JP2005021781A - Carbon dioxide absorption material, production method for carbon dioxide absorption material, absorption method for carbon dioxide, carbon dioxide separation method, and carbon dioxide separation apparatus - Google Patents

Carbon dioxide absorption material, production method for carbon dioxide absorption material, absorption method for carbon dioxide, carbon dioxide separation method, and carbon dioxide separation apparatus Download PDF

Info

Publication number
JP2005021781A
JP2005021781A JP2003189164A JP2003189164A JP2005021781A JP 2005021781 A JP2005021781 A JP 2005021781A JP 2003189164 A JP2003189164 A JP 2003189164A JP 2003189164 A JP2003189164 A JP 2003189164A JP 2005021781 A JP2005021781 A JP 2005021781A
Authority
JP
Japan
Prior art keywords
carbon dioxide
lithium
absorption
lithium ferrite
alpha
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003189164A
Other languages
Japanese (ja)
Other versions
JP3857667B2 (en
Inventor
Sawako Yoshikawa
佐和子 吉川
Masanori Kato
雅礼 加藤
Kenji Koshizaki
健司 越崎
Kazuaki Nakagawa
和明 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003189164A priority Critical patent/JP3857667B2/en
Publication of JP2005021781A publication Critical patent/JP2005021781A/en
Application granted granted Critical
Publication of JP3857667B2 publication Critical patent/JP3857667B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Compounds Of Iron (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbon dioxide absorption material having a carbon dioxide releasing reaction temperature suppressed to low and a high carbon dioxide absorption speed. <P>SOLUTION: As the carbon dioxide absorption material 1 capable of both absorbing and desorbing carbon dioxide and repeatedly usable, an α-lithium ferrite is used. The carbon dioxide releasing temperature can be suppressed to low and the carbon dioxide absorption speed of the carbon dioxide absorption material 1 is high. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は炭酸ガス吸収材に係り、特にリチウム化複合酸化物を用いた炭酸ガス吸収材、その製造方法、それを用いた炭酸ガス吸収方法、それを用いた炭酸ガス分離方法、それを用いた炭酸ガス吸収装置に関する。
【0002】
【従来の技術】
発動機等の炭化水素を主成分とする燃料を燃焼させる装置においては、排気ガス中の炭酸ガスを回収し、大気中への炭酸ガスの放出を抑えるという技術が検討されている。しかしながらこのような装置においては炭酸ガスの回収に適した場所である排気ガス放出部分の温度が300℃以上の高温になることが多い。
【0003】
ところで、炭酸ガスの分離方法としては従来酢酸セルロースを用いる方法、アルカノールアミン系溶媒による化学吸収法等が知られている。しかしながら、前述した分離方法はいずれも導入ガス温度を200℃以下に抑える必要がある。したがって、高温度でのリサイクルを要する排気ガスに対しては一旦、熱交換器等により200℃以下に排気ガスを冷却する必要があり、結果的に炭酸ガス分離のためのエネルギー消費量が多くなるという問題があった。
【0004】
このような問題に対し、例えば、特許文献1には500℃を超える高温域で炭酸ガス吸収能を発揮する炭酸ガス吸収材が開示されている。この炭酸ガス吸収材は、リチウムジルコネートからなり、このリチウムジルコネートが500℃以上の温度で炭酸ガスと反応し、ジルコニアと炭酸リチウムとに分解する現象を利用したものである。
【0005】
また、リチウムジルコネート以外のリチウム化複合酸化物、例えばアルミニウム、チタン、鉄、ニッケル、あるいはシリコンを含有するリチウムアルミネート、リチウムチタネート、リチウムフェライト、リチウムニッケレート、リチウムシリケートなどのリチウム化複合酸化物も200℃を超える高温で炭酸ガスと反応し、酸化物(アルミナ、酸化チタン、酸化鉄、酸化ニッケルあるいはシリカ)と炭酸リチウムとに分解することで、炭酸ガス吸収を行えることが例えば特許文献2や特許文献3などに記載されている。
【0006】
これらのリチウム化複合酸化物と炭酸ガスとの反応により生成された酸化物と炭酸リチウムは、逆反応(炭酸ガスの放出反応)が生じるため、吸収した炭酸ガスを放出してリチウム化複合酸化物を再生し繰り返し利用することも可能である。
【0007】
しかし前記した逆反応は、炭酸ガスの吸収反応より高温条件下での反応となる。例えばリチウムシリケートの場合、炭酸ガス吸収反応は450〜700℃、逆反応は700℃〜900℃である。このため炭酸ガスを吸収した炭酸ガス吸収材を逆反応させるためには装置自体の耐熱温度を高くする必要があり、装置用材料選択の幅が狭くなり使用用途も限定されてしまうという問題点があった。
【0008】
したがって前記逆反応の温度がより低い材料があれば、システムにおける装置用材料の選択の幅や使用用途を広げることができる。この観点から、逆反応の温度がより低く、かつ炭酸ガス吸収速度が高い材料が求められていた。
【0009】
【特許文献1】特開平9−99214号公報
【特許文献2】特開平11−90219号公報
【特許文献3】特開2000−262890号公報
【0010】
【発明が解決しようとする課題】
本発明は、このような問題に鑑みて為されたものであり、炭酸ガスの吸収及び放出を行い繰り返し利用可能な炭酸ガス吸収材において、炭酸ガスの放出反応温度が低く抑えられかつ炭酸ガス吸収速度が速い炭酸ガス吸収材、その製造方法、それを用いた炭酸ガス吸収方法、それを用いた炭酸ガス分離方法、それを用いた炭酸ガス吸収装置を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明は、アルファ−リチウムフェライトを用いることを特徴とする炭酸ガス吸収材である。
【0012】
本発明は、炭酸リチウムとアルファ−酸化第二鉄を混合し、この混合物を700℃以上で焼成してアルファ−リチウムフェライトを得て炭酸ガス吸収材を得ることを特徴とする炭酸ガス吸収材の製造方法である。
【0013】
本発明は、炭酸ガスを含む気体に炭酸ガス吸収材を接触させて前記炭酸ガスを含む気体から前記炭酸ガスを分離するのに際し、前記炭酸ガス吸収材にアルファ−リチウムフェライトを用いることを特徴とする炭酸ガス吸収方法である。
【0014】
本発明は、アルファ−リチウムフェライトを用いた炭酸ガス吸収材に炭酸ガスを吸収させることにより得た生成物を加熱して前記生成物から炭酸ガスを分離する炭酸ガス分離方法である。
【0015】
本発明は、炭酸ガス導入口および生成ガス排出口を有する反応容器と、
この反応容器に収納されたアルファ−リチウムフェライトを用いた炭酸ガス吸収材を備える炭酸ガス吸収装置である。
【0016】
本発明者らは各種材料についての炭酸ガス吸収・放出特性について鋭意研究をした結果、前記のリチウム化複合酸化物のうち、リチウムフェライトは約300℃〜500℃程度で炭酸ガス吸収反応を行うが、逆反応(放出反応)に転じる温度も吸収反応よりやや高い500℃台であり、この温度はリチウムシリケート等よりも、逆反応温度が低い点に着目した。さらにリチウムフェライトの結晶構造と炭酸ガス吸収・放出特性との関連についてさらに検討した結果、アルファ−リチウムフェライトを主成分とする炭酸ガス吸収材はその他の結晶構造のリチウムフェライトに比べ、炭酸ガスの放出反応温度を低く抑えられかつ炭酸ガス吸収速度が他の構造に比べて速い、ということを見出した。
【0017】
アルファ−リチウムフェライトが他の結晶構造であるベータ−リチウムフェライトや、ガンマ−リチウムフェライトに比べて炭酸ガス吸収速度が速いのは以下の理由が考えられる。
【0018】
ベータ−リチウムフェライトやガンマ−リチウムフェライトは結晶構造の結晶系が正方晶系であるのに対して、アルファ−リチウムフェライトは結晶系が立方晶系でより対称性が高く格子の長さもより小さい。格子が短いことは鉄イオンが少なめであることを意味するため、リチウムイオンが鉄イオンに比べて過剰に含まれる結晶構造である(J.C.Andersonら、J.Phys.Chem.Solids,25,961−968,1964)。したがってアルファ−リチウムフェライトは炭酸ガス分子と反応するサイトが他の構造に比して多いため炭酸ガスの吸収速度が速くなるものと考えられる。また結晶構造の立体的な比較からも、ガンマ−リチウムフェライトよりもアルファ−リチウムフェライトのほうが、リチウムイオンの配列がより格子の角にあって炭酸ガス分子と接触しやすい構造であり、この点からも炭酸ガスの吸収速度が速い理由と考えられる。
【0019】
したがって本発明によれば炭酸ガスの吸収及び放出を行い繰り返し利用可能な炭酸ガス吸収材において、炭酸ガスの放出反応温度が低く抑えられかつ炭酸ガス吸収速度が速い炭酸ガス吸収材が提供されるものである。これにより実用上問題なく炭酸ガスの吸収/放出が行われ、かつ装置の耐熱温度も比較的低くすむ装置用材料の選択の幅や使用用途を広げることができ工業的な価値は大きい。
【0020】
【発明の実施の形態】
以下、本発明に関わる炭酸ガス吸収材を詳細に説明する。
本発明のリチウムフェライトはLiFeOの分子式で表されるものを用いるのが好ましい。リチウムフェライトの炭酸ガス吸収反応を式(1)に、再生反応式(2)に示す。
【0021】
吸収:2LiFeO+CO→Fe+LiCO (1)
再生:Fe+LiCO→2LiFeO+CO (2)
【0022】
リチウムフェライトを主成分とする炭酸ガス吸収材は約500℃(例えば炭酸ガス濃度が100%である場合300℃以上530℃以下)の吸収温度域で炭酸ガスを吸収することにより、式(1)に示すように酸化第二鉄と炭酸リチウムに化学変化する。
【0023】
この炭酸ガスを吸収した状態である酸化第二鉄と炭酸リチウムを、吸収温度域を超える500℃以上(例えば炭酸ガス濃度100%のガスを流した場合、約530℃以上)の高温にすると、式(2)に示すように炭酸ガスが放出されてもとのリチウムフェライトに再生される。
【0024】
このような炭酸ガス吸収材の炭酸ガス吸収ともとの炭酸ガス吸収材への再生の反応は、繰り返し行うことができる。
【0025】
なお、炭酸ガスの吸収・放出温度域は、反応雰囲気下における炭酸ガス濃度によって変化し、炭酸ガス濃度が高くなるにしたがって吸収・放出温度域の上限温度は高くなる。
【0026】
本発明の炭酸ガス吸収材はアルファ−リチウムフェライトを用いるものであるが、炭酸ガス吸収材中のリチウムフェライト成分中アルファ−リチウムフェライトが90wt%以上含まれているものとする。ベータ−リチウムフェライト、ガンマ−リチウムフェライトを10wt%以下含んでいてもよい。また、後述するように炭酸ガス吸収材にはリチウムフェライト成分のほかにアルカリ炭酸塩、バインダ成分、不純物などを含んでいてもよい。
【0027】
次に、本発明の炭酸ガス吸収材の製造方法を説明する。
リチウムフェライトを主成分とする炭酸ガス吸収材の製造方法は、例えば炭酸リチウムとアルファ酸化第二鉄を主成分とする原料粉を混合し焼成することによりリチウムフェライト焼成粉が得られ、これが炭酸ガス吸収材となる。
【0028】
前記原料粉の焼成の温度は700℃以上1200℃以下で行う。700℃以下で焼成するとアルファ−リチウムフェライトではなく、結晶構造が異なるベータ−リチウムフェライトやガンマ−リチウムフェライトが生成する。700℃以上の焼成を行うことにより、よりリチウムイオンが過剰に含まれやすく、かつ他分子と接触しやすい構造であるアルファ−リチウムフェライトを得ることができる。
【0029】
ここで、リチウムフェライトの原料である炭酸リチウムとアルファ−酸化第二鉄の混合比(LiCO:Fe)はモル比1:1とすることができる。また炭酸リチウムは偏在や蒸発を防ぐために多少過剰に用いてもよい。
【0030】
さらに炭酸ガスの吸収速度を向上させるために、上記のようにして得たアルファリチウムフェライトに対しアルカリ炭酸塩を添加することもできる。アルカリ炭酸塩は焼成前の原料粉に添加してその後焼成してもよく、また焼成後に添加してもよい。アルカリ炭酸塩を添加することにより、リチウムフェライトが炭酸ガスの吸収により生じた炭酸リチウムとアルカリ炭酸塩が共晶塩を形成し、材料の融点が低下して液相が生成しリチウムが移動しやすくなることが炭酸ガス吸収速度を促進すると考えられる。
【0031】
このアルカリ炭酸塩とは炭酸カリウム、炭酸ナトリウム、炭酸リチウムなどであり、これらの混合物を添加することもできる。本発明ではアルカリ炭酸塩の添加濃度はリチウムフェライト成分に対し0.01〜40mol%であることが望ましい。0.01mol%より少ないと炭酸カリウム添加の効果がみられず、また40mol%より多いと正味のリチウムフェライトの量が減少し炭酸ガスの吸収性能が低下するためである。
【0032】
炭酸ガス吸収材は、粉末のままでは作業上扱いづらく、とくに反応容器に吸収材を充填して用いる場合では粉末が細かすぎることにより密集して圧力損失を生じやすい。そこで炭酸ガス吸収材を多孔体に成形して用いることができる。成形体に加工すれば作業上扱いやすく、炭酸ガスの流通経路を確保すれば圧力損失も生じにくい。
【0033】
成形は、造粒や押し出しなどにより顆粒、円柱状、円盤状、ハニカムなどの形状にすることができる。また焼成する前の原料粉を成形してから焼成しても、原料粉を焼成してから成形してもよい。
【0034】
成形には、粒子を結合させるためのバインダ材料(結合材)を用いることができる。バインダには、無機質の材料、有機質の材料のどちらも用いることができる。例えば無機質材料としては粘土、鉱物、石灰乳などが挙げられる。また有機質材料としては、澱粉、メチルセルロース、ポリビニルアルコール、パラフィンなどが挙げられる。バインダの添加量は、リチウムフェライト成分に対して0.1〜20wt%とするのが好ましい。またバインダは、適当な溶媒に溶かした溶液の状態で添加することができる。溶媒は水あるいは有機溶媒なども用いることができる。
【0035】
図1に本発明に係る炭酸ガス吸収装置の一実施形態を示す断面概略図を示す。なお、図1に示す炭酸ガス吸収装置は一例であって、本発明に係る炭酸ガス吸収装置はこれに限定されるものではない。
【0036】
図1において、反応容器4は、中央に炭酸ガス吸収材1が収納された容器が配置され、回収すべき炭酸ガス含有気体の流路2と、回収された炭酸ガスの流路3がその両側に設けられている。炭酸ガス吸収材1が収納された容器の壁面には複数の孔が設けられ流路2、流路3に流れるガスが流通可能になっている。流路2には炭酸ガス導入口5と生成ガス排出口6が接続されている。
【0037】
まず、流路2の炭酸ガス導入口5からに上記(1)に示される炭酸ガスの吸収反応が生じる温度領域の炭酸ガス含有気体を供給する。そこで吸収材1の流路2に対する面では、炭酸ガス吸収材と炭酸ガスによって炭酸ガス吸収反応が生じ、反応生成物が生成する。生成ガス排出口6からは炭酸ガスが選択的に除去されたガスが回収される。
【0038】
一方、流路3にはガス導入口7と生成ガス排出口8が接続されている(2)に示される炭酸ガスの放出反応が生じる温度領域の任意のガスを供給する。しかるに反応生成物は吸収材1の流路3に面する側に移動し、吸収材1の流路3に対する面では、反応生成物からの炭酸ガスの放出反応が生じ、炭酸ガスのみを流路3に放出させるものである。反応生成物の吸収材1の流路3に面する側への移動を促進するために流動床などの手段を用いることが好ましい。
【0039】
以下、本発明に係る炭酸ガス吸収材の特性を示す実施例を説明する。
【0040】
(実施例1)
平均粒径10μmのアルファ−酸化第二鉄の粉末と、平均粒径1μmの炭酸リチウム粉末とを、酸化第二鉄:炭酸リチウムのモル比が1:1となる量準備した。これらの粉末をあわせてボールミルにより粉砕しながら混合し平均粒径5μmの原料混合粉とした。
【0041】
原料混合粉を箱型電気炉にて大気中900℃で8時間熱処理し、リチウムフェライト粉末を合成した。このリチウムフェライト粉末をX線回折装置で調べたところ、アルファ−リチウムフェライトが95%以上含有されていることがわかった。
【0042】
また平均粒径1μmの炭酸カリウム粉末をリチウムフェライト:炭酸カリウムのモル比が1:0.02となる量準備し、合成したリチウムフェライトと混合して炭酸ガス吸収材とした。
【0043】
この炭酸ガス吸収材の炭酸ガス吸収及び放出性能を評価した。炭酸ガス吸収材粉末50gをアルミナ製のこう鉢に入れ、このこう鉢を電気炉に入れた。炭酸ガスを流しながら、450℃で1時間保持し炭酸ガスを吸収させ、その後650℃で1時間保持し炭酸ガスを放出させた。
【0044】
炭酸ガス吸収時の1時間で炭酸ガス吸収材の重量は10wt%増加し、炭酸ガス放出時の1時間で炭酸ガス吸収材の重量は9.5wt%減少した。すなわち、吸収前のリチウムフェライトの重量に対して10wt%の炭酸ガスを吸収し、酸化鉄及び炭酸リチウムとからなる吸収済みの炭酸ガス吸収材の重量に対して9.5wt%の炭酸ガスを放出した。
【0045】
(実施例2)
(実施例1)と同様の方法とリチウムフェライト粉末を主成分とする炭酸ガス吸収材を合成した。このリチウムフェライト粉末を内径5mmの金型内に充填し、加圧成形することにより気孔率40%の成形体を作製した。
【0046】
リチウムフェライト成形体50gをアルミナ製のこう鉢に入れ、炭酸ガス吸収及び放出性能を(実施例1)と同様に評価した。このときの炭酸ガス吸収時の1時間での炭酸ガスの吸収量は吸収前のリチウムフェライトの9.0wt%であり、炭酸ガス放出時の1時間での放出量は吸収前のリチウムフェライトの8.5wt%であった。
【0047】
(比較例1)
実施例と同様にして、炭酸リチウムと酸化第二鉄からなる原料混合粉を作製した。この混合粉を粉砕混合して原料混合粉を得た。
【0048】
この原料混合粉を箱型電気炉にて大気中600℃で8時間熱処理し、リチウムフェライト焼成粉を合成した。このリチウムフェライト粉末をX線回折装置で調べたところ、その結果ガンマ−フェライトが95%以上含有されていることがわかった。
【0049】
また平均粒径1μmの炭酸カリウム粉末をリチウムフェライト:炭酸カリウムのモル比が1:0.02となる量準備し、合成したリチウムフェライトと混合して炭酸ガス吸収材とした。
【0050】
この炭酸ガス吸収材の炭酸ガス吸収及び放出性能を評価した。リチウムフェライト粉末50gをアルミナ製のこう鉢に入れ、このこう鉢を電気炉に入れ、炭酸ガスを流しながら、450℃で1時間保持した後650℃で1時間保持した。このときの炭酸ガス吸収時の1時間での炭酸ガスの吸収量は吸収前のリチウムフェライトの0.8wt%であり、炭酸ガス放出時の1時間での炭酸ガスの放出量は吸収前のリチウムフェライトの0.5wt%であった。
【0051】
(比較例2)
実施例と同様にして、炭酸リチウムと酸化第二鉄からなる原料混合粉を作製した。この混合粉を粉砕混合して原料混合粉を得た。
この原料混合粉を箱型電気炉にて大気中450℃で8時間熱処理し、ベータ−リチウムフェライト焼成粉を合成した。このリチウムフェライト粉末をX線回折装置で調べたところ、その結果ベータフェライトが95%以上含有されていることがわかった。
【0052】
また平均粒径1μmの炭酸カリウム粉末をリチウムフェライト:炭酸カリウムのモル比が1:0.02となる量準備し、合成したリチウムフェライトと混合して炭酸ガス吸収材とした。
【0053】
この炭酸ガス吸収材の炭酸ガス吸収及び放出性能を評価した。リチウムフェライト粉末50gをアルミナ製のこう鉢に入れ、このこう鉢を電気炉に入れ、炭酸ガスを流しながら、450℃で1時間保持した後650℃で1時間保持した。このときの炭酸ガス吸収時の1時間での炭酸ガスの吸収量は吸収前のリチウムフェライトの0.8wt%であり、炭酸ガス放出時の1時間での炭酸ガスの放出量は吸収前のリチウムフェライトの0.5wt%であった。
【発明の効果】
以上説明したように、本発明によれば、炭酸ガスの吸収及び放出を行い繰り返し利用可能な炭酸ガス吸収材において、炭酸ガスの放出反応温度が低く抑えられかつ炭酸ガス吸収速度が速い炭酸ガス吸収材を提供することができる。これにより実用上問題なく炭酸ガスの吸収/放出が行われ、かつ装置の耐熱温度も比較的低く抑えられ装置用材料の選択の幅や使用用途を広げることができ工業的な価値は大きい。
【図面の簡単な説明】
【図1】炭酸ガス吸収装置の一実施形態を示す断面外略図。
【符号の説明】
1・・・炭酸ガス吸収材
2・・・流路
3・・・流路
4・・・反応容器
5・・・炭酸ガス導入口
6・・・生成ガス排出口
7・・・ガス導入口
8・・・生成ガス排出口
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a carbon dioxide absorbing material, and in particular, a carbon dioxide absorbing material using a lithiated composite oxide, a production method thereof, a carbon dioxide absorbing method using the same, a carbon dioxide separating method using the same, and a method using the same. The present invention relates to a carbon dioxide absorber.
[0002]
[Prior art]
In an apparatus such as an engine that burns fuel mainly composed of hydrocarbons, a technique for collecting carbon dioxide in exhaust gas and suppressing release of carbon dioxide into the atmosphere has been studied. However, in such an apparatus, the temperature of the exhaust gas discharge portion, which is a place suitable for the recovery of carbon dioxide gas, often becomes a high temperature of 300 ° C. or higher.
[0003]
By the way, as a method for separating carbon dioxide, a method using cellulose acetate, a chemical absorption method using an alkanolamine solvent, and the like are known. However, any of the above-described separation methods needs to suppress the introduced gas temperature to 200 ° C. or lower. Therefore, for exhaust gas that requires recycling at high temperature, it is necessary to cool the exhaust gas to 200 ° C. or less once with a heat exchanger or the like, resulting in an increase in energy consumption for carbon dioxide separation. There was a problem.
[0004]
For such a problem, for example, Patent Document 1 discloses a carbon dioxide absorbing material that exhibits carbon dioxide absorbing ability in a high temperature range exceeding 500 ° C. This carbon dioxide absorbing material is made of lithium zirconate, and utilizes the phenomenon that this lithium zirconate reacts with carbon dioxide at a temperature of 500 ° C. or higher and decomposes into zirconia and lithium carbonate.
[0005]
Lithium complex oxides other than lithium zirconate, for example, lithium aluminate, lithium titanate, lithium ferrite, lithium nickelate, lithium silicate, etc. containing aluminum, titanium, iron, nickel, or silicon For example, Patent Document 2 shows that carbon dioxide gas can be absorbed by reacting with carbon dioxide at a high temperature exceeding 200 ° C. and decomposing it into an oxide (alumina, titanium oxide, iron oxide, nickel oxide or silica) and lithium carbonate. And Patent Document 3 and the like.
[0006]
Since the oxide and lithium carbonate produced by the reaction between these lithiated composite oxides and carbon dioxide gas undergo a reverse reaction (carbon dioxide gas release reaction), the absorbed carbon dioxide gas is released and the lithiated composite oxides are released. Can be played back and used repeatedly.
[0007]
However, the reverse reaction described above is a reaction under a higher temperature condition than the carbon dioxide absorption reaction. For example, in the case of lithium silicate, the carbon dioxide absorption reaction is 450 to 700 ° C., and the reverse reaction is 700 to 900 ° C. For this reason, in order to reversely react the carbon dioxide absorbing material that has absorbed carbon dioxide, it is necessary to increase the heat resistance temperature of the device itself, and there is a problem that the range of selection of the material for the device is narrowed and the usage is limited. there were.
[0008]
Therefore, if there is a material having a lower temperature of the reverse reaction, the range of selection of the device material and the usage application in the system can be expanded. From this viewpoint, a material having a lower reverse reaction temperature and a high carbon dioxide absorption rate has been demanded.
[0009]
[Patent Document 1] JP-A-9-99214 [Patent Document 2] JP-A-11-90219 [Patent Document 3] JP-A 2000-262890 [0010]
[Problems to be solved by the invention]
The present invention has been made in view of such problems, and in a carbon dioxide absorbent that can be used repeatedly by absorbing and releasing carbon dioxide, the carbon dioxide gas release reaction temperature can be kept low, and carbon dioxide absorption. An object of the present invention is to provide a carbon dioxide absorbing material having a high speed, a method for producing the same, a carbon dioxide absorbing method using the carbon dioxide absorbing material, a carbon dioxide separating method using the carbon dioxide absorbing material, and a carbon dioxide absorbing device using the carbon dioxide absorbing method.
[0011]
[Means for Solving the Problems]
The present invention is a carbon dioxide gas absorbent characterized by using alpha-lithium ferrite.
[0012]
The present invention relates to a carbon dioxide gas absorbent characterized by mixing lithium carbonate and alpha-ferric oxide, and firing the mixture at 700 ° C. or higher to obtain alpha-lithium ferrite to obtain a carbon dioxide absorbent. It is a manufacturing method.
[0013]
The present invention is characterized in that alpha-lithium ferrite is used for the carbon dioxide absorbent when the carbon dioxide absorbent is brought into contact with a gas containing carbon dioxide to separate the carbon dioxide from the gas containing carbon dioxide. This is a carbon dioxide absorption method.
[0014]
The present invention is a carbon dioxide separation method in which a product obtained by absorbing carbon dioxide in a carbon dioxide absorbent using alpha-lithium ferrite is heated to separate the carbon dioxide from the product.
[0015]
The present invention comprises a reaction vessel having a carbon dioxide gas inlet and a product gas outlet;
This is a carbon dioxide absorbing device provided with a carbon dioxide absorbing material using alpha-lithium ferrite accommodated in the reaction vessel.
[0016]
As a result of intensive studies on the carbon dioxide absorption / release characteristics of various materials, the present inventors, among the lithiated composite oxides, lithium ferrite performs a carbon dioxide absorption reaction at about 300 ° C. to 500 ° C. The temperature at which the reverse reaction (release reaction) is turned on is also in the range of about 500 ° C., which is slightly higher than the absorption reaction, and this temperature is focused on the fact that the reverse reaction temperature is lower than that of lithium silicate and the like. Furthermore, as a result of further examination on the relationship between the crystal structure of lithium ferrite and the carbon dioxide absorption / release characteristics, carbon dioxide absorbers composed mainly of alpha-lithium ferrite release carbon dioxide compared to lithium ferrites with other crystal structures. It was found that the reaction temperature can be kept low and the carbon dioxide absorption rate is faster than other structures.
[0017]
The reason why the absorption rate of carbon dioxide gas is faster than that of beta-lithium ferrite, in which alpha-lithium ferrite has another crystal structure, and gamma-lithium ferrite, can be considered as follows.
[0018]
Beta-lithium ferrite and gamma-lithium ferrite have a tetragonal crystal structure, whereas alpha-lithium ferrite has a cubic crystal system and is more symmetric and has a shorter lattice length. Since a short lattice means fewer iron ions, it has a crystal structure in which lithium ions are excessively contained compared to iron ions (JC Anderson et al., J. Phys. Chem. Solids, 25 , 961-968, 1964). Therefore, since alpha-lithium ferrite has more sites that react with carbon dioxide molecules than other structures, the absorption rate of carbon dioxide is considered to increase. From a three-dimensional comparison of crystal structures, alpha-lithium ferrite is more likely to be in contact with carbon dioxide molecules than the gamma-lithium ferrite because the arrangement of lithium ions is more at the lattice corners. This is also considered to be the reason why the absorption rate of carbon dioxide is fast.
[0019]
Therefore, according to the present invention, a carbon dioxide absorbent that can absorb and release carbon dioxide and can be used repeatedly is provided. This carbon dioxide absorbent has a low carbon dioxide release reaction temperature and a high carbon dioxide absorption rate. It is. As a result, carbon dioxide gas can be absorbed / released without any practical problems, and the range of selection and use of the device material that can relatively reduce the heat-resistant temperature of the device can be widened, and the industrial value is great.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the carbon dioxide absorbing material according to the present invention will be described in detail.
It is preferable to use the lithium ferrite of the present invention represented by the molecular formula of LiFeO 2 . The carbon dioxide absorption reaction of lithium ferrite is shown in equation (1) and regeneration reaction equation (2).
[0021]
Absorption: 2LiFeO 2 + CO 2 → Fe 2 O 3 + Li 2 CO 3 (1)
Regeneration: Fe 2 O 3 + Li 2 CO 3 → 2LiFeO 2 + CO 2 (2)
[0022]
The carbon dioxide absorbent comprising lithium ferrite as a main component absorbs carbon dioxide in an absorption temperature range of about 500 ° C. (for example, 300 ° C. or more and 530 ° C. or less when the carbon dioxide concentration is 100%). As shown in Fig. 2, it chemically changes to ferric oxide and lithium carbonate.
[0023]
When ferric oxide and lithium carbonate in a state of absorbing the carbon dioxide gas are heated to a high temperature of 500 ° C. or more exceeding the absorption temperature range (for example, about 530 ° C. or more when flowing a gas having a carbon dioxide concentration of 100%), As shown in the formula (2), even if carbon dioxide gas is released, it is regenerated into the original lithium ferrite.
[0024]
Such a carbon dioxide absorption of the carbon dioxide absorbent and the regeneration reaction to the carbon dioxide absorbent can be repeated.
[0025]
The absorption / release temperature range of carbon dioxide varies depending on the carbon dioxide concentration in the reaction atmosphere, and the upper limit temperature of the absorption / release temperature range increases as the carbon dioxide concentration increases.
[0026]
The carbon dioxide absorbing material of the present invention uses alpha-lithium ferrite, and it is assumed that the lithium ferrite component in the carbon dioxide absorbing material contains 90 wt% or more of alpha-lithium ferrite. It may contain 10 wt% or less of beta-lithium ferrite and gamma-lithium ferrite. Further, as will be described later, the carbon dioxide absorbing material may contain an alkali carbonate, a binder component, impurities and the like in addition to the lithium ferrite component.
[0027]
Next, a method for producing the carbon dioxide absorbent of the present invention will be described.
A method for producing a carbon dioxide absorbent comprising lithium ferrite as a main component is obtained by mixing and firing, for example, a raw material powder containing lithium carbonate and ferric alpha oxide as a main component, and a lithium ferrite fired powder is obtained. It becomes an absorbent material.
[0028]
The firing temperature of the raw material powder is 700 ° C. or higher and 1200 ° C. or lower. When calcined at 700 ° C. or lower, not alpha-lithium ferrite but beta-lithium ferrite and gamma-lithium ferrite having different crystal structures are formed. By firing at 700 ° C. or higher, it is possible to obtain alpha-lithium ferrite having a structure in which lithium ions are more likely to be contained excessively and easily contact with other molecules.
[0029]
Here, it is a starting material lithium carbonate and alpha lithium ferrite - mixing ratio of the ferric oxide (Li 2 CO 3: Fe 2 O 3) molar ratio can be set to 1: 1. Lithium carbonate may be used in an excessive amount in order to prevent uneven distribution and evaporation.
[0030]
Furthermore, in order to improve the absorption rate of carbon dioxide, an alkali carbonate can be added to the alpha lithium ferrite obtained as described above. The alkali carbonate may be added to the raw material powder before firing and then fired, or may be added after firing. By adding alkali carbonate, lithium ferrite formed by absorption of carbon dioxide and lithium carbonate form eutectic salt with lithium carbonate, the melting point of the material is lowered, and a liquid phase is formed and lithium is easy to move This is considered to promote the carbon dioxide absorption rate.
[0031]
The alkali carbonate is potassium carbonate, sodium carbonate, lithium carbonate or the like, and a mixture thereof can also be added. In the present invention, the addition concentration of the alkali carbonate is desirably 0.01 to 40 mol% with respect to the lithium ferrite component. When the amount is less than 0.01 mol%, the effect of adding potassium carbonate is not observed, and when the amount is more than 40 mol%, the net amount of lithium ferrite is reduced and the carbon dioxide absorption performance is lowered.
[0032]
The carbon dioxide absorbing material is difficult to handle in the powder state, and particularly when the reaction vessel is filled with the absorbing material, the powder is too fine and tends to be dense and cause pressure loss. Therefore, the carbon dioxide absorbing material can be molded into a porous body and used. If it is processed into a molded body, it is easy to handle in terms of work, and if a carbon dioxide gas passage is secured, pressure loss is less likely to occur.
[0033]
The molding can be made into a granule, a columnar shape, a disc shape, a honeycomb shape or the like by granulation or extrusion. Alternatively, the raw material powder before firing may be molded and then fired, or the raw material powder may be fired and then molded.
[0034]
For molding, a binder material (binding material) for binding particles can be used. For the binder, either an inorganic material or an organic material can be used. For example, examples of the inorganic material include clay, mineral, and lime milk. Examples of the organic material include starch, methyl cellulose, polyvinyl alcohol, and paraffin. The added amount of the binder is preferably 0.1 to 20 wt% with respect to the lithium ferrite component. The binder can be added in the form of a solution dissolved in an appropriate solvent. As the solvent, water or an organic solvent can also be used.
[0035]
FIG. 1 is a schematic cross-sectional view showing an embodiment of a carbon dioxide absorbing device according to the present invention. 1 is an example, and the carbon dioxide absorber according to the present invention is not limited to this.
[0036]
In FIG. 1, a reaction vessel 4 is provided with a vessel containing a carbon dioxide absorbent 1 in the center, and a carbon dioxide containing gas flow channel 2 to be recovered and a recovered carbon dioxide gas flow channel 3 are provided on both sides thereof. Is provided. A plurality of holes are provided in the wall surface of the container in which the carbon dioxide absorbent 1 is accommodated, and the gas flowing through the flow path 2 and the flow path 3 can flow. A carbon dioxide gas inlet 5 and a product gas outlet 6 are connected to the flow path 2.
[0037]
First, a carbon dioxide-containing gas in a temperature region in which the carbon dioxide absorption reaction shown in (1) above occurs is supplied from the carbon dioxide inlet 5 of the flow path 2. Then, in the surface with respect to the flow path 2 of the absorber 1, a carbon dioxide absorption reaction arises with a carbon dioxide absorber and carbon dioxide, and a reaction product produces | generates. A gas from which carbon dioxide gas has been selectively removed is recovered from the product gas outlet 6.
[0038]
On the other hand, a gas introduction port 7 and a product gas discharge port 8 are connected to the flow path 3, and an arbitrary gas in a temperature region where the carbon dioxide gas release reaction shown in (2) occurs is supplied. However, the reaction product moves to the side of the absorbent material 1 facing the flow path 3, and on the surface of the absorbent material 1 with respect to the flow path 3, carbon dioxide gas is released from the reaction product, and only the carbon dioxide gas is flowed. 3 is released. In order to promote the movement of the reaction product to the side of the absorbent material 1 facing the flow path 3, it is preferable to use a means such as a fluidized bed.
[0039]
Hereinafter, examples showing the characteristics of the carbon dioxide absorbent according to the present invention will be described.
[0040]
(Example 1)
An alpha-ferric oxide powder having an average particle diameter of 10 μm and a lithium carbonate powder having an average particle diameter of 1 μm were prepared in an amount such that the molar ratio of ferric oxide: lithium carbonate was 1: 1. These powders were combined and mixed while being pulverized by a ball mill to obtain a raw material mixed powder having an average particle diameter of 5 μm.
[0041]
The raw material mixed powder was heat-treated at 900 ° C. for 8 hours in the air in a box-type electric furnace to synthesize lithium ferrite powder. When this lithium ferrite powder was examined with an X-ray diffractometer, it was found that 95% or more of alpha-lithium ferrite was contained.
[0042]
Further, potassium carbonate powder having an average particle diameter of 1 μm was prepared in an amount such that the molar ratio of lithium ferrite: potassium carbonate was 1: 0.02, and mixed with the synthesized lithium ferrite to obtain a carbon dioxide absorbent.
[0043]
The carbon dioxide absorption and release performance of this carbon dioxide absorbent was evaluated. 50 g of carbon dioxide gas absorbent powder was placed in an alumina mortar, and the mortar was placed in an electric furnace. While flowing carbon dioxide, it was held at 450 ° C. for 1 hour to absorb carbon dioxide, and then held at 650 ° C. for 1 hour to release carbon dioxide.
[0044]
The weight of the carbon dioxide absorbent increased by 10 wt% in one hour after carbon dioxide absorption, and the weight of the carbon dioxide absorbent decreased by 9.5 wt% in one hour after carbon dioxide release. That is, 10 wt% of carbon dioxide gas is absorbed with respect to the weight of lithium ferrite before absorption, and 9.5 wt% of carbon dioxide gas is released with respect to the weight of the absorbed carbon dioxide gas absorber composed of iron oxide and lithium carbonate. did.
[0045]
(Example 2)
The same method as in Example 1 and a carbon dioxide absorbent containing lithium ferrite powder as a main component were synthesized. This lithium ferrite powder was filled in a mold having an inner diameter of 5 mm and subjected to pressure molding to produce a molded body having a porosity of 40%.
[0046]
50 g of the lithium ferrite molded body was placed in an alumina mortar, and the carbon dioxide absorption and release performance was evaluated in the same manner as in Example 1. At this time, the absorption amount of carbon dioxide gas in 1 hour at the time of carbon dioxide absorption is 9.0 wt% of lithium ferrite before absorption, and the release amount in 1 hour at the time of carbon dioxide release is 8% of lithium ferrite before absorption. It was 0.5 wt%.
[0047]
(Comparative Example 1)
In the same manner as in the example, a raw material mixed powder composed of lithium carbonate and ferric oxide was produced. This mixed powder was pulverized and mixed to obtain a raw material mixed powder.
[0048]
This raw material mixed powder was heat-treated in a box-type electric furnace at 600 ° C. for 8 hours in the atmosphere to synthesize lithium ferrite fired powder. When this lithium ferrite powder was examined with an X-ray diffractometer, it was found that it contained 95% or more of gamma-ferrite.
[0049]
Further, potassium carbonate powder having an average particle diameter of 1 μm was prepared in an amount such that the molar ratio of lithium ferrite: potassium carbonate was 1: 0.02, and mixed with the synthesized lithium ferrite to obtain a carbon dioxide absorbent.
[0050]
The carbon dioxide absorption and release performance of this carbon dioxide absorbent was evaluated. 50 g of lithium ferrite powder was placed in an alumina pot, this pot was placed in an electric furnace, kept at 450 ° C. for 1 hour while flowing carbon dioxide gas, and then held at 650 ° C. for 1 hour. At this time, the amount of carbon dioxide absorbed in one hour at the time of carbon dioxide absorption is 0.8 wt% of lithium ferrite before absorption, and the amount of carbon dioxide released in one hour at the time of carbon dioxide release is lithium before absorption. It was 0.5 wt% of ferrite.
[0051]
(Comparative Example 2)
In the same manner as in the example, a raw material mixed powder composed of lithium carbonate and ferric oxide was produced. This mixed powder was pulverized and mixed to obtain a raw material mixed powder.
This raw material mixed powder was heat-treated at 450 ° C. for 8 hours in a box-type electric furnace to synthesize beta-lithium ferrite calcined powder. When this lithium ferrite powder was examined with an X-ray diffractometer, it was found that it contained 95% or more of beta ferrite.
[0052]
Further, potassium carbonate powder having an average particle diameter of 1 μm was prepared in an amount such that the molar ratio of lithium ferrite: potassium carbonate was 1: 0.02, and mixed with the synthesized lithium ferrite to obtain a carbon dioxide absorbent.
[0053]
The carbon dioxide absorption and release performance of this carbon dioxide absorbent was evaluated. 50 g of lithium ferrite powder was placed in an alumina pot, this pot was placed in an electric furnace, held at 450 ° C. for 1 hour while flowing carbon dioxide gas, and then held at 650 ° C. for 1 hour. At this time, the amount of carbon dioxide absorbed in one hour at the time of carbon dioxide absorption is 0.8 wt% of lithium ferrite before absorption, and the amount of carbon dioxide released in one hour at the time of carbon dioxide release is lithium before absorption. It was 0.5 wt% of ferrite.
【The invention's effect】
As described above, according to the present invention, in a carbon dioxide absorbent that can be used repeatedly by absorbing and releasing carbon dioxide, the carbon dioxide absorption is performed with a low carbon dioxide release reaction temperature and a high carbon dioxide absorption rate. Material can be provided. As a result, carbon dioxide can be absorbed / released without any practical problem, and the heat-resistant temperature of the apparatus can be kept relatively low, so that the range of selection and use of the apparatus material can be expanded, and the industrial value is great.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing an embodiment of a carbon dioxide absorber.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Carbon dioxide gas absorbing material 2 ... Channel 3 ... Channel 4 ... Reaction vessel 5 ... Carbon dioxide gas inlet 6 ... Product gas outlet 7 ... Gas inlet 8 ... Production gas outlet

Claims (5)

アルファ−リチウムフェライトを用いることを特徴とする炭酸ガス吸収材。A carbon dioxide absorbent characterized by using alpha-lithium ferrite. 炭酸リチウムとアルファ−酸化第二鉄を混合し、この混合物を700℃以上で焼成してアルファ−リチウムフェライトを得て炭酸ガス吸収材を得ることを特徴とする炭酸ガス吸収材の製造方法。A method for producing a carbon dioxide absorbing material, comprising mixing lithium carbonate and alpha-ferric oxide, and firing the mixture at 700 ° C. or higher to obtain alpha-lithium ferrite to obtain a carbon dioxide absorbing material. 炭酸ガスを含む気体に炭酸ガス吸収材を接触させて前記炭酸ガスを含む気体から前記炭酸ガスを分離するのに際し、前記炭酸ガス吸収材にアルファ−リチウムフェライトを用いることを特徴とする炭酸ガス吸収方法。Carbon dioxide absorption, characterized in that alpha-lithium ferrite is used as the carbon dioxide absorbent when the carbon dioxide absorbent is brought into contact with a gas containing carbon dioxide to separate the carbon dioxide from the gas containing carbon dioxide. Method. アルファ−リチウムフェライトを用いた炭酸ガス吸収材に炭酸ガスを吸収させることにより得た生成物を加熱して前記生成物から炭酸ガスを分離する炭酸ガス分離方法。A carbon dioxide separation method for separating carbon dioxide from the product by heating a product obtained by absorbing carbon dioxide in a carbon dioxide absorbent using alpha-lithium ferrite. 炭酸ガス導入口および生成ガス排出口を有する反応容器と、
この反応容器に収納されたアルファ−リチウムフェライトを用いた炭酸ガス吸収材を備える炭酸ガス吸収装置。
A reaction vessel having a carbon dioxide gas inlet and a product gas outlet;
A carbon dioxide absorber comprising a carbon dioxide absorbent using alpha-lithium ferrite accommodated in the reaction vessel.
JP2003189164A 2003-07-01 2003-07-01 Carbon dioxide absorbing material, carbon dioxide absorbing material manufacturing method, carbon dioxide absorbing method, carbon dioxide separating method and carbon dioxide separating device Expired - Fee Related JP3857667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003189164A JP3857667B2 (en) 2003-07-01 2003-07-01 Carbon dioxide absorbing material, carbon dioxide absorbing material manufacturing method, carbon dioxide absorbing method, carbon dioxide separating method and carbon dioxide separating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003189164A JP3857667B2 (en) 2003-07-01 2003-07-01 Carbon dioxide absorbing material, carbon dioxide absorbing material manufacturing method, carbon dioxide absorbing method, carbon dioxide separating method and carbon dioxide separating device

Publications (2)

Publication Number Publication Date
JP2005021781A true JP2005021781A (en) 2005-01-27
JP3857667B2 JP3857667B2 (en) 2006-12-13

Family

ID=34187447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003189164A Expired - Fee Related JP3857667B2 (en) 2003-07-01 2003-07-01 Carbon dioxide absorbing material, carbon dioxide absorbing material manufacturing method, carbon dioxide absorbing method, carbon dioxide separating method and carbon dioxide separating device

Country Status (1)

Country Link
JP (1) JP3857667B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006198550A (en) * 2005-01-21 2006-08-03 National Institute For Materials Science Carbon dioxide absorbing material
JP2009234810A (en) * 2008-03-26 2009-10-15 Saitama Univ Rock salt type lithium ferrite, method for producing the same, method for absorbing carbon dioxide, carbon dioxide absorber and carbon dioxide separation unit
JP2016003156A (en) * 2014-06-16 2016-01-12 国立大学法人埼玉大学 METHOD FOR MANUFACTURING α-SODIUM FERRITE
WO2018150583A1 (en) * 2017-02-20 2018-08-23 日立化成株式会社 Air conditioner and air-conditioning system
WO2018150582A1 (en) * 2017-02-20 2018-08-23 日立化成株式会社 Air conditioner and air conditioning system
WO2022259929A1 (en) * 2021-06-07 2022-12-15 戸田工業株式会社 Solid material for recovering carbon dioxide, and method for producing same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006198550A (en) * 2005-01-21 2006-08-03 National Institute For Materials Science Carbon dioxide absorbing material
JP4621887B2 (en) * 2005-01-21 2011-01-26 独立行政法人物質・材料研究機構 Carbon dioxide absorbing material
JP2009234810A (en) * 2008-03-26 2009-10-15 Saitama Univ Rock salt type lithium ferrite, method for producing the same, method for absorbing carbon dioxide, carbon dioxide absorber and carbon dioxide separation unit
JP2016003156A (en) * 2014-06-16 2016-01-12 国立大学法人埼玉大学 METHOD FOR MANUFACTURING α-SODIUM FERRITE
WO2018150583A1 (en) * 2017-02-20 2018-08-23 日立化成株式会社 Air conditioner and air-conditioning system
WO2018150582A1 (en) * 2017-02-20 2018-08-23 日立化成株式会社 Air conditioner and air conditioning system
WO2022259929A1 (en) * 2021-06-07 2022-12-15 戸田工業株式会社 Solid material for recovering carbon dioxide, and method for producing same

Also Published As

Publication number Publication date
JP3857667B2 (en) 2006-12-13

Similar Documents

Publication Publication Date Title
JP3591724B2 (en) Carbon dioxide absorber and carbon dioxide separator
Wang et al. Synthesis of macroporous Li4SiO4 via a citric acid-based sol–gel route coupled with carbon coating and its CO2 chemisorption properties
JP4427498B2 (en) Carbon dioxide absorber and carbon dioxide separator
KR101709987B1 (en) Aerogel for capturing carbon dioxide
WO2004091774A1 (en) Material and apparatus for adsorbing and desorbing carbon dioxide
WO2018227081A1 (en) Carbon dioxide removal using lithium borate
Nair et al. A kinetic study of CO2 sorption/desorption of lithium silicate synthesized through a ball milling method
Zhang et al. CaO/CaCO3 thermochemical energy storage performance of MgO/ZnO co-doped CaO honeycomb in cycles
JP3857667B2 (en) Carbon dioxide absorbing material, carbon dioxide absorbing material manufacturing method, carbon dioxide absorbing method, carbon dioxide separating method and carbon dioxide separating device
JP4199150B2 (en) Chemical reaction materials
JPH10272336A (en) Carbon dioxide-absorbing material, and method for separating and recovering carbon dioxide in exhaust gas
JP6383188B2 (en) Method for producing α-sodium ferrites
JP5044973B2 (en) Carbon dioxide absorbing material, method for producing the same, and carbon dioxide absorbing method
JP2004358390A (en) Carbon dioxide absorbing material
JP2000262890A (en) Carbon dioxide gas absorbing material, method and apparatus for separating carbon dioxide gas
JP2002282685A (en) Carbon dioxide absorbent and combustion apparatus
JP3761371B2 (en) Carbon dioxide absorber and combustion device
US7799720B2 (en) Method of regenerating carbon dioxide gas absorbent
JP3648505B2 (en) Regeneration method of carbon dioxide absorbent
JP3850843B2 (en) Carbon dioxide absorbing material, carbon dioxide absorbing method, carbon dioxide absorbing device, carbon dioxide separating device, and method for producing lithium composite oxide
JP2004216245A (en) Carbon dioxide absorbent, and its production method
JP5020893B2 (en) Carbon dioxide absorbing material, carbon dioxide absorbing / releasing method and absorption / releasing device
KR101957980B1 (en) Prcess for preparing carbon dioxide sorbent utilizing alkali metal salts and carbon dioxide capture module containing the adsorbent
KR102023140B1 (en) Metal additive-containing magnesium oxide based carbon dioxide sorbent, manufacturing method of the same and carbon dioxide capture module comprising the same
JP2002085966A (en) Carbon dioxide absorbing material, its production method and combustion equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060914

R151 Written notification of patent or utility model registration

Ref document number: 3857667

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees