gas and the affinity of the coexisting substance according to Example 2 to the acid gas are determined by the ratio of the desorption area. When used, the purification catalyst component: the coexisting substance = 1.0: 10.1. That is, it was found that the coexisting substance according to Example 2 can adsorb much more NOx than the purification catalyst component.

また、実施例2に係る共存物質の脱離曲線における最大点の温度は、浄化触媒成分のそれと比較して10℃高温であった。
以上の結果から、実施例2に係る共存物質は、浄化触媒成分より酸性ガスに対し親和性が高いことが判明した。
Moreover, the maximum point temperature in the desorption curve of the coexisting substance according to Example 2 was 10 ° C. higher than that of the purification catalyst component.
From the above results, it was found that the coexisting substance according to Example 2 has higher affinity for acidic gas than the purification catalyst component.

[硫黄被毒処理によって得た試料のPM燃焼温度評価]
〈実施例1の評価〉
実施例1と比較例1とに係る排気ガス浄化材に対し、上述した硫黄被毒処理で得た試料のPM燃焼温度評価を行った。その評価結果を表1および図3に示す。図3は、縦軸にカーボンブラックの燃焼温度をとり、硫黄処理前試料の燃焼温度を斜線、硫黄処理後試料の燃焼温度を無地、再生後試料の燃焼温度を格子線で表記した棒グラフである。尚、後述する図4〜6も同様である。
[PM combustion temperature evaluation of samples obtained by sulfur poisoning]
<Evaluation of Example 1>
The PM combustion temperature evaluation of the sample obtained by the above-described sulfur poisoning treatment was performed on the exhaust gas purifying material according to Example 1 and Comparative Example 1. The evaluation results are shown in Table 1 and FIG. FIG. 3 is a bar graph in which the combustion temperature of carbon black is plotted on the vertical axis, the combustion temperature of the sample before sulfur treatment is hatched, the combustion temperature of the sample after sulfur treatment is plain, and the combustion temperature of the sample after regeneration is represented by a grid line. . The same applies to FIGS. 4 to 6 described later.

当該評価結果より、次のことが明らかとなった。即ち、実施例1に係る排気ガス浄化材においては、共存物質の存在により硫黄被毒処理後におけるカーボンブラックの燃焼温度の上昇が22℃であり、比較例1の当該燃焼温度162℃上昇より大幅に抑制されている。   From the evaluation results, the following became clear. That is, in the exhaust gas purifying material according to Example 1, the increase in the combustion temperature of carbon black after sulfur poisoning treatment is 22 ° C. due to the presence of the coexisting substances, which is significantly higher than the increase in the combustion temperature 162 ° C. in Comparative Example 1. Is suppressed.

実施例1および比較例1に係る浄化触媒成分に対して、実施例1に係る共存物質のカーボンブラックの燃焼温度は、当該浄化触媒成分と比較して50℃以上高い。さらに、実施例1に係る排気ガス浄化材中の浄化触媒成分は60質量%であり、比較例1に係る排気ガス浄化材中の浄化触媒成分は100質量%である。つまり、実施例1に係る排気ガス浄化材中の浄化触媒成分は、比較例1に係る排気ガス浄化材中の浄化触媒成分より少ないにも関わらず、共存物質の混合により硫黄処理後におけるカーボンブラックの燃焼温度の上昇が大幅に抑制されている。これは、実施例1に係る排気ガス浄化材では、共存物質の存在により、硫黄が共存物質に選択的に吸着され、浄化触媒成分への硫黄の吸着が抑制された効果であると考えられる。   Compared with the purification catalyst component according to Example 1 and Comparative Example 1, the combustion temperature of the coexisting material carbon black according to Example 1 is higher by 50 ° C. or more than the purification catalyst component. Furthermore, the purification catalyst component in the exhaust gas purification material according to Example 1 is 60% by mass, and the purification catalyst component in the exhaust gas purification material according to Comparative Example 1 is 100% by mass. That is, although the purification catalyst component in the exhaust gas purification material according to Example 1 is less than the purification catalyst component in the exhaust gas purification material according to Comparative Example 1, the carbon black after sulfur treatment by mixing of coexisting substances The increase in the combustion temperature is greatly suppressed. This is considered to be the effect that the exhaust gas purifying material according to Example 1 has an effect that sulfur is selectively adsorbed by the coexisting substance due to the presence of the coexisting substance and the adsorption of sulfur to the purification catalyst component is suppressed.

また、実施例1に係る排気ガス浄化材では、再生後のカーボンブラックの燃焼温度は処理前と比較して16℃の上昇に留まっており、共存物質の存在により、再生が促進されていることが解る。これに対し、比較例1に係る排気ガス浄化材は、浄化触媒成分のみで構成されているため、再生後のカーボンブラックの燃焼温度は処理前と比較して63℃高く、十分に再生されていないことが解る。   Further, in the exhaust gas purifying material according to Example 1, the combustion temperature of the carbon black after regeneration remains at an increase of 16 ° C. compared with that before the treatment, and regeneration is promoted by the presence of coexisting substances. I understand. On the other hand, since the exhaust gas purifying material according to Comparative Example 1 is composed only of the purifying catalyst component, the combustion temperature of the carbon black after regeneration is 63 ° C. higher than that before the treatment and is sufficiently regenerated. I understand that there is not.

つまり、実施例1に係る共存物質は「硫黄処理後の劣化を抑制」、「再生促進」の両方に大きな効果があることが判明した。   That is, it was found that the coexisting substance according to Example 1 has a great effect on both “suppression of deterioration after sulfur treatment” and “promotion of regeneration”.

ここで、「硫黄処理後の劣化を抑制」は、共存物質と含硫黄酸性ガスとの親和性が寄与していると考えられるが、「再生促進」は親和性のほかに何かしらの影響が働いていると思われものの、そのメカニズム自体は未だ不明である。   Here, “suppression of deterioration after sulfur treatment” is thought to be due to the affinity between the coexisting substances and the sulfur-containing acidic gas, but “regeneration promotion” has some effect in addition to the affinity. The mechanism itself is still unknown.

尚、共存物質の存在が「硫黄処理後の劣化を抑制」、「再生促進」の両方に大きな効果があることは、後述する実施例2〜12においても同様であるが、やはり、そのメカニズム自体は未だ不明である。   Note that the presence of the coexisting substances has a great effect on both “suppression of deterioration after sulfur treatment” and “acceleration of regeneration” as in Examples 2 to 12 described later. Is still unknown.

〈実施例2の評価〉
実施例2と比較例1とに係る排気ガス浄化材に対し、上述した硫黄被毒処理によって得られた試料のPM燃焼温度評価を行った。その評価結果を表1および図3に示す。当該評価結果より、次のことが明らかとなった。即ち、実施例2に係る排気ガス浄化材においては、共存物質の存在により硫黄被毒処理後におけるカーボンブラックの燃焼温度の上昇が80℃であり、比較例1の当該燃焼温度の上昇より大幅に抑制されている。
<Evaluation of Example 2>
The PM combustion temperature evaluation of the sample obtained by the sulfur poisoning process described above was performed on the exhaust gas purifying materials according to Example 2 and Comparative Example 1. The evaluation results are shown in Table 1 and FIG. From the evaluation results, the following became clear. That is, in the exhaust gas purifying material according to Example 2, the increase in the combustion temperature of carbon black after sulfur poisoning treatment is 80 ° C. due to the presence of coexisting substances, which is significantly higher than the increase in the combustion temperature in Comparative Example 1. It is suppressed.

実施例2に係る排気ガス浄化材中の浄化触媒成分は67質量%であり、比較例1に係る排気ガス浄化材中の浄化触媒成分は100質量%である。つまり、実施例2に係る排気ガス浄化材中の浄化触媒成分は、比較例1に係る排気ガス浄化材中の浄化触媒成分より少ないにも関わらず、共存物質の混合により硫黄処理後におけるカーボンブラックの燃焼温度の上昇が大幅に抑制されている。これは、実施例2に係る排気ガス浄化材では、共存物質の共存により、硫黄が共存物質に選択的に吸着され、浄化触媒成分への硫黄の吸着が抑制された効果であると考えられる。   The purification catalyst component in the exhaust gas purification material according to Example 2 is 67% by mass, and the purification catalyst component in the exhaust gas purification material according to Comparative Example 1 is 100% by mass. That is, although the purification catalyst component in the exhaust gas purification material according to Example 2 is less than the purification catalyst component in the exhaust gas purification material according to Comparative Example 1, the carbon black after sulfur treatment by mixing coexisting substances The increase in the combustion temperature is greatly suppressed. This is considered to be due to the effect that in the exhaust gas purifying material according to Example 2, sulfur is selectively adsorbed by the coexisting substance due to the coexistence of the coexisting substance, and the adsorption of sulfur to the purification catalyst component is suppressed.

また、実施例2に係る排気ガス浄化材では、再生後のカーボンブラックの燃焼温度は処理前と比較して4℃低下しており、共存物質の存在により、再生が促進されていることが解る。
つまり、実施例2に係る共存物質は「硫黄処理後の劣化を抑制」、「再生促進」の両方に大きな効果があることが判明した。
Moreover, in the exhaust gas purifying material according to Example 2, the combustion temperature of the carbon black after regeneration is lowered by 4 ° C. compared with that before treatment, and it can be seen that regeneration is promoted by the presence of coexisting substances. .
That is, it was found that the coexisting substance according to Example 2 has a great effect on both “suppressing deterioration after sulfur treatment” and “promotion of regeneration”.

〈実施例3の評価〉
実施例3と比較例1とに係る排気ガス浄化材に対し、上述した硫黄被毒処理によって得られた試料のPM燃焼温度評価を行った。その評価結果を表1および図3に示す。図3において処理前を(1)、硫黄処理後を(2)、再生後を(3)で表し、各棒グラフの上に記した(以後の図でも同じ)。当該評価結果より、次のことが明らかとなった。即ち、実施例3に係る排気ガス浄化材においては、共存物質の存在により硫黄被毒処理後におけるカーボンブラックの燃焼温度の上昇が49℃であり、比較例1の当該燃焼温度の上昇より大幅に抑制されている。
<Evaluation of Example 3>
The PM combustion temperature evaluation of the sample obtained by the sulfur poisoning process described above was performed on the exhaust gas purifying material according to Example 3 and Comparative Example 1. The evaluation results are shown in Table 1 and FIG. In FIG. 3, (1) before the treatment, (2) after the sulfur treatment, and (3) after the regeneration are shown on each bar graph (the same applies to the subsequent figures). From the evaluation results, the following became clear. That is, in the exhaust gas purifying material according to Example 3, the increase in the combustion temperature of carbon black after sulfur poisoning treatment is 49 ° C. due to the presence of coexisting substances, which is significantly higher than the increase in the combustion temperature in Comparative Example 1. It is suppressed.

実施例3および比較例1に係る浄化触媒成分に対して、実施例3に係る共存物質のカーボンブラックの燃焼温度は、当該浄化触媒成分と比較して120℃以上高い。さらに、実施例3に係る排気ガス浄化材中の浄化触媒成分は70質量%であり、比較例1に係る排気ガス浄化材中の浄化触媒成分は100質量%である。つまり、実施例3に係る排気ガス浄化材中の浄化触媒成分は、比較例1に係る排気ガス浄化材中の浄化触媒成分より少ないにも関わらず、共存物質の混合により硫黄処理後におけるカーボンブラックの燃焼温度の上昇が大幅に抑制されている。これは、実施例3に係る排気ガス浄化材では、共存物質の共存により、硫黄が共存物質に選択的に吸着され、浄化触媒成分への硫黄の吸着が抑制された効果であると考えられる。   Compared to the purification catalyst component according to Example 3 and Comparative Example 1, the combustion temperature of the coexisting substance carbon black according to Example 3 is 120 ° C. or more higher than that of the purification catalyst component. Furthermore, the purification catalyst component in the exhaust gas purification material according to Example 3 is 70% by mass, and the purification catalyst component in the exhaust gas purification material according to Comparative Example 1 is 100% by mass. That is, although the purification catalyst component in the exhaust gas purification material according to Example 3 is less than the purification catalyst component in the exhaust gas purification material according to Comparative Example 1, the carbon black after sulfur treatment by mixing of coexisting substances The increase in the combustion temperature is greatly suppressed. This is considered to be due to the effect that in the exhaust gas purifying material according to Example 3, sulfur is selectively adsorbed by the coexisting substances due to the coexistence of the coexisting substances, and the adsorption of sulfur to the purification catalyst component is suppressed.

また、実施例3に係る排気ガス浄化材では、再生後のカーボンブラックの燃焼温度は処理前と比較して17℃の上昇に留まっており、共存物質の存在により、再生が促進されていることが解る。
つまり、実施例3に係る共存物質は「硫黄処理後の劣化を抑制」、「再生促進」の両方に大きな効果があることが判明した。
In addition, in the exhaust gas purifying material according to Example 3, the combustion temperature of the carbon black after regeneration remains only 17 ° C. higher than that before treatment, and regeneration is promoted by the presence of coexisting substances. I understand.
That is, it was found that the coexisting substance according to Example 3 has a great effect on both “suppressing deterioration after sulfur treatment” and “promotion of regeneration”.

(実施例4)
[浄化触媒成分合成]
浄化触媒成分をCeOからCe0.9Bi0.12+δに代替した以外は、実施例1と同様の操作を行って実施例4に係る浄化触媒成分を得た。
Example 4
[Purification catalyst component synthesis]
A purification catalyst component according to Example 4 was obtained by performing the same operation as in Example 1 except that the purification catalyst component was replaced by Ce 0.9 Bi 0.1 O 2 + δ from CeO 2 .

[共存物質合成]
実施例1と同様の操作を行ってBaBiOを製造し、実施例4に係る共存物質を得た。
[Synthesis of coexisting substances]
The same operation as in Example 1 was performed to produce BaBiO 3 , and a coexisting substance according to Example 4 was obtained.

[排気ガス浄化材合成]
浄化触媒成分と共存物質とを、浄化触媒成分と共存物質の質量比が70:30になるように秤量し、乳鉢で15分間混合し実施例4に係る排気ガス浄化材を得た。
[Exhaust gas purification material synthesis]
The purification catalyst component and the coexisting substance were weighed so that the mass ratio of the purification catalyst component and the coexistence substance was 70:30, and mixed in a mortar for 15 minutes to obtain an exhaust gas purification material according to Example 4.

(比較例2)
[浄化触媒成分合成]
比較例1と同様の操作を行って比較例2に係るCe0.9Bi0.12+δを含む浄化触媒成分を得た。
(Comparative Example 2)
[Purification catalyst component synthesis]
The same operation as Comparative Example 1 was performed to obtain a purification catalyst component containing Ce 0.9 Bi 0.1 O 2 + δ according to Comparative Example 2.

[共存物質合成]
共存物質は、合成しなかった。
[Synthesis of coexisting substances]
Coexisting materials were not synthesized.

[排気ガス浄化材合成]
浄化触媒成分のみを乳鉢で15分間混合し、比較例2に係る排気ガス浄化材を得た。
[Exhaust gas purification material synthesis]
Only the purification catalyst component was mixed in a mortar for 15 minutes to obtain an exhaust gas purification material according to Comparative Example 2.

(実施例4と比較例2との比較評価)
実施例4と比較例2との関係について説明する。浄化触媒成分のみからなる比較例2に対し、実施例4は、比較例2に係る浄化触媒成分に対し30質量%の共存物質(BaBiO)を共存させたものである。
(Comparative evaluation between Example 4 and Comparative Example 2)
The relationship between Example 4 and Comparative Example 2 will be described. In contrast to Comparative Example 2 consisting only of the purification catalyst component, Example 4 is a case where 30% by mass of a coexisting substance (BaBiO 3 ) coexists with the purification catalyst component according to Comparative Example 2.

ここで、実施例4と比較例2とに係る評価結果から、得られた実施例4に係る排気ガス浄化材を構成する浄化触媒成分と共存物質の評価を行った。当該評価は、酸性ガスへの親和性評価および硫黄被毒処理によって得られた試料のPM燃焼温度評価にて行った。   Here, from the evaluation results according to Example 4 and Comparative Example 2, the purification catalyst component and the coexisting substances constituting the exhaust gas purification material according to Example 4 were evaluated. The said evaluation was performed by the affinity combustion to acid gas and PM combustion temperature evaluation of the sample obtained by the sulfur poisoning process.

[酸性ガスへの親和性評価]
実施例4に係る共存物質と、比較例2に係る浄化触媒成分とに対し、酸性ガスへの親和性評価を行った。
[Affinity Evaluation for Acid Gas]
The affinity for acid gas was evaluated for the coexisting substance according to Example 4 and the purification catalyst component according to Comparative Example 2.

その結果、実施例4に係る共存物質と、比較例2に係る浄化触媒成分との酸性ガスの親和性は、脱離面積の比率は浄化触媒成分:共存物質=1.0:14.6と、共存物質の方が、遙かに多量のNOを吸着できることが判明した。 As a result, the affinity of the acidic gas between the coexisting substance according to Example 4 and the purification catalyst component according to Comparative Example 2 is such that the ratio of the desorption area is the purification catalyst component: coexistence substance = 1.0: 14.6. Trip coexisting substance, was found to be capable of adsorbing a large amount of the NO x in much.

また、共存物質の脱離曲線における最大点の温度は、浄化触媒成分のそれと比較して110℃高温のため、共存物質は酸性ガスに対し親和性が高いことが判明した。   Further, since the temperature of the maximum point in the desorption curve of the coexisting substance is 110 ° C. higher than that of the purification catalyst component, it was found that the coexisting substance has a high affinity for acidic gas.

[硫黄被毒処理によって得られた試料のPM燃焼温度評価]
実施例4と比較例2とに係る排気ガス浄化材に対し、上述した含硫黄酸性ガスへの親和性評価を行った。その評価結果を表1および図4に示す。当該評価結果より、次のことが明らかとなった。即ち、実施例4に係る排気ガス浄化材においては、共存物質の存在により硫黄被毒処理後におけるカーボンブラックの燃焼温度の上昇が45℃であり、比較例2の当該燃焼温度154℃上昇より大幅に抑制されている。
[PM combustion temperature evaluation of samples obtained by sulfur poisoning]
The exhaust gas purifying material according to Example 4 and Comparative Example 2 was evaluated for affinity to the above-described sulfur-containing acidic gas. The evaluation results are shown in Table 1 and FIG. From the evaluation results, the following became clear. That is, in the exhaust gas purifying material according to Example 4, the increase in the combustion temperature of carbon black after the sulfur poisoning treatment is 45 ° C. due to the presence of the coexisting substances, which is significantly higher than the increase in the combustion temperature of 154 ° C. in Comparative Example 2. Is suppressed.

実施例4および比較例2に係る浄化触媒成分に対して、実施例4に係る共存物質のカーボンブラックの燃焼温度は、当該浄化触媒成分と比較して50℃以上高い。さらに、実施例4に係る排気ガス浄化材中の浄化触媒成分は70質量%であり、比較例2に係る排気ガス浄化材中の浄化触媒成分は100質量%である。つまり、実施例4に係る排気ガス浄化材中の浄化触媒成分は、比較例2に係る排気ガス浄化材中の浄化触媒成分より少ないにも関わらず、共存物質の混合により硫黄処理後のカーボンブラックの燃焼温度の上昇が大幅に抑制されている。これは、実施例4に係る排気ガス浄化材では、共存物質の共存により、硫黄が共存物質に選択的に吸着され、浄化触媒成分への硫黄の吸着が抑制された効果であると考えられる。   Compared with the purification catalyst component according to Example 4 and Comparative Example 2, the combustion temperature of the coexisting substance carbon black according to Example 4 is higher by 50 ° C. or more than the purification catalyst component. Furthermore, the purification catalyst component in the exhaust gas purification material according to Example 4 is 70% by mass, and the purification catalyst component in the exhaust gas purification material according to Comparative Example 2 is 100% by mass. That is, although the purification catalyst component in the exhaust gas purification material according to Example 4 is less than the purification catalyst component in the exhaust gas purification material according to Comparative Example 2, carbon black after sulfur treatment by mixing of coexisting substances The increase in the combustion temperature is greatly suppressed. This is considered to be due to the effect that in the exhaust gas purifying material according to Example 4, sulfur is selectively adsorbed by the coexisting substances due to the coexistence of the coexisting substances, and the adsorption of sulfur to the purifying catalyst component is suppressed.

また、実施例4に係る排気ガス浄化材では、再生後のカーボンブラックの燃焼温度は処理前と比較して5℃の上昇に留まっており、共存物質の存在により、再生が促進されていることが解る。これに対し、比較例2に係る排気ガス浄化材は、浄化触媒成分のみで構成されているため、再生後のカーボンブラックの燃焼温度は処理前と比較して74℃高く、十分に再生されていないことが解る。   Further, in the exhaust gas purifying material according to Example 4, the combustion temperature of the carbon black after regeneration remains at an increase of 5 ° C. compared with that before treatment, and regeneration is promoted by the presence of coexisting substances. I understand. On the other hand, since the exhaust gas purifying material according to Comparative Example 2 is composed only of the purifying catalyst component, the combustion temperature of the carbon black after regeneration is 74 ° C. higher than that before the treatment and is sufficiently regenerated. I understand that there is not.

(実施例5)
[浄化触媒成分合成]
浄化触媒成分をCeOからCe0.5Bi0.1Pr0.42+δに代替した以外は、実施例1と同様の操作を行って実施例5に係る浄化触媒成分を得た。
(Example 5)
[Purification catalyst component synthesis]
A purification catalyst component according to Example 5 was obtained by performing the same operation as in Example 1 except that the purification catalyst component was replaced with Ce 0.5 Bi 0.1 Pr 0.4 O 2 + δ from CeO 2 .

[共存物質合成]
実施例1と同様の操作を行ってBaBiOを製造し、実施例5に係る共存物質を得た。
[Synthesis of coexisting substances]
The same operation as in Example 1 was performed to produce BaBiO 3 to obtain a coexisting substance according to Example 5.

[排気ガス浄化材合成]
浄化触媒成分と共存物質とを、浄化触媒成分と共存物質の質量比が70:30になるように秤量し、乳鉢で15分間混合し実施例5に係る排気ガス浄化材を得た。
[Exhaust gas purification material synthesis]
The purification catalyst component and the coexisting substance were weighed so that the mass ratio of the purification catalyst component and the coexistence substance was 70:30, and mixed in a mortar for 15 minutes to obtain an exhaust gas purification material according to Example 5.

(実施例6)
[浄化触媒成分合成]
浄化触媒成分をCeOからCe0.5Bi0.1Pr0.42+δに代替した以外は、実施例1と同様の操作を行って実施例6に係る浄化触媒成分を得た。
(Example 6)
[Purification catalyst component synthesis]
A purification catalyst component according to Example 6 was obtained by performing the same operation as in Example 1 except that the purification catalyst component was replaced with Ce 0.5 Bi 0.1 Pr 0.4 O 2 + δ from CeO 2 .

[共存物質合成]
実施例1と同様の操作を行ってSrBiを製造し、実施例6に係る共存物質を得た。
[Synthesis of coexisting substances]
SrBi 4 O 7 was produced in the same manner as in Example 1, and a coexisting substance according to Example 6 was obtained.

[排気ガス浄化材合成]
浄化触媒成分と共存物質とを、浄化触媒成分と共存物質の質量比が50:50になるように秤量し、乳鉢で15分間混合し実施例6に係る排気ガス浄化材を得た。
[Exhaust gas purification material synthesis]
The purification catalyst component and the coexisting substance were weighed so that the mass ratio of the purification catalyst component and the coexistence substance was 50:50 and mixed in a mortar for 15 minutes to obtain an exhaust gas purification material according to Example 6.

(実施例7)
[浄化触媒成分合成]
浄化触媒成分をCeOからCe0.5Bi0.1Pr0.42+δに代替した以外は、実施例1と同様の操作を行って実施例7に係る浄化触媒成分を得た。
(Example 7)
[Purification catalyst component synthesis]
A purification catalyst component according to Example 7 was obtained by performing the same operation as in Example 1 except that the purification catalyst component was replaced with Ce 0.5 Bi 0.1 Pr 0.4 O 2 + δ from CeO 2 .

[共存物質合成]
実施例1と同様の操作を行ってSr0.3Bi0.7δを製造し、実施例7に係る共存物質を得た。
[Synthesis of coexisting substances]
The same operation as in Example 1 was performed to produce Sr 0.3 Bi 0.7 O δ , and a coexisting substance according to Example 7 was obtained.

[排気ガス浄化材合成]
浄化触媒成分と共存物質とを、浄化触媒成分と共存物質の質量比が60:40になるように秤量し、乳鉢で15分間混合し実施例7に係る排気ガス浄化材を得た。
[Exhaust gas purification material synthesis]
The purification catalyst component and the coexisting substance were weighed so that the mass ratio of the purification catalyst component and the coexistence substance was 60:40 and mixed in a mortar for 15 minutes to obtain an exhaust gas purification material according to Example 7.

(実施例8)
[浄化触媒成分合成]
浄化触媒成分をCeOからCe0.5Bi0.1Pr0.42+δに代替した以外は、実施例1と同様の操作を行って実施例8に係る浄化触媒成分を得た。
(Example 8)
[Purification catalyst component synthesis]
A purification catalyst component according to Example 8 was obtained by performing the same operation as in Example 1 except that the purification catalyst component was replaced with Ce 0.5 Bi 0.1 Pr 0.4 O 2 + δ from CeO 2 .

[共存物質合成]
実施例1と同様の操作を行ってBaZrOを製造し、実施例8に係る共存物質を得た。
[Synthesis of coexisting substances]
BaZrO 3 was produced in the same manner as in Example 1 to obtain a coexisting substance according to Example 8.

[排気ガス浄化材合成]
浄化触媒成分と共存物質とを、浄化触媒成分と共存物質の質量比が76:24になるように秤量し、乳鉢で15分間混合し実施例8に係る排気ガス浄化材を得た。
[Exhaust gas purification material synthesis]
The purification catalyst component and the coexisting substance were weighed so that the mass ratio of the purification catalyst component and the coexistence substance was 76:24, and mixed in a mortar for 15 minutes to obtain an exhaust gas purification material according to Example 8.

(実施例9)
[浄化触媒成分合成]
浄化触媒成分をCeOからCe0.5Bi0.1Pr0.42+δに代替した以外は、実施例1と同様の操作を行って実施例9に係る浄化触媒成分を得た。
Example 9
[Purification catalyst component synthesis]
A purification catalyst component according to Example 9 was obtained by performing the same operation as in Example 1 except that the purification catalyst component was replaced with Ce 0.5 Bi 0.1 Pr 0.4 O 2 + δ from CeO 2 .

[共存物質合成]
実施例1と同様の操作を行ってSrZrOを製造し、実施例9に係る共存物質を得た。
[Synthesis of coexisting substances]
The same operation as in Example 1 was performed to produce SrZrO 3 , and a coexisting substance according to Example 9 was obtained.

[排気ガス浄化材合成]
浄化触媒成分と共存物質とを、浄化触媒成分と共存物質の質量比が80:20になるように秤量し、乳鉢で15分間混合し実施例9に係る排気ガス浄化材を得た。
[Exhaust gas purification material synthesis]
The purification catalyst component and the coexisting substance were weighed so that the mass ratio of the purification catalyst component and the coexistence substance was 80:20, and mixed in a mortar for 15 minutes to obtain an exhaust gas purification material according to Example 9.

(実施例10)
[浄化触媒成分合成]
浄化触媒成分をCeOからCe0.5Bi0.1Pr0.42+δに代替した以外は、実施例1と同様の操作を行って実施例10に係る浄化触媒成分を得た。
(Example 10)
[Purification catalyst component synthesis]
A purification catalyst component according to Example 10 was obtained by performing the same operation as in Example 1 except that the purification catalyst component was replaced with Ce 0.5 Bi 0.1 Pr 0.4 O 2 + δ from CeO 2 .

[共存物質合成]
実施例1と同様の操作を行ってSrAlを製造し、実施例10に係る共存物質を得た。
[Synthesis of coexisting substances]
The same operation as in Example 1 was performed to produce Sr 3 Al 2 O 6 , and a coexisting material according to Example 10 was obtained.

[排気ガス浄化材合成]
浄化触媒成分と共存物質とを、浄化触媒成分と共存物質の質量比が77:23になるように秤量し、乳鉢で15分間混合し実施例10に係る排気ガス浄化材を得た。
[Exhaust gas purification material synthesis]
The purification catalyst component and the coexisting substance were weighed so that the mass ratio of the purification catalyst component and the coexistence substance was 77:23, and mixed in a mortar for 15 minutes to obtain an exhaust gas purification material according to Example 10.

(実施例11)
[浄化触媒成分合成]
浄化触媒成分をCeOからCe0.5Bi0.1Pr0.42+δに代替した以外は、実施例1と同様の操作を行って実施例11に係る浄化触媒成分を得た。
(Example 11)
[Purification catalyst component synthesis]
A purification catalyst component according to Example 11 was obtained by performing the same operation as in Example 1 except that the purification catalyst component was replaced with Ce 0.5 Bi 0.1 Pr 0.4 O 2 + δ from CeO 2 .

[共存物質合成]
実施例1と同様の操作を行ってBaAlを製造し、実施例11に係る共存物質を得た。
[Synthesis of coexisting substances]
BaAl 2 O 4 was produced in the same manner as in Example 1 to obtain a coexisting substance according to Example 11.

[排気ガス浄化材合成]
浄化触媒成分と共存物質とを、浄化触媒成分と共存物質の質量比が78:22になるように秤量し、乳鉢で15分間混合し実施例11に係る排気ガス浄化材を得た。
[Exhaust gas purification material synthesis]
The purification catalyst component and the coexisting substance were weighed so that the mass ratio of the purification catalyst component and the coexistence substance was 78:22, and mixed in a mortar for 15 minutes to obtain an exhaust gas purification material according to Example 11.

(比較例3)
[浄化触媒成分合成]
実施例1と同様の操作を行って比較例3に係るCe0.5Bi0.1Pr0.42+δを含む浄化触媒成分を得た。
(Comparative Example 3)
[Purification catalyst component synthesis]
The same operation as in Example 1 was performed to obtain a purification catalyst component containing Ce 0.5 Bi 0.1 Pr 0.4 O 2 + δ according to Comparative Example 3.

[共存物質合成]
共存物質は、合成しなかった。
[Synthesis of coexisting substances]
Coexisting materials were not synthesized.

[排気ガス浄化材合成]
浄化触媒成分のみを乳鉢で15分間混合し、比較例3に係る排気ガス浄化材を得た。
[Exhaust gas purification material synthesis]
Only the purification catalyst component was mixed in a mortar for 15 minutes to obtain an exhaust gas purification material according to Comparative Example 3.

(実施例5〜11と比較例3との比較評価)
実施例5〜11と比較例3との関係について説明する。浄化触媒成分のみからなる比較例1に対し、実施例5は、比較例3に係る浄化触媒成分に対し30質量%の共存物質(BaBiO)を共存させたものである。実施例6は、比較例3に係る浄化触媒成分に対し50質量%の共存物質(SrBi)を共存させたものである。実施例7は、比較例3に係る浄化触媒成分に対し40質量%の共存物質(Sr0.3Bi0.7δ)を共存させたものである。
(Comparative evaluation between Examples 5-11 and Comparative Example 3)
The relationship between Examples 5-11 and Comparative Example 3 will be described. In contrast to Comparative Example 1 consisting only of the purification catalyst component, Example 5 is a case where 30% by mass of a coexisting substance (BaBiO 3 ) coexists with the purification catalyst component according to Comparative Example 3. In Example 6, 50% by mass of a coexisting substance (SrBi 4 O 7 ) coexists with the purification catalyst component according to Comparative Example 3. In Example 7, 40% by mass of a coexisting substance (Sr 0.3 Bi 0.7 O δ ) coexists with the purification catalyst component according to Comparative Example 3.

実施例8は、比較例3に係る浄化触媒成分に対し24質量%の共存物質(BaZrO)を共存させたものである。実施例9は、比較例3に係る浄化触媒成分に対し20質量%の共存物質(SrZrO)を共存させたものである。実施例10は、比較例3に係る浄化触媒成分に対し23質量%の共存物質(SrAl)を共存させたものである。実施例11は、比較例3に係る浄化触媒成分に対し22質量%の共存物質(BaAl)を共存させたものである。 In Example 8, 24% by mass of a coexisting substance (BaZrO 3 ) coexists with the purification catalyst component according to Comparative Example 3. In Example 9, 20% by mass of a coexisting substance (SrZrO 3 ) coexists with the purification catalyst component according to Comparative Example 3. In Example 10, 23% by mass of a coexisting substance (Sr 3 Al 2 O 6 ) coexists with the purification catalyst component according to Comparative Example 3. In Example 11, 22% by mass of a coexisting substance (BaAl 2 O 4 ) coexists with the purification catalyst component according to Comparative Example 3.

ここで、実施例5〜11と比較例3とに係る評価結果から、得られた実施例5〜11に係る排気ガス浄化材を構成する浄化触媒成分と共存物質の評価を行った。当該評価は、酸性ガスへの親和性評価および硫黄被毒処理によって得られた試料のPM燃焼温度評価にて行った。   Here, from the evaluation results according to Examples 5 to 11 and Comparative Example 3, the purification catalyst components and the coexisting substances constituting the obtained exhaust gas purification materials according to Examples 5 to 11 were evaluated. The said evaluation was performed by the affinity combustion to acid gas and PM combustion temperature evaluation of the sample obtained by the sulfur poisoning process.

[酸性ガスへの親和性評価]
〈実施例5の評価〉
得られた実施例5に係る排気ガス浄化材の酸性ガスへの親和性評価を、実施例1と同様に行った。
[Affinity Evaluation for Acid Gas]
<Evaluation of Example 5>
The affinity evaluation of the obtained exhaust gas purifying material according to Example 5 to acid gas was performed in the same manner as in Example 1.

当該酸性ガスへの親和性評価結果より、比較例3に係る浄化触媒成分の酸性ガスへの親和性と、実施例5に係る共存物質の酸性ガスへの親和性は、脱離面積の比率を用いて表記したとき、浄化触媒成分:共存物質=1.0:5.6となった。即ち、実施例5に係る共存物質の方が、浄化触媒成分より多量のNOxを吸着できることが判明した。   From the results of the affinity evaluation to the acid gas, the affinity of the purification catalyst component according to Comparative Example 3 to the acid gas and the affinity of the coexisting substance according to Example 5 to the acid gas are the ratio of the desorption area. When expressed in terms of purification catalyst component: coexisting substance = 1.0: 5.6. That is, it was found that the coexisting substance according to Example 5 can adsorb a larger amount of NOx than the purification catalyst component.

また、実施例5に係る共存物質の脱離曲線における最大点の温度は、浄化触媒成分のそれと比較して88℃高温であった。
以上の結果から、実施例5に係る共存物質は、浄化触媒成分より酸性ガスに対し親和性が高いことが判明した。
Moreover, the maximum point temperature in the desorption curve of the coexisting substance according to Example 5 was 88 ° C. higher than that of the purification catalyst component.
From the above results, it was found that the coexisting substance according to Example 5 has higher affinity for acidic gas than the purification catalyst component.

〈実施例6の評価〉
得られた実施例6に係る排気ガス浄化材の酸性ガスへの親和性評価を、実施例1と同様に行った。
<Evaluation of Example 6>
The affinity evaluation of the obtained exhaust gas purifying material according to Example 6 to the acid gas was performed in the same manner as in Example 1.

当該酸性ガスへの親和性評価結果より、比較例3に係る浄化触媒成分の酸性ガスへの親和性と、実施例6に係る共存物質の酸性ガスへの親和性は、脱離面積の比率を用いて表記したとき、浄化触媒成分:共存物質=1.0:3.7となった。即ち、実施例6に係る共存物質の方が、浄化触媒成分より多量のNOxを吸着できることが判明した。   From the results of the affinity evaluation to the acid gas, the affinity of the purification catalyst component according to Comparative Example 3 to the acid gas and the affinity of the coexisting substance according to Example 6 to the acid gas are the ratio of the desorption area. When expressed using, purification catalyst component: coexisting substance = 1.0: 3.7. That is, it was found that the coexisting substance according to Example 6 can adsorb a larger amount of NOx than the purification catalyst component.

また、実施例6に係る共存物質の脱離曲線における最大点の温度は、浄化触媒成分のそれと比較して58℃高温であった。
以上の結果から、実施例6に係る共存物質は、浄化触媒成分より酸性ガスに対し親和性が高いことが判明した。
Further, the maximum point temperature in the desorption curve of the coexisting substance according to Example 6 was 58 ° C. higher than that of the purification catalyst component.
From the above results, it was found that the coexisting substance according to Example 6 has higher affinity for the acidic gas than the purification catalyst component.

[硫黄被毒処理によって得られた試料のPM燃焼温度評価]
〈実施例5の評価〉
実施例5と比較例3とに係る排気ガス浄化材に対し、上述した硫黄被毒処理によって得られた試料のPM燃焼温度評価を行った。その評価結果を表1および図5に示す。当該評価結果より、次のことが明らかとなった。即ち、実施例5に係る排気ガス浄化材においては、共存物質の存在により硫黄被毒処理後におけるカーボンブラックの燃焼温度の上昇が、比較例3の当該燃焼温度の上昇より大幅に抑制されている。
[PM combustion temperature evaluation of samples obtained by sulfur poisoning]
<Evaluation of Example 5>
The PM combustion temperature evaluation of the sample obtained by the above-described sulfur poisoning treatment was performed on the exhaust gas purifying materials according to Example 5 and Comparative Example 3. The evaluation results are shown in Table 1 and FIG. From the evaluation results, the following became clear. That is, in the exhaust gas purifying material according to Example 5, the increase in the combustion temperature of carbon black after the sulfur poisoning treatment is significantly suppressed from the increase in the combustion temperature in Comparative Example 3 due to the presence of the coexisting substances. .

実施例5および比較例3に係る浄化触媒成分に対して、実施例5に係る共存物質のカーボンブラックの燃焼温度は、当該浄化触媒成分と比較して50℃以上高い。さらに、実施例5に係る排気ガス浄化材中の浄化触媒成分は70質量%であり、比較例3に係る排気ガス浄化材中の浄化触媒成分は100質量%である。つまり、実施例5に係る排気ガス浄化材中の浄化触媒成分は、比較例3に係る排気ガス浄化材中の浄化触媒成分より少ないにも関わらず、共存物質の混合により硫黄処理後におけるカーボンブラックの燃焼温度の上昇が34℃であり、比較例3の当該燃焼温度の上昇127℃より大幅に抑制されている。これは、実施例5に係る排気ガス浄化材では、共存物質の共存により、硫黄が共存物質に選択的に吸着され、浄化触媒成分への硫黄の吸着が抑制された効果であると考えられる。   Compared with the purification catalyst component according to Example 5 and Comparative Example 3, the combustion temperature of the coexisting substance carbon black according to Example 5 is higher by 50 ° C. or more than the purification catalyst component. Furthermore, the purification catalyst component in the exhaust gas purification material according to Example 5 is 70% by mass, and the purification catalyst component in the exhaust gas purification material according to Comparative Example 3 is 100% by mass. That is, although the purification catalyst component in the exhaust gas purification material according to Example 5 is less than the purification catalyst component in the exhaust gas purification material according to Comparative Example 3, the carbon black after sulfur treatment by mixing of coexisting substances The increase in the combustion temperature was 34 ° C., which was significantly suppressed from the increase in the combustion temperature of Comparative Example 3 at 127 ° C. In the exhaust gas purifying material according to Example 5, it is considered that sulfur is selectively adsorbed by the coexisting substance due to the coexistence of the coexisting substance, and the sulfur adsorption to the purification catalyst component is suppressed.

また、実施例5に係る排気ガス浄化材では、再生後のカーボンブラックの燃焼温度は処理前と比較して10℃の上昇に留まっており、共存物質の存在により、再生が促進されていることが解る。これに対し、比較例3に係る排気ガス浄化材は、浄化触媒成分のみで構成されているため、再生後のカーボンブラックの燃焼温度は処理前と比較して48℃高く、十分に再生されていないことが解る。
つまり、実施例5に係る共存物質は「硫黄処理後の劣化を抑制」、「再生促進」の両方に大きな効果があることが判明した。
Further, in the exhaust gas purifying material according to Example 5, the combustion temperature of the carbon black after regeneration is only increased by 10 ° C. compared with that before the treatment, and regeneration is promoted by the presence of coexisting substances. I understand. On the other hand, since the exhaust gas purifying material according to Comparative Example 3 is composed only of the purifying catalyst component, the combustion temperature of the carbon black after regeneration is 48 ° C. higher than that before the treatment and is sufficiently regenerated. I understand that there is not.
That is, it was found that the coexisting substance according to Example 5 has a great effect on both “suppressing deterioration after sulfur treatment” and “promotion of regeneration”.

〈実施例6の評価〉
実施例6と比較例3とに係る排気ガス浄化材に対し、上述した硫黄被毒処理によって得られた試料のPM燃焼温度評価を行った。その評価結果を表1および図5に示す。当該評価結果より、次のことが明らかとなった。即ち、実施例6に係る排気ガス浄化材においては、共存物質の存在により硫黄被毒処理後におけるカーボンブラックの燃焼温度の上昇が29℃であり、比較例3の当該燃焼温度の上昇より大幅に抑制されている。
<Evaluation of Example 6>
The PM combustion temperature evaluation of the sample obtained by the sulfur poisoning process described above was performed on the exhaust gas purifying materials according to Example 6 and Comparative Example 3. The evaluation results are shown in Table 1 and FIG. From the evaluation results, the following became clear. That is, in the exhaust gas purifying material according to Example 6, the increase in the combustion temperature of carbon black after sulfur poisoning treatment is 29 ° C. due to the presence of coexisting substances, which is significantly higher than the increase in the combustion temperature in Comparative Example 3. It is suppressed.

実施例6に係る排気ガス浄化材中の浄化触媒成分は50質量%であり、比較例3に係る排気ガス浄化材中の浄化触媒成分は100質量%である。つまり、実施例6に係る排気ガス浄化材中の浄化触媒成分は、比較例3に係る排気ガス浄化材中の浄化触媒成分より少ないにも関わらず、共存物質の混合により硫黄処理後におけるカーボンブラックの燃焼温度の上昇が大幅に抑制されている。これは、実施例6に係る排気ガス浄化材では、共存物質の共存により、硫黄が共存物質に選択的に吸着され、浄化触媒成分への硫黄の吸着が抑制された効果であると考えられる。   The purification catalyst component in the exhaust gas purification material according to Example 6 is 50% by mass, and the purification catalyst component in the exhaust gas purification material according to Comparative Example 3 is 100% by mass. That is, although the purification catalyst component in the exhaust gas purification material according to Example 6 is less than the purification catalyst component in the exhaust gas purification material according to Comparative Example 3, the carbon black after sulfur treatment by mixing of coexisting substances The increase in the combustion temperature is greatly suppressed. In the exhaust gas purifying material according to Example 6, it is considered that sulfur is selectively adsorbed by the coexisting substance due to the coexistence of the coexisting substance, and the sulfur adsorption to the purification catalyst component is suppressed.

また、実施例6に係る排気ガス浄化材では、再生後のカーボンブラックの燃焼温度は9℃の上昇に留まっており、共存物質の存在により、再生が促進されていることが解る。
つまり、実施例6に係る共存物質は「硫黄処理後の劣化を抑制」、「再生促進」の両方に大きな効果があることが判明した。
Further, in the exhaust gas purifying material according to Example 6, the combustion temperature of the carbon black after regeneration remains at an increase of 9 ° C., and it can be seen that regeneration is promoted by the presence of coexisting substances.
That is, it was found that the coexisting substance according to Example 6 has a great effect on both “suppressing deterioration after sulfur treatment” and “promotion of regeneration”.

〈実施例7の評価〉
実施例7と比較例3とに係る排気ガス浄化材に対し、上述した硫黄被毒処理によって得られた試料のPM燃焼温度評価を行った。その評価結果を表1および図5に示す。当該評価結果より、次のことが明らかとなった。即ち、実施例7に係る排気ガス浄化材においては、共存物質の存在により硫黄被毒処理後におけるカーボンブラックの燃焼温度の上昇が33℃であり、比較例3の当該燃焼温度の上昇より大幅に抑制されている。
<Evaluation of Example 7>
The PM combustion temperature evaluation of the sample obtained by the sulfur poisoning process described above was performed on the exhaust gas purifying materials according to Example 7 and Comparative Example 3. The evaluation results are shown in Table 1 and FIG. From the evaluation results, the following became clear. That is, in the exhaust gas purifying material according to Example 7, the increase in the combustion temperature of carbon black after sulfur poisoning treatment is 33 ° C. due to the presence of coexisting substances, which is significantly higher than the increase in the combustion temperature in Comparative Example 3. It is suppressed.

実施例7に係る排気ガス浄化材中の浄化触媒成分は60質量%であり、比較例3に係る排気ガス浄化材中の浄化触媒成分は100質量%である。つまり、実施例7に係る排気ガス浄化材中の浄化触媒成分は、比較例3に係る排気ガス浄化材中の浄化触媒成分より少ないにも関わらず、共存物質の混合により硫黄処理後におけるカーボンブラックの燃焼温度の上昇が大幅に抑制されている。これは、実施例7に係る排気ガス浄化材では、共存物質の共存により、硫黄が共存物質に選択的に吸着され、浄化触媒成分への硫黄の吸着が抑制された効果であると考えられる。   The purification catalyst component in the exhaust gas purification material according to Example 7 is 60% by mass, and the purification catalyst component in the exhaust gas purification material according to Comparative Example 3 is 100% by mass. That is, although the purification catalyst component in the exhaust gas purification material according to Example 7 is less than the purification catalyst component in the exhaust gas purification material according to Comparative Example 3, the carbon black after sulfur treatment by mixing of coexisting substances The increase in the combustion temperature is greatly suppressed. This is considered to be due to the effect that in the exhaust gas purifying material according to Example 7, sulfur was selectively adsorbed by the coexisting substances due to the coexistence of the coexisting substances, and the adsorption of sulfur to the purification catalyst component was suppressed.

また、実施例7に係る排気ガス浄化材では、再生後のカーボンブラックの燃焼温度は処理前と比較して11℃の上昇に留まり、共存物質の存在により、再生が促進されていることが解る。
つまり、実施例7に係る共存物質は「硫黄処理後の劣化を抑制」、「再生促進」の両方に大きな効果があることが判明した。
Further, in the exhaust gas purifying material according to Example 7, it can be seen that the combustion temperature of the carbon black after regeneration remains only 11 ° C. higher than that before treatment, and regeneration is promoted by the presence of coexisting substances. .
That is, it was found that the coexisting substance according to Example 7 has a great effect on both “suppressing deterioration after sulfur treatment” and “promotion of regeneration”.

〈実施例8の評価〉
実施例8と比較例3とに係る排気ガス浄化材に対し、上述した硫黄被毒処理によって得られた試料のPM燃焼温度評価を行った。その評価結果を表1および図5に示す。当該評価結果より、次のことが明らかとなった。即ち、実施例8に係る排気ガス浄化材においては、共存物質の存在により硫黄被毒処理後におけるカーボンブラックの燃焼温度の上昇が75℃であり、比較例3の当該燃焼温度の上昇より大幅に抑制されている。
<Evaluation of Example 8>
The PM combustion temperature evaluation of the sample obtained by the above-described sulfur poisoning treatment was performed on the exhaust gas purifying materials according to Example 8 and Comparative Example 3. The evaluation results are shown in Table 1 and FIG. From the evaluation results, the following became clear. That is, in the exhaust gas purifying material according to Example 8, the increase in the combustion temperature of carbon black after sulfur poisoning treatment is 75 ° C. due to the presence of coexisting substances, which is significantly higher than the increase in the combustion temperature in Comparative Example 3. It is suppressed.

実施例8および比較例3に係る浄化触媒成分に対して、実施例8に係る共存物質のカーボンブラックの燃焼温度は、当該浄化触媒成分と比較して100℃以上高い。さらに、実施例8に係る排気ガス浄化材中の浄化触媒成分は76質量%であり、比較例3に係る排気ガス浄化材中の浄化触媒成分は100質量%である。つまり、実施例8に係る排気ガス浄化材中の浄化触媒成分は、比較例3に係る排気ガス浄化材中の浄化触媒成分より少ないにも関わらず、共存物質の混合により硫黄処理後におけるカーボンブラックの燃焼温度の上昇が大幅に抑制されている。これは、実施例8に係る排気ガス浄化材では、共存物質の共存により、硫黄が共存物質に選択的に吸着され、浄化触媒成分への硫黄の吸着が抑制された効果であると考えられる。   Compared to the purification catalyst component according to Example 8 and Comparative Example 3, the combustion temperature of the coexisting material carbon black according to Example 8 is 100 ° C. or more higher than that of the purification catalyst component. Furthermore, the purification catalyst component in the exhaust gas purification material according to Example 8 is 76% by mass, and the purification catalyst component in the exhaust gas purification material according to Comparative Example 3 is 100% by mass. That is, although the purification catalyst component in the exhaust gas purification material according to Example 8 is less than the purification catalyst component in the exhaust gas purification material according to Comparative Example 3, the carbon black after sulfur treatment by mixing of coexisting substances The increase in the combustion temperature is greatly suppressed. This is considered to be due to the effect that in the exhaust gas purifying material according to Example 8, sulfur is selectively adsorbed by the coexisting substance due to the coexistence of the coexisting substance, and the adsorption of sulfur to the purification catalyst component is suppressed.

また、実施例8に係る排気ガス浄化材では、再生後のカーボンブラックの燃焼温度は処理前と比較して23℃の上昇に留まり、共存物質の存在により、再生が促進されていることが解る。
つまり、実施例8に係る共存物質は「硫黄処理後の劣化を抑制」、「再生促進」の両方に大きな効果があることが判明した。
Further, in the exhaust gas purifying material according to Example 8, the combustion temperature of the carbon black after the regeneration remains only 23 ° C. higher than that before the treatment, and it can be seen that the regeneration is promoted by the presence of the coexisting substances. .
That is, it was found that the coexisting substance according to Example 8 has a great effect on both “suppressing deterioration after sulfur treatment” and “promotion of regeneration”.

〈実施例9の評価〉
実施例9と比較例3とに係る排気ガス浄化材に対し、上述した硫黄被毒処理によって得られた試料のPM燃焼温度評価を行った。その評価結果を表1および図5に示す。当該評価結果より、次のことが明らかとなった。即ち、実施例9に係る排気ガス浄化材においては、共存物質の存在により硫黄被毒処理後におけるカーボンブラックの燃焼温度の上昇が47℃であり、比較例3の当該燃焼温度の上昇より大幅に抑制されている。
<Evaluation of Example 9>
The PM combustion temperature evaluation of the sample obtained by the above-described sulfur poisoning treatment was performed on the exhaust gas purifying materials according to Example 9 and Comparative Example 3. The evaluation results are shown in Table 1 and FIG. From the evaluation results, the following became clear. That is, in the exhaust gas purifying material according to Example 9, the increase in the combustion temperature of carbon black after sulfur poisoning treatment due to the presence of coexisting substances is 47 ° C., which is significantly higher than the increase in the combustion temperature in Comparative Example 3. It is suppressed.

実施例9および比較例3に係る浄化触媒成分に対して、実施例9に係る共存物質のカーボンブラックの燃焼温度は、当該浄化触媒成分と比較して100℃以上高い。さらに、実施例9に係る排気ガス浄化材中の浄化触媒成分は80質量%であり、比較例3に係る排気ガス浄化材中の浄化触媒成分は100質量%である。つまり、実施例9に係る排気ガス浄化材中の浄化触媒成分は、比較例3に係る排気ガス浄化材中の浄化触媒成分より少ないにも関わらず、共存物質の混合により硫黄処理後におけるカーボンブラックの燃焼温度の上昇が大幅に抑制されている。これは、実施例9に係る排気ガス浄化材では、共存物質の共存により、硫黄が共存物質に選択的に吸着され、浄化触媒成分への硫黄の吸着が抑制された効果であると考えられる。   Compared with the purification catalyst component according to Example 9 and Comparative Example 3, the combustion temperature of the coexisting substance carbon black according to Example 9 is 100 ° C. or more higher than that of the purification catalyst component. Furthermore, the purification catalyst component in the exhaust gas purification material according to Example 9 is 80% by mass, and the purification catalyst component in the exhaust gas purification material according to Comparative Example 3 is 100% by mass. That is, although the purification catalyst component in the exhaust gas purification material according to Example 9 is less than the purification catalyst component in the exhaust gas purification material according to Comparative Example 3, the carbon black after sulfur treatment by mixing of coexisting substances The increase in the combustion temperature is greatly suppressed. This is considered to be due to the effect that in the exhaust gas purifying material according to Example 9, sulfur is selectively adsorbed by the coexisting substance due to the coexistence of the coexisting substance, and the adsorption of sulfur to the purification catalyst component is suppressed.

また、実施例9に係る排気ガス浄化材では、再生後のカーボンブラックの燃焼温度は処理前と比較して9℃の上昇に留まり、共存物質の存在により、再生が促進されていることが解る。
つまり、実施例9に係る共存物質は「硫黄処理後の劣化を抑制」、「再生促進」の両方に大きな効果があることが判明した。
Further, in the exhaust gas purifying material according to Example 9, it can be seen that the combustion temperature of the carbon black after regeneration remains only 9 ° C. higher than that before treatment, and regeneration is promoted by the presence of coexisting substances. .
That is, it was found that the coexisting substance according to Example 9 has a great effect on both “suppressing deterioration after sulfur treatment” and “promotion of regeneration”.

〈実施例10の評価〉
実施例10と比較例3とに係る排気ガス浄化材に対し、上述した硫黄被毒処理によって得られた試料のPM燃焼温度評価を行った。その評価結果を表1および図5に示す。当該評価結果より、次のことが明らかとなった。即ち、実施例10に係る排気ガス浄化材においては、共存物質の存在により硫黄被毒処理後におけるカーボンブラックの燃焼温度の上昇が64℃であり、比較例3の当該燃焼温度の上昇より大幅に抑制されている。
<Evaluation of Example 10>
The PM combustion temperature evaluation of the sample obtained by the above-described sulfur poisoning treatment was performed on the exhaust gas purifying materials according to Example 10 and Comparative Example 3. The evaluation results are shown in Table 1 and FIG. From the evaluation results, the following became clear. That is, in the exhaust gas purifying material according to Example 10, the increase in the combustion temperature of carbon black after the sulfur poisoning treatment is 64 ° C. due to the presence of the coexisting substances, which is significantly higher than the increase in the combustion temperature in Comparative Example 3. It is suppressed.

実施例10および比較例3に係る浄化触媒成分に対して、実施例10に係る共存物質のカーボンブラックの燃焼温度は、当該浄化触媒成分と比較して150℃以上高い。さらに、実施例7に係る排気ガス浄化材中の浄化触媒成分は80質量%であり、比較例3に係る排気ガス浄化材中の浄化触媒成分は100質量%である。つまり、実施例10に係る排気ガス浄化材中の浄化触媒成分は、比較例3に係る排気ガス浄化材中の浄化触媒成分より少ないにも関わらず、共存物質の混合により硫黄処理後におけるカーボンブラックの燃焼温度の上昇が大幅に抑制されている。これは、実施例10に係る排気ガス浄化材では、共存物質の共存により、硫黄が共存物質に選択的に吸着され、浄化触媒成分への硫黄の吸着が抑制された効果であると考えられる。   Compared with the purification catalyst component according to Example 10 and Comparative Example 3, the combustion temperature of the coexisting material carbon black according to Example 10 is higher by 150 ° C. or more than the purification catalyst component. Furthermore, the purification catalyst component in the exhaust gas purification material according to Example 7 is 80% by mass, and the purification catalyst component in the exhaust gas purification material according to Comparative Example 3 is 100% by mass. That is, although the purification catalyst component in the exhaust gas purification material according to Example 10 is less than the purification catalyst component in the exhaust gas purification material according to Comparative Example 3, the carbon black after sulfur treatment by mixing coexisting substances The increase in the combustion temperature is greatly suppressed. This is considered to be due to the effect that in the exhaust gas purifying material according to Example 10, sulfur is selectively adsorbed by the coexisting substances due to the coexistence of the coexisting substances, and the adsorption of sulfur to the purification catalyst component is suppressed.

また、実施例10に係る排気ガス浄化材では、再生後のカーボンブラックの燃焼温度は処理前と比較して12℃の上昇に留まり、共存物質の存在により、再生が促進されていることが解る。
つまり、実施例10に係る共存物質は「硫黄処理後の劣化を抑制」、「再生促進」の両方に大きな効果があることが判明した。
Further, in the exhaust gas purifying material according to Example 10, the combustion temperature of the carbon black after regeneration remains at 12 ° C. higher than that before the treatment, and it can be seen that regeneration is promoted by the presence of coexisting substances. .
That is, it was found that the coexisting substance according to Example 10 has a great effect on both “suppression of deterioration after sulfur treatment” and “promotion of regeneration”.

〈実施例11の評価〉
実施例11と比較例3とに係る排気ガス浄化材に対し、上述した硫黄被毒処理によって得られた試料のPM燃焼温度評価を行った。その評価結果を表1および図5に示す。当該評価結果より、次のことが明らかとなった。即ち、実施例11に係る排気ガス浄化材においては、共存物質の存在により硫黄被毒処理後におけるカーボンブラックの燃焼温度の上昇が84℃であり、比較例3の当該燃焼温度の上昇より大幅に抑制されている。
<Evaluation of Example 11>
The PM combustion temperature evaluation of the sample obtained by the above-described sulfur poisoning treatment was performed on the exhaust gas purifying materials according to Example 11 and Comparative Example 3. The evaluation results are shown in Table 1 and FIG. From the evaluation results, the following became clear. That is, in the exhaust gas purifying material according to Example 11, the increase in the combustion temperature of carbon black after the sulfur poisoning treatment is 84 ° C. due to the presence of the coexisting substances, which is significantly higher than the increase in the combustion temperature in Comparative Example 3. It is suppressed.

実施例11および比較例3に係る浄化触媒成分に対して、実施例11に係る共存物質のカーボンブラックの燃焼温度は、当該浄化触媒成分と比較して150℃以上高い。さらに、実施例7に係る排気ガス浄化材中の浄化触媒成分は78質量%であり、比較例3に係る排気ガス浄化材中の浄化触媒成分は100質量%である。つまり、実施例11に係る排気ガス浄化材中の浄化触媒成分は、比較例3に係る排気ガス浄化材中の浄化触媒成分より少ないにも関わらず、共存物質の混合により硫黄処理後におけるカーボンブラックの燃焼温度の上昇が大幅に抑制されている。これは、実施例11に係る排気ガス浄化材では、共存物質の共存により、硫黄が共存物質に選択的に吸着され、浄化触媒成分への硫黄の吸着が抑制された効果であると考えられる。   Compared with the purification catalyst component according to Example 11 and Comparative Example 3, the combustion temperature of the coexisting material carbon black according to Example 11 is higher by 150 ° C. or more than the purification catalyst component. Furthermore, the purification catalyst component in the exhaust gas purification material according to Example 7 is 78% by mass, and the purification catalyst component in the exhaust gas purification material according to Comparative Example 3 is 100% by mass. That is, although the purification catalyst component in the exhaust gas purification material according to Example 11 is less than the purification catalyst component in the exhaust gas purification material according to Comparative Example 3, the carbon black after sulfur treatment by mixing of coexisting substances The increase in the combustion temperature is greatly suppressed. In the exhaust gas purifying material according to Example 11, it is considered that sulfur is selectively adsorbed by the coexisting substance due to the coexistence of the coexisting substance, and the sulfur adsorption to the purification catalyst component is suppressed.

また、実施例11に係る排気ガス浄化材では、再生後のカーボンブラックの燃焼温度は処理前と比較して23℃の上昇に留まり、共存物質の存在により、再生が促進されていることが解る。
つまり、実施例11に係る共存物質は「硫黄処理後の劣化を抑制」、「再生促進」の両方に大きな効果があることが判明した。
Further, in the exhaust gas purifying material according to Example 11, the combustion temperature of the carbon black after regeneration remains at a rise of 23 ° C. compared to that before the treatment, and it can be seen that regeneration is promoted by the presence of coexisting substances. .
That is, it was found that the coexisting substance according to Example 11 has a great effect on both “suppressing deterioration after sulfur treatment” and “promotion of regeneration”.

(実施例12)
[浄化触媒成分合成]
浄化触媒成分をCeOからLa0.8Ba0.2FeOに代替した以外は、実施例1と同様の操作を行って実施例12に係る浄化触媒成分を得た。
(Example 12)
[Purification catalyst component synthesis]
A purified catalyst component according to Example 12 was obtained by performing the same operation as in Example 1 except that the purified catalyst component was replaced by Ce 0.8 2 to La 0.8 Ba 0.2 FeO 3 .

[共存物質合成]
実施例1と同様の操作を行ってBaBiOを製造し、実施例12に係る共存物質を得た。
[Synthesis of coexisting substances]
The same operation as in Example 1 was performed to produce BaBiO 3 to obtain a coexisting substance according to Example 12.

[排気ガス浄化材合成]
浄化触媒成分と共存物質とを、浄化触媒成分と共存物質の質量比が67:33になるように秤量し、乳鉢で15分間混合し実施例12に係る排気ガス浄化材を得た。
[Exhaust gas purification material synthesis]
The purification catalyst component and the coexisting substance were weighed so that the mass ratio of the purification catalyst component and the coexistence substance was 67:33, and mixed in a mortar for 15 minutes to obtain an exhaust gas purification material according to Example 12.

(比較例4)
[浄化触媒成分合成]
実施例1と同様の操作を行って比較例4に係るLa0.8Ba0.2FeOを含む浄化触媒成分を得た。
(Comparative Example 4)
[Purification catalyst component synthesis]
The same operation as in Example 1 was performed to obtain a purification catalyst component containing La 0.8 Ba 0.2 FeO 3 according to Comparative Example 4.

[共存物質合成]
共存物質は、合成しなかった。
[Synthesis of coexisting substances]
Coexisting materials were not synthesized.

[排気ガス浄化材合成]
浄化触媒成分のみを乳鉢で15分間混合し、比較例4に係る排気ガス浄化材を得た。
[Exhaust gas purification material synthesis]
Only the purification catalyst component was mixed in a mortar for 15 minutes to obtain an exhaust gas purification material according to Comparative Example 4.

(実施例12および比較例4の評価)
実施例12と比較例4との関係について説明する。浄化触媒成分のみからなる比較例4に対し、実施例12は、比較例4に係る浄化触媒成分に対し33質量%の共存物質(BaBiO)を共存させたものである。
(Evaluation of Example 12 and Comparative Example 4)
The relationship between Example 12 and Comparative Example 4 will be described. In contrast to Comparative Example 4 consisting only of the purification catalyst component, Example 12 is one in which 33% by mass of a coexisting substance (BaBiO 3 ) coexists with the purification catalyst component according to Comparative Example 4.

ここで、実施例12と比較例4とに係る評価結果から、得られた実施例12に係る排気ガス浄化材を構成する浄化触媒成分と共存物質の評価を行った。当該評価は、硫黄被毒処理によって得られた試料のPM燃焼温度評価にて行った。   Here, from the evaluation results according to Example 12 and Comparative Example 4, the purification catalyst component and the coexisting substances constituting the obtained exhaust gas purification material according to Example 12 were evaluated. The evaluation was performed by PM combustion temperature evaluation of a sample obtained by sulfur poisoning treatment.

[硫黄被毒処理によって得られた試料のPM燃焼温度評価]
〈実施例12の評価〉
実施例12と比較例4とに係る排気ガス浄化材に対し、上述した含硫黄酸性ガスへの親和性評価を行った。その評価結果を表1および図6に示す。当該評価結果より、次のことが明らかとなった。即ち、実施例12に係る排気ガス浄化材においては、共存物質の存在により硫黄被毒処理後におけるカーボンブラックの燃焼温度の上昇が32℃であり、比較例4の当該燃焼温度31℃上昇とほぼ同等であった。
[PM combustion temperature evaluation of samples obtained by sulfur poisoning]
<Evaluation of Example 12>
The exhaust gas purifying material according to Example 12 and Comparative Example 4 was evaluated for affinity to the above-described sulfur-containing acidic gas. The evaluation results are shown in Table 1 and FIG. From the evaluation results, the following became clear. That is, in the exhaust gas purifying material according to Example 12, the increase in the combustion temperature of carbon black after the sulfur poisoning treatment is 32 ° C. due to the presence of the coexisting substances, which is almost the same as the increase in the combustion temperature of 31 ° C. in Comparative Example 4. It was equivalent.

実施例12および比較例4に係る浄化触媒成分に対して、実施例12に係る共存物質のカーボンブラックの燃焼温度は、当該浄化触媒成分と比較して20℃以上高い。さらに、実施例12に係る排気ガス浄化材中の浄化触媒成分は67質量%であり、比較例4に係る排気ガス浄化材中の浄化触媒成分は100質量%である。つまり、実施例12に係る排気ガス浄化材中の浄化触媒成分は、比較例4に係る排気ガス浄化材中の浄化触媒成分より少ないにも関わらず、共存物質の混合により硫黄処理後のカーボンブラックの燃焼温度の上昇が大幅に抑制されている。これは、実施例12に係る排気ガス浄化材では、共存物質の共存により、硫黄が共存物質に選択的に吸着され、浄化触媒成分への硫黄の吸着が抑制された効果であると考えられる。   Compared to the purification catalyst component according to Example 12 and Comparative Example 4, the combustion temperature of the coexisting substance carbon black according to Example 12 is 20 ° C. or more higher than that of the purification catalyst component. Furthermore, the purification catalyst component in the exhaust gas purification material according to Example 12 is 67% by mass, and the purification catalyst component in the exhaust gas purification material according to Comparative Example 4 is 100% by mass. That is, although the purification catalyst component in the exhaust gas purification material according to Example 12 is less than the purification catalyst component in the exhaust gas purification material according to Comparative Example 4, carbon black after sulfur treatment by mixing of coexisting substances The increase in the combustion temperature is greatly suppressed. This is considered to be due to the effect that in the exhaust gas purifying material according to Example 12, sulfur is selectively adsorbed by the coexisting substance due to the coexistence of the coexisting substance, and the adsorption of sulfur to the purification catalyst component is suppressed.

また、実施例12に係る排気ガス浄化材では、再生後のカーボンブラックの燃焼温度は処理前と比較して18℃の上昇に留まっており、共存物質の存在により、再生が促進されていることが解る。これに対し、比較例4に係る排気ガス浄化材は、浄化触媒成分のみで構成されているため、再生後のカーボンブラックの燃焼温度は処理前と比較して22℃高く、十分に再生されていないことが解る。つまり、実施例12に係る共存物質は「再生促進」に大きな効果があることが判明した。   Further, in the exhaust gas purifying material according to Example 12, the combustion temperature of carbon black after regeneration remains at an increase of 18 ° C. compared with that before treatment, and regeneration is promoted by the presence of coexisting substances. I understand. On the other hand, since the exhaust gas purifying material according to Comparative Example 4 is composed only of the purifying catalyst component, the combustion temperature of the carbon black after regeneration is 22 ° C. higher than that before the treatment and is sufficiently regenerated. I understand that there is not. That is, it was found that the coexisting substance according to Example 12 has a great effect on “promotion of regeneration”.

(実施例13)
[浄化触媒成分合成]
浄化触媒成分をBET100のCeOに代替した以外は、実施例1と同様の操作を行って実施例13に係る浄化触媒成分を得た。
(Example 13)
[Purification catalyst component synthesis]
A purification catalyst component according to Example 13 was obtained by performing the same operation as in Example 1 except that the purification catalyst component was replaced with CeO 2 of BET100.

[共存物質合成]
実施例1と同様の操作を行ってBaBiOを製造し、実施例13に係る共存物質を得た。
[Synthesis of coexisting substances]
The same operation as in Example 1 was performed to produce BaBiO 3 , and a coexisting substance according to Example 13 was obtained.

[排気ガス浄化材合成]
浄化触媒成分と共存物質とを、浄化触媒成分と共存物質の質量比が6:4になるように秤量し、乳鉢で15分間混合し実施例13係る排気ガス浄化材を得た。
[Exhaust gas purification material synthesis]
The purification catalyst component and the coexisting substance were weighed so that the mass ratio of the purification catalyst component and the coexistence substance was 6: 4, and mixed in a mortar for 15 minutes to obtain an exhaust gas purification material according to Example 13.

(実施例14)
[浄化触媒成分合成]
浄化触媒成分をBET160のCeOに代替した以外は、実施例1と同様の操作を行って実施例14に係る浄化触媒成分を得た。
(Example 14)
[Purification catalyst component synthesis]
A purification catalyst component according to Example 14 was obtained by performing the same operation as in Example 1 except that the purification catalyst component was replaced with CeO 2 of BET160.

[共存物質合成]
実施例1と同様の操作を行ってBaBiOを製造し、実施例14に係る共存物質を得た。
[Synthesis of coexisting substances]
BaBiO 3 was produced in the same manner as in Example 1 to obtain a coexisting substance according to Example 14.

[排気ガス浄化材合成]
浄化触媒成分と共存物質とを、浄化触媒成分と共存物質の質量比が6:4になるように秤量し、乳鉢で15分間混合し実施例14に係る排気ガス浄化材を得た。
(比較例5)
[浄化触媒成分合成]
浄化触媒成分を試薬CeOに代替した以外は、実施例1と同様の操作を行って比較例5に係る浄化触媒成分を得た。
[Exhaust gas purification material synthesis]
The purification catalyst component and the coexisting substance were weighed so that the mass ratio of the purification catalyst component and the coexistence substance was 6: 4, and mixed in a mortar for 15 minutes to obtain an exhaust gas purification material according to Example 14.
(Comparative Example 5)
[Purification catalyst component synthesis]
Except for replacing purification catalyst component in the reagent CeO 2 was obtained purifying catalyst component according to Comparative Example 5 The same operation as in Example 1.

[共存物質合成]
実施例1と同様の操作を行ってBaBiOを製造し、比較例5に係る共存物質を得た。
[Synthesis of coexisting substances]
The same operation as in Example 1 was performed to produce BaBiO 3 to obtain a coexisting substance according to Comparative Example 5.

[排気ガス浄化材合成]
浄化触媒成分と共存物質とを、浄化触媒成分と共存物質の質量比が6:4になるように秤量し、乳鉢で15分間混合し比較例5に係る排気ガス浄化材を得た。
[Exhaust gas purification material synthesis]
The purification catalyst component and the coexisting substance were weighed so that the mass ratio of the purification catalyst component and the coexistence substance was 6: 4, and mixed in a mortar for 15 minutes to obtain an exhaust gas purification material according to Comparative Example 5.

(実施例1、13、14と比較例5との比較評価)
図7を参照して、実施例1、13、14と比較例5との関係について説明する。浄化触媒成分と共存物質との混合粉体特性のBET法による比表面積が10〜100m/gの範囲内にある実施例1、13、14に係る排気ガス浄化材では、比表面積が大きいため硫黄の吸着面積も大きく、共存物質の存在とにより、硫黄が共存物質に選択的に吸着され、浄化触媒成分への硫黄の吸着が抑制された効果であると考えられる。これに対し、比較例1に係る排気ガス浄化材は、比表面積が小さいため硫黄被毒前のカーボンブラックの燃焼温度が高い。このことより混合粉体の特性のBET法による比表面積は10〜100m/gが好ましい。
(Comparative evaluation of Examples 1, 13, 14 and Comparative Example 5)
The relationship between Examples 1, 13, and 14 and Comparative Example 5 will be described with reference to FIG. In the exhaust gas purifying materials according to Examples 1, 13, and 14 in which the specific surface area according to the BET method of the mixed powder characteristics of the purification catalyst component and the coexisting substance is within the range of 10 to 100 m 2 / g, the specific surface area is large. The adsorption area of sulfur is also large, and it is considered that sulfur is selectively adsorbed by the coexisting substance due to the presence of the coexisting substance, and the adsorption of sulfur to the purification catalyst component is suppressed. On the other hand, since the exhaust gas purifying material according to Comparative Example 1 has a small specific surface area, the combustion temperature of carbon black before sulfur poisoning is high. From this, the specific surface area by the BET method of the characteristics of the mixed powder is preferably 10 to 100 m 2 / g.

Figure 0005022970
Figure 0005022970

実施例1に係る酸化セリウムのX線回折パターンである。2 is an X-ray diffraction pattern of cerium oxide according to Example 1. FIG. 実施例1に係るBaBiOのX線回折パターンである。 2 is an X-ray diffraction pattern of BaBiO 3 according to Example 1. FIG. 硫黄被毒処理前後と再生処理後における排気ガス浄化材のカーボンブラックの燃焼温度を示すグラフである。It is a graph which shows the combustion temperature of the carbon black of the exhaust gas purification material before and after sulfur poisoning treatment and after regeneration treatment. 硫黄被毒処理前後と再生処理後における排気ガス浄化材のカーボンブラックの燃焼温度を示すグラフである。It is a graph which shows the combustion temperature of the carbon black of the exhaust gas purification material before and after sulfur poisoning treatment and after regeneration treatment. 硫黄被毒処理前後と再生処理後における排気ガス浄化材のカーボンブラックの燃焼温度を示すグラフである。It is a graph which shows the combustion temperature of the carbon black of the exhaust gas purification material before and after sulfur poisoning treatment and after regeneration treatment. 硫黄被毒処理前後と再生処理後における排気ガス浄化材のカーボンブラックの燃焼温度を示すグラフである。It is a graph which shows the combustion temperature of the carbon black of the exhaust gas purification material before and after sulfur poisoning treatment and after regeneration treatment. 硫黄被毒処理前後と再生処理後における排気ガス浄化材のカーボンブラックの燃焼温度を示すグラフである。It is a graph which shows the combustion temperature of the carbon black of the exhaust gas purification material before and after sulfur poisoning treatment and after regeneration treatment.

Claims (10)

ディーゼルエンジンの排気ガス中に含まれるカーボンを主体とする粒子状物質の燃焼温度を低下させる排気ガス浄化材であって、
前記粒子状物質の燃焼温度を低下させる触媒作用を有する浄化触媒成分と、
含硫黄酸性ガスの被毒で低下した前記触媒作用を回復させるアルカリ金属、アルカリ土類金属の少なくとも一つと、酸性元素、両性元素の少なくとも一つとを含む複合酸化物である共存物質と、
白金族元素から選択される少なくとも1種以上の元素
を含み、
前記共存物質は、
500℃以上に温度が上昇する場合、
一酸化炭素成分の濃度が100ppm以上になる場合または炭化水素成分の濃度が200ppm以上になる場合のいずれか一方または両方の条件の下で前記触媒作用を回復させ、
前記共存物質は前記排気ガス浄化材全体の5〜50質量%含有され、
排気ガス浄化材のBET法による比表面積が10m /g以上100m /g以下である排気ガス浄化材。
An exhaust gas purifying material for lowering the combustion temperature of particulate matter mainly composed of carbon contained in exhaust gas of a diesel engine,
A purification catalyst component having a catalytic action to lower the combustion temperature of the particulate matter;
A coexisting substance which is a composite oxide containing at least one of an alkali metal and an alkaline earth metal that recovers the catalytic action reduced by poisoning of the sulfur-containing acidic gas, and at least one of an acidic element and an amphoteric element ;
See containing at least one kind of an element <br/> selected from platinum group elements,
The coexisting substance is
If the temperature rises above 500 ° C,
Restoring the catalytic action under one or both of the conditions where the concentration of the carbon monoxide component is 100 ppm or more or the concentration of the hydrocarbon component is 200 ppm or more;
The coexisting substance is contained in an amount of 5 to 50% by mass of the entire exhaust gas purification material,
An exhaust gas purification material having a specific surface area of 10 m 2 / g or more and 100 m 2 / g or less by the BET method of the exhaust gas purification material.
前記浄化触媒成分が、ペロブスカイト、スピネル、コランダムまたはホタル石の結晶構造を有する請求項1に記載された排気ガス浄化材。 The exhaust gas purification material according to claim 1, wherein the purification catalyst component has a crystal structure of perovskite, spinel, corundum, or fluorite. 前記浄化触媒成分はセリウムを含む請求項1〜のいずれかに記載された排気ガス浄化材。 The purification catalyst component exhaust gas purification material that is either crab of claims 1-2 containing cerium. 前記浄化触媒成分が、セリウムを含むホタル石型構造の複合酸化物である請求項に記載された排気ガス浄化材。 The exhaust gas purification material according to claim 3 , wherein the purification catalyst component is a complex oxide having a fluorite structure containing cerium. 前記共存物質が、アルカリ金属およびアルカリ土類金属からなる群より選択される少なくとも1種の元素と、酸性元素、両性元素からなる群より選択される少なくとも1種の元素とを、含む複合酸化物であることを特徴とする請求項1〜のいずれか1つの項に記載された排気ガス浄化材。 The coexisting material is a composite oxide containing at least one element selected from the group consisting of alkali metals and alkaline earth metals and at least one element selected from the group consisting of acidic elements and amphoteric elements The exhaust gas purifying material according to any one of claims 1 to 4 , wherein 前記共存物質は、前記アルカリ金属、アルカリ土類金属から選択される少なくとも1種以上の元素をA、前記酸性元素、両性元素から選択される少なくとも1種以上の元素をBと表記したとき、以下の一般式
(1−x)δ(但し、0<x≦0.9、0<δ<10)
を満たす複合酸化物であることを特徴とする請求項に記載された排気ガス浄化材。
When the coexisting material is expressed as A, at least one element selected from the alkali metals and alkaline earth metals, and B as at least one element selected from the acidic elements and amphoteric elements, General formula A (1-x) B x O δ (where 0 <x ≦ 0.9, 0 <δ <10)
The exhaust gas purifying material according to claim 5 , wherein the exhaust gas purifying material is a composite oxide satisfying the above.
前記アルカリ金属が、カリウムおよび/またはセシウムであり、前記アルカリ土類金属が、バリウム、ストロンチウム、カルシウムおよびマグネシウムからなる群より選ばれた少なくとも1種の元素であり、前記酸性元素が、ビスマスであり、前記両性元素がチタン、ジルコニウム、アルミニウム、ガリウム、インジウムおよびスズからなる群より選ばれた少なくとも1種の元素であることを特徴とする請求項またはに記載の排気ガス浄化材。 The alkali metal is potassium and / or cesium, the alkaline earth metal is at least one element selected from the group consisting of barium, strontium, calcium and magnesium, and the acidic element is bismuth. The exhaust gas purification material according to claim 5 or 6 , wherein the amphoteric element is at least one element selected from the group consisting of titanium, zirconium, aluminum, gallium, indium and tin. 前記アルカリ土類金属が、バリウムおよび/またはストロンチウム、前記酸性元素がビスマス、前記両性元素が、ジルコニウムおよび/またはアルミニウムであることを特徴とする請求項に記載の排気ガス浄化材。 The exhaust gas purifying material according to claim 7 , wherein the alkaline earth metal is barium and / or strontium, the acidic element is bismuth, and the amphoteric element is zirconium and / or aluminum. 請求項1〜のいずれか1つの項に記載された排気ガス浄化材を用いたことを特徴とする排気ガス浄化用フィルター。 An exhaust gas purification filter using the exhaust gas purification material according to any one of claims 1 to 8 . 前記排気ガス浄化材に加え、さらに、白金族元素から選択される少なくとも1種の元素からなる排気ガス浄化材を含むことを特徴とする請求項に記載の排気ガス浄化用フィルター。 The exhaust gas purification filter according to claim 9 , further comprising an exhaust gas purification material comprising at least one element selected from platinum group elements in addition to the exhaust gas purification material.
JP2008088913A 2008-01-25 2008-03-29 Exhaust gas purification material and exhaust gas purification filter Expired - Fee Related JP5022970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008088913A JP5022970B2 (en) 2008-01-25 2008-03-29 Exhaust gas purification material and exhaust gas purification filter

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008014485 2008-01-25
JP2008014485 2008-01-25
JP2008088913A JP5022970B2 (en) 2008-01-25 2008-03-29 Exhaust gas purification material and exhaust gas purification filter

Publications (2)

Publication Number Publication Date
JP2009195891A JP2009195891A (en) 2009-09-03
JP5022970B2 true JP5022970B2 (en) 2012-09-12

Family

ID=41140022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008088913A Expired - Fee Related JP5022970B2 (en) 2008-01-25 2008-03-29 Exhaust gas purification material and exhaust gas purification filter

Country Status (1)

Country Link
JP (1) JP5022970B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5528040B2 (en) * 2008-10-03 2014-06-25 Dowaエレクトロニクス株式会社 COMPOSITE OXIDE FOR EXHAUST GAS PURIFYING CATALYST, ITS MANUFACTURING METHOD, COATING FOR EXHAUST GAS PURIFYING CATALYST, DIESEL EXHAUST PURIFYING FILTER
GB201721521D0 (en) 2017-12-21 2018-02-07 Johnson Matthey Japan Godo Kaisha Oxidation catalyst for a diesel engine exhaust

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09173841A (en) * 1995-12-28 1997-07-08 Toyota Central Res & Dev Lab Inc Catalyst for cleaning exhaust gas from diesel engine
JP5318396B2 (en) * 2007-11-02 2013-10-16 Dowaエレクトロニクス株式会社 Exhaust gas purification material and exhaust gas purification filter

Also Published As

Publication number Publication date
JP2009195891A (en) 2009-09-03

Similar Documents

Publication Publication Date Title
JP4768636B2 (en) Sulfur oxide adsorbent and emission control
JP5685757B2 (en) Nitrogen oxide storage reduction catalyst and method for producing the same
JP4757027B2 (en) Catalyst for catalytic reduction of nitrogen oxides
KR101953402B1 (en) NOx ABSORBER CATALYST
JP2001269578A (en) Exhaust gas cleaning catalyst
KR20140116126A (en) IMPROVED NOx TRAP
JP2005066559A (en) Exhaust gas treatment catalyst and exhaust gas treatment method
US20110195007A1 (en) CATALYST FOR REMOVING NOx FROM EXHAUST GAS OF LEAN-BURNING AUTOMOBILES OR INCINERATORS
US11291976B2 (en) Mixed valent manganese-based NOx adsorber
JP2008062235A (en) Method for catalytically reducing nitrogen oxide and catalyst therefor
WO2008065819A1 (en) Composite oxide for exhaust gas clean-up catalyst, exhaust gas clean-up catalyst, and diesel exhaust gas clean-up filter
KR20150015465A (en) NOx TRAP COMPOSITION
JP5318396B2 (en) Exhaust gas purification material and exhaust gas purification filter
JP5022970B2 (en) Exhaust gas purification material and exhaust gas purification filter
JP5160282B2 (en) Exhaust gas purification material and exhaust gas purification filter
JP3797081B2 (en) Absorption reduction type NOx purification catalyst
US9084967B2 (en) Oxygen adsorbent based on lanthanoide oxysulfate, method for producing it, and exhaust gas purifying catalyst containing it
WO2002020153A1 (en) Nox absorbing agent and absorption reduction type catalyst for removing nox
JP2001038211A (en) Catalyst and method for cleaning exhaust gas
JP5345063B2 (en) Cerium-containing composite oxide and method for producing the same, PM combustion catalyst, and diesel particulate filter
JP2010221091A (en) Composite oxide for exhaust gas cleaning catalyst, coating material for exhaust gas cleaning catalyst and diesel exhaust gas cleaning filter
JP2006205021A (en) Composite oxide catalyst
JP2005500152A (en) Substance for removing nitrogen oxides using lamellar structure
JP2009240998A (en) Cleaning material for exhaust gas and its manufacturing method
JPH11197507A (en) Catalyst for purification of exhaust gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120618

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees